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Abstract: Fourier analysis and synthesis is a frequently used tool in

applied mathematics but is found to be a time consuming process to

apply on a digital computer and this fact may prevent the practical

application of the technique. This paper describes an algorithm

which uses the symmetries of the sine and cosine functions to

reduce the number of arithmetic operations by a factor between--.

10 and 30. The algorithm is applicable to a finite fourier (or

harmonic) analysis on 12 @ 29 values, where q is any integer

>, 0 and is applicable to a variety-of end bonditions. A complete

and tested B5000 Algol program known as FOURIER12 is included.

During the period of this research tkie author collaborated closely with personnel
of Triservice Contract Nonr-225(24) an+ part of his salary was paid by this contract.
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1. FOURIER ANALYSIS

Suppose we are given a sequence of (n+l) numbers
. .

then these may be expressed exactly by a finiteJ!'ourier series<*

k=nmax
q,= c hk)rpk (2)

k=nmin \

where 'k is the amplitude of the kth "
harmonic and V(s,k) is the kth

--.
harmonic function0 This is the process of Fourier synthesis.

To obtain the values of the Fk from the cp, we form a summation

over cp, with a second set of harmonic functions wbs)

s=nmax
(pk= 1

s=nmin
W(k,dcp,

This inverse transformation is made possible because the functions

V(k,s) and W(s,k) satisfy the biorthogonality relations.

nmax
c wbs) Vb,k’) = q&,

s=nmin
1

and

(4)
nmax
c Vb,k) W(k,s') = Bss,

k=nmin

Thus far we have not specified the extent of the summation (Le.,

value of nmax) nor explicitly stated the functions V(k,s) and\
W(s,k), because these depend on the boundary conditions which are imposed
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on the sequence (1). We shall consider various cases which are

distinguished in the Algol procedure FOURIER12 (BC,Q,X,Y) by the value

of the input parameter BC (meaning boundary condition).

I

1.1 The periodic case BC = 3 and 4

This is the usual situation that is meant when the term Fourier

or Harmonic analysis is used. In this case the values '0 to 'n-1

are repeated periodically such that cps+pn
= Cp, for any integer p.

Thus we want an expression for the infinite sequence

In this case the harmonic functions are

I

Pk(n/2)g cos y . 0 5 is 5 n/2,,0 <s s':s n-l

v( ad = W(k,s) = (5)

2ns(k- g)
r 7.

n
. n/2 < k 5 n-l, 0 5 s 5 n-l

where
l/fi if k = 0 or j

'k(j) =
otherwise

and

The procedure call

FOURIER=(3,Q,X,Y);
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performs a periodic Fourier analysis on n = l.2 X 2
Q points

X(yX1Y l l l ☺&-l
as follows:

yk = t1 W(k,s)X, -- .O~k,.s In-1
s=o

The Fourier synthesis is performed by the call

FOURIERl2(4,Q,Y,X); .

which syntheslses 'the harmo?k cqpoqents YO,Yl,...,Yn,l into the point

values XoyXl,.t~,Xn~l according to

n-l
Xs = c V(s,k)Yk . - 0 s kj!.s s n-l

k=O

1.2 Sine expansion or zero value case BC = 1

' ,
In this case we insist that the value of Cp at the two'einas is

zero,and there are only (n-l) active points cp1&Y  l 4Pn4 i.e.,

cpo = ‘pn = 0 * (6)

This is achieved by the image conditions

and cpn-p. = +n+p

As a result, if the origin is taken at s 5: 0, only sine terms

appear in the series expansion and we get
,
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V(s,k) =
nsk

W(k,s) =Esin n . . 15 k < n-l,' 15 s < n-l

(7)

and nmin = 1, nmax = n-l.

In this case we note that V(s,k) = W(s,k) and the processes of

Fourier analysis and synthesis are identical. Both Fourier analysis

and synthesis are performed by the same procedure call

FCURIERl2(1,Q,X,Y)

--.

according to

Yk = s~alfisin~Xs l<s, kin-1_
s=l

1.3 Cosine expansion or zero slope case BC = 2

If we have a mathematical problem with the boundary condition of

zero slope, the finite difference form leads to the end conditions

and

Q,
-P

= VP

cp
n+p = ‘n-p

(8)

In this case the Fourier expansion with origin at s = 0 contains

only cosine terms and the harmonic functions are:

V(s,k) =G$k(n) cos F



Here again V(s,k) = W(s,k) and the process of Fourier analysis and

synthesis is identical0 There are however (n+l) active points since

there are now two end values to include and nmin = 0, nmax = n.

Both Fourier analysis and synthesis are performed by the same

procedure call namely

FOURIERl2(2,Q,X,Y);

according to

20 SOLUTION OF EQUATIONS USING EIGENVECTORS

Consider the set of linear equation

e Let the eigenvectors of A be ui with eigenvalue Xi. Then

A 2i = hiUi (11)

(J-2)

If Q = (~nmin,~~~,~-x> is the matrix of eigenvectors tbfld A is

diagonalisable then we know

Q-lAQ = A

and Q A Q-l = A
1

s
where A is the diagonal matrix A.. = X.6...13 1 13
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Substituting (12) into (10)

or &-+I = A"Q'L,

a cv

If we define the transform of a vector e to be

- = Q-l:a

with the inverse relation

then (13) becomes

The equations (10) may therefore be solved in 3 stages

1) 'Fourier' analysis of the right hand side into its transform

; = Q-lbN r&4

2) Solution by simple division for the transform of cp

. $=A'I?j

(13)

(15)

(16)

3) 'Fourier synthesis' of the transform of Cp into Cp

L! = Qf (17)

If Q is a full (nxn) matrix without symmetry stages 1) and

3) require 2n2 arithmetic -operations and stage 2) n operations giving

a total of



24n + n arithmetic operations (18)

If (10) had been solved by Gauss elimination it would have required

about

3 2
5 + 2n arithmetic operations. (19)

This suggests that if Q is full and the eigenvectors are known they

should be used0 On the other hand for a band matrix with m diagonals

Gauss elimination requires

-w.
2
s + 2mn arithmetic operations
2 (20)

and there will be some m below which Gauss elimination is advantageous

and above which the eigenfunction method should be used.

Of course in the general case the eigenvectors of A will not

be known and it would be a more difficult job to find them than to solve

the equation (10) by Gauss elimination.

In certain cases however where the matrix A is the finite difference

approximation to a linear differential equation the eigenvectors are

known and the method of solution by eigenvectors becomes attractive0

Furthermore if the eigenvectors are sines and cosines the symmetry

of these functions can be used to reduce further the numbers of operations

required in steps 1) and 2) of the solution of equation (10).
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3* SPECIAL CASES WITH KNOWN EIGENVECTORS

Consider the linear differential operator

&I?
L(x) = d2'

“21 -
dx2j

(21)

which has constant coefficients and in which derivatives only appear

to an even order.

