cs37

COGENT 1.2
OPERATIONS MANUAL

BY
JOHN C. REYNOLDS

TECHNICAL REPORT CS37
APRIL 22, 1966

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

COGENT 1.2
OPERATI ONS MANUAL

John C. Reynol ds
Comput er Science Departnent, Stanford University
and

Applied Mathenmatics Division, Argonne National Laboratory

April 22, 1966

(Work performed partially under the auspices of the
U S. Atomc Energy Conmission, and partially under

the Conputer Science Department, Stanford University.)

PREFACE

This docunent is an addendum to the COGENT Progranm ng Manual (Argonne
National Laboratory, ANL-7022, March 1965, hereafter referred to as CPM

whi ch describes a specific inplementation of the COGENT system COGENT 1.2,
witten for the Control Data 3600 Conputer.

Chapters | and Il describe a variety of features available in COGENT
1.2 which are not nentioned in CPM these chapters parallel the material
in Chapters Il and Il of CPM Chapter Ill of this report gives various

operational details concerning the assenbly and |oading of both COGENT-com

piled prograns and the conpiler itself. Chapter |V describes system and
error messages.

Famliarity with the contents of CPM is assunmed throughout this report.

In addition, a know edge of the 3600 operating system SCOPE, and the as-
senbl er COWPASS is assumed in Chapter I11.

CHAPTER I.

CHAPTER I1.

CHAPTER 111

EXTENSIONS TO THE COGENT LANGUAGE

A Constants
B. Expressions
C. Interjections
ADDI TI ONAL PRI M Tl VE GENERATORS AND | NTERNAL
VARIABLES
A Internal Variables
B. Testing Primtives
C. Mrking Primtives
D. Arithnetic Primtives
E. Qutput Primitives . -.

F.
G

OPERATI NG | NFORMATI ON FOR COGENT 1.2
Subprogram Structure
Loading
1. Bank Allocation
2. Further Restrictions
3. Additional Comments
L. Suggested Memory Allocations.
Assenbly Control Paraneters
1. SAFE o oo e e
« VERSCOPE « « « v v o ..

A
B.

TABLE OF CONTENTS

1. The Tape Table
2. Paging
3. BCD-to-Binary Card Inmge Conversion
n
5

(o)

2
3. Storage Allocation Paraneters
L, MINLIST « o« o v v v v
5. PAGESIZE« o 0.
6. DELBLANK, PSECF, and EOFCCDE
7. STACKLEN.
The Conpiler
1. Loading
2. lnput.
3. COWASS Qutput
4. Printed Qutput
5. Qutput Volume
The COGENT Master Tape
|lustrative Job Decks

Checksum Insertion

Tape-Table Primtives
. Runni ng- Message Suppression
Tape-Control Primitives
Runni ng-Status Primitives

CHAPTER 1V

TABLE OF CONTENTS

SYSTEM AND COWPI LER ERROR MESSAGES

A System Messages
L
2.

5.

Initialization Message
Running Messages

a. List Storage Recovery

b. Anbiguity-Mde Character Count
Nornmal Termination Message

Abnormal Termination Messages . . .
a. Initialization Errors

Syntactic Errors

b.
c. Storage Exhaustion Errors . . .
d. |Illegal Argurent Errors

e. Mscellaneous Errors
Dump Message

B. Compiler, Error Messages .

CHAPTER |
EXTENSI ONS TO THE COGENT LANGUACGE
Al'l features described in Chapter Il of CPM have been inplemented
in COGENT 1.2. The following additional features have been added to the
| anguage
A, Constants
The format of constants in COGENT has been extended to allow a
mich greater variety of list structures to be represented. The produc-
tions (CPM p. 5k)
(constant) ::= ((open phrase class name)/{object string))]
(positive integer)
shoul d be replaced by
(constant) ::= ((open phrase class name)/ (object string))]
($IDENT, (positive integer)/ (identifier Object string)))
(positive number)!-(positive number)|
$$ (object character representative)|*|
$CSB((template constant){constant synthesis string))
(identifier object string) ::= (empty)|
(identifier object string){object character represe;tative>
(integer) ::= (positive integer)|-(positive integer)
(floating-point digit string) ::=*(digit string)| (digit string)¥|
(digit string)*{(digit string)
(positive floating-point number) ::= (floating-point digit string)]
(floating-point digit string)B
(unscal ed positive nunber) ::= (positive integer))
(positive floating-point nunber)

