EIGENVECTORS OF A REAL MATR IX BY INVERSE ITERATION

BY
J. M. VARAH

TECHNICAL REPORT CS34

FEBRUARY 8, 1966

COMPUTER SCIENCE DEPARTMENT. School of Humanities and Sciences STANFORD UN IVERS ITY

Eigenvectors of a Real Matrix by Inverse Iteration
J. M. Varah

1. - Theoretical Background

> Calculation of the Eigenvectors

We are given a real $n \times n$ matrix A. We first reduce A to upper Hessenberg form, and find approximations to its eigenvalues. Then each eigenvector is calculated by inverse iteration on the upper Hessenberg form using an approximation to the corresponding eigenvalue.

For a real eigenvalue λ, the iteration is defined by

$$
\begin{aligned}
(A-\lambda I) y^{(k)} & =x^{(k-I)} \\
x^{(k)} & =\frac{y^{(k)}}{\max _{k} \cdot y_{j \leq j \leq n}^{(k)} \mid}
\end{aligned}
$$

where $\dot{\epsilon}_{k}=\operatorname{sgn}\left(y_{j \max }^{(k)}\right), y_{j \max }^{(k)}=\max _{l \leq j \leq n}\left|y_{j}^{(k)}\right|$.

Thus the largest component of $x^{(k)}$ in modulus is 1. The iteration is started with a given initial vector $x(0)$

For a complex eigenvalue $\lambda=\boldsymbol{\xi}+\mathbf{i} \boldsymbol{\eta}$, the iteration is defined
by

$$
\begin{aligned}
(A-\lambda I)(A-\overline{\lambda I}) y & (k) \\
=x^{(k-I)}(k) & =u^{(k-I)}-(A-\xi I) y(k) \\
u^{(k)_{+i v}(k)} & =\frac{y^{(k)}+i z^{(k)}}{\epsilon_{k} \max _{l \leq j \leq n} y_{j}^{(k)}+i z(k)} \\
x_{j}^{(k)} & =(A-\xi I) u^{(k)}-\eta v^{(k)},
\end{aligned}
$$

[^0]
Eigenvectors of a Real Matrix by Inverse Iteration

where again ϵ_{k} is ± 1, chosen so that a largest component of $u^{(k)}+i v^{(k)}$ in modulus is $1+0 i$. The iteration is started with a given initial vector $\mathrm{x}^{(0)}$ and with $\mathrm{u}^{(0)}=0$. The iteration here is such that all computations can be done in real arithmetic, For a complete description of inverse iteration, see Wilkinson [l]. The iteration above for a complex eigenvalue is his method (iv), page 630.

2.-Applicability

The algorithm will accept any real matrix. However, the accuracy of the results will depend on the condition of the eigenvalues and eigenvectors, so that no a priori estimate of the accuracy can be given.
3.- Formal Parameter List
$N \quad$ order of matrix A

A given matrix. On output, the upper Hessenberg form is stored in A, with the transformations used in the lower sub-triangle,

RTR,RTI real and imaginary parts of the eigenvalues, respectively, with complex conjugate pairs consecutive,,

U matrix of column eigenvectors, stored by columns. If λ_{k} is complex, with $\lambda_{k+1}=\bar{\lambda}_{k}$ then columns k and $k+1$ of U contain the real and imaginary parts, respectively, of the eigenvector corresponding to eigenvalue λ_{k} 。 The eigenvector corresponding to λ_{k+1} is then the complex conjugate of this.

Eigenvectors of a Real Matrix by Inverse Iteration

MACHEPS machine precision, i.e. the smallest floating point number δ such that $1+\delta>1$.

EXPLIMIT largest floating point number represented in the machine .
4. - Algol Program (see next page)
PROCEDURE EIGENVALUESANDEIGENVECTORS(N,A,RTR,RTI,U,MACHEPS,EXPLIMIT)
VALUE N,MACHEPS,EXPLIMIT;
INTEGERN JREALMACHEPS,EXPLIMIT\&ARRAYA,RTR,RTI,UB
BEGIN
COMMENTTHIS PROCEDURE FINDS ALLEIGENVALUES AND COLUMNEIGENVECTORS
OFTHEN×NMATRIX A, THE EIGENVALUES ARESTOREDIN(RTR[K]+RTI[K〕XI)
WITH COMPLEXCONJUGATEPAIR S CONSECUTIVE. TheEIGENVECTORSARE
STORED BY COLUMNS IN U, IF THEKOTHEIGENVALUE IS COMPLEX, COLUMN
KISTHEREAGPART AND COLUMNK+ITHE IMAGINARY PARTOFTHEEIGEN-
VECTOR CORRESPONDING TO EIGENVALUEK, MACHEPS IS THEMACHINE
PRECISION, AVDEXPLIMIT THE LARGEST FLOATING POINT. NUMBERCARRIED'
BY THEMACHIVE;
-COMMENT FIRST DECLARE OTHER PROCEDURES;
REAL PROCEDURE MAX (A, B))
VALUEA,B;
REAL A,B;
MAX: $=$ IF $A>B$ THENA ELSEB;
REAL PROCEOURE YIN(A,B))
VALUE A, B;
REALA:B;
MIN: =IFA<BTHENA ELSEB;
REAL PROCEDURE ABSC(A,B);
VALUEA,B;
REALA;B;

