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M NI MUM MULTI PLI CATI ON FOURI ER ANALYSI S

BY

R W Hockney ‘

Abstract: Fourier analysis and synthesis is a frequently used tool in

appl i ed mathenatics but is found to be a time consunming process to
apply on a digital conmputer and this fact may prevent the practical
application of the technique. This paper describes an algorithm
whi ch uses the symmetries of the sine and cosine functions to
reduce the nunber of arithmetic operations by a factor between

10 and 30. The algorithmis applicable to a finite fourier (or
harmoni c) analysis on 12 & 2% values, where q is any integer
> 0 and is applicable to a variety-of end conditions. A conplete

and tested B5000 Al gol program known as FOURIERI2 is included.

During the period of this research the author collaborated closely wth personnel
of Triservice Contract Nonr-225(24) and part of his salary was paid by this contract.
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1 FOURIER ANALYSI S

Suppose we are given a sequence of (n+l) nunbers

yeen,® ' . ()

PpsPyseees® "

s

then these may be expressed exactly by a finite Fourier series

k=nmax

J(CRIC (2)

s

th harrmni.c and V(s,k) is the kth

where @ is the anplitude of the k
harmoni ¢ function. This is the process of Fourier synthesis.
To obtain the values of the Ek fromthe o, e forma summation

over o with a second set of harmonic functions w(k,s)

s=nmax

B W(k,s )P, (3)

s=nm n

This inverse transformation is made possible because the functions

V(k,s) and Ws,k) satisfy the biorthogonality relations.

nmax
). W(k,s) V(s,k') = Byger
s=rmin ]

(%)
nmax

and Y V(s,k) wW(k,s') =
k=nmin

|
o

Thus far we have not specified the extent of the summation (Le.,
value of nnmax) nor explicitly stated the functions V(k,s) and

W(s,k), because these depend on the boundary conditions which are inposed



on the sequence (1). W shall consider various cases which are
distinguished in the Algol procedure FOURIER12 (BC,Q,X,Y) by the value

of the input parameter BC (neaning boundary condition).

1.1 The periodic case BC =3and &

This is the usual situation that is meant when the term Fouri er
or Harnonic analysis is used. [In this case the values ¢, to ¢ _,

are repeated periodically such that =9, for any integer p.

cPs+pn
Thus we want an expression for the infinite sequence

.. .,q)o,...,cpn_l’(po,. .o cpn_l,q)o’.. . an-l’cPO’. ..,q)n-l,. .o

In this case the harnonic functions are

2 2ns k o
Pk(n/z)‘\/; coS “rsl . 0<kgn/2,0<s<nI
V( s,k) = Wk,s) = (5)
2ns (k- _r_1_)
|-\/%sinTg " .nf2<k<nl, 0<s <n-l

1/V2 if k =0 or j
wher e P (J) ={

1 ot herwi se

and

The procedure call

FOURIER12(3,Q,X,Y);




perforns a periodic Fourier analysis on n =12 X 2Q poi nt's

Xo,xl,,_,,xn_l as follows:

n-1
Y, =5—2‘0‘ w(k,s)x8 -- 0<k,s<n1

The Fourier synthesis is performed by the cal

FOURIER12(4,Q,Y,X);

which synthesises the harmoni components Yys¥y,.e0¥, 5 into the point

val ues Xg,Xy,..+,X _, according to

n- |
X, = kgoV(s’k)Yk . 0 < k'8 < n-l

1.2 Si ne expansi on or zero value case BC =1

In this case we insist that the value of @ at the two'ends is

zero,and there are only (n-1) active points ®,Pn,.,9 4 i.e.,

(pO=CP =0 . (6)

¢_p = =%,
and L “Prnip

As a result, if the originis taken at s = 0, only sine terms

appear in the series expansion and we get




V(s,k) = W(k,s) =_\/’%'81nnslg_n__ - I<k<nl," 1<s <l
(1)
and nmin =1, nmax = n-|.
In this case we note that V(s,k) = W(s,k) and the processes of
Fourier analysis and synthesis are identical. Both Fourier analysis

and synthesis are perfornmed by the same procedure cal

FOURIER12(1,Q,X,Y)
according to
s=n-1
Y, = ¥ VZsimnZEx 1<s, k<nl
k S:| - n n S ) -

1.3 Cosine expansion or zero slope case BC = 2

If we have a nmathematical problem with the boundary condition of

zero slope, the finite difference formleads to the end conditions

o= %

(8)

and Prep = Pnep

In this case the Fourier expansion with origin at s = 0 contains

only cosine terns and the harnonic functions are:

¥(s,k) =2 F(n) cos 2K

n

(9)
W(k,s) =-\/-%-P§(n) cos 1sk




Here again V(s,k) = W(s,k) and the process of Fourier analysis and
synthesis is identical. There are however (n+l) active points since
there are now two end values to include and nmn = 0, nmax = n.

Both Fourier analysis and synthesis are performed by the same

procedure call nanely

FOURIER12(2,Q,X,Y);

according to

20 SOLUTI ON OF EQUATIONS USI NG EI GENVECTORS

Consider the set of linear equation

AP =D (10)

Let the eigenvectors of A be u, with eigenvalue x,. Then

Au, = \u, (11)

1t Q =(xu

. sesosl ) is the matrix of eigenvectors and A is
nmin ~nmax

di agonal i sabl e then we know
o lag = A
(12)

and QAQt=A
where A is the di agonal' matrix Ay = MByge

5




Substituting (12) into (10)

asale=p
(13)
or e =2
I'f we define the transformof a vector a to be
a = Q'l’%
with the inverse relation
)
then (13) becomes
§ = A" : (1)
The equations (10) may therefore be solved in 3 stages
1) ‘'Fourier' analysis of the right hand side into its transform
E=qD (15)
2) Solution by sinple division for the transformof ¢
$ =275 (16)
3) ‘'Fourier synthesis' of the transformof ® into ¢
9= Q§ (17)

If Qis a full (nxn) matrix without symmetry stages 1) and

3) require or®  arithnetic -operations and stage 2) n operations giving

a total of



4n2 + n arithnmetic operations (18)

If (10) had been solved by Gauss elimnation it would have required
about
n3 2

F +2n arithmetic operations. (19)

This suggests that if Qis full and the eigenvectors are known they
should be useda. On the other hand for a band matrix with m diagonal s

Gauss elimnation requires

2
E%E + 2m arithmetic operations (20)

and there will be some m bel ow which Gauss elinination is advantageous

and above which the eigenfunction method should be used.
O course in the general case the eigenvectors of A will not

be known and it would be a nore difficult job to find themthan to solve

the equation (10) by Gauss elimnation.
In certain cases however where the matrix A is the finite difference

approximation to a linear differential equation the eigenvectors are

known and the method of solution by eigenvectors becones attractive.

Furthermore if the eigenvectors are sines and cosines the symetry

of these functions can be used to reduce further the numbers of operations

required in steps 1) and 2) of the solution of equation (10).




3. SPECI AL CASES WTH KNOM EI GENVECTORS
Consider the linear differential operator

£=p 24

L(x) = tgb 8, d—iﬁ (21)

whi ch has constant coefficients and in which derivatives only appear
to an even order.