(scale factor) ::= E{integer)|Q(integer)

(positive number) ::= (unscaled positive nunber))

(positive number){scale factor)
(tenplate constant) ::= (constant)| (nane)
(constant synthesis string) ::= (empty)]
(constant synthesis string),{constant synthesis item

(constant synthesis item) ::= (empty)| (constant)) (name)

1. A constant of the form ((open phrase class name)/{object string))
denotes the list structure obtained by parsing the object string with
respect to the goal specified by the phrase class name (CPM p. 54).

. 2. Aconstant of the form ($IDENT,n/s) where s is an identifier
object string, denotes an identifier element in table n containing a
string of the output codes for each character ins . The string s is
not parsed, and need not conformto the object |anguage syntax.

3. Constants of the form (positive nunber) or -(positive nunber)
denote positive and negative nunber elenents respectively. Wthin an
unscal ed positive nunber, an asterisk indicates floating-point and acts
as a decimal point, while the letter B indicates an octal representation.
An unscal ed positive nunber may be followed by one or more scale factors

- of the formEn (or). These scale factors are interpreted from |eft
to right and cause the denoted value to be multiplied by 10" (or 27)
wi thout changing the node. Wen the node is integer, the denoted val ue
Is truncated to an integer after each scale factor nultiplication. For
exanpl e,

399Q-2E2 denotes the integer 9900,
1*24BE2 denotes the floating-point nunber 131.25,
The use of scale factors is subject to the followi ng restrictions:

a. Wthin each scale factor, the integer n nust satisfy
-1023,5 < n < 1023, .

b. If the node is floating-point, then the initial unscaled
positive number, as well as the result of applying each scale factor,
must fall within the representable range of nornalized doubl e-precision
floating-point nunbers in the 3600.

4. A constant of the form $$(object character representative)
denotes an integer nunber element giving the output code for the object
character representative. For exanple, if the character description in
a programis

$CHARDEF ($EF) = (101)100.

t hen
$$A denot es 218

$$(() denotes ”(1#8

$$($EF) denot es 100g

5. The constant ** denotes the dumy el enent.

6. The format $CSB((template constant)(constant synthesis string))
Is provided to allow constants to denote list structures with mxed syntax.
Its effect is analogous to a synthetic assignment statement, but the indi-
cated synthesis is carried out when the COGENT program is conpiled, in-
stead of when it is executed. Specifically, the list structure denoted
by a constant with this format is obtained by copying the structure de-
noted by the tenplate constant and replacing each paraneter element with

index i by the value of the ith constant synthesis item (nunbered
fromleft to right). If the ith itemis enpty, or if the synthesis
string contains fewer than i itens, then any paraneter element wth
index i wll be copied wthout replacenent.

In COGENT 1.2, when a constant synthesis item replaces a param
eter element, the list structure denoted by the synthesis itemis itself
copied. This situation, which prevents the $CSB-format from denoting |ist
structures Wi th common sublists (except identifier elenents), may be al-

tered in future versions of COGENT.

Wthin the $CSB-format, either the tenplate constant or any con-
stant synthesis item may be a nanme instead of a constant; in this case the
nane nust be a pseudo-constant.

B. Expressions

The fol lowing should be added to the productions describing com
pound expressions (CPM p. 64)

(conpound expression) ::= $SB((template expression)(synthesis String))

A conpound expression with this format is evaluated as follows:

1. The tenplate expression and all expressions in the synthesis
string are evaluated. The order of evaluation is undefined and wll be
chosen to optimze code. |If the evaluation of any of these expressions
fails, then the evaluation of the entire conpound expression fails, without
eval uating further subexpressions or performng step 2.