COMMENT GIVESMODULUS OF COMPLEXNUMBERA+BI;

BEGIN

```
    A:=ABS(A); B:=ABS(B);
```

 \(A B S C:=I F A<B T H E N B \times S Q R T(1+(A / B) \uparrow 2) E \underline{L S E}\)
 IFA>BTHENAXSQRT(1+(B/A)†2)ELSE
 A×1.41421356237; COMMENT SQRT(2);
 ENDABSC;

REAL PROCEDURE INNERPRODUCT (I,M,N,A,B,C);

VALUE M,N,C;

INTEGER I,M,V; ANEREC
begin commentbjoy of procedure should be replaced by
double precision machine code;
FORI: $=M S T E$ U NTILN DOC: $=C+A \times B$;
INNERPRODUCT: $=C$
END INNERPRODUCT;

PROCEDURE HESSEVBERG(N,ADINT);

VALUEN;
INTEGER N; AZRAYABINTEGER ARRAY INTJ
BEGIN COMMENT HESSENBERGREDUCESATO UPPEK HESSENBERG FORM USING ELEMENTARY RIW AND COLUMN' OPERATIONS WITH INTERCHANGES, the interchanges are stored in the integer array int in such a way that, onexit from hessenberg, intlij is the index of the row of the Original matrix now in thei-th row. procedure hessenberg IS A SLIGHTLY MODIFIED VERSION OF PROCEDURE TRINGle, GIVEN by b.PARLETT I N [1];

INTEGEKI,JPROLIREALSPT,EPS;
EPS:=SQRT(MACHEPS);
FOP I $:=1$ STED 1 UNTIL N DDINT[I]:=Is
FOR J: =NSTEP-1UNTIL 2 DO
BEGIN
$S:=A B S(A(J, J-1 J) ; L:=J=1 ;$

BEGIn COMYENTFIND ELEMENT OF LARGEST MAGNITUDE IN J-THROW;
$T:=A B S(A[J, K]) ;$
IFT>STHEN
BEGIV
S:=T; L: =K
END
END:
IFLXJ-1THEN
BEGIN COMYENT INTERCHANGE COLUMNS AND ROWS J-IANDL:
T: =INT[J-1]; INT[J-1]:=INT[L]; INT[L]: $=T ;$
FORK:=1 STEP $1 \underline{\text { UNTIL } N \underline{O D}}$
BEGIN
$T:=A[K, J-1] ; A[K, J-1]:=A[K, L] ; A[K, L]:=T$
END;
FORK: $=1 \underline{\text { STEP } 1 ~ U N T I L ~ N D O}$
BEGIN
$T:=A[J-1, K] ; A[J=1, K]:=A[L, K] ; A[L, K] 8=T$
END
END OF COVDITIONAL;
IF $S \leq E P S X M I N(A B S(A[J, J]): A B S(A[J-1, J-1]))$ THEN
BEGIN
FORK: $=1$ STEP 1 UNTIL. J-1 DOA[JoK]: $=0$
END ELSE
FORK：＝1 STEP1 UNTIL J－2 DOA［JっK］\＆＝A［JっK］／A［JっJ＝1も！
FOR I: $=N$ STEP - 1 UNTIL 1 DO
BEGIN COMMENT CHANGEROWJ=1;
$T:=I F A[J, J-1]=0 T \underline{H E N} 0$ ELSSEINNERPRODUCT(K,1,J-2,A[J,KJ.•
$A[K, I], O) ;$
$A[J-1, I]:=-I N N E R P R O O U C T(K, M A X(J, I+2), N, A[J=1, K=1], A[K, I]$,
$-A[J-1, I]-T)$
END I
END J
END HESSENBERG;
PROCEDURE TRANSFORM $(N, X, A, I N T)$;
NALUE
INTEGE RQRAYX,A; INTEGER ARRAYINT!,
BEGINCOMMENTTHIS PROCEDURE TRANSFORMS ANEIGENVECTORXOFTHE
HESSENBERG MATQIX INTO AN EIGENVECTOR OF THE ORIGINAL MATRIXB
INTEGER I,J; AQRAYY[I:NJ;
FORI:=1STED 1 UNTILN-1 DO
$Y[I]:=-I N V E R P R O D U C T(J, 1, I-1, A[I+1, J], Y[J],-X[I])\}$
$Y[N]:=X[N] ;$
FORI: =1STEP 1 U NTIL N DOXVIVT[I]J: =Y[I]s
END TRANSFORM;
PROCEDURE EIGENVALUES(NSTART,NFINISH,A,RTR,RTI)?
NSILAET, NFINISH;
INTEGER NSTART, NFINISH;ARRAY A,RTR,RTI:
BEGINCOMMENT THE BODY OF PROCEDURE EIGENVALUES IS LEFTUNDEFINED.
it is assumejeigenvalues finds all theeigenvalues of the PRINCIPAL SUZMATRIXOF THE UPPERHESSEVBERGMATRIXA CONSISTING O FELEMENTSA[VSTART,NSTART]......A[NFINISH,NFINISH]AVDPLACES THEEIGENVALJES IN RTR[NSTART]+RTI[NSTART]×I......RTR[VFINISH] +RTI[NFINISH]×I,WITHCOMPLEXCONJUGATE PAIRS CONSECUTIVE),

