CS33

A PROGRAMMING LANGUAGE FOR THE 360 COMPUTERS

BY
- NIKLAUS WIRTH

TECHNICAL REPORT CS33
DECEMBER 24, 1965

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

UL

The PL360 conpiler on the B5500 conputer.

The conpiler is a syntax directed one pass conpiler des'i“gned according
to the principles outlined in Technical Report cs20. The follow ng rules

and restrictions apply to the version-of Dec. 1, 1965:

1. The length of the significant part of identifiers is 6 characters,

2. No real nunbers and no strings are available.

3. Base register assignnent is fixed: Registers BA - RF are used as
base address registers and shoul d therefore not be used within the

program

=

. Every program nust be terminated by an @ character.

5. Conposite basic synbols, such as begin, end, etc., are witten as
BEGN, END, etc., i.e., have the form of identifiers and may therefore
not be used as such. Note: goto is witten as GOTO w thout space
between GO and TO

6. No bl ank spaces may occur within nunbers and identifiers.

7" The conpiler is on the USE tape and is called by the ALGOL statenent

ZIP("-PL360-", " MCP- USE")

o

. The following function identifiers are defined in the conpiler:
4, EX, CvB, CVWD, STM LM WI, WC, TR ED,
IC, STC, SRDA, SRDL, SLDA, SLDL, SVC, SPM

A Programmi ng Language for the 360 Conputers

Tabl e of Contents

Introductionc. i 1

1. Definitions, Notation . .ceceeeeneens f e e e 3
2. Basic Symbols 5
3. Ldentifiers ... 6
. Quantities, Values, and Typesccovuvvn.n. .
Bolo Numbers oo 8

L2, SEriNgS oveveriennnieiiienieeocueenonsocanannns 9

5. Declarat]ons cesassoanaees P 10
5.1. Variable Declarations Ceee ettt 10

5.2. Procedure Declarationsieiieenrnnnencneanees 11

6. Variables and Primaries *........ ol 12
7. Sinple Statements Ce i ieeeeasseatea et eaaas 13
7.1, Assignment Statements aiieeiieae. vervaed 15

7.2. Branch Statenents et reii i 13

T3 o BlOCKS suvvooococnsurononsansconsnssoosnsansasoo 16

7.4, Procedure StatemBntseeviecenenoeeoncaonns 18

7.5. Function Statements ..c..eeuiiieeieienoneninaenonns 18

8. Statements . .oiveiiiiriiioniseninaans et 20
B.1. If Statements ...cooevieerencnrenesoonessosascans 20

8.2. Case Statements e eeteiae e 21

B3, lterative State@mBNtS cvveeierenoeoneennaneoonnes 22

A Programming Language for the 360 Conputers*

by

Niklaus Wirth

I ntroduction

This paper is a prelimnary definition of a programmng |anguage
which is specifically designed for use on I BM 360 conmputers, and is
therefore appropriately called PL360.

The intention is to present a programmng tool which (a) closely
reflects the Barticular structure of the 360 conmputer, and (b) is a
superior notation to present Assenbly Codes with respect to presentation
and docunentation of algorithms. As a consequence of (a), it enables
a programmer to design programs nentioning explicitly features of this
machine in a degree inpossible in "higher level" |anguages.

It is also felt that a highly structured |anguage is nost appro-
priate (a) to promote the intelligibility of texts for the human user
and (b) to encourage this user to properly structure his algorithns
not on paper only, but in his mnd as well. The language is therefore
a phrase structure |anguage containing many constructions which quite
- obviously correspond to a single 360 nachine instruction (cf. [1]).

Mreover, it is hoped that through certain conventions (not mnen-
tioned in this prelimnary paper) concerning the use of general registers
as base address registers, progranms witten in PI360 can be efficiently
run under a time-sharing nonitor wthout requiring the presence of ad-

ditional sophisticated relocation hardware (Mdel 67).

*/ This work was partially supported by the National Science Foundation
(GP 4053) and the Conputation Center of Stanford University.

Presently, a conpiler for PL360 is available on the B5500 conputer.
This conpiler is mainly intended to serve as a tenporary tool for a boot-
strapping process: The conpiler is being rewitten in its own |anguage
and then becormes automatical |y avai labl e on the 360 conputer. |ndeed,
the primary purpose of this project is to obtain a convenient tool for
the devel opment of other conpilers (in particular ALGOL X) and nonitor
systenms, where a considerable degree of nachine-orientation and -dependence
Is desirable, 'but where an adequate standard of program docunentation is

of no less inportance.