Then the finite difference form of

L V(x) = b(x)

at the sth point on a uniform mesh will be expressable as

j=+p

c 43. cp
j=-p J '+j

= bs

(22)

(23)

where
g3 -$

= +g due to the even condition on the derivatives, and the

are the same for'all points s on the mesh.
- Qj

In conventional matrix form equations (23) would be written in

the form of equation (10) as

.

with

A =

Acp=b

Qo . g1 l * $
. . C. .

% . l - l . $
. .

.

- I a

. .
l *. ..gP. -0 l . g1

.0% ..:gl 'go
c

8

ry

(pO
.
.
.
..
.
.
.

(P,
m

b =I -
- -

bO
.
..
l

.

.

.

.

bn
m -

(24)

(25)



To solve equation (24) by the eigenvector technique we must first

determine the eigenvectors of the matrix A, as these constitute the

columns of the transformation matrix Q.

To determine these vectors it is more convenient to return to the

equations in the form given in (23).

If the eigenvector is ,u and the eigenvalue h then we need to

solve:

j =+p

c
jz-p

gj us+j
= x us (26)

-w.

Let us try the complex function e
ieks

which by taking real, or

imaginary parts can be used to cover both the case of us = cos eks

and u
S

= sin Bks

j=+p
c

iek(s+j) iek( '+j > iekb-J)
+ e

j=-p gje
= gee gj1e

P
= cl30 +

CL
gj(e

iekj -iekj
+ e >I eieks

3 =

P
= (go + 2

4
gj cos Qkj] e

ieks

j=

Therefore

P

'k
=go+2 gj cos ekj

and the corresponding eigenvector is

(27)

Us -= A sin eks or B cos eks

9



where A, B, and 'k are determined from the boundary conditions. We

consider the same cases as in section 1.

3.1 The periodic case

Us+pn

. .

=U
8

p an integer

2fikThe vector has a period equal to n . . . ok = --n- where k is an integer.

The value at s = 0 is arbitrary therefore both sine and cosine vectors

are permissible
--.

.
U

2nks
e . S = A sin --n- or B 2nkscos 7 k = 0 Y 1 Y-*et 42

when suitably ordered and normalized these functions are identical with

V(s,k) defined in section 1.1.

3.2 Sine case

= uuO n
= 0 and u = -u u - U

-P P n+p = n-p

.
uO = 0, therefore only the sine vector is permissible. un = 0 there-

fore the sine must go through an integral number of JC as s runs

from 0 to n and ek = $.

When normalized these are the functions V(s,k) of section 1.2.

3*3 Cosine case

U-p = Up

. un+P
=U

n-p

10



By the symmetry of the end condition only the cosine vector exists

and furthermore an integral number of II must be covered as s runs

from 0 to no Therefore flk /
'k = ??* and the functions when normalized

are the V(s,k) of section L3.

We therefore conclude that the eigenvectors of the matrix A are

the functions V(s,k) previously defined, with the‘choice of the

V(s,k) being determined by the particular boundary conditions imposed

at s =0 and s=nO

Forming the transformation matrix Q from the eigenvectors

V(s,k) we have for the s,kth element

Q - V(s,k)sk - WV

Recalling (17) Fourier synthesis of the function .F is the operation

or in terms of the V(s,k)

q, =I v(S,k)$k
k

(29)

(30)

To find the inverse of Q we make use-of the orthogonality

relations (4) when it is clear that

(Q-l)ks = W(k,s)

because then the relations (4) become in matrix form

11



Q-l& = I

Q Q-l= I"
(31)

as required.

Recalling (15) we have that Fourier analysis is the operation

y = Q-h

or alternatively

4. SOME COMMON CASES

d2Let L(x) = ~7
dx

then the usual 3 point finite difference approximation is

+1
. LWPO g c 433 $$+j = ~,,l - 2Ts + T,+l

j=-1

thus g-1=gl=l %a-2.

(32)

(33)

(34)

The matrix form of L(x) has the following forms according to

the boundary conditions

I2



4.1 Periodic

A =

-2

:

1

0

.

0

1

1010

1 0

N0
0 b 01

1
0

l

!01.-2

d =

dO
0

0

.

.

d
n-l

(35)

Eigenvector or transformation matrix is defined by

_ 0 5 k 5 n/2, 0 5 s 5 n-l .

(36)

0 5 s 5 n-l

A is symmetric therefore the inverse of Q is its transpose i.e.,

(Q-l)k,S = Qsk

4 This may also be seen directly from (5). Note that Qsk # (Q-l)sk

and analysis and synthesis are different operations. The eigenvalues are

j=l

'k
2zk

= go + 2 1 gl co8 ek 1 ek = n
j=l

= -2 + 2 c(-Js = =
2nk

n
-2(l=cos --)

= -4 sin2 nk
n

Thus the diagonal matrix of eigenvalues A is defined by

13



A - -4 sin2 Ilk
ik - n 'ik (37)

With these definitions . .

A = QAQ-'  and A = Q-lAQ .

4.2 Sine case

A =

1

\

\(
1

--.
0 1 -2

d =

n-& = (Q-'),, = &in %

-2 1 n dO

dn

(38)

15 k 5 n-l, 1'5 s 5 n-l

Q
-1 is symmetric .*. QSk = (Q-1)sk and the operations of Fourier

synthesis and analysis are identical

.
A - -4 sin2 Ilk
ik - T 'ik

:4*3 Cosine case

1

-2 2
n

1 -2 1 "
A =

1

\\\
-2 1

0 2 -2

d =

d
0

dn

(39)

(40)

14



Q& = (Q-1)sk  =E.$ cos 9
. .

note that (Q-l) is not symmetric because of the pk .;. However, :

Q& = (Q-'&, and analysis and synthesis are identical.

A
ik = -4 sin2 I!& eikn

Sometimes one meets the matrix

A =

f
--.
-1 1

1 -2 1 0

‘\

\
\ 1

0 -2 1

1 -1
:

32

with d =

dOs

dn

(43)

as the finite difference form of *
dx.

at the boundaries expressed as

with the zero slope conditions

U =U
S -s-l and u

n+s
=Un-s-l

This amounts to requiring zero slope at s = -l/2 and n + l/2 and

leads to the eigenvectors

Qsk = V(s,k)a cos rrk(s+l/2)i
n+l

O<k<n- -

(Q-l> = W(s,k) Q: cos x(k+l/2)s
sk n+l

15



We note that Qsk # (Q-l),, are the process if analysis and synthesis

are different.

Thus although the matrix A in (43) has the elegance of symmetry

over the matrix A in (40) its eigenvectors are not so well suited

to Fourier analysis and it is advisable to convert the equations (43) to

the form of (40) by multiplying the first and last equations by 2 and

then use the eigenvectors (41).

I

50 MINIMUM MULTIPLICATION FOURIER ANALYSIS

-m.
Having described Fourier analysis and its application to the

solution of certain equations we come to the main point of this paper,

which is to describe an efficient method of performing this operation0

We have observed that the operation of Fourier analysis

F = Q-4, (44)

takes 2n2 arithmetic operations if all the elements of Q
-1

are known

and stored in an (nxn) array..