PROCEDURE NORMREAL (N,V, VNORM);
VALUEN;
INTEGERN: APRAYV IREAL VNORM:
BEGIVCOMMENTTHIS PROCEDURE NORMALIZESTHE REAL VECTOR VOFDIMENSION n so THAT ITS COMPONENT OF LARGEST MAGNITUDEIS 1.0. AND SETS vnormequal to the magnitude of the largest component before NORMALIZATIOV;

REALS:S1, V1; INTEGERI,J;
S: = 0;
FORI:=1 PTE U NTILND
BEGIN
S1: $=A B S(V[I]) ;$
1 FSI>STHEN
REGIN
$S:=S 1 ; J:=I$
END
END:
VVORM: $=5$;
IF VNORM $\neq 0$ THEN
BEGIN
V1:=V[J]; V[J]: $=1$;
FORI:=1STEP1 UNTILJ=1,J+1STEP1 JNTILNDO.
$V[I]:=V[I] / V I$
END
END NORMREAL;
PROCEDURE NORMC JMPLEX (N,U,V,VNORM):
VALUE N;
INTEGER N ; ARRAYU,V; RREIARM;
BEGINCDMYENT THIS PROCEDURE NORMALIZES THE COMPLEXVECTJRU*VI OF
DIMENSION NSO THAT ITS COMPONENT OF LARGEST MAGNITUDE IS 1+OI,
AvD SETS VNOZMEQUAL TO THE MAGNITUDE OF THE LARGEST COMPONENT
BEFORE NORMAIIZATION;
INTEGERI,J; R EALS,S1,U1,U2,V1,V2,R,DEN;
S: =0;
FUP I:=1STEO 1 UNTIL N DO
BEGIN
S1:=ABSC(U[I],V[I]);
IF $S 1>S$ THEV
BEGIN
$S:=S 1 ; J:=I$
EYD
END;
VNORM: $=$ S;
IF VNORMFO THEN
BEGIN
U1: $=\cup[J] ; V 1:=V[J] ;$
$U[J]:=1 ; \quad V[J]:=0 ;$
$\underline{I F A B S}(U 1) \geq A B S(V 1) T H E N$

```
        BEGIN
    R:=V1/U1; DEN:=U1+R\timesV1;
    FOR I:=1STEEP1 UNTILJ=1,J+1STEPIUNTILN NO
    BEGIV
        U2:=U[I]; V2:=V[I];
        U[I]:=(U2+R\timesV2)/DEN; V[I]:=(V2-RxU2)/DEN
    END
    END ELSE
    BEGIN
    R:=UI/VI; DEN:= VI+R\timesU1;
    FORI:=1 STEPP1UNTIL J=1,J+1STEP1 UNTILNNOO
    BEGIN
        U2:=U[I]; V2:=V[I];
        U[I]:=(V2+R\timesU2)/DEN; V[I]:=(R\timesV2-U2)/DEN
    E.ND
END
END OF CONDITIONAL
END NORMCOMPLEX;
```