Then the finite difference form of
L 9(x) . b(x) (22)

at the s point on a uniform mesh will be expressable as

J=tp
Y 85 Py =B (23)
J=-p

wher e gj +g__:i due to the even condition on the derivatives, and the
gj are the same for'all points s on the nesh.
In conventional matrix form equations (23) would be witten in

the form of equation (10) as

A=D1 (24)
with L
& . & .x & Oq % o
as |8 R el | b= | - (25)
gp. o &) . |
ng "tgl g0 ®n ®y
- - L . -




To solve equation (24) by the eigenvector technique we nust first
determ ne the eigenvectors of the matrix A as these constitute the
colums of the transformation matrix Q

To determne these vectors it is nore convenient to return to the
equations in the formgiven in (23).

If the eigenvector is u and the eigenvalue » then we need to
sol ve:

j =+p _ (26)
j:ép gj uS+J - %

i s
Let us try the conplex function e 5" which by taking real, or

i maginary parts can be used to cover both the case of u, = COS 68

and u, = sin eks

J=+p iek(s+j) 16,8 D iek( s+3 ) i@k(s-,j)
Yy g.e = g.e + g.{e +e )
. J 0 L )
J=-p J=
p 16, J -16,J 16, s
= {gy + g.(e +e )} e
0 ng J
P ins
= {g, + 2 g. Cos 6.} e
(0] 3§£ J k
Therefore
; (27)
xk=go+2j§lgj coS ij T

and the corresponding eigenvector is

Us = A sin Gks or B cos ka




where A, B, and ek

consi der the same cases as in section 1.

are determned from the boundary conditions. W

3.1 The periodic case

Ustpn = Ug p an integer
i _ank . .
The vector has a period equal ton . . . ek == where Kk is an integer.

The value at s = 0 is arbitrary therefore both sine and cosine vectors

are permssible

. 2nks 2nks

‘I‘ US :ASIn __n or BCOS k=o’l,o-.,n/2

when suitably ordered and normalized these functions are identical with

V(s,k) defined in section 1.1.

3.2 Sine case

uy =u, = 0 and qp: -u, un+p =Y p
u, = 0, therefore only the sine vector is pernissible. u = 0 there-
fore the sine must go through an integral nunber of = as s runs
_ 1k
fromO to n and o = %

When nornmal i zed these are the functions V(s,k) of section 1.2.

3.3 Cosine case

u -
-» - Y
un+p = un-p

10




By the synmmetry of the end condition only the cosine vector exists
and furthernore an integral number of = nust be covered as s runs
fromO to n. Therefore 6, _ ’% and the functions when nornalized
are the v(s,k) of section 1.3.

W therefore conclude that the eigenvectors of the matrix A are
the functions V(s,k) previously defined, with the'choice of the
V(s,k) being determned by the particular boundary conditions inposed
at s =0 and s = n.

Formng the transformation matrix Q from the eigenvectors

V(s, k) we have for the s,kth el ement

Qgy = V(s,k) (28)
Recalling (17) Fourier synthesis of the function ?Né is the operation

?=Q (29)

28|

or in terns of the V(s,k)
9, % V(s,k)3, (30)

To find the inverse of Q we make use of the orthogonality

relations (4) when it is clear that
(@) = WkS)

because then the relations (4) becone in matrix form

11




as required.

(31)

Recalling (15) we have that Fourier analysis is the operation

or alternatively

P

% W(k,8)9,

3 SOVE COMMON CASES

d2
-5

Let L(x) =
dx

then the usual 3 point finite difference approxi mation is

+1
jz_.fj ¢s+j = q)s-l - 2cps + CPs+l

ne

L(x)o(x)

t hus g_l=gl=1go=-2.

(32)

(33)

The matrix form of L(x) has the following forns according to

the boundary conditions




4.1 Periodic

2 1 0. o0 1 4
1 « O ° .
0 . °
A= | 0 d= . (55)
0 O 1
|10 . 012 do_|

g 2msk . 0SkSw2 0<s <l

= (36)
'\/%singﬂ#@l n/2 <k'<n-1, 0<s <n-l

Ais symetric therefore the inverse of Qis its transpose i.e.

-1

This may al so be seen directly from(5). Note that Qg # @fl)sk

and analysis and synthesis are different operations. The eigenvalues are

L 2k
Mo = 8 * 2,Zglc°59k’9k_ -
J=1
= =2 4+ 2 cos g.@ = -2(l-cos .2—%
n n
= b gin® XK
n

Thus the diagonal nmatrix of eigenvalues A is defined by

13




. 2 1k
Ai K= -4 sin - Sik (37)
Wth these definitions
A=aqqt and A = qtaq .
4,2 Sine case
-2 1 O dO
1 \
A= \ 1 d= (38)
O 1 -2 a
_ (-1 _ .1k : . : .
st_(Q )ks_,/_ism_?lﬁ 1<k<nl, 1<s <nl
Q'1 is symetric .". st = (Q’l)sk and the operations of Fourier
synthesis and analysis are identical
2 nk
Ai K = -4 sin o Sik (39)
4.3 Cosine case
-2 2 O d0
1 -2 1
= = ko)
A= \\\ d= (
1 -2 1
O 2 -2 8
n

14




1 5 2 K
Qgr = (€77 )y =/ 5 B cos 2= (41)

note that (%) is not symetric because of the P, ... However,

Qg = (Q']‘)sk and analysis and synthesis are identical.
_ 2 n

Sonetinmes one neets the matrix

- 1 4
J n
d2
as the finite difference form of —5 Wwth the zero slope conditions
ax
at the boundaries expressed as
Ug = Wgp and upoo=ug o

This anounts to requiring zero slope at s = -1/2 and n + 1/2 and

| eads to the eigenvectors

Qi = V(s,k) = cOS :ﬂﬁ_ﬁ_@l 0<k<n
-1 _ n(k+1/2)s
(@7)g, = W(s,k) xcos ==r==

15




Ve note that Q. # (Q"l)sk are the process if analysis and synthesis
are different.

Thus although the matrix A in (43) has the elegance of symetry
over the matrix Ain (40) its eigenvectors are not so well suited
to Fourier analysis and it is advisable to convert the equations (43) to
the formof (40) by multiplying the first and |ast equations by 2 and

then use the eigenvectors (k1).

5. M NI MUM MULTI PLI CATI ON FOURI ER ANALYSI S

Havi ng described Fourier anal ysis and its application to the
solution of certain equations we come to the main point of this paper,
which is to describe an efficient method of performng this operation.

Ve have observed that the operation of Fourier analysis
b= Q4 (L4k)

t akes 2n2

arithmetic operations if all the elenments of Q'l are known
and stored in an (nxn) array.

We will now describe an al gorithm which conputes gfrom‘g
with sonething like a tenth of these operations. This is done by
restricting Fourier analysis to those eigenvectors defined in sections
1.1 to 1.3 and restricting the value of n to be of the formi12 x 2%

where q is an integer > O.

That is to say n is fromthe sequence

{12, 2h: h8, 96: 192, 384, 768: e} (45)

16




The process is recursive and depends on renoving a conmon factor
(usual Iy of 2) between the harmonic nunber k and the nunmber of points
n at each recurrence until finallywe are required to do a Fourier
anal ysis on 12 points only. This last case is witten out in |onghand
for program efficiency.

This process has the effect that on the first recurrence all the odd
harnoni cs are cal cul ated, on the second recurrence all the harnonics of
the form2 @ an odd nunber, on the third recurrence all harmonics of
the form4® an odd nunber, and so on. Furthernore, by the use
trigonometric ~identities it is possible to calculate 8 harnonics at the
sane tine, with very little nore work than would be required to calculate
one harnonic.