We will now describe an algorithm which computes E from 2

with something like a tenth of these operations0 This is done by

restricting Fourier analysis to those eigenvectors defined in sections

1.1 to 1.3 and restricting the value of n to be of the form 12 x 2q

where q is an integer 2 0.

That is to say n is from the sequence

W, 24, 4-4 96, 192, 384, 7% -1 (45)

16



The process is recursive and depends on removing a common factor

(usually of 2) between the harmonic number k and the number of points

n at each recurrence until finallywe are required to do a Fourier

analysis on 12 points only. This last case is written out in longhand

for program efficiency.

This process has the effect that on the first recurrence all the odd

harmonics are calculated, on the second recurrence all the harmonics of

the form 2 @ an odd number, on the third recurrence all harmonics of

the form 40 an odd number, and so on. Furthermore, by the use

trigonometric --3dentities it is possible to 6alculat.e 8 harmonics at the

same time, with very little more work than would be required to calculate

one harmonic.

Before describing the algorithm in detail it is necessary to

establish some identities.

5-l Removal of a common factor

s=n
Consider S(k,n,as) = 1 as sin $ 5

s=o

and let there be a common factor of 2 between k and n so that

.
k = 2@g

n =2@h

(47)

s=h-1
Sovbas) = c

S = O

as sin ~42 y + a
s=n

d2
sinfl/;! g+ C

s=h+l
as sin 142 y

17



the third term in (48) may be expressed as

a.
h-l h-l

c a J[ 43s

S=O

n-s sin z/2 f (2h-s) = c an-s(s2 ;g cos 2~ fl 43s

s=o
- cos rcg sin z h }

= y -(-l)g ano * 63ssin z~ (49)
S=O

Substituting (49) in (48) we get

s=h-1
Sbws > = -31 (as-(-l)gan-s)  sin $ y + anj2 sin a/2 g (50)

s=O

s=h

c
2= F

5-0 S
(a) sin s F = s=:'2 2F (a) sin $ s $ (51)

s=o S

where Fs(a) stands for the sth element of a new array of elements obtained

from the original array by folding as follows:

2Fs(a) = as - (-l)g ano

2F (a>
n/2 = an/2

S = O,l,...,n/2-1

(52)

In equation (31) we have reduced the original summation up to n

to a summation up to h = g but over a set of folded values

Using the S notation this is

S (Wbas > = iit(k/2, n/2, 2Fs(a)) (53)

and a common factor of 2 has been removed.

18



To take account of the two possibilities of g being odd or even we

introduce the ?l?wofolds operation on an array, which is a procedure

of the algorithm. . .

502 Twofold  (L,N,A);

The numbers AR' A..f?+lJ""*yAQ+n may be imagined to be folded as

follows into a new array B

2F'(A) = BR+i = AR+i-AQ+n-i

2F+(A)

Bj+n..i = A +A.0-i j+n-i

B
&+;=A

(54)

Here 1 is simply a common origin and may be ignored as regards

understanding the process,

The elements BR, B~+l,O.O,B will be seen to be the elements
a+ g

2
Fs(a) for g even (denoted by

2Fs-(a)) while the elements

B.&i-n9 B~+n-ly.'oyBe+ n are the elements of Fs(a) for g odd (denoted

FI

bY
2 +
Fs (a)). The purpose of writing the elements for g odd in reverse

order is to enable the new elements B to overwrite immediately the

corresponding element in the array A, so that in fact there is no need

to introduce the array B in the procedure.

To see the effect of the operation Twofold we will apply it to a

few typical harmonics. *

19
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( >a

04

Sine harmonic

----

.;

Cosine harmonic

. .

Twofold
Twofold

-
Twogold

-aC
--.

Twofold

+-period -

Sin 22 l 2s
n

( 1C

s=n
c I”

Twofold

( >e

Fig. 1 - The Twofold operation applied to some

typical harmonics.
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It can be seen from Fig0 1 that one operation of Twofold on the

original data immediately separates the sine from the cosine harmonics,

the sines appearing on the left side'of the fold and the cosines to the

right side (see Fig, 1 (a) and (f)).

A further fold applied to the sine harmonic will separate out all

the harmonics with an odd number of x6 in the half period. These

harmonics will appear in the right half of the two fold (see Fig, 1 (b)).

All other harmonics appear on the

in the first quarter period).

The proe&ss is continued by

quarter period when all harmonics

left of the last two fold (i,e.,

applying a further twofold to the first

with an odd number of 2 in the

first quarter period will separate to the right of the twofold (see

Fig0 1 (e)) and all others to the left.

Similar considerations apply to the separating off of the cosine

harmonics and in both cases Twofolding can continue until only 12

points are left when the last 12 harmonics are calculated by a special

routine0

503 Threefold (L,N,A)

. As 3 is always a factor of the number n it is also possible

to remove a common factor of 3 between k and n by a folding process.

as follows.

s=n
S(k,n,as) = c a sin $ $

s=o s
S = O,l,,..,n (55)

21



now let

k =3@h3

n = 3Q)h

s=h-1
2!5+as sin z h

h-l
-I-

s* a2h-sc sin $ f (2h-s) + a2h sin fig

h-l
--. +

s=. &2h+sc sin $ f (2h+s) + a3h sin g g

h-l
S(k,n,a) = c as sin $ y + ah sin $ g

S=O

h-l
+

s-o a2h-sc (-l)g sin $ F

h-l
+ c -'2h+s -( 1)

Q l

s=o
sm $F + (-l)g a3h sin g g (56)

The three fold will only be used on the right hand section following

a.Twofold for which it is known that g is odd. Making use of this

fact we have

s(k,n,a) =

where %,( >a are the elements of the Threefold applied to as, defined

as follows s

22



3F,(a) = as + a2h,s - &2h+s

. . .

3Fh(a) = ah - an

S = 1,2,.,.,h-1

(58)

Thus S(k,n,a) = S(k/3, n/3, 3F(a)> and a common factor 3 has been re-

moved.

In view of the fact that the right hand section of a Twofold has

its elements written in reverse order the procedure Threefold must

reverse the indexing and is defined as follows

A.&n-i * Aj+n-i * A,k?+n-2h+i - Aj+n-2h-i

A J+n-h tA,4?+n-h  - A,4?

i = 1,2,...,h-1

(59)

504 Eightk (k&A)

Having eliminated all common factors by the operation of Two or

Threefolding, processes incidentally that require only additions, we are

. left with a reduced number of points from which we must compute the

harmonic amplitudes. We will restrict consideration to the evaluation

of the sine summation S(k,n,a) when given k,n,a because we shall

see in section 5.5 how this can also be used to evaluate the corresponding

cosine summation.

s=n
Let FR = S(2R,n,a) = 1 a sin F

‘S=O
S

S = O,l,...,n (60)

23



where now it happens to be more convenient to let k = 21 and a takes

the values O,l,...,n. As mentioned earlier it is possible to calculate

eight harmonic amplitudes at a time and these are

Q, Fn,4-a' 5n/4+.8' ‘n/2-S9 'n/Z+k!' 3n/4-d' 3n/4+k?' n-.8 (70'

The harmonics being picked off an equal distance .8 to either side of

the key values To, F
n/4

Let us define the quantities

--.