PROCEDURE GAUSSU(V,M,A,EPS,PIVOT):
VALUE V,M,EPS;
INTEGER M, V;ARRAY a; REALEPS; INTEGER AR RAY PIVOT;
BEGIVCOMMENTTHIS PROCEDURE REDUCES THENXNMATRIXA,HAVINGM
SUB-DIAGONALS, TOLU FORM BY GAUSSIAN ELIMIVATION WITH INTERCHANGES.
an Y Zeropivjtalelements are replaced by eps;
INTEGERI, J, K, IMAX;REALT,SUM, QUOT;
FORK:=1STD2 1 UNTILN O
BEGIN
SUM: =0;
FDRI:=K STEP 1 UNTIL MIN(K+M,N) DO
BEGIN
$T:=A B S(A[I ; K J) ;$
IF TPSJM THEN
BEGIN
\therefore SUM: $=T$ I IMAX: $=I$
END
END;
IF SUM=0 THEN
B E G In COMYEVTK-TH COLUMN IS ZERO-REPLACE DIAGONAL ELEMENT
BY EPS;
$A[K, K]:=E P S ; I M A X:=K$
END;
PIVOT[K]: =IMAX;
IF IMAXAKTHEN
FORJ: $=1$ STE P UNTILNDO
B E G IN COMYENT INTERCHANGEROWSIMAX ANDK;,
$T:=A[K, J] ; A[K, J]:=A[[M A X, J] ; A[I M A X, J]:=T$
EVQ;
FORI:=K+1STEP1 UNTIL MIN(K+M,N) DO
B E G I N
$A[I, K]:=Q \cup O T:=A[I, K] / A[K, K] ;$
FOR $J:=K+1$ STEP 1 UNTIL N DO
$A[I, J]:=A[I, J]=Q \cup O T \times A[K, J]$
END
END K
END GAUSSMS

VALUEN,FIRST:
INTE G EAZRAY A, X, Y INTEGER ARRAY PIVOTB BÓOLEAN FIRST: BEGINCOMMENTTHISPROCEDURES OLVESAXYEXGIVEN AINL UFORM. I tDOESN O TMAREU SE OF THE fA C TTHATT H EORIGINAL AHASONLY MSUB-DIAGQNALS, SOTHAT THELOFLUIS SOMEWHATSPARSE. THE SOLUTION Y IS TESTED FOR OVERFLOW BEFORE BEINGCOMPUTED. AND SCALED DJWV IF OVERFLOW WOULO HAVE OCCURRED:

INTEGER I,K; REAL T,SUM;
COMMENT FORM (L-INVERSE) x X UNLESS THIS IS FIRST INVERSEITERATION3

IF \neg FIRST THEN

FOR K:=1 STEP 1 UNTIL N DO
BEGIY

```
T:=X[PIVOT[K]]; X[PIVOT[K]]: =X[K];
X[K]:=-INVERPRODUCT(I,I,K-1,A[K,I],X[I],=T)
```

END:
COMMENT NOWSQLVE UXY=X;
FOR K: $=\mathrm{N}$ STGPU N T L L_ 1 DO
BEGIN
COMMENT AVOID OVERFLOW I N INVERSE ITERATEGYFIRSTCALCULATING LN(ABS (Y[<])) AND, IFY[K]WOULDBE. TODLARGE FOR YACHINE, Sc al In G DJWN THE'COMPONENTS OF Y BYMACHEPS UNTIL SMALLENOUGH. This Should bedoneby EXaMINING exponents in MACHINE codes

SCALE:
SUM: $=0$;
FORI: $=K+1$ STEP UNTILND DO
SUM: $=\operatorname{MAX}(S U M, L N(M A X(1, A B S(A[K, I] \times Y[I])))) ;$

IFLN(N-K+1)+SUM-LN(ABS(A[K,K]))>LN(EXPLIMIT)THEN BEGIN

FORI: $=K+1$ STEP 1 UNTIL N DOY[I]: $=Y[I] \times M A C H E P S ;$ GO TD SCALE

END:

$Y[K]:=-I N V E R P R D D U C T(I ; K+I, N, A[K, I], Y[I],-X[K]) / A[K, K]$
END K
EVD SOLVE;

PROCEDURE EIGENVECTORS(NSTART,NFINISH,A,U)
VALUE NSTART, NFINISH;
INTEGER NSTAマT,NFINISH: ARRAY A,UB
BEGIVCOMMFNTTHIS PROCEDURE FINDSTHEEIGENVECTORSOFTHEPRINCIPAL
SUBMATRIX Of the upper hessenberg MATRIX A CONSISTIYG Of ELEMENTS
A[1,1],....A[AFINISH,NFINISH] CORRESPONDINGTO THEEIGENVALUES
O F THEPRINCIPAL SUBMATRIX CONSISTING O fELEMENTSA[NSTART,NSTART],
.... A[NFINISH, VFINISH]. IT. ASSUMES COMPLEXCONJUGATEEIGENVALUES
ARE CONSECUTIVE. THE EIGENVECTORS ARE STORED IN THE ARRAY U.by
COLUMNS. NON-LOCAL ARRAYSRTR AND RTI ARE USED;
IVTEGER I,J,K,L,M,ITNS;
REAL ANORM,RABSQ,NORM,VNORM,RR,RI,EPS,NORMTOLERANCE,T:
GRRAVFINISH:1:NF[NISH], X,US,UT,VT[1:NFINISH];
IVTEGER ARRAY PIVOT[I:NFINISH]; BOOLEANFIRST:
OWN BOOLEAN ASQCALC;
IF NFINISH=N THEN ASQCALC:=FALSE; COMMENTTHIS GIVESASOCALCAVALUE ON FIRST ENTRY;