Bef ore describing the algorithmin detail it is necessary to

establish sone identities.

5.1 Renoval of a common factor

. _S:n . 1 sk
Consi der S(k,n,ask) = Z a, sin z — (46)

S=0

and let there be a common factor of 2 between k and n so that

k=2Qsg
(¥7)
n=2@hn
s=h-1 sa s=n sg
k,n, = [ 2 = + i . -
S(k,n as) SZ::O a  sin n/ = an/2 sin /2 g+ s:;+l a_ sin n/2 =
(48)

1T




the third termin (48) may be expressed as

h-| h- |

- _ x gs in Les
sgo a__ sin n/2 % (2h-s) _szzoan_s{sir; gg cos 3% - cos g sin 5 £
h-1 < o as
= s§0 -(-1) an_s sin 55 (49)
Substituting (49) in (48) we get
s=h= x es _
8(k,n,a_ ) = {0 {as-(-l)gan_s) sin s %- * 8, Sin /2 g (50)
s=
s=h s=n/2
= 2 T gs _ 2 .o k/2
_s‘éo F (a) S|n2h_5:§;§‘ F (a) S|n25H§—2-(51)

th

wher e Fs(a) stands for the s element of a new array of elenents obtained

fromthe original array by folding as follows:

2
F(a)=a - (-1)%a s = 0,1,...,n/2-1

8
(52)

2F = a
nf2 @ = Zp/2

In equation (51) we have reduced the original summation up to n

to a summation up to h = -g but over a set of folded val ues 2Fs(a).,

Using the S notation this is

s (k,n,8_) = 8(k/2, n/2, °F_(a)) (53)

and a common factor of 2 has been renoved.

18




To take account of the two possibilities of g being odd or even we
introduce the 'Twofold' operation on an array, which is a procedure

of the algorithm

5.2 Twofold (L,N,A);

The nunbers A A may be imgined to be folded as

2 Bprrreo B
follows into a new array B

2 .
F (A) = = -
(A) =By = Apy-hpny
i—o,l,oco,g-l
Bpin-i = Rpri*Ppinag (54)
2F+(A)
B n
I+ = = A
2 n
£+§

Here £ is sinply a comon origin and nmay be ignored as regards

under standi ng the process,

The el enents By B“l”“’BM n will be seen to be the elenents
2
2Fs(a) for g even (denoted by 2Fs'(a)) while the elenents
B i’ Bz+n_l,,“,Bz+ n are the el enents of Fs(a) for g odd (denoted
2

by 2F;(a)). The purpose of witing the elements for g odd in reverse
order is to enable the new elements B to overwite imediately the
corresponding element in the array A, so that in fact there is no need
to introduce the array B in the procedure.

To see the effect of the operation Twofold we will apply it to a

few typi cal harnonics.

19




Sine harnonic Cosi ne harmonic

Sin 2us - Cos 2ns
/'\. n |\ o /—I
s=U \_/é=n s=0 \/ " s=n

Twof ol d

Twof ol d

(f)

() AI\ A Twof ol d

)

Twofald

&) —I\

Fig. 1 - The Twofold operation applied to some
typi cal harnonics.

20



It can be seen fromFig. 1 that one operation of Twofold on the
original data imediately separates the sine from the cosine harnmonics,
the sines appearing on the left side of the fold and the cosines to the
right side (see Fig. 1 (a) and (f)).

A further fold applied to the sine harmonic will separate out all

the harmonics with an odd nunber of =°

in the half period. These
harmonics will appear in the right half of the two fold (see Fig, 1 (b)).
Al other harnonics appear on the left of the last two fold (i.e.,

in the first quarter period).

The procéss i s continued by applying a further twfold to the first
quarter period when all harnonics with an odd nunber of x® in the
first quarter period will separate to the right of the twofold (see
Fig. 1 (e)) and all others to the left.

Simlar considerations apply to the separating off of the cosine
harmoni cs and in both cases Twofol ding can continue until only 12

points are left when the last 12 harnonics are calculated by a special

routine.

5.3 Threefold (L,N,A)

As 3 is always a factor of the number n it is also possible

to renove a common factor of 3between k and n by a folding process

as foll ows.
s=n
. 1 sk
S(k,n,as) = sZ:oa Sin 3 & s = 0,1,...,n (55)

21




now | et

k=3Qs¢
n=3®hn
s=h-1
s(k,n,a) = Y asm%-st%+ahsingg
s=0
h- | e |
|- z 8y o SIN 5§ (2h-s) + 8y, Sin ng
+h-|a sin X & (2n+s) + &, sin o
- bod —g
=0 2h+s 2 h 3h 2
h-1 x B
s(k,n,a) = Y a sin§-§+ah sinzg
s=OS
h-1
+ a (-1) sin = 28
o 2h-s 2 h
jd g T 58 g, Lo
+ sg'o ~8op4g(-1)° s 5 2+ ( -1) sin 5 g (56)

The three fold will only be used on the right hand section follow ng
a.Twofold for which it is known that g is odd. Mking use of this

fact we have

s(k,n,a) = Z 3p (a) sin 5 z s Zz:o 3p (a) sin 5 1; g (57)
S

wher e 3Fs(a) are the elenents of the Threefold applied to a_, defined

as follows

22




]
(58)
3 = -
Fh(a) =8 "%
Thus S(k,n,a) = s(k/3,n/3, 3F(a)) and a common factor 3 has been re-

moved.

In view of the fact that the right hand section of a Twofold has
its elements witten in reverse order the procedure Threefold nust
reverse the indexing and is defined as follows
= l,2,-oo,h"l

+ A

A£+n-i < A,(l+n---'i f+n-2h+i ~ AZ+n-2h-i

(59)

A A

sen-h < Pprn-n T Ay

5.4 Ei ghtk (k,N,A)
Having elimnated all conmon factors by the operation of Two or

Threef ol di ng, processes incidentally that require only additions, we are

left with a reduced nunber of points from which we nmust conpute the

harmonic anplitudes. Ve will restrict consideration to the evaluation
of the sine summation S(k,n,a) when given Kk,n,a because we shall
see in section 5.5 how this can also be used to eval uate the corresponding

cosi ne sunmmmati on.

s=n
Let 9, = s(24,n,8) = ) a_sin "%ﬂ s =0,1,...,n  (60)
“s=0

23




where now it happens to be nore convenient to let k = 2¢ and £ takes
t he val ues 0,1,...,n. As mentioned earlier it is possible to calculate

eight harnmonic anplitudes at a time and these are

P P/heg? Pofleyr Pnfo-pr Pnforsr P3n/hog P3n/uesr Paoyg (70

The harnonics being picked off an equal distance £ to either side of

the key values @y, By /1s @10 P3q710 Py

Let us define the quantities

A(z) = Z a si ey
s nmod L4=p ®
g 4) = )3 a siftt?
s mod 4=0 °
g 4) _ Y a si%’
s mod 4=1 or 3 °
£ 4) _ )X a, cos Eﬁﬁ D) a_ cos “ﬁ—z (1)
s nod bL=1 s nod 4=3

where each sumis taken over all s inthe range O to n that satisfies

the modul o condition given.