0)A = c flS.i?a  s i n -
s mod 4=2 ' n

0)B = c
JrSl?a  s i n -

s mod 4=0 '
n

0)E = c TfSla  s i n -
s mod 4=1 or 3 ' n

0)F = c
IIS1

a cos - - c
fiS#l?

a cos -
s mod 4=1 '

n
s mod 4=3 '

n (71)

where each sum is taken over all s in the range 0 to n that satisfies

the modulo condition given.

Then

sin
IlSk?-=

S n
(A(')+,@)) + ,@> (72)

Tnma = f a IIS4
cos r[s sin -

s=o S
sinAs(n-a)=-  ima

n s=o
S n

(73)

l-CS.8 fiS&= - c a  s i n - + c a sin-=-
smod2=0 ' n smod2=1 '

n
(A( ')+,( '1) + E( '1

24



Tn/2ij = C a sin IE
s=o s

n (g ij) = f as (sin g s cos y ? Cos $ S sin y)
s=o

=i c

s mod

=i c

s mod

.
0 0 Tn/231 = +

a CO6 2 s sin - +?tSl

2=0 s 2 c a sin 2 s cos -lrS1n
smod2=1 ' 2 n

l+zoas

J-CSJ?sin - + a lrS1
n - c sin - + c a

s mod 4=2 '
cos *n

s mod 4=1 ' n

c a cos ma
s mod 4=3 ' -ii

(B(~)-A(~))  + ~(~1

--.

To obtain the remaining harmonics we determine expressions for

A(n/4-d), Bb/4-a), Eb/4-a)  and ,bd4d
and use these

(74)

values again

in equations (72) to (74)

A(“/4-~)
= C a sin nsCn/4m’)  = C

smod 4=2 ' n
s mod 4=2

as(sin

c
TtSk?= a sin ? ncos

s mod 4=2 '

similarly

- cos
flS.-J?y sin -n3

c
IIS.a CO6 -

s mod 8=2' n

c
flS#da cos -

s mod 8=6 ' n (75)

= C a sin fis (n/k-J) Ml3
-ii

=-

s mod 4=Os
c a  s i n -

s mod 8=0' n

+ c
J-Q31a

s mod 8=4
s sin -n (76)
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Introducing now the notation

0) c -.
S flS&

J =
a  s i n -

s mod 8=j ' n

(77)

Cw
3 =

c
RSl?Ja cos -

s mod 8=j ’
n

We can express the results of equations (71) as

--.

B0) w 09= so + 54

(78)

from which we compute

Q/ = (A+B) + E Tn/2+4 = -(A-B) + F
e

(79)

-(A+@ + E 5n,2-j = (A-B) + F

E&a-Lions (75) and (76) become

,(n/4-a) = C;‘) _ ,(@
6

,(d4-‘)  = -& ‘) + ,@>
0 4

and one may also show that .
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,(n/4-e)

Iwhere -
7/-

comes in as the value of sin n/4 and cos 3-c/4.
2

' From these new A, B, E, F one calculates

‘p,/4- .4
= (A+@ + E , F3nl4-J = m(A+B) + F

cp=.3n/4+4
= -(A+B) + E , ‘p,/4+Q  = (A-B) + F

Formulae (77) to (80) constitute the algorithm for calculating the

eight harmonic amplitudes.

505 The cosine harmonics

Cosine summations of the form

s=h
C(g,h,as) = as cos ~~

2 h Q = O,l,...,h (82)

are required for the cosine harmonics. These may be calculated using.

a sine summing routine such as EIGHTK by applying it to the coefficients

in the reverse order and making a simple alteration of sign.

s=h
C(g,bA) = C a

s=o h-s
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It will be observed in the algorithm that the harmonics are only

evaluated after Twofolding has reduced g to be an odd number. Using

this fact we have . .

s=h
C(g,h,as) = sin $ g c ah-s sin $ F

S=O

C(g,h,a& = sin $g S(gYhYahms)

g-l
( 1) 2= - S(&h,ahms)

--.

5.6 The Drocedure value - VAL(L,N,A,M,Y,SI)

The procedure VAL

(83).

is the ALGOL procedure which evaluates all the

summations of the type SubaL

It performs a sine analysis on the input values ZQ+1,ZR+2,..~,Zj+n  1

and stores the harmonic amplitudes in the array Y
m+lyym+2� l � l y

Ym+n-1'

using as eigenvectors the contents of the array SIY which is assumed

to contain the first quarter period of the first sine harmonic.

The procedure calculates

S=ll
Ym+k,= c

s=o
zQ+ss%s

One use of VAL is in the call of the procedure FOURIERl2 with

BC = 1, which performs the Fourier sine analysis of synthesis defined

in section 1.2 and used in section 3.2 and 4.2.

In this case SI is filled with the normalized function:
-

Sit =
2

-II
llt;I sin --n- (84)
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and the procedure VAL is entered

VAL(O,N,Z,O,Y,SI)
. .

when the Fourier sine analysis will be performed on Zl,.e.,Zn,l  with

the harmonic amplitudes in Yl,..O,Yn 1

where Yk = 1g-l Zs$ sin + (85)

The procedure may be understood by reference to Fig., 2 where the

case of 96 points is illustrated0--.

The basic recurrence of the process starts with a Twofold, initially

on the original 96 points. The 48 values obtained by subtraction on

the left side of the Twofold, and indicated by the shorthand 'F-, are

the input points for the next stage of the recurrence.

The 48 values obtained by addition on the right side of the Two-

fold and indicated by the shorthard 2F-, are used to compute all the

harmonics with odd k, First all odd harmonics that are not multiples

a of 3 are found, eight at a time, by entry to the procedure EIGHTK.

This is defined as the set of numbers Ol* Secondly all odd harmonics

that are multiples of 3 are found, by first performing a Threefold
.
&I and then entering EIGHTK with the reduced number of points0 This

set of numbers is defined as {2)- In both cases EIGHTK need only

be entered for values of k less than N/8 because the remaining

values are filled in automatically by the procedure.