COMMENT NOW FIND MAXIMUM ROW SUM OF SUBMATRIX OF AUSED)
ANORM: $=0$;
FORI:=1STEP UNTIL NFINISH DO
BEGIN
$T:=0 ;$
FORJi=MAX(1,I-1) STEP 1 UNTIL NFINISH DOTi=T+ABS(A[I:J])s
ANORMB =MAX (ANORM,T)
END;
NORMTOLERANCE $=1000 \times$ ANORM/MACHEPS: COMMENT SOMEWHAT ARBITRARY:
EPS: =MAX (ANDRM,I)XMACHEPS; CDMMENT USEDIN GAUSSMIN PLACEOF
ZERO PIVOT;
COMMENT NOW FIND EIGENVECTORS;
M: =1: COMMENT SO THE INCREMENT VARIABLE IN THE FOR LODP HAS A
VALUE ON ENTRYB
FOR K: $=$ NSTART STEP M UNTIL NFINISH DO

BEGIN

COMMENT FIRST PERTURBEIGENVALUEI'FIDENTICAL TO SOMEPREVIOUS\&

```
    J:=03
```

 FORI: \(x\) NSTARTSTEP 1 UNTIL KmI DO
 IF RTR[I]=RTR[K] \(\wedge ~ R T I[I]=R T I[K] T H E N ~ J i=J+1 ;\)
 RR: \(=R T R[K]+3 \times J \times M A C H E P S \times M A X(1, A B S(R T R[K])):\)
 RI: \(=R T I[K]\);
 IF RI\#O A (\(ᄀ\) ASQCALC)THEN
 BEGIN COMMENT COMPUTE SUBMATRIXOFAT 2REQUIRED WFEN FIRST'
 COMPLEX EIGENVALUE ENCOUNTERED;
 FORI: \(=1\) STEP 1 UNTIL NFINISH DO
 FOR J:=1STEP 1 UNTIL NFINISH DO
 ASQ[I, J]: \(=I N N E R P R O O U C T(L, M A X(I-1,1), M I N(J+1, N F I N I S H)\),
 \(A[I, L], A[L, J], O) ;\)
 ASQCALE: =TRUE

END;

COMMENT NJW GENERATE B, THE MATRIXTOS EREDUCED;

IF RI=0 THEN

BEGIN COMMENT REALEIGENVALUE*B=A-RRXIDENTITYS
$M:=1 ;$
FOR I:=1 STEP 1 UNTIL NFINISHDO
BEGIV
FOR J:=1 STEP 1 UNTILI=2 DOBII,JJ: $=0 ;$
FDRJ: $=$ MAX (I-1,1)STEP1 UNTILNFINISH OO
$3[I, J]:=A[I, J]=(\underline{I F} J=1$ THENRRELSE 0)
END
END ELSE
BEGINCOMYENTCOMPLEXEIGENVALUE.
$B=(A=(Z R+R I \times I) \times I D E N T I T Y) \times(A=(R R=R I \times I) \times I D E N T I T Y) \&$
$M:=2 ;-2 A B S Q:=R R^{\uparrow} 2+R I^{\uparrow} 2 ;$
FORI: $=1$ STEP 1 UNTIL NFINISH DO
BEGIN
FOR J:=1STEP1UNTILI-3 OQ B[I, J]: 1 =0;
IF 123 THENB[I,I-2]:=ASQ[I,I-2];
FORJ: = MAX(I-1, 1) STEP1 UNTIL NFINISH DO
$B[I, J]:=A S Q[I, J]-2 \times R R \times A[I, J]+(I F J=I T$ HENRABSQELSEO)
END

END GENERATIDN Of B;

COMMENINJWREDUCEBTOLUFORM -MGIVES THE' NUMBER Of
SUBDIAGOVALSO f B;
GAUSSM(NFINISH,M,B,EPS,PIVOT);
ITNS: $=0 ;$ FIRST: $=$ TRUE; NORM: $=1 ;$
FORI: $=1$ STEPIU NTILNFINISH DO

BEGIN
$X[I]:=1 ;$ US[I]: $=0$
EVD;
COMMENTIVITIALVECTOR XIS SUCH THATLXXaEgTHEVECTORWITH
EACH CJMPONENT $=1.0$. NOW SOLVE BXUT $=\mathrm{X}$;

RHS:

SOLVE(NFIVISH, B, X,UT,PIVOT,FIRST);
FIRST:=FA!SE; ITNS:=ITNS+1;
IFRI=OTHENNORMREAL(NFINISH,UT, VNORM)ELSE
BEGIN
COMMENT CALCULATE VT FROM (A-RRXIDENTITY)XUT+RIXVT=US
FOR I: 1 STEP 1 UNTIL NFINISH DO
VT[I]:=-INNERPRODUCT(J,MAX(I-1,1),NFINISH,A[I,J],UT[J],
-RR×UT[I]-US[I])/RI;
NORMCOMPLEX(NFINISH,UT,VT,VNORM)

END;

COMMENT HERE ONECOULD PRRINT OUT THE HESSENBERG ITERATES
U TORJT+VTXI;
COMMENTNJW TEST NORM OF INVERSE ITERATE-FIRST TEST FOR OVERFLOW;
IF LN(NORM) +LN(VNORM)>LN(EXPLIMIT)THENNORM: =NORMTOLERANCE
ELSE NJRM: = NORMXVNORM; COMMENT TEST SHOULD BE MADE ON
EXPOVEVTSIN MACHINECODE;
IF NORM < NORMTOLERANCE $\wedge ~ I T N S<10 T H E N$
BEGIN COMJENT CALCULATE NEXT RIGHT-HANDSIDE;
IFRI=3 THEN
BEGIV.

END ELSE
FOR $1:=1$ STEP 1 UNTIL NFINISH DO
BEGIN
US[I]:=UT[I]; COMMENT SAVE OLD REAL PART Of ITERATE1
COMYEVT NOW CALCULATE NEW X=(A-RRXIDENTITY)XUT-RIXVT;
X[I]:=INNERPRODUCT(J, MAX(I-1,1),NFINISH,A[I,J],UT[J], -RR×UT[I]-RI×VT[I]);
END;
GO TO PHS
END:
IF NORM \geq NJRUTOLERANCETHEN
BEGINCOMYEVTITERATE HAS CONVERGED-STOREINU;
FORI:=1STEP1UNTILNFINISHEDU[I:K]: =UT[I];
IFRI\# T HEN
FOR $1:=1$ STEP 1 UNTILNFINISH DOU[I:K+1]:=VT(I]
END ELSE'
BEGIN cOMMEVT ITERATE DID NOT CONVERGEIN 1OITERATIONS-SET
VECTOR = 0 ;
FORI:=1STEP1UNTILNFINISHDOU[I;K]:=0;
IFRIXOTHEN
FORI:=1 STEP $1 \underline{\text { UNTIL NFINISH DO U[I,K+1J: }: 0 ~}$
END
END K
END EIGENVECTORS;
COMMENT NOW BEGIN MAIN PROCEDURE EIGENVALUESANDEIGENVECTORS;
INTEGER, NSTART, NFINISH;
REAL VNDRM; ARRAYUT, VT[1:N],ASQ[1:N,1:N]:INTEGER ARRAYINT[1:N];
COMMENT FIRST REDUCE A TO UPPER HESSENBERG FORM, USINGPRJCEDURE
hessenberg, nhich KeEPS THE TRANSFORMATIONSUSEDIN THE LOWERSUB-TRIANGLE Of A SO THAT PROCEDURETRANSFORM, USINGMATRIXA, WILLTRANSFOマM THE EIGENVECTORS FROM HESSENBERG BASIS TO ORIGINAL BASIS -I.E.I FHESS(A)=(S-INVERSE)XAXS,T HE NTRANSFORM(N,AっUT) CHANGES UT IVTOSXUT;

HESSENBERG(N,A,INT);

COMMENT NOWSEAZCHSUB-DIA GONALS of HESSENBERG MATRIXFORZEROELEMENTS THUS FINDING A IN Split FORM;

```
NSTART:=N+1;
```

NEWBLOCK:
NFINISH: =NSTART-1;