Then
n
T o omsh (), o(8)y &+ _(8)
CPz-Sgoassm — = (a""/+B )t E (12)
P _ 5 in 28(n-2) _ n-a cos xs sin &4
n-£ Z &g sin = = - Z s 8 n
=) $=0
(73)
=- ¥ a si®t+ ¥ asiniﬁ—z=-(A( Dl My + 5 4)
s mod 2=0 © s mod 2= s



n
o - . s ,n = _ X ﬂ i X s sin .T_[_S_,g
Pnfote = }; a_sin = (3 +£) = Z_ a  (sin 5 s cos —= +cos 3 —)
S=0 S=0
s mod 2=0 s mod 2=1 n
=¥ 2 asSIn{ta—gt assin’.rﬁ_‘e+ L a cosﬁ%-e
s nod 4=0 s nmod L=p s nod L4=1
> a_ cos E%é
s nod k=
3 - (£)_,(4) (2)
Pnfoig = + (B2 77-a>7) + F (74)

To obtain the remaining harnonics we deternine expressions fqr

- - - h-4
A(n/l*L ﬁ), p(n/k E), E(n/u 2) ana F(n/ ) and use these val ues again

in equations (72) to (74)

A(n/4-£)= Z a  sin w = Z a {sin {E cos x5k
smod  L=2 s mod b=z ° "
- cos -?\LE sin Ef'l—'e]
Z ] nsf _ Z s 4
= a_. sin C0S — = a cos —
s nod L= ® B3 % 5 nod 8= © n
ns 4t
Z a_ cos — 75
s nod 8=6 ° n (73)
simlarly
p/4-0) _ v sin " (o/-2) __ ¥ 4 s ’}ﬁ!
s nod L4=0 n S mod 8=0 °
+ ): a. sin s 76
S mod 8=4 °© n (76)

25




I ntroducing now the notation

S(.z) = Z ah Si ’Fﬁ—z

J s mod 8=j °
(77)
(2) — s £
We can express the results of equations (71)as
a8 =gl 4 glh)
8 = §0)4 o)
_ (18)
g4 - (S](_£)+séz)) + (ng)+s(7£))
rl4) - (c§£)+c§£)) - (cgwwgz))
from which we conpute
G, = (a+B) + E 6n/2+£:-(A-B) +F
(719)
$n-£ = -(A+B) + E -q;n/.?-ﬁ = (A'B) + F
Equations (75) and (76) become
a0/4e2) _ o) _ ()
(80)

(n/l#-l,) (£) (2)
B - -SO + S|4
and one may al so show that .
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(n/h-1) _ % (c$ el ) - (sl 4)sl)) & (c{D-clH) + (s{P)-s{))

<

|-

(afhes) _ [(C:(Lg)-cég)) s (S'gz);sgz)) . (ng)_cgfﬁ)) - (sg”)-sgfe))l

)

N

|\ J

wher e _-\-/J‘—-_ comes in as the value of sin x/4 and cos =/k.
2

"Fromthese new A B, E, F one calculates

o = o = - B + F
Tpjiog = WB) B Ty = (8B)
(81)
T = B+ B9, = (A0B) 4 T
Formulae (77) to (80) constitute the algorithm for calculating the

ei ght harmonic anplitudes.

5.5 The cosine harnonics

Cosine sunmmations of the form

s=h

C(g,h,as) = s§=:‘o a_ COS

e

g = 0,1,...,h (82)

N 2

are required for the cosine harnonics. These may be cal cul ated using
a sine summng routine such as EIGHTK by applying it to the coefficients

in the reverse order and making a sinple alteration of sign.

s=h
7 (h-s
c(g,h,A) = ;)ah-s cos 3 g
g=

g

=h )
T T s . X . T s
= goah-s {‘cos§gcos-2—.-§+s1n§gs:m§h—}
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It will be observed in the algorithmthat the harnonics are only
eval uated after Twofol ding has reduced g to be an odd nunber. Using

this fact we have

C( h ) = gj X = i I osg
gh,a,) = sin 3 gZah_S sin 3 3
5=0
) (83)
C(g:h;as) =sln 5 & S(S,h,ah_s)

g_.i
(-1) ° s(egne_)

5.6  The wvrocedure value - VAL(L,NAMY,SI)

The procedure VAL is the ALGOL procedure which evaluates all the
summations of the type S(g,h,a).

It perforns a sine analysis on the input values 2z
and stores the harnonic anplitudes in the array Ym+l’Ym+2’.'.’ o1’
using as eigenvectors the contents of the array SI, which is assunmed

to contain the first quarter period of the first sine harnonic.

The procedure cal cul ates
s=n
Ym+k> = 52::0 ZI/-I-SSIKS

One use of VAL is in the call of the procedure FOURIERI2 W th
BC =1, which performs the Fourier sine analysis of synthesis defined
in section 1.2 and used in section 3.2 and 4.2.

In this case Sl is filled with the normalized function:
_=f2 .. nt
ST, —-\/E—SI n = (8%)
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and the procedure VAL is entered
VAL(ON, Z,QY,Sl)

when the Fourier sine analysis will be perforned on 2z ,...,7 W th

1’ n-1

the harmonic anplitudes in Y5000

s=n-1
_ 2 .  msk
wher e T, = z ZS\/; sin — (85)
s=

The procedure may be understood by reference to Fig., 2 where the
case of 96 points is illustrated.

The basic recurrence of the process starts with a Twofold, initially
on the original 9 points. The 48 val ues obtained by subtraction on
the left side of the Twofold, and indicated by the shorthand EF-, are
the input points for the next stage of the recurrence.

The 48 values obtained by addition on the right side of the Two-
fold and indicated by the shorthard 2F', are used to conpute all the
harnmonics with odd k. First all odd harnonics that are not multiples
of 3 are found, eight at a time, by entry to the procedure El GHTK
This is defined as the set of numbers ({1}. Secondly all odd harnonics
that are multiples of 3 are found, by first performng a Threefold
(3F) and then entering EIGHTK with the reduced nunber of points. This
set of nunbers is defined as {2}. |In both cases ElIGHTK need only
be entered for values of k Iless than N 8 because the renaining
values are filled in automatically by the procedure.

The next stage of the recurrence works on the 48 points fromthe

subtractive side of the previous Twofold and conputes simlarly all
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vAL(L,N,Z,M,Y,SI)

N=96 » Q=5

{ .
48
8k={1} %
EF/ 1 16
e 2u ¢ \\ 8K={2}
\ 8K=2x{1}
2.+ ‘

[ ]
12; 8k=09{2}
8k=2®{1} 35
g
8K=4®{2}

FOURIER12(1,Q,X,Y); -

XO «X 03
ST, « £ sin L
vaL(o,N,X,0,Y,SI);

Yot—Yn(—O;
Tor oo T

FI G - The procedure VAL and S| NE ANAL/SYNTH BC=1

{1} - the set of all odd numbers which are not nultiples of three

{2} - the set of all odd nunbers which are mltiples of three

0} - the set of integers 1 to 12.

8K= - the procedure 8K is entered to obtain-the harmonics fromthe indicated

set
2F' - the subtractive or left 'side of a Twofold
2 + - . .
F - the additive or right side of a Twofold
3F - a threefold

2ke - the nunber of points involved
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harmonics of the form2@ an odd nunber. The process repeats until
we are left with 12 points fromwhich the harnonics k = 8Q) (1,2,...,11}
are conputed. This calculation is witten out in full wthin EIGHTK
and is selected by the artifice of making the input paraneter F an
odd nunber, in all other circumstances it happens that F is even.