Ref er ence:

[1] | BM System/360 Principles of operation. |BM Systens Reference
Li brary, A22-6821-1.

2

1. Definitions, Notation

The structure of the |anguage PL360 is defined by a phrase structure

system Its productions have the general form
(B) ::= X 1Xp ww 1%y

which is an abbreviation for the set of productions

(A ::= X
(A) ::= X,y
- (A) ::= Xn

and where (A) is a single nonternminal synbol, and X, Is a string
of termnal and nontermnal synbols.

Term nal synbols of the phrase structure system are either so-called
basi ¢ synbols or character strings. Basic synbols may consist of one or
nore characters, i.e., typographical entities of a |ower order than basic
synbol s; the set of characters and the deconpositions of basic symbols
into characters are not defined here, and may depend on the hardware
available to a particular inplenentation. Character strings are se-
quences of characters delineated by string quotes

The set of basic synbols is defined in section 2.

Nonterm nal synbols, sonetines also called "syntactic entities",
are denoted by letter strings enclosed by the brackets (and) .

In addition to these letter strings, the script letters 3, U, and VU
may occur; a production containing one or nore of these letters stands
for the set of productions in each of which this letter has been replaced
by a termnal word produced fromthis letter according to the follow ng

synt ax: 3

Vo:i= Ulbyte
u
g::

integer|long integerlrealllong real

i

general | floating|floating doubl e

If the same letter occurs more than once in the production, then al
occurrences of the letter have to be replaced by the same termnal word
Exanpl e:

The production
(U variable) ::= (U variable identifier)

(ef. section 6) stands for the five productions

(integer variable) ::= (integer variable identifier)

(long integer variable) ::= (long integer variable identifier)

(real variable) ::= (real variable identifier)

(long real variable) ::= (long real variable identifier)

(byte variable) ::= (byte variable identifier)
In order to provide explanations for the meaning (semantics) of PL360
texts, the letter sequences denoting syntactic entities (nontermna
synbol s) have been chosen to be English words describing approxinately
the nature of that entity. Were words which have appeared in this
manner are used el sewhere in the text, they refer to the corresponding
syntactic definition.
Definition: A sequence of basic synbols (and character strings) is a
PI360 program if and only if it can be produced from the synbol
(bl ock) by the productions listed in sections 3-8, and a meaning can

be attributed to it by the acconpanying semantic explanations

Basi ¢ Svnbol s

alBlc|p|E|F|c|u|1|s|k|L|M|v|o|p|q|R|s|T|U|v|W|x]| Y] Z|
alp|clale|f|gln]i] jlx|1im|n ol Dl qI 7|1t vIWIx] 14
ol1|2|3|x|5|6]718]9]

+|—|*|/|and|_c_2_y_lxor|_shl|s1r_1r|shl_l|shr_ll

<ll=l£I3l>] : =] neg] b

goto l_i__til_thenlelse |while |_d_o| for | stepluntil]‘case |_o_f_|

beginfend| ()] ,].|;]:]

integerl real | byte I longl arraylgrocedure I

overflowl#_l_

3. ldentifiers

3.1. Syntax
(letter) ::= aA|lB|c|p|e|F|c|u|z]J]|k|L|M|N|o|P|q|R|s|T|U|v|w|X]|Y|Z|

alvlelaleltlelnlilslxliiminb b &l $ 1 bivwixlylz

(identifier) ::= (letter)|(identifier)(letter)| (identifier)(digit)
(W identifier) ::= (identifier)
(¥ register) ::= (identifier)
(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

3.2. Semantics
ldentifiers have no inherent neaning, but serve for the identification
of registers, variables, procedures and |abels. They may be chosen
freely, with the exception of
RO,R1,R2,R3,R4,R5,R6,R7,R8,R9, RA, RB, RC, RD, RE, RF
whi ch designate the 16 general registers, and
FO,F2,F4,F6,F01,F23,Fi5, FET
whi ch designate the floating- and floating double registers respectively.
Every identifier in a program nust be defined. If it designates
a register, definition is inplied; if it designates a variable or a
procedure, then this occurs through appropriate declarations (cf. sec-
tion 5), or if it designates a label, then it occurs through a |abel
definition (cf. 7.3.).
The applicability of the rules given in the syntax (cf. 3.1.) de-
pends upon the definition of the identifier under consideration as

foll ows:

(a) If the identifier is Rn, where n is either 0,1,2,..., 9,
Ay..., F, it designates the n'th general register (the letters
A ... F have to be understood as numbers in hexadeci mal notation,
i.e., 10 . . . 15). Qherwi se,

(b) if the identifier is Fn, where n = 0,2,4, or 6, then it
designates the n'th floating register. Otherwse,

(c) if the identifier is Fnm where n = 0,2,4, or 6, and m = n+l,
then it designates the n'th floating double register. Qherw se,

(d) if the identifier has been defined in a W variable declaration
in the smallest block enmbracing the given occurrence, then it
identifies that ¥ variable and is said to be a W variable i den-
tifier; otherwise, if it has been defined in a procedure heading
in that block, then it identifies that procedure and is said to be
a procedure identifier; otherwise, the rules under (d) are applied
considering the smallest block enbracing the previously considered
block, if there exists one. O herw se,

(e) if the identifier occurs in the listing of function identifiers

(cf. 7.5.), then it identifies that function.

3.3. Exanples:

cat

4., Quantities, values, and types.

The following kinds of quantities are distinguished: yegisters
variables, and constants. Every quantity is said to possess a value
The value of a constant is determined by its denotation. (cf. L.1.-k.2.).
The value of a register or a variable is the one nost recently assigned
toit. Every value is said to be of a certain type. The follow ng types

are distinguished:

integer , long integer : the value is an integer
real , long real . the value is a real nunber,
byt e » the value is a character

In the conputer, every value is represented by a nunber of binary digits
in a suitably encoded nmanner (cf. [1]). The number of bits used in the

representation of the different types of values is given as follows:

i nt eger 16 (hal f word)
long eger 32 (word)

real 32 (wor d)

long a | & (doubl e word)
byt e 8 (byte)

Subsequently, the denotation of constants is defined.

4.1. Nunbers

4.1.1. Syntax

{digit) ::= ol|1]2|3]4|5]6]7]|8]9

(unsigned integer) ::= (digit) | (unsigned integer)(digit)
(decimal integer) ::= (unsigned integer)l_ (unsigned integer)
(hexadecimal digit) ::= (digit)|a|B|c|p|E|F

(hexadeci mal integer) ::= #(hexadecimal digit)|

(hexadeci mal integer)(hexadecimal digit)

8

(integer number) ::= (decimal integer)|(hexadecimal integer)

(fraction) ::= .(unsigned integer)

(unscaled real) ::= (unsigned integer){(fraction)|(fraction)

(scale factor 1) ::= E(decimal integer)

(unsigned real) ::= (unscaled real)|(unscaled real)(scale factor 1)|

(unsigned integer)(scale factor 1)

(real number) ::= (unsigned real)| _ (unsigned real)

(scale factor 2) ::= D(decimal integer)

(long unsigned real) ::= (unscaled real)|(unscaled real){scale factor 2)|
(unsigned integer)(scale factor 2)

(long real-number) ::= (long unsigned real)| (long unsigned real)

4,1.2. Semantics

Integers have either decimal or hexadecimal notation. Real and

long real numbers use decimal notation only. _ denotes a monadic minus

sign. The scale factor is expressed as an integral power of 10.

4.1.3. Examples:

L2,

0 1E8
1066 5.37861289001D0
3.,1416 #7AB3

Strings

h.,2.1., Syntax

(string) ::= (sequencé of characters enclosed by string quotes)

5. Declarations

5.1. Variable Declarations

5.1.1. Syntax

(U sinple type) ::= integerlloné integerlrealllong reallbyte

(U type) ::= (¥ sinple type)|
array ((unsigned integer)) (¥ sinple type)
(¥ variable declaration) ::= (W type)(identifier)
(V variable declaration) , (identifier)|
@ariabl e declaration) ({W number))
(U variable declaration)((string))
5.1.2. Semantics
A variable declaration associates an identifier and a type with
one or several quantities. |f the type of the declaration is a sinple
type, then one quantity is declared, otherwise the unsigned integer
bet ween parentheses foll owing the synbol array indicates the nunber of
declared quantities of the specified sinple type. The individual quan-
tities can then be identified by subscripts (cf. 6.2.). The ensenble
of the quantities is called an array. |If a declaration is followed by
one or several parenthesized nunbers, then this inplies that the de-
clared quantity be initialized with the given nunber(s). The type of
. these nunbers nust be identical to the type of the declaration, This
initial assignment of values is understood to take place only upon the

first time the block in which the declaration occurs is entered.