NSTART: $=L-1$;
COMMENT NOWFINJEIGENVALUES O F PRINCIPALSUBMATRIXOF A CONSISTING
O felements a[nstartonstart],....A A [NFINISH.NFINISH]USING
PROCEDURE EISENVALUESJ
EIGENVALUES(NSTART,NFINISH,AgRTR,RTI)
COMMENTNOW FIN3 EIGENVECTORS Of PRINCIPAL SUBMATRIX Of ACONSISTING
OF ELEMENTSA[1,1],....A[NFINISH,NFINISH]CORRESPONDINGTOTHESE
EIGENVALUES;
EIGENVECTORS(NSTART,NFINISH,A,U);
CQMMENT N Ow AUGUENT HESSENBERG VECTORS BY ZEROS IN POSITIONS
NFINISH+1,....NAND TRANSFORMTOORIGINALBASIS;
$L:=1 ;$
FORK:=NSTARTSTEP L UNTILNFINISH DO
IF RTI[K]=0 THEV
BEGIN
$L:=1 ;$

```
    FOR I:=1 STED 1 UNTILNFINISH DOUT[I]:=U[I;K];
    FORII:=NFINISH+1 STEP 1 UNTILN DOUTIIJ:=0:
    TRANSFORM(N,JT,A,INT);
    NORMREAL(N,UT,VNORM);
    FOR I:=1STEO 1 UNTIL N DO U[I,K]:=UT[I];
END ELSE
BEGIN
    L:=2;
    FOR I:=1STE`1U NT ILLNFINISHOO
    BEGIN
        UT[I]:=U[I,K]; VT[I]:=U[I,K+1]
    ENO;
    FOR I:=NFIVISH+1STEP1 UNTILN DOUT[I]:=VT[I]:&0;
    TRANSFDRM(N,JT,A,INT); TRANSFORM(N,VT,A,INT)&
    NORMCOMPLEX(V,UT,VT,VNORM);
    FORI:=1STEP 1 UNTIL,N DO
    BEGIN
        U[I,K]:=UT[I]; U[I,K+1]:=VT[I]
    END;
END TRANSFORMATION;
IF NSTART>1 THEV GO TO NEWBLOCK
END EIGENVALUESANDEIGENVECTORS;
```

Eigenvectors of a Real Matrix by Inverse Iteration
5. - Organizational and Notational Details

The input matrix A is first reduced to a similar, upper Hessenberg form by elementary row and column operations with interchanges using procedure HESSENBERG, a modified version of procedure TRINGLE,given by B. Parlett in [2]. Then the sub-diagonals of this Hessenberg matrix A is examined for zeros, thus finding A split into smaller Hessenberg submatrices.

For each Hessenberg submatrix, first the eigenvalues are found using procedure EIGENVALUES. This is left undefined here, but the user must insert some applicable eigenvalue procedure. See section 7 for further information, Then the eigenvectors of the Hessenberg matrix corresponding

- to these eigenvalues are found using procedure EIGENVECTORS. Finally, the eigenvectors are transformed from Hessenberg basis back to the basis of the original matrix, using procedure TRANSFORM, and stored in the columns of U 。

6. © Discussion of Numerical Properties

Calculation of the Eigenvectors
On the iteration for the eigenvectors, the equations
$(A-\lambda I) y(k)=x^{(k-I)}$ and $(A-\lambda I)(A-\bar{\lambda} I) y^{(k)}=x^{(k-I)}$ are solved by Gaussian elimination, decomposing the matrix into LU form, In both real and complex cases, the initial vector $x^{(0)}$ used is Le, where e is the vector of all ones, Thus on the first iteration, we solve $U y^{(1)}=e$. To ensure that we can always solve these matrix equations, any zero pivots in U are replaced by small numbers.

Eigenvectors of a Real Matrix by Inverse Iteration

The convergence criterion for the iterations is that the "norm" of the inverse iterate be larger than some given tolerance, where "norm' $\left(\frac{k}{x}\right)=\prod_{m=1}^{k} \max _{1 \leq j \leq n}\left|y_{j}^{(m)}\right|$ in the real case, and
 As Wilkinson shows in [1], this ensures that the residual $\left\|A x^{(k)}-\lambda x^{(k)}\right\|$ is small, so that the eigenvector is accurate unless it is ill-conditioned. Unless the eigenvalue approximation is very inaccurate, this criterion is almost always met after two inverse iterations.

Within each Hessenberg submatrix, if any eigenvalues are calculated as identical, they are perturbed slightly so as to give convergence to

- independent eigenvectors, if they exist. If the matrix has a double eigenvalue with a quadratic elementary divisor, so that it has only one eigenvector, the iterations for both eigenvalue approximations are found by experience to converge to the eigenvector. Similarly, for eigenvalues of higher multiplicities - i.e. the iterations will converge to a set of vectors generating the eigenspace of that eigenvalue. Thus, no principal vectors can be determined by this method so that the whole invariant subspace of the eigenvalue will not be found in the case of non-linear elementary divisors. In this case, because of the ill-conditioning, the eigenvalue approximations are likely to be inaccurate, so that three or four inverse iterations may be needed to give convergence to the eigenvectors, and the eigenvectors obtained will probably also be less accurate than in the case of well-conditioned eigenvectors.

Eigenvectors of a Real Matrix by Inverse Iteration

7. - Use of the Program

As we have said, some eigenvalue procedure must be inserted, set up so that it finds all eigenvalues of a given principal submatrix of an upper Hessenberg matrix. The procedure used by the author was that given by Parlett in [2] (with corrections in [3]), using Laguerre's method, although it had to be modified slightly because it uses the matrix reduced to lower, rather than upper, Hessenberg form. However, the user may prefer to use the $Q R$ method to find the eigenvalues if such a procedure is available to him, since it seems to be faster, in general, than that of Laguerre.