The next stage of the recurrence works on the 48 points from the

subtractive side of the previous Twofold and computes similarly all
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VAL(L,N,Z,M,Y,SI)

8~=83I0)
F odd

FOURIERl=!(l,Q,X,Y);.

x0 t x* t 0 ;

sing ;

VAL(O,N,X,O,Y,SI);

Y. 'Yn t 0 j

yOy
. . .,

yn

FIG2 - The procedure VAL and SINE ANAT/SYNTH  BC=l

cl) - the set of all odd numbers which are not multiples of three

f
23 - the set of all odd numbers which are mltiples  of three
01 - the set of integers 1 to 12.
&E - the procedure 8K is entered to obtain-the harmonics from the indicated

set

*F- - the subtractive or left 'side of a Twofold

*F+ - the additive or right side of a Twofold

3F
- a threefold

240 - the number of points involved
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harmonics of the form 2@ an odd number. The process repeats until

we are left with 12 points from which the harmonics k = 80 {1,2,...,11]

are

and

odd

computed. This calculation is written out in full within EIGHTK

is selected by the artifice of making the input parameter F an

number, in all other circumstances it happens that F is even.

It should be clear that the increase of the number of points by

a factor of 2 simply adds a further limb to the recurrence tree of

Fig0 2 and that the number of points may be increased in this manner

until some machine limit is reached.

arrays which have a maximum length of

namely when n = 768.

On the B5000 using one dimensional

1023 this limit is soon reached,

5.7 The procedure

The procedure

SLOPE(L,N,Z,M,Y,SI)

SLOPE is the ALGOL procedure which evaluates all the

S
). It performs a cosine analysis on the inputsummations Ch3,h,a

values ZQ,ZQ+l,-.,ZQ+n and stores the harmonic amplitudes in

YmYYm+lY  * l 6 Yym+n�
using as eigenvector the array SI.

The procedure calculates

s=n
Ym+k = "ks+n/2 (86)

One use of SLOPE is in the call of the procedure FOURIER12 with

BC = 2, which performs the Fourier cosine analysis or synthesis

defined in section 1.3 and used in section 3.3 and 4.3.

In this case the array SI is filled with the function

- Sit = z sin % ,

31
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The end values zO and Z
n are halved to take account of the factor

in the definition of the normalized function given in equation (9)

and the procedure slope is entered .

SLOPE(O,N,Z,O,Y,SI) ;

when a Fourier cosine analysis is performed on the elements z(y-,zn

with the harmonic amplitudes in Yo,~.~,YnO However, due to the fact

that the input values were not reversed in order before the procedure

EIGHTK is applied, as is required by equation (83) it is necessary

finally to reversethe  sign of all odd harmonics to get the correct result.

The detailed operation of slope should be clear from Fig0 3.

It is only necessary to say that CHS stands for the change of sign

required by equation (83) in order that EIGHTK calculate cosine harmonics

instead of sine harmonics, and that the special case of a 12 point cosine

analysis is selected in the routine EIGHTK by making the input parameter

F negative. In all other circumstances it happens that F is positive,



SLOPE(L,N,Z,M,Y,SI);

2FmJ\2F+ . . I

48 0
/

\ ..48

/

+
8~=( 1)

3F CHS

16 l
4

8~=[ 23.
CHS

24

\

2F+

'912 *
c

--. 8~=2@ 2)
CHS

3F
8~*(1] a

/
W

~K=&N 0)
Fw

F'OURIER12(2,Q,X,Y);

x0+x  2,d xn +x,/2 ;
Rtsinf;: ;

SLOPE(O,N,X,O,Y,SI);

change sign odd;

yO’
. . ., 'n

FIG 3 The procedure SLOPE and COSINE ANAL/SY'NTH BC=2

Notation as FIG 2

CHS - change at sign required by equation (83)
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5*8 Periodic analysis and-synthesis

In the periodic analysis defined in section 1.1 the cosine

harmonics are given by

for 0 < k 5 n/2 VW

= nfr pkJ/$Os y cp, + 'ic Pk$ cos T (n-s)cPs +

+ 'k
2

7r
; cos rrk cp n/2

k (qy& ,} Pk

%
is initially given in the range s = 0 to n-lo If however we

now introduce 'pn = 'PO/2 and also make cpo
= 'PO/2 then

n/2-1
cos fik Cp (89)

Both terms in equation (89) may be neatly combined if we recall

the definition of the Twofold in section 5.2 equation (54) whence

I

2F;_s((P) = Cp, + 'TnBs s = O,l,.~.,n/2-1

I'

(90)

2Fz/2tm)  = ‘p,/2
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and

'k = Pk C@k, n/2, 2Fz $4))

(91)

Equation (91) shows that the cosine terms of the periodic analysis may

be computed from the additive side of a twofold on the original data,

as is shown in Fig. k0

The sine harmonics aqlitudes are defined by

'n/2+k = 15 k 5 n/2-1 (92)

= s'~ml~s$ sin y + s=~mlCjIs$ sin %I$ (n-s) + 'P,,~ @o

. ?n/2+k = S@k, n/2, 2Fi((P)) (93)

Thus the sine harmonics can be computed from the subtractive side of a

: Twofold on the original data,

Periodic Fourier synthesis is defined by

cp, = 'ic Pk$cos F Fk + k g+l$ sin Te(k-n/2)cpk  (94)
= =

S = O,lyO..,n
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, h.“.,

\

.

FOURIERl2(3,Q,X,Y);

Sit t $ sin? ;
Jr

x0 + xn ‘X0/2 ;

N=!%,Q=3

48 0 48
0 Cosine harmonics

Sine harmonics SLOPE
VAL

Y4g� l **I ygcj

--.

FOURIER12(4,Q,Y,X);

y48iy4g - - - ----

Y. +Yo/2; Y
d

2 tY
d

2/2;
‘48 ‘y96 +-O '

SLOPE VAL

change sign odd . reverse and change sign

48

‘0’ $8. . ., $99 l “xg5

PERIODIC SYNTHl3SIS BCh

- FIG. 4.
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in order to reduce the 1st and 2nd sums to those that can be performed

by the procedures VAL and SLOPE it is necessary to reduce the range of

variation of s to that of k, -.

cpn-s

cpn-s

Consider

= k=j$2pk$$os % (n-s) k + kzI$-l/$ sin g (k-n/2)(n-s) qk

S = O,l,...,n/2

2flsk -
-t-- 'k - % (k-n/2) Tk

cp =g
n-s Jr

and (94) becomes

‘t2’Y n/2Y pk@k) -II g s(2sY n/2Y Fk)

I
(95)

c(2sY n/2Y pkFk) +
Jr

s s(2s, n,2,  k)

*where the function S must be understood to be operating on the

variables cpn/2+1y"""y(Pn-l in contradiction to its definition in

equation (55)
.

The summations C are performed by the procedure call

y. +yo,2 ; 'n/2 + 'n/2 2I ;

SLOPE(0, n/2, Y,O,X,SI) ;

change sign odd ;

(96)

acting on the 1st
n/2 harmonic components YoyO".,Y

n/2
with the

results placed in y,Y...,yn!2"

The summations S are performed by the call
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Y
d3

tYntO

(97)

Vfi(n/2, n/2, Y, n/2,Y,SI) ;
. .

with the results placed in Yn/2+1y'~~yyrl-l'

r

We note from (95) that cp, (s=O,l,...,n/2) is obtained by an

addition of C and S and that cp,-, is obtained by a subtraction. A

Twofold operating on the whole sequence cpo,...,cpn has this effect if

the sine summation terms are first reversed and have their signs changed.