10

5.1.3. Exanples:

i nteger i,j

| ong integer mn,q

real x,y

long real z,w

integer i(1)

array (100) integer a

array (5) integer 1 (21)(0)(8)(17)(39)

5.2. Procedure Declarations

5.2.1. Syntax'

(procedure heading) ::= procedure (identifier) ((general register));

(procedure declaration) ::= (procedure heading)(statement)

5.2.2. Semantics

Execution of the statement following a procedure heading is invoked

by procedure statenents (cf. 7.k.). The procedure identifier defined by

the procedure heading is assuned to be unknown within the procedure

decl aration. Mreover, the value of the register designated in the pro-

cedure heading nust not be altered during the execution of the statenent

- following the procedure heading.

5.2.3. Exanmples
procedure P (RO; RL := Rl+x
procedure swap02 (RF);

begin long real t; t := FOl; FOL : = F23; F23 := t; end

11

6. Vari abl es and Prinaries

6.1. Syntax
(V variable) ::= (v variable identifier)|
(U variable identifier) ((unsigned integer))
(U variable identifier) ((general register))

(W primary) ::= W variable)l (W numnber)

6.2. Semanti cs

(U variable) designates a declared quantity of type T [f the
variable identifier is followed by an unsigned integer or a genera
register mﬁthiﬁ parentheses, called a subscript, then the identifier
nust designate an array, and the integer or the current value of the
register identify the individual elenment of the array. The subscript
val ues designating the elements nust be

(a) positive nultiples of 2, if the array is of type integer,

(b) positive nultiples of 4, if the array is of type long integer

or real

(c) positive nultiples of 8, if the array is of type long real

(d) positive integers, if the array is of type byte.

The first element of any array is designated by a subscript value 0.
Regi ster RO nust not be used as a subscript. The values of variables
may be changed by means of assignnent statenments (cf. 7.1.).

A primary denotes a quantity, either a variable, or a constant.

6.3. Exanples:
Vari abl es:
1(3)
a(R5)

12

7. Sinple Statenments
Synt ax

(sinple statement) ::= (assignment statement)| (branch statement)]

(block)| (procedure statement)|(function Statement)

7.1. Assignment Statenents

7.1.1., Syntax
(sinple ¥ register assignment) ::= (F register) := (Wprimary)|
(9" register) : = (I register)| (I register) : = neg (9 register)|

(§ register) := abs (§ register)

(arithmetic operator) ::= +|-|*|/|++]|--

{logical operator) ::= and|or|xor

(shift operator) ::= shl|shr|shll|shrl

(T register assignment) ::= (sinple I register assignment)]

(¥ register assignnent)(arithmetic operator)(W primary)|
(9 register assignment)(arithmetic operator)(¥ register)|
(general register assignment) : :=
(general register assignment)(logical operator){long i nteger primary)|
(general register assignment)(logical operator)(general register)|
(general register assignnment)(shift operator){unsigned integer)/
(general register assignment)(shift operator){general register)
(variabl e assignnent) ::= (W variable) := (T register)

(assignnment statement) ::= (7 register assignment)|(variable assignment)

7.1.2. Senmantics
Execution of an assignment statenent causes a new value to be assigned

to the quantity designated on the left of the assignnent operator (:=).

13

a register.

In the case of a sinple register assignment, this value is the current

value of a primry,

a register,

or the negative or the absolute value of

of type 3 are marked in the follomﬁng Table 1:

The types W of primaries which may be assigned to a register

wu long

J integer integer real long real

* * * *
general

* *
floating
floating * *
double
Table 1
The arithnetic, logical and shift operators +, -, %, /, ++ --, and,

or, xor_(exclusive or), shl, shr (shift left/right), _shil, shrl. (shift
left/right logical) designate operations which are described in detail
in Reference [I]. The operators ++ and -- designate unnormalized
addition and subtraction if applied to floating registers, "logical

addi tion/subtraction if applied to general registers (cf. also [1]).