It should be clear that the increase of the nunber of points by
a factor of 2 sinply adds a further linb to the recurrence tree of
Fig. 2 and that the nunmber of points may be increased in this manner
until some machine linit is reached. On the B5000 using one dinensional
arrays which have a maximum length of 1023 this limt is soon reached,

nanel y when n = 768.

5.7 The procedure SLOPE(L,N Z,MY,Sl)

The procedure SLOPE is the ALGOL procedure which evaluates all the
summat i ons C(g,h,as). It performs a cosine analysis on the input
val ues Zﬁe,zhl,.L,.,.ZzJrn and stores the harnonic anplitudes in

Y ,Y e oY using as eigenvector the array Sl.

m’ m+l’ m+n’

The procedure cal cul ates

B sgo Zpre SIks+n/2 (86)

One use of SLOPE is in the call of the procedure FOURIERL2 with
BC = 2, which perforns the Fourier cosine analysis or synthesis
defined in section 1.3 and used in section 3.3 and 4. 3.

In this case the array Sl is filled with the function

"8I, ‘\/— sin E , (87)
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The end val ues Z, and Zn are halved to take account of the factor
Pi inthe definition of the normalized function given in equation (9)

and the procedure slope is entered
SLOPE(O N, 2,0 Y, Sl) ;

when a Fourier cosine analysis is performed on the elenents Zb’“"’Zn

with the harnonic anplitudes in Yyse.+5Y . However, due to the fact

that the input values were not reversed in order before the procedure

EIGHTK is applied, as is required by equation (83)it is necessary

finally to reverse the sign of all odd harnonics to get the correct result.
The detailed operation of slope should be clear from Fig.3.

It is only necessary to say that CHS stands for the change of sign

required by equation (83) in order that ElIGHTK cal cul ate cosine harnonics

instead of sine harmonics, and that the special case of a 12 point cosine

analysis is selected in the routine EIGHTK by naking the input paraneter

F negative. In all other circumstances it happens that F is positive,



SLoPE(L,N,Z,M,Y,SI);

N N 96
25
48 e
30 /8k={1}
CHS
16
2_+
8K={ 2}‘ 3F -F
CHS ‘e
12
;8 V
- e 2] 8k=89{ 0}
o F<O
oy
8k=4®{ 2}
CHS
FOURIER12(2,Q,X,Y);
xo*‘xo/2 X «—xn/e;

2 ak

ST, (——VE’ sin = |

SLOPE(O,N,X,0,Y,SI);

change sign odd,;
YO’ SRS Yn
FLG 3 ANAL/SYNTH BC=2

Notation as FIG 2

CHS - change at sign required by equation (83)
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5.8 Periodic analysis and-synthesis

In the periodic analysis defined in section 1.1 the cosine

harnonics are given by

s=n-1

[
k s=0

5 n/2-1
k =Pk-\/;q)0+ .

sS=

now introduce ¢ _ q’o/e and al so make @,

_  n/2-1
Q. = (o _+o
k éég 5 n-

E: Pk % co

n/2-1 5
E: Pkf\/;;cos
s=1

2nsk

2nsk
n

Py +

cpS

for 0 <k <nf2 (88)

n/2-1

2 2nk
Sz:l Pk-\/; cos == (n--s)cpS +

2 2
Pk_\/:r:' COS mh Qpyp * Pk-\/-'r; %

2 2nk 2
{c‘osﬂpn s} Pk‘\/-ﬁ_ cos 4~ Pk\/; cos mk (pn/2

¢, is initially given in the range s = 0 to n-1.

| f however we

_ CPO/2 then

Darly
=415

F._ o = :
&) PkVH cos == + Pk-\/ﬁ cos nk /2 (89)

Both terns in equation (89) may be neatly conbined if we recall

the definition of the Twofold in section 5.2 equation (54) whence

2.+ _
F_(®)

I
S
1}

2_+

\
S

Fn/o(®) = @
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s = 0,1,...,n/2-1

(90)




and

n/2
= _ 2+ 2 2nk
P = é Fn-s(®) Pk'\/ﬁ_cos n

s=0

(91)

= f2 2_+
P = k‘\/; c(2k, n/2, F, s(<p))

Equation (91) shows that the cosine terns of the periodic analysis may
be conputed from the additive side of a twofold on the original data
as is shown in Fig. &,

The sine harmonics amplitudes are defined by

= sl f3 sk
"n/2+x sgl Cps_\/; sin —7 1<skgn/2-1 (92)
s=n/2-1 VE' ongk | STY2L _ f3 2rk
= ®\/= sin + = 2 (n-s) +
SZI Y = Pl CP;\/: sin = (n-s) Pn/2 &®o
n/2
= 2 2nsk
sgo {(ps-q)n-s}-\/: sin =7

$n/2+k =-\/§- s(2k, n/2, QF;(<P)> (93)

Thus the sine harnmonics can be conmputed fromthe subtractive side of a
“Twofol d on the original data
Periodic Fourier synthesis is defined by

k=n/2 k=n
- 2 2nsk — 2 i 2ns
o, = ) Pk'\/; cos T Bt n;;ﬂ\/; sin = (k-n/2)p, (9%4)

k=0

s = 0,1,...,n
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FOURIER12 (5) LX, Y) 5

0 n
N = 96 ’ Q = 3
®
2F- 2F+
' N 48
48 / ¢ .
' Cosi ne harnonics
Sine harnonics SLOPE
Y VAL Y Yo,o-o, Y)-'»8
!‘}9) « ®**) 95
FOURIER12(4,Q,Y,X);
2 . 2nt
SIt ‘:\/; sin— = ;
To—— — — — — — Hgllyy — — — — — — — Yl e
- ~ - 4
Y, <Y, /2; Yn/2 e—Yn/E/E; Yyg < Yo <03
SLOPE VAL

change sign odd

PERI ODI C_SYNTHESIS BC=4

- FIG 4.
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st

in order to reduce the 1°° and an suns to those that can be perfornmed

by the procedures VAL and SLOPE it is necessary to reduce the range of

variation of s to that of k.

Consi der

k=n

k=n/2
= 2 cos 2k (. 2 .o o2m -
s kgo Pk‘\/:cos — (n-s) k + . §2-1—\/; sin = (k-n/2)(n-s) @

s = 0,1,...,n/2
k=n/2 k=n
2 21nsk = -
n-s - { k-\/ﬁ_cos r? P - ‘ ‘\/-%-Sinenﬁ(k'nlz) %
k=0 k=n/2-1

2 — s -—
P s ='\/; c¢(2s, n/2, P9, ) -‘\/% s(2s, n/2, @)
and (9%) becomes (95)

2 3 2 )
P ='\/; c(2s, n/2, Pktpk) +_\/H- s(2s, n/2, q)k)

*where the function s nust be understood to be operating on the

S
|

S
|
d

vari abl es (pn/2+l’”°’(pn-l in contradiction to its definition in

equation (55).