Also, other methods could be used for reducing the matrix to upper Hessenberg form, such as Householder transformations. If this is done, of course, procedure transform must be changed accordingly, to give the correct change of basis for the eigenvectors.

8. - Test Results

The program has been tested on dozens of matrices on the Burroughs B5500 at Stanford University. One example is given here, a 6×6 matrix with a double eigenvalue at.l with a quadratic elementary divisor, a double eigenvalue at 3 with linear divisors, and a complex eigenm value $2+i . \quad$ In the computation, the inner product procedure was changed to double precision code.

$$
A=\left[\left.\begin{array}{lrllll}
-9 & 21 & -15 & 4 & 2 & 0 \\
=10 & 21 & -14 & 4 & 2 & 0 \\
-8 & 16 & -11 & 4 & 2 & 0 \\
-6 & 12 & -9 & 3 & 3 & 0 \\
-4 & 8 & -6 & 0 & 5 & 0 \\
-2 & 4 & -3 & 0 & 1 & 3
\end{array} \right\rvert\,\right.
$$

$1.0000000^{\circ} 002+00$

1．000000n00n？+00 1． $0000000009 a+00$
1． $00000000009+00$ c
0
+
0
0
0
0
0
0
0
0
0
0
-
7．د100000000า2－01 5． $000000000072-01$ \square
0
1
c
0
0
C
0
0
0
0
\sim
\sim -
i
i
c
0
C
c
c
0
c
c
c
n
n
 m
 CURRECTEIGENVF．CTORS
$1.00030000003+00$ C
C
+
e
C
C
C
C
C
C
C
C
0
-
$1.00200000002+00$ 7．57n00000002－01 5．0ากクロกกロロกล－01
 7．2131147541a－01＋6．5573770492a－02I 5．40983606560－01＋4．91803279692－02 1

$3.10000000009+00$
$3.00000000000+00$
CURRECT EIGENVECTORS
$1.00000000000+00+0.00000001002+00 \mathrm{I}$ $0.00000000002+00$ $0.00000000002+100$ $0.00000000009+00$ $0.00000000002+90$ $1.00000000002+00$ $00+0000000000 \cdot 1$ 0
0
+
0
0
0
0
0
0
0
0
0
0
-
-1 1． $0000000000 p+00$ $00+20000000000 \cdot 1$ 1． $0000-000 \omega \rho \rho+00$ 1．${ }^{\circ} 0000000000+00$
$1.00000157842+00$
$1.00000000008+00$ 0
0
+
0
0
0
0
0
0
0
0
0
0
-
$1.00000000070+00$ 7．50000134432－01 n
0
1
0
0
0
0
x
0
0
0
0
0
0
0 -1
i
0
0
0
0
0
0
0
0
0
0
n $10-e 0 \varepsilon S y 190666^{\circ} 6$ $1.00000000009+00$ $1.00000000002+00$ $1.02000000002+00$ 7．49999544720－01 -
0
1
∞
∞
-
0
\hat{N}
α
α
α
0
0
0
a
a -
0
\vdots
α
α
α
α
α
α
α
α
\vdots
\vdots
\vdots
α

$$
\begin{aligned}
& 1.00000000002+00
\end{aligned}
$$

CALCULATED EIGENVAl．JES
$2.00000000000+00+9.99999999990-01 t$

Eigenvectors of a Real Matrix by Inverse Iteration

Note that for the double eigenvalue 1 with a quadratic elementary divisor（so there is only one eigenvector），both eigenvector iterates converged to the eigenvector，although the approximations obtained are both only accurate to about 6 decimal digits．This accuracy is to be expected，as 6 digits is about half of the machine precision for the B5500．For the double eigenvalue 3 with linear divisors，the eigen－ space is a 2 －space generated by the orthogonal vectors $(1,1,1,1,1,0)^{T}$ and．$(0,0,0,0,0,1)^{\mathrm{T}}$ ．In this example，the iterates did converge to these orthogonal eigenvectors，but in general，we cannot expect the eigenvectors obtained to＇be orthogonal，although they will be linearly independent．

Acknowledgements

This work was supported by the United States Office of Naval Research Contract Nonr－225（37）．The author would like to thank Professor G．E．Forsythe for his assistance and supervision，

References

l．\quad Wilkinson，J．H．：The Algebraic Eigenvalue Problem，Oxford Press 1965 。

2．－Parlett，Bo No：Laguerre＇s Method Applied to the Matrix Eigenvalue Problem，Math。of Comp．18，464－485（1．964）．

3．－Varah，J．M。：Certification of Parlett＇s ALGOL Eigenvalue Procedure Eig3．Math．of Comp．（to appear）。 Stanford，California

[^0]: Prepared under Contract Nonr-225(37)(NR-044-211) at Stanford University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