Execution of a register assignment containing one of the arithmetic

or logical operators causes the designated operation to be perforned on
two operands and the result to be assigned to the first operand. The
first operand is the register which occurs to the left of the assign-
ment operator, and the second operand is the primary or register fol-
lowing the operator. In the case of a (unary) shifting operation, the

operand is the designated first operand, and the nunber of bit positions

it has to be shifted is determned either by the number, or by the current

14

value of the general register following the shift operator.

The types of a register () and of a primary (W) which nmay si-
mul t aneously be operands of an arithnetic operator are defined in the
following Table 2 (the type of a re‘gister assignment is said to be the

type of the register occurring to the left of its assignment operator):

U long
g integer integer real long real
* *
general (1)
floating * *
floating
double * *
Table 2
Note (1): The conbination of general register and integer primary is only

permssible in the connection with the operators +, -, and * .

Execution of a variable assignnent causes the current value of the

designated register to be assigned to a variable. The types of the

variable (W) to which the value of a register of type § may be

assigned, are designated in Table 1.

7.1.3. Exanples

Regi ster assignnents:

R1 = R

Rl =5

RF = i+j-mta(RL)

R9 = R9 and R10 shl|l 8 or Rl
- F2 = F3 + 3.1416

FO1 = z¥wtw

15

Variable assignments:

i := RO
X i=
w = F23
a(Rl) := RF -
T.2. Branch Statements
7-2.1. Syntax
(branch statement) ::= goto (identifier)

T7.2.2. Semantics
A branching statement determinesthat execution of the program be

continued at the place of the definition of the identifier following

the symbol goto . This definition is identified by the following rules:

(1) If some label definition (cf. 7.3 .) within the smallest block
embracing the branch statement contains that identifier, then this
label definition designates the place where execution has to be
continued. Otherwise,

(2) Rule (1) is applied considering the smallest block embracing the

previously considered block.

T7.3. Blocks
T.3.1. Syntax

(block heading) ::= begin|(block heading)(\y variable déclaration);]|
(block heading)(procedure declaration);

(label definition) ::= (identifier):

(block body) ::= (block heading)| (block heading)(statement);]
(block heading)(label definition)(statement);

(block) ::= {block body) end|(block body{(label definition) end

16

7.3.2. Senmantics
A block introduces a new level of nomenclature; identifiers defined

in variable declarations or procedure headings in the block heading or

in label definitions in the block body are said to be local to that

bl ock.

Execution of a block begins with the execution of the first statenent
following the block heading. Upon termnation of the execution of a
statement, the next statement in textual sequence is executed (except

in the case of a goto statenent).

7.3 .5 Exanples
| nnerproduct program with summation in double precision:
begin long real s; array (100) real x, v;
FOL := ODQ
for R1 := 0 step 4 until 39 do
begi n F23% := x(R1) * y(R1); FOL : = FOL + F23;
end;
s := FOL

end

Bubbl e sorting program
begin array (100) real a;
for RL := 396 step -4 until 0 do
begin RS := Rl - 4,
for B2 := 0 step 4 until RS do
Begin 6 := R2+h; FO := a(R2); F2 := a(R6);
if FO> F6 then
begin a(R2) := F2; a(R6):= FQ
end,

17

7.4. Procedure Statenents

7.4.1. Syntax

(procedure statenent) ::= (procedure identifier)

7.%.2. Senmantics

Execution of a procedure statement consists of the execution of the
statement which, together with the procedure heading in which the pro-
cedure identifier is defined, consititutes a procedure declaration
(cf. 5.2.). The value of the general register specified in that proce-

dure heading is altered by the procedure statenent.

7.5. Functions
7.5.1. Syntax
{function) ::= (function identifier)]
(function) ((integer number))| (function)((T register))|

(function) (@variable))

7.5.2. Semantics

The instruction set of the system/360 processor contains instructions
whi ch cannot be expressed by any of the statements of this |anguage
(except the function statenent). |n order that the |anguage be able to
express the individual functions corresponding to these instructions in
one single sinple statement, the function statement is introduced. The
individual instructions falling into this class are listed below, They

are described in Reference [1].