The sunmations C are performed by the procedure call

Yo < Yoo 5 Ynjp« Yupl2
SLOPE(O, n/ 2, Y,0,X,SI) ; (96)

change sign odd ;

acting on the 1% n/2 harnonic conponents Y

O,oo,c,Yn/e Wth the

results placed in Yo,a..,Yn/z,

The summations S are perforned by the call
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Y

n/5 — Yn «— 0
(97)

VAL(n/2, n/2, Y, n/2,Y,SI) ;
with the results placed in Yﬁ/2+1""’Yh-1'

We note from (95) that @S(s=0,1,”.,n/2) is obtained by an
addition of C and S and that P is obtained by a subtraction. A
Twof ol d operating on the whol e sequence Pgs e sPy has this effect if
the sine summation terns are first reversed and have their signs changed.

This process is illustrated in the lower part of Fig. L.

-~

6. OPERATI ON  COUNTS

Table | gives the conplete information on the nunber of arithmetic
operations required for different values of Q and BC. The operations
counted are only those used directly in the arithnetic of the summations
and do not include any additions or nultiplications which are concerned
with indexing and 'housekeeping' operations. They therefore represent
the best that can be achieved in an efficiently witten programin
machi ne code.

For conparison purposes the nunmber of operations is conpared with
that which would be perforned in the direct evaluation of the summations

in for exanple

=N
P = Z P s:’m%‘i kK = 0,1,...,N (98)
s=0

Such an eval uation requires »° additions and n° nul tiplications

for all values of Kk.
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W introduce the factor of simplication

o1°

F = {otal nunber of operations (99)

and the weighted conparison for T090, using 15us for addition eand

2sus for nmultiplication as follows

15 §° + 25 I

15 X (# of adds) + 25 (# of mults)

F7090 = (100)

The results for the total nunber of operations are shown in Fig. 5 and
6 together with-the theoretical asynptote for large N

It will be observed that the periodic analysis requires
asynptotically only half the nunber of operations of a sine or cosine
analysis and that asynptotically the number of operations increases

as N2

The follow ng enpirical fits have been made

Sine or Cosine analysis

total # operations =2"igf + 5N (101)

-Periodic analysis

. > 2, |
total # operations = =t 6.3 N (102)
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¥ Sine Anallysis BC =1

MEX error

Tot al 11 Time
Q N Adds Mults Ops F FT090 X 10 Secs
o 12 51 27 78 |.3.71| 40 15 0.8
1] 2k 135 57 192 6.0 6.7 15 1.0
2 48 339 150 489 9.0 9.9 17 1.3
3 96 oTT 565 1,542 | 11.9 | 12.8 27 2.4
4 | 192 3,016 2,157 5,173 | 1k.2 | 1k.9 25 5.2
5 | 384 | 10,231 8,477 | 18,708 | 15.8 | 16.1 23 1404
6 | 768 | 37,206 | 33,661 | 70,867 | 16.6 | 16.8 22 43
* Cosine Analysis BC = 2
o] 12 L 21 65 | 4.4 | 4.9 10 0.5
1 2L 128 51 179 6. 4 7.2 14 0.55
2 48 345 156 501 9.2 | 10.2 14 0.9
3 96 970 559 1,529 | 12.0 | 12.9 15 1.8
4| 192 3,009 2,151 5,160 | 14.3 | 1k.9 18 5.0
5 | 384% | 10,224 8,471 | 18,695 | 15.8 | 16.1 21 15
6 | 768 | 37,199 | 33,655 | 70,854 | 16.6 | 16.8 2k 43
* Periodic Analysis BC = 3 or 4
1 24 110 37 147 7.8 8.9 2 0.80
2 48 302 98 400 |11.5 | 13.2 12 0.85
96 780 305 1,085 |16.9 | 19.1 21 1.5
14 | 192 2,130 1,113 3,243 |22.7 | 24.6 18 3.4
5 | 384 6, 400 4,297 | 10,697 |27.5 [ 29.0 22 8.
768 | 21,214 | 16,937 | 38,151 |30.9 | 31.8 20 26

TABLE |

40



I

L I I B B T

N

N2 TOTAL OPS WITHOUT 7|
FOURIER 12 -

411ttt

11T

N

T TTTT

T

ASYMPTOTE

(I

1

/

2N2
TS e
18 \

~_/

1 T TTTT

[N

1

L R BB

T

|

|

IN FOURIER

MEASURED TOTAL. OPS /'\
N

1

bt

I

IO T Y O O |

I S I W T | 1

1000
NUMBER OF POINTS

FIG.5 - OPERATION COUNTS SINE OR

C=1.7
41

100 10

COSINE ANALYSIS

10

102

10

TOTAL NUMBER OF OPERATIONS




LI B B | | L LI | TVT1TT T T 1T T

[ B

1 £ o1t

|
!

[
|

.~ 2N TOTAL OPS — 10°

- \/WITHOUT FOURIER 12
\\0 \ A

I " ASYMPTOTE -33_2”2 \ ]
1
\\ \\ ; 1000

MEASURED TOTAL OPS /\\ ~

-

]
L 1141

LR
NN

|
I

TOTAL NUMBER OF OPERATIONS

LR
Lttt

T

IN FOURIER 12

100

| LI R LA
I N ]

T
i

PO I I I T 111|x|'v1 1 [ S | | 10
1000 100 10

NUMBER OF POINTS N

FIG. 6 - OPERATION COUNTS PERIODIC ANALYSIS
BC ==3. 4

42



7. RUN TI ME COVPAR SON

The relations (101) and (102) show that for very large N the
Fourier 12 programwith periodic conditions can be, at the nost, 36
times faster than a program which evaluates the sunmations directly.

The Fourier 12 programis however conplicated logically and
contains a large anount of indexing and the time to perform these
operations has been neglected in the counts of arithnetic operations given
in section 6. In order to get a nmore realistic view of the possible
tinme savings we have conpared FOURIERI2 with the followi ng alternative

Al gol progranms?

FOURI ERDEF - This program eval uates the Fourier anplitudes directly
from their defining summtions, It evaluates explicitly a sine or cosine

for every termof the sum

I odified for

(2]

FOURI ERE - This programis CACM Al gorithm #157[1
an even nunber of points as described in a remark by G. Schubert
Thi's program considers only periodic analysis corresponding to BC = 3,
It does not evaluate the sine and cosine for each term and contains 2§
arithmetic operations for large N. It corresponds therefore to the
direct evaluation considered in section 6 where no allowance was nade
for the evaluation of the sine function. The results of the conparison
are shown in Fig. 7 where it can be seen that for large N, and periodic
conditions A gorithm157 is 7 1/2 tines faster than Fourierdef, and
Fourier 12 is 9 1/2 times faster than Al gorithm 157.

Thus about 1/4% of the potential saving of 36 is obtained from an

efficiently witten B5000 Algol program, It is to be expected that a
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wel | witten machine, code program could realize a good deal more of the
potential saving perhaps up to T0%.

W al so observe that both the sine and cosine analysis (BC=1 or
2) are slower than the periodic by a factor of 2 as expected from

the formulae (101) and (102).

8. ERRCR COVPARI SON

The accuracy of the Fourier 12 program has been checked in two
ways.

In the first place we have conpared the harmonic anplitudes pro-
duced by Fourierdef, A gorithm 157 and Fourier 12 for a random i nput
vectors and the results for the periodic case (BC = 3) are shown in
Table 2. The results for BC = 1, 2 and 4 have been obtained and are

qualitatively simlar to the case BC = 3 except that we have no com

parison with Al gorithm 157.