This process is illustrated in the lower part of Fig. 4.

6. OPERATION COUNTS

Table I gives the complete information on the number of arithmetic

operations required for different values of Q and BC. The operations

counted are only those used directly in the arithmetic of the summations

and do not include any additions or multiplications which are concerned

with indexing and 'housekeeping' operations. They therefore represent

the best that can be achieved in an efficiently written program in.

machine code.

For comparison purposes the number of operations is compared with

that which would be performed in the direct evaluation of the summations

in for example

s=N
Fk= C cp, sin%

S=O

k = O,l,~..,N (98)

Such an evaluation requires n2 additions and n2 multiplications

for all values of k. *
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We introduce the factor of simplication

F=
2N2

total number of bperations

and the weighted comparison for 7090, using 15~s for addition ,and

25p~ for multiplication as follows

15 8 + 25 8F7090 = l5 x (# 0f adds)  + 25@{#  of muIt (1W

The results for the total number of operations are shuwn in Fig. 5 and

6 together with-the theoretical asymptote for large N.

It will be observed that the periodic analysis requires

asymptotically only half the number of operations of a sine or cosine

analysis and that asymptotically the number of operations increases

Ii?as l

The following empirical fits have been ma&k

.
Sine or Cosine analysis

. 2N2
total # operations = '18 + TN (101)

-Periodic analysis.

3 Ts
total # operations = ,y + 6.3 N (loa.
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t Sine Anal ~1s BC = 1

Time
SetsMu1ts

Total
ops F

27 78 ,.3*7

57 w 6.0

150 w 9.0

565 1,542 11.9

2,157 5,173 14.2

8,4’i’7 18,708 15.8

33,661 70,867 16.6

Adds F7090

4.0

6.7

94
12.8

14.9

16.1

16.8

N

I2

24

48

96

192

15

15

17

27

0.8

1.0

1*3
2.4

5*2
1404

43

25

23
22

* Cosine Analysis BC = 2

12 4& 21 65 4.4 4.9 10 0.5

24 128 51 179 6.4 7*2 14 0.55

48 345 156 501 9.2 10.2 14 0.9

96 970 559 1,529 12.0 l-w 15 108

192 3,w 2,151 5,160 14.3 14.9 18 500

384 10,224 8,471 18,695 15.8 16.1 21 15

768 37,199 33,655 70,854 16.6 16.8 24 43

BC = 3 or 4* Periodic Analysis

1 24 110 37 147
2 48 302 98 400

3 96 780 305 1,085
I4 192 2,130 1,113 3,243

5 384 6,400 4,297 lo,@7

6 768 21,214 16,937 38,151

7.8 8.9 2 0080

11.5 13.2 12 0~85

16.9 19.1 21 105
22.7 24.6 18 3.4

27.5 29.0 22 8.j

304 31.8 20 26

TABLE I
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70 RUN TIME COMPARISON

The relations (101) and (102) show that for very large N the

Fourier 12 program with periodic conditions can be, at the most, 36

times faster than a program which evaluates the summations directly.

The Fourier I2 program is however complicated logically and

contains a large amount of indexing and the time to perform these

operations has been neglected in the counts of arithmetic operations given

in section 6. In order to get a more realistic view of the possible

time savings we have compared FOURIER12 with the following alternative

Algol programs?

FOURIERDEF - This program evaluates the Fourier amplitudes directly

from their defining summations, It evaluates explicitly a sine or cosine

for every term of the sum.

FOURIERE - This program is CACM Algorithm #157 Cl1 modified for

an even number of points as described in a remark by G. Schubert k.1 0

This program considers only periodic analysis corresponding to BC = 3.

It does not evaluate the sine and cosine for each term and contains 2N24

arithmetic operations for large N. It corresponds therefore to the

direct evaluation considered in section 6 where no allowance was made

for the evaluation of the sine function0 The results of the comparison

are shown in Fig0 7 where it can be seen that for large N, and periodic

conditions Algorithm 157 is 7 l/2 times faster than Fourierdef, and

Fourier 12 is 9 l/2 times faster than Algorithm 157*

Thus about l/4 of the potential saving of 36 is obtained from an

efficiently written B5000 Algol program., It is to be expected that a
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- \\ I\ \ II I
FOURIERDEF

I DtRECT E V A L U A T I O N  z
OF IIFFINJTI~Nt”UKitKBC,= 1 &L

--.

FOURIER 12
BC=3&4

llll I I l
Q=6 5' 4

I rlllli I I
I

1 0 0 0 1.
NUMBER OF POINTS

0.1

FIG. 7; TIME COMPARISON
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well written machine, code program could realize a good deal more of the

potential saving perhaps up to 7$

We also observe that both the sine and cosine analysis (BC = 1 or

2) are slower than the periodic by a factor of 2 as expected from

the formulae (101) and (102).

8. ERROR COMPARISON

The accuracy of the Fourier 12 program has been checked in two

ways.

In the first place we have compared the harmonic amplitudes pro-

duced by Fourierdef, Algorithm 157 and Fourier 12 for a random input

vectors and the results for the periodic case (BC = 3) are shown in

Table 2. The results for BC = 1, 2 and 4 have been obtained and are

qualitatively similar to the case BC = 3 except that we have no com-

parison with Algorithm 157.

BC = 3 PERIODIC

Q N KG # 157 FOURIER 12

1 24 8 x lo-l1 < lo-l1

2 48 4 x lo-lo 1 x lo-l1

3 96 y x 10
-8

1 x lo-l1

4 192 4 x lo-7 2 x lo-=

5 384 2 x 10-5 1 x loo10

6 768 1 x 10-5"

TABLE 2

Maximum deviation from FOURIERDEF result for a random
input vector ranging in magnitude from -l/2 to +1/2.

*
In this case to avoid excessive machine time that would be required

to evaluate Fourierdef we have assumed that Fourier I2 is correct.



Table 2 shows that the error in Fourier 12 does not increase

significantly with increasing N and is of the order of the truncation

error of the B5000 machine, which is -go-11. Thus technique of folding

used in Fourier 12 appears to be a stable process numerically.

It can be seen however that the error using Algorithm 157 increases

with N such that for N > 100 the calculation of Fourier amplitudes by

the recurrence techniques suggested by Goertzel c31 and used in Algorithm

157 is probably not a suitable method.

As a further confirmation of numerical instability in Algorithm

157 we have used as input the test vector--.

( 1)
ix. = -

1 for i = O,l,.,.,N-1

which is @ the highest cosine harmonic,

Table 3. shows the relative error in the amplitude of the highest

cosine harmonic when calculated by the various routines. Again there is

a steady increase in the relative error in Algorithm 157 as N increases,

whereas there is virtually no increase in the error when Fourier 12 or

- Fourierdef is used.
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BC = 3 PERIODIC

Q N FOURIERDEF ALG 157 FOURIER 12

1 24 4 x lo-l1 -. 3 x lo'=- 1 lo-l1x

2 4-8 1 x lo-lo 3 x lo-lo 1 lo'11x

3 96 1 x lo-lo 2 x 10-7 c lo'11

4 192 3 x loo10 1 x 10 -6 1 looll-x

5 384 8 x 10'~ 3 x lo+ 1 x 10'1°

6 768 II 8 x 10-~ c lo-l1

--. TABLE 3

Relative error in the highest cosine harmonic amplitude.