18

Fixed or Floating Point Arithnetic: Logi cal and Branchi ng:

Load Negative Conpare .
Load and Test Load Address

Hal ve Insert Character

Convert to Binary Store Character

Convert to Deci mal

Load Miltiple

Store Miltiple

Furthermore, all instructions with SI and SS format belong to this
category, as well as all status swtching instructions.

The paraneters of the function statement correspond in the order from
left to right:‘to the operand fields of an instruction.

It is suggested that the nmmenonic instruction codes as defined in [1]

be used as function identifiers.

7.5.3. Exanples:
svc(o) SPM(RS5)
IC(RO)(A(RL)) CVB(RF) (N)
EX(O (instruction) SLDL(R4)(16)

MVIGIF) (code) Mve(255) (a) (b)

19

8. Statenents
Syntax
(statenent) ::= (sinple statement)| (if statement)]

(case statement)| (iterative statenent)

8.1. |If Statenents

8.1.1. Syntax:
(relational operator) ::= <|<|=|£|>]>
(condition) ::= (¥ register){relat ional operator)(W primary)|
(T register)(relational operator)(¥ register)|overflow

(i f clause) if (condition) then

n

(true part) (sinple statement) el se
(if statenent) ::= (if clause)(statement)|

(i f clause)(true part)(statement)

8.1.2. Senmantics:

A condition is said to be met, if the relation indicated by the
relational operator holds between the two operands. The types J and
W of the operands which may sinultaneously be operands of relational
operators are defined in Table 2 of section 7.1.2.

The synbol overflow designates a condition which may be net after
the occurrence of a result of arithnmetic operations which cannot be
accepted by the conputer.

The if statement expresses that execution of certain statements be
dependent on certain conditions. |n the construction

(if clause)(statenent)

20

the statenment is executed only if the condition contained in the if clause
is met. In the construction

(i f clause)(true part)(statement)
the sinple statenment of the true part is executed and the statenent
following the true part is skipped, if the condition specified by the
if clause is met. Qtherwise, the true part is skipped, and the state-

ment followng it is executed.

8.1.3. Examples

if RO> 5 then goto L
if FO<Frthen FO:= FO+ 1.5
if RA = RBthen RO := RO or RL else RO := RO and Rl
if RO =1 then FOl := wtz else
if RO=73then F+ := x+ty else goto L

8.2. Case Statenents

8.2.1. Syntax

(case clause) ::= case (general register) of
(case sequence) ::= (case clause) begin| (case sequence)({statement);
(case statenment, ::= (case sequence) end

8.2.2. Semantics

Execution of the case statenent

case (register-k) of

begin {statenent-1); . . . ; (statement-i); . . . ; (statement-n); end
consists of the execution of the i-th statenent in the case sequence,

where i is the current value of the general register specified by the

21

case clause. This value is supposed to be the ordinal nunmber of sone

statenent in the case sequence. The general register of the case clause
nust not be RO, and its value becomes undefined through the execution

of the case statement.

8.2.3. Exanple:
case Rl of begin RO := 100; F2 := x; P, goto L; end

8.3. lterative Statenents

8.3.1. Syntax

(while clause) ::= while (condition) do

(step until) ::= step(integer nunber) until (general register)!
step (integer number) until (integer primry)

(for clause) ::=for (general register assignment)(step until) do

(iterative statenent-) ::= (while clause)(statement)|

(for clause)(statenent)

8.3.2. Senmantics
a. An iterative statenment of the form

while (condition) do (statenent)

is equivalent to
L. if (condition) then begin (statement); goto L; gng
b. An iterative statement of the form
for (general register) := (initial value) step (i ncrenent)

until (limt) do (statement)

s equivalent to

20

(general register) := (initial value);
K if (general register) z(lim't) then goto L;
(stat ement);
(general register) := (general register) + (increment);
goto K;)

The > sign applies, if (increnent) is a positive integer, <
applies, if it is a negative integer.

8.3.3. Exanples

while RL £ a(Rl) do Rl := RL + 1,
for Rl := 0 step 4 until n do RO:= RO+ a(Rl);
for R3 :=1 step 1 until k do

begin R2 := R/R3; Rl := RL - 1;

end

23