BC = 3 PERODIC

Q N ALG # 157 FOURI ER 12
1 2L 8 x 1071t < 107
2 48 4 x 107° 1 x 107
3 96 y x 1078 1 x 1072
4 192 4 x 1077 2 x 1071
5 384 2 x 107 1 x 1079
6 768 1 x 107
TABLE 2

Maxi mum devi ation from FOURI ERDEF result for a random
input vector ranging in magnitude from-1/2 to +1/2.

In this case to avoi d excessive nmachine tine that woul d be required
to evaluate Fourierdef we have assumed that Fourier 12 is correct.

he



Table 2 shows that the error in Fourier 12 does not increase
significantly with increasing N and is of the order of the truncation
error of the B5000 machine, which is ~;O'1l. Thus techni que of folding
used in Fourier 12 appears to be a stable process nunerically.

It can be seen however that the error using A gorithm 157 increases
with N such that for N> 100 the calculation of Fourier anplitudes by
the recurrence techniques suggested by Gbertzel[3] and used in Algorithm
157 is probably not a suitable nethod.

As a further confirmation of numerical instability in A gorithm

157 we have used as input the test vector

X :(-1)I for i = 0,1,...,N-1

which is ’/?E-Qb the highest cosine harnmonic

Table 3 shows the relative error in the anplitude of the highest
cosine harnonic when cal culated by the various routines. Again there is
a steady increase in the relative error in Algorithm 157 as N increases,

whereas there is virtually no increase in the error when Fourier 12 or

* Fourierdef is used.
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BC = 3PERICDIC

0 N FOUR! ERDEF ALG 157 FOUR ER 12
1 2k 4x 1071t 3X]Ddl 1xldil
2 L8 1 X 10'lo 3x :I.O"lo 1x 107+
3 96 1 x 1073 2 x 1077 c 1071t
4 192 3 x 1070 1x 10 -6 1x 1071t
5 384 8 x 1077 3x 107° 1 x 10710
6 768 - 8 x 10™° c 107+
TABLE 3

Relative error in the highest cosine harnonic anplitude

The second check on the accuracy of Fourier 12 was a self con-
sistency check performed as follows. A randominput vector is analyzed
into Fourier harmonics by Fourier 12 and afterwards the harnmonics are
synthesized by Fourier 12. The final vector obtained should be identica
with the initial vector and the greatest deviation between the two is
recorded in Table 4. The test was perforned for three different random
vectors in each case and the maximum derivation of the three cases is

recorded. The random vector varied in magnitude from-1/2 to +1/2.
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SINE CASE COSINE PERI QDI C

N BC=1 t hen BC=1 BC=2 t hen BC=2 BC=3 then BC=k
1 1.5 x 10 -10 1.0 x 10710 -

24 1.5 X 10710 1.4 x 10710 2.0 x 107t
48 1.7 x 10710 1.4 x 1010 102 x 10710
96 2.7 x 10730 1.5 X 10710 2.1 x 10710
192 2.5 x 10710 1.8 x 10710 1.8 x 10710
384 | 23 x 10710 2.1 x 10710 2.2 x 10710
768 2.2 x 10 -10 2.k x 1070 2.0 x 1079

TABLE 4
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PRUCEDURE FOUKIER12 CHCs@sXsY)}
VALUE BC»@Q3 v

INTEGER ©C» Q) ARRAY X,YIC13

BEGIN '
UWN INTEGER N3IsN4sNSshEsNTsNBSNIsN10sNLYLS
NGeNIe12x2%Q)
BEGIN . .

OWN  INTEGER KsF1sFsI1sK1sNZ»11,125JsK2sH2sHsL1oL2,L33
OWNHEALASBIE»FsTSsTCrGrRIA1»A25A35A4» A5, TERM,B1,B2,B3»B4,B85,86)
LABEL ENO13

UWN ARRAY Z2TOSN3)»SI[{CIN3I/2)3
OWN ARRAY 8$,C{031813

UNN HEAL NO;

REAL PRCCEDURE SIN1(X)}
VALUE X3 INTEGER X}

BEGIN xeXx MCD (N10))

SINLelF XSN7 THEN SI(X1] ELSE
IF X>N7 AND XSN3 THEN SIEN3I=X] ELSE
IF X>N3 AND XSNi1i THEN =SI{X=N3] ELSE
*SIIN1O=X])}
END SINI;
PRUCEDURE TWOFOQLDCLsN)S
VALUE L#N3 INTEGER LsNJ3
BEGLIN
H2 ¢ N/723. ™

FOR | ¢ 0 STEP1UNTIL H2=10 0

BEGIN T1el+Ls J2¢N=I+L}
AeZ({11)} BeZ2f121)3
Z{l1le A=B} 2{12)en+83
ADO ¢ ADD+23
ENOJ
ENU TWOFOLDS
PRUCEOURE THREEFOLODCLsN)}
VALUE LosN3 INTEGER LaNJ3
BEGIN
HeN DIV 33 TlelL*N} I2¢L+N=H=K}
FOR Iet STEP 1 UNTIL H-1 00
ZOIt=1leZC1t=1042012¢1)2(12=10)
ZOUT11=H)eZ[I3=HI=2(L)3
ADD ¢« ADD 4+ 2 x (H-1) +13
ENU THREEFOLD3 ,
PRUCEDURE EIGHTK(LANsKsMs»Y)3

VALUE LoNsKsM} INTEGER LaNsKsMJ ARRAY Y([013

BEGIN )

FURI€OSTEP 1 UNTILED O SEL)¢C[1]e0}

IFXK<O THEN

BEGIN CCMMENT 1 2POINT CCSINES| h LONGHAND FOR EFFICIENCY)
TWOFOLOCL+626))
A+ ZILIxB6+2[L+841xBZ} Be 2[L+2)%B43

AleZ(L+3)x83 ]
Fe ZEL+1IxBil=A1+4Z2[L+5)%BS} E¢ ZIL+1IXBS+AL+Z(L+5]1xB1}
GeA+B3 R¢A=8} Kee=K/23

TeM+K23 JeM=K2}

YUI)e=G=E3 YIN7+I)eF"R} YINI+JICE=GS VYIN?+Jle=R=F}
GeB6XCZILI~2LL+41)3 E€RIXC Z2CL+11=2(L+3)°2(L+5))} K2e3xK2)
YEK2+MJe=G=E} YIN3~K24M]IeE=G}

Ge=2[L+6)IxHE=2LL+8)xB23 Ee=2(L+71IxB4} K2e=K}

leM+K2} JeM=K23
Y [11¢G+ES YIN3+J1eG=E} YINT+M]eBOX(=Z(L+6)+2(L+8])}

ACZOL+1234201L+1C)3 BeZIL+113+2[L+9)3

YCMIeBOXCA+ED)S Y [N3I+M JeB6x(A=8))

FeZlL+11)xB2=21L+9)xB63 ReZ2(L+12)Ix86=2(L+10)xB2)

YIN7+JI&R+F ) YIN74])eR=F}

AOD€ADD+283 MULTeNMULT+203
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ENU
ELSE
IF K MOO 2=1 THEN
BEGIN
KeK+1s
AleZ{L+9)xB33 -
ACZlL+10]xB2+2[L+5)1xB6} deliL+8IxB43

EeZ2lL+11)xBL+20L+7IxAS+A1) FeZlL+11)xB5+20L+7)xB1~A1}

LeA+B ) Re¢A=R3 K2eKs23
JeM+R23 JeM=K23
YU J¢E+G3 YINT+I)e¢F=R} YINI+JIeE=G)