The second check on the accuracy of Fourier 12 was a self con-

sistency check performed as follows. A random input vector is analyzed

into Fourier harmonics by Fourier 12 and afterwards the harmonics are

synthesized by Fourier 12. The final vector obtained should be identical

with the initial vector and the greatest deviation between the two is

1 recorded in Table 4, The test was performed for three different random

vectors in each case and the maximum derivation of the three cases is

recorded0 The random vector varied in magnitude from -l/2 to +1/2.
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SINE CASE C&NE PERIODIC
Q N BC=l then BC=l BC=2 then BC=2 BC=3 then BC=4

0 I.2 1.5 10 -10 1.0 10
-10x x s-m

1 24 le5 x 10-10 1.4 x lo-lo 2.0 x lo-l1

2 4-8 1.7 10-10 1.4 x 10-10x 102 x lo-lo

3 96 2.7 io'1o le5 10
-10

x x 201x 10
-10

-4 192 2.5 x io'1o 1.8 x 10'~' 108 x 10-l',

5 384 --2.3 x lo-lo 2al x 10
-10

2.2 x 10
-10

6 768 2.2 x 10 -10 204 x l&O 200 x loo10

TABLE 4
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PfiuCEDiHE  FClURIEH12  (HC,Q,X,Y)J
V A L U E  f3c1Q J

,>;

INftGEH tICI 81 AHRAY XrYfClJ
BEtiIN

I

OWN  INTEGEH  N?,~4,NS,h6,h7,hB,k9,hlO,hllJ  .
N44h3412x2*01
BEi;II\I . .

OWN INTEGER ~,Fl,F,I,Kl,N2,Il,I2,J,Ki,H2,H,Ll,L2,L3~
Ow& H E A L  A,B,E,f,1S,TC,G,RrAl,A2rA3,A4,A5,TEAM,B1rB2r63,B4rB~~,B6J

LABEL ENDlJ
UCN ARRAY ZfO:N33rSI[C;h3/21;
OWN ARRAY SICCO;@IJ
DhN HEAL N O ;
HEAL PRCCEDURE SINi(
VALUE Xi [NTEGER Xi
tiEGIft A+X MC0 (NlO)J
SINl*If  XSN7 T H E N  SItAl ELSE

IF XBN7 ANO XSh3  THEh SIth3'Xl  ELSE
IF X>N3 AN0  Xshil T H E N  ‘SItX”h3I  E L S E

‘SIc~lo-xJI
ENU’  SIkli

PRUCEOUAE  TWUFDLO(L,N)J
VALUE L,NJ INTEGER L,NJ

iaE(iIh
H2 + N/Z;. --’
FOR I + 0 S,TEP 1 U N T I L H2-1 0 0

BEGIN 11+I+Lj 124N-I+LJ
A*ZCIllJ 84ZCI23J
ZEIll~  i-e; ZEI234A+BJ  .

ADO + ADD+2J
ENOJ

EhU T~OFOLOJ
PRUCEOUHE.  lHREEFOLO(L,h)J
VALUE L,NJ I N T E G E R  LrNJ

t3EGIk
)t+F(  OIV 3; Il*L+NI 12*L+N-H-h)

FOR I+1 STEP 1 U N T I L  H - 1  0 0
tcIl-I34ZcIl-Il4ZtI2+Il-ztI2"IlI

Z~Il’Hl~ZcI1’HI~ZtLJJ
ADU * A00 + 2 x (H-1) +lJ

END ThHEEFDLDJ
PRDCEOuRli  EIG~TK(L~~K~~IY)J

V A L U E  LIIVIKBMJ IhTEGER L,N,K,UJ ARRAY YtOJJ
BEGIiv
FUR  I*0 S T E P  1 &TIC  @ D O  S~Il+CfIJ~OJ .
I F  K<O  T H E N
flEGIN CCHMENT 1 2  POIkT  CCSlhES  I h  LONGHAhO  FOR-EFFICIEhCVJ

TqOFOLDCL46r6)J
A +  ZtLJxti6+2tl.+41xB2J B4 ZtL+21~84J . .

AleZtL433~83  J
-f4 ZCL41lXB1-A14Z[L45l~B5J E4 ZtL4ll~B5+Al+ZCL+5l~Bl~
G4P4BJ R+A-BJ K249K/PJ

.

14M4KZJ J*M-K2J
YCII+-G-LJ YCh7+IJ+FaRI Y[~3+JJ4E‘GJ Yth74Jl4-A-F1

Q*fl6xCZ~Ll’ZtL+41)1 Eae3x(  Z[L4lJ-ZCL43J-Z[L4SJ~J  K243“K21
YtKZ+PJ4-G-E; YfN3”K2+CJ*E’GJ
G~-ZCC+63~~6-Z1L+BJ~B2~ E4-ZEL47lxB4J Ki?+-KJ

14M+K2; JeM'K2J
Y C 134f4EJ Ylk3+Jl4G’EJ Yth7+M14B6x(-ZCL+61+2CL+8~)~

A~Zt~L+l2-J+Z[L+lOJ~ f3~2cLtllJ+ztc49J1
Yti~l*B6x(A+B)J Y [N3+M J+BbxCA-B)J
F*ZtL+lt~~B2~2~L+91~B6J H~Z[L+l2J~B6-2~L+lOJr821
Y tN7+J  14H+FJ YEN7+IJ~R-FJ

ADO4AOD+28J MbLT4YUL7420J
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ENU
ELSE
IF K MOO 2=1 1HEP;

.bEGIN
KtKtlI

Al+ZEL+YJwB3; . .

w+LtL+l03~Hf+ZtL+63~66; B+LtL+BJx941  '
~+ZIL+ll~~el+2tL+IJ~~5tAl~ F+LEL+lll~l35t2tL+7J~Ql~Ali
t+A+Ui HtA-RI K2+K/21
J+M+K2j J+M-K21
Yt I l+E+Gj Yth7+IJ+F-Rj YttvJ+Jl+E-G; Y[h7+JI+F+H;
~~+~6~~~~LtlCl~~tL+61)i E+83~(ZtL+llJ+ZtLt93-~[L+7~~~  K2+3rK21

YtK2+Ml+L+GI Y tN3-.n2+M  ItE-Gi
ZtL+63+CI

lWGFOLu(L,61I
E+~2~21Lt51+6C~Z[Lt331 G+84xLCLt411 I+M+Kj J+H-KI
YCJl+E+GJ Y[ti3+JJ+E-Gj Y'ENT+MJ+B6x(ZCL+Sl-~tLt3~~;