YIN7+J)eF+R)

GedOx(ZIL+1C1=Z[L+6))3 E€BIXCZIL+1L1)4Z0L+9]1"2(L+7))) K2¢IxK2)

YIK2+M) ek +G3 Y [N3I=K24M YJeE~G)
ZIL+6)eC3
TWGFOLLU(L,6)3
EeH2x2(L+51+B66%2(L+31]) GeBAXZLL+4)) TeMiK3 JeMeg
YII)eE+GS YIN3I+J)I¢E=G) YIN7+MIeBEXCZIL451=21L+3))2

YINT+y)eBax(ZrL+31+42(L+2))3 YINT7+T)eBax(Z2(L41122(L+2])))

ADDeADD+22) MULTeMULT+163
END
LLSE
BEGIN
K2¢ K/21
FOR J €1 STEP 1 WHILE Js8 AND JSN DO
BEGIN
FUR 1 + J STEP 8 WHILE 1 $ N ou
BEGIN I1 ¢ IxKZj L3¢L+N~]}
TERMeZLL3IIxSINICI1)}
TSelF IzJ THEN TERM ELSE TS+TERM)
IfI#J THEN ADD¢ADD+1)
MULTeMULT+1)
IF J MOC 4 # 0 THEN
BEGIN
TERMeZILIIXSINICILI+NT )3
TCeIFI=y THEN TERM ELSE TC+TERMS
IFI#JTHEN A D O «ADD+13
MULTeMULT+1)
ENUG TC3
END 13
Styl ¢ TS 3 CLJ4I + T1C 3
ENVD 3
A ¢S(21+ SC61 JIBeSt8)+ Sta3
E o€ (SC1) + SUS)Y) t (St3) + S(71)3
Fe(e[11+4C(S))=( C C 3 1+CL71))
G € AR 3 R + A=E} TeMex23 JeM=K2}

Y(I)e¢E+G) Y(NT+IJe¢F"R} YINI+JIeE=G) YINT?+J)eF+R)

ADD ¢ ADD + 14 3
IF h #NS THEN
BEGIN
A+ Cl2) =CL6) j B + =S[8)+ S[41)
E + CL11=C(51 3 F ¢ S{1) = S(51
Al + E+F 3 A2 + E=F3
E€C(31=CL7)3 F + S{31 = St713
A3 € E=F3 A4 ¢ E4F}
E € ASX(AZ+A4)}
F ¢ A5 x(Al1+A3)}
G €A+B 3 R ¢ A-8}
YINS+JICE+G) YIN6+J)eF =R} YIN6+11¢E=G}
ADD€ADD+18; MULTeMULT +23
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END;
ENDS
END EIGHTK;
PRUCEVURE VAL (LoMsY )}
VALUE LsM} INTEGER LM} ARRAY Y([01}
BEGIN
N2 ¢ N33 Fle 21
FOR Pel STEP 1 WHILE hN2>12 DO
HEGIN
TROFUOLDCLAN2)S
N2e€N2/23 LieL+N23
FOR Ke¢1 STEP 2 WHILE FixK<NS5 DO
LF « MOD 3#0 THEN

EIGHTK(LIsN2,F1XKoNMyY))
THREEFULDCL12N2)S
FOR K¢ 3 STEP 6 WHILEF1xKSNS 00O
dEGIN N9€N2DIV 3 1 EIGHTKCLI+2XNI»NS»FInKoMrY )} ENDS

2IL+N2)¢03 FleFi+F13
END Pi
TWOFOLDCLANZ))
EIGhTKCL»N2sF1=12M,Y)}
ENU VAL
PRUCEDURE SLOPE (LasMsY)3
VALUE LM} INTEGER LsMJ} ARRAY Y([0)}
BEGEN ~
N2€N3} Fle2} L2¢L+N3}
FUR Pe1l STEP 1 WHILE N2>12 00
BEGIN
TWOFOLOCL2=N2,N2)}
N2eN2/2) LielL2=N22N2)

FUR Keél STEP 2 WHILE Fi1XxKSN5 DC
1F K MUD 3 #0 THEN
EIGHTKCLISNZ2I)FIXKsMsY)}
THREEFOLD(L1,N2))
FOR Ke3 STEP 6 WHILE F1*K$kS DO
BEGIN N9eN2 OV 33 EIGHTKCL2=4XNIsNOsFiIXKsMsY)3 ENDJ
FOR Keél STEP 4 WHILE FixKSN10 DO
BEGIN TeM+FixK/2} YClle=Y(1)) END}
FleFi1+F1)
END 3
L1e¢L2=N2}
TWOFOLD(L1sN2)3
EIGHTK(L1oNZs=FisMrY)}
ENO SLOFE)
IF @427 OR Q<0 THKEN GO TO END1J
IF (BC=3 OH BC=4) AND Q=0 THEN GO TO ENDY}
FOR 1€ 0 STEP 1 UNTIL N3 00 2CIlexti)}
Pl ¢ 3.141592653591 AS¢1/SQRT(2)}
NO€SQRT(2/N3)}
IF BC=3 THEN
BEGIN
ZIN31eZ2(0)e200172)
TWOFOLDCO,N3)}
N3eN3 DIV 21
END3S
IFBC24 THEN N3eN3I OIV 23 4
NS€N3 DIV 43 NE€IXNS} NTeNI DIV 21 N10e2xN3} . Nile3xNT)
FOR [ ¢ 0 STEF 1 UNTIL N7 00 SIC11 ¢NOXSINC(PIXI/NI)}
B1¢SIINI O | V1213 82¢SIINIDIVG 11 BIeSIINS))
Ba¢SIIN3 DIV 311 BSeSI{SxNI 0Iv 12)3 B6¢SIIN? )}
IF BC21 THEN
BEGIN
2£0) ¢ 2IN31 ¢ 03
VAL (0205Y )3
YCOleY(N3)eO3
END3S
IF 8C=2 THEN
BEGIN 50




2L01¢2101723 ZIN3)e2(N3I223
MULTeMULT+23
SLOPE (C20,Y)}
F OR Kel STEF2UNTILNI=1 0 O Y(KJe=Y(K]}

ENDJ

| FBC=3 THEN

BEGIN
SLOPE (N3»0,Y)3 -
Y(OleY[QIxAS) YINIJeY[NIIXASS

MULTeMULT+23
LL01eZ2{N3)e0}
VAL (O0sN3»Y)}
YING]€0Q}

END §
IF BC=4 THEN
BEGIN
200)¢Z10)xAS} ZIN3)eZ2(N3InAS)
MULTeMULT+23
SLUPEC0,0,Y)}
PURKe1 STEP 2 UNTIL NK3=t 00 Y{KIe=Y[K])}
ZINIIeZ(NG)eO)
VAL(N3»N3»Y)}
FOR I¢1 STEP 1 UNTIL N7 DO

BEGIN JeN3HTI}3 KeNa=13 AeY[JIJ Y[JIe=Y[K)} Y(KIe=A ENDJ
YIN4]eOS
FORIet STEP 1 UNTIL N3=t 00 . .
B E G I NUJeNI=STIAeY[I13BeY[JIIYCIIeA=RSI YIJI¢A4BIAD0CADDI2IENU)
ENO3
ENDY I
ENU END FOURIER123
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