Y[N7t~J+84x(ltL+l1+2CL+2JJj Y~~7+Il+E4~~ZtL+Il”z~Lt2~~j
AOU+AOB+221 MULltMULTtl6j

EN0
LLSL
bEGiN
K2+ K/21
FOH J * i S7F.P  1 i'dHILE  JS8 PlvO  JSN 00

bC(i  IN
FUh  1 + J SlfP  8 NHILE I S lu 00

ItEGlN  11 + IxK2j L3+L+h*II
TEHM+PCL3lxSINl(Il)j
TS+IF IIJ THEN TEW ELSE TS+TEAkI
I f  I#J THEN AOO+AOO+lj
MbLT+MULTtlI
IF J MOC 4 t 0 THEh
BEGIN

TERt~+2~L33~SIkl~Ilth7~j
TC+IF IsJ THEh TERY  ELSE TC+TERb'i

IF I#J lHEf\( A D O  +ADO+li
M~LT+MUL'r+lj
EhO TCj

iNU II
S[dl + TS i CCJJ  + 7C i

LNU i
A + 5121 + SC61 j 3 + St83 + St43 j
t + (SC13 + St511  t (SC31 + St7311
F + (c;[ll + ct531 - ( C C 3 1  + C[71)1I
ci + At8 i fi + A-Ei I+MtK2I J+N-K21
YtIJ+L+Gj YtYItII+F’f?j Y[NJ+Jl+E'GI Y[k?tJI+~+RI

AI)U t A00 + 14 t
IF h #N5 ThEN
tiEGIN

A + Cl21 - CC63 j e + -St81 + St4Jj
E + CCll'Ct51  i F + SC11  - SCSI)
Al + EtF i A2 + E-FI
E + CC31’CCtlj  F + SC31  = S't711
A3 t E-Fi A4 + EtFI

E t PSx(A2tA4)I
F + A5 x(Al+A3)1

G + A+3 i H + A-3)
YtNStJl+E+GI Y[N6tJl+F-AI Y[ru6+IJ+E’Gj Ych5tIl+f+Aj

AOO+AOD+lR;  MtJLT+Ml!LT  t21



END)
trvoi

Eh11 LIGHTKi
PHUCEUUHC  VAL (LpMrY )i
VALUE LIHJ INTEGER LpMj ARRAY YlOli

i3tGIh .
142 4 N31 Fit 21
Mt;+l STLP  1 WHILE k2>12 00

T~oFULD~L~N~)~
. .

h2+h2/2J Ll+L+hZI
FOR K+l SlEP  2 WHILE Fl*K4N5  00
LF K MOD 3tO ThEh

EIGHTK(L~~N~~F~XKIYIY~~
IHHELFULD(LIDN~)J
FOR fi+ 3  S T E P  6  kHILE  FlxKsN5  00

dEGIN  F;Y+N2  DIV 3 1 EIGhTK(Llt2XNYIN9IFlwK,MIY  )i ENOi
ztLtruzJ+oi Fl+Fl+FlI

ENO Pi
TWOFCILO(LINZ?)J
EIGhTK(L~h2rFl’lrkrY)j

ENU VALj
PHUCEOuHL  SLOPE (L~t’,v)j
VALUE LIMI INsTEGEA LIME ARRAY YtOli
8EtiLN --.

N2+43j Fl+2j L2tLth31
fU;+l STEP 1 WHILE h2>12 00

‘fWUFOLO(L2-h2,N2)1
b2+N2/21 Ll+L2-N2-h2j

FUR K+l STEP 2 rlHILE  FlxKsh5  00
1F K MOO 3 f0 THEh

EIGHTK(L~~N~,FIXK,MIY)~
THREEFOLO(Ll,N2)1
FOR K+3 STEP 6 W H I L E  FlxKsh5  00

tiEGIN  N9+N2  O I V  31 LIGHTK(L2’4~h~rNQ~fl~K~~~Y’~~ ENOi .
;;XU?!;+l STEP 4 YHILE FlBKdNlO  00

I+t’+FlxK/ZJ YcII+‘YcII~ EhOl
Fl+Fl+FlI

PhUi
Ll+L2=NZI

TYOFdLD(Llrh2)I
EIGHTK(L~~N~~-F~~MIY)~

EN0 SLOPLj
IF 0 L7 OR Q<O Tt-EN GO TO Eh’oli

I F  t8C=3 O H  BC=4)  AN0 480 THEN GO TO EN013
FOR I + 0 STEP 1 UNTIL N3 00 ZtI1 + XC&Ii
PI t 3.141592653591 A5+1/SORT(2)1

~O+SOHf(2/b3)1
IF BC=3 THEN
HEGIn

2Ctv31+2~03+2~01/21
TwOFOLll(O~N3)~
N3tN3  DIV 21 . *

ENDj
I F  BC=4 THEN h3+N3  O I V  2J
N5+N3 OIV  41 rv6+3xN51 ht+N3 Ofv 21 N10+2~N3J  . NIlkP"N7I
FOR I + 0 STEF 1 UNTIL-N7  00 S I C 1 1  + NO~SIh(PIXI/W3)i
t9l+Sltru3  O I V  1211 t32+SI[h3 OIV  6 1 1 63+SICNS11
84+SIEN3  DIV 311 95+SIt5xh3  OIV 1211 86+SItN7lI

I F  BC=l THEN
t3EGIN

LCOl  + ZtN31 + OI
VAL (OIOIY )I
Y~01+Y[h31+01  -

ENOi
1F 8C=2 THEfi
BEGIN 52



ztOl*2[01/21 Z[h3l+Zth31/2J  ' '/
MULT*MULT+21
SLOPE (CrOrY)i

F O R  K+l STEP  2 UNTIL  NJ-1 0 0  Yt~J+-Y[kl4
ENOI
I F  flC=3  THEN
bEGIN

SLOPE (A3rOlY)i b.

YEOI+Y[OJxASI Y[N3]+Y(h3lHA5I
MULT*MULTt2)

L[01+zth31+0;
VAL (Orh30Y)i
YCN41+0;

END i
IF RCf4  iHEN
l3E(iIhc
ZCOI~Z[OJxASI
MULi'tMULT+2;

ztN3JeZch3lrA5i 1 .

SLUPECOIO0Y1I
fUW tc+l STEP 2 UNTIL h3-1  00 YtKl*-YtKli  '
ztN33*2c~41~03
VAL(N3rh3rY)I
FOH I*1 STEP 1 UNTIL h7 DO

BEGIA J*N3+1; K*N4"1I AtYCJlI YtJle-YCKli  YtIo*-A EhOI
YtNUJ*O;
FQH  I+1 STEP 1 U N T I L  NJ-1  00

B E G I N  J+N4iIl  A+Y[II1  B+y[JJj Y[Il+i”RI Yth+l3i  AOO+AOR+2l  ENUP
ENOI a
EN01  I

ENU END FaUHIEH12;  I
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