2. An instantiated copy of the value of the tenplate expression
is formed and taken as the value of the conpound expression.

In effect, this type of compound expression is simlar to a synthetic
assignment statenment, i.e.

(name) = $SB((template expression)(synthesis string)) .

3

Is conpletely equivalent to
(name)/ =(template expression)(synthesis String).

The advantage of the $SB-expression is that it allows list synthesis to be
performed within a |arger conpound expression. For exanple,

OUTPUT ($SB((TERM/ (FACTOR)* (FACTOR)), X, Y)).

C. Interjections

The follow ng productions should be added to the syntax of COGENT:

(coment character) ::= (normal character)|(|)],
(coment string) ::= (empty)| (comment string){comment character)
(interjection) ::= $COMMENT (coment string).|

$TITLE (commrent string).
(COGent progranm) ::= ({interjection)(COGENT program
(character definition sequence) ::=

(character definition sequence)(interjection)
(primary production sequence) ::=

(primary production sequence)(interjection)
(secondary production sequence) ::=

(secondary production sequence)(interjection)

(decl aration sequence) (decl aration sequence)(interjection)

(generator definition) ::= (generator definition)(interjection)
(statement) ::= (statement)(interjection)
(statement |abel) ::= (statenment label){interjection)

CGeneral ly, an interjection may appear anywhere in a COGENT program
where a character definition, production, declaration, generator definition,
or statement may appear. One or nore interjections may al so appear at the
begi nning of a COGENT program

1. An interjection beginning with $COMMENT has no effect on the
conpi lation of a COGENT program

2. An interjection beginning with $TITLE has no effect on the
program produced by the COGENT conpiler, but affects the printed listing

L

produced by the conpiler. In general, each page of printed output from the
conpi ler will be headed by a line giving a title, the current date, and a
page nunber. The title field in this heading will be the coment string
contained in the last-encountered $TITLE-interjection, or if no $TITLE-
interjection has been encountered, the title field will be blank. Wen-
ever a $TITLE-interjection is encountered, the next line printed by the
conpiler will be ejected to a new page.

In deriving a title field fromthe comment string in a $TITLE-inter-
jection, blanks will be deleted, and if the string exceeds 87 (non-blank)
characters, it will be truncated to the first 87 characters.

CHAPTER 11
ADDI TIONAL PRIM TI VE GENERATORS AND | NTERNAL VARl ABLES

Al of the primtive generators and internal variables described in
CPM are available in COGENT 1.2, except the dunp primtives DUWPV, DUMPL,
and DUMPALL. These three primtives may be called in COGENT 1.2 prograns,
but they will sinply output a system comment and return the dumry el enent
as their result.

This chapter describes the additional primtives and internal vari-
abl es which have been inplemented in COGENT 1.2, as well as various generali-
zations of earlier primtives described in CPM

A Internal Variables (CPM, p. T71)

1. The following internal variables have been added to the system

Idm (random nunber). This internal variable is reset whenever the prinitive
generator RANDOM X) is called. Successive calls of RANDOM will cause rdm
to cycle through its legal values in a pseudo-random manner,

Initial value: 1 Legal values: odd integers such that
Used by: RANDOM 1< rdm< 27 -1 .
Reset by: RANDOM

ct (point count). This internal variable is reset whenever a sequence of
character output codes contained in the character buffer is converted into
a nunber, either by the primtives DECCON, OCTCON, or FLOATCON, or by the
syntax anal yzer when control | ed by a $DEC/, $0CT/, or $FLOAT/ special |abel.
If the character sequence in the buffer does not contain any non-digits,
then @et iseset wo she durmyt elemest. set to the number

of digits following the last non-digit in the sequence.

Initial value: dummy el enent. Legal values: 0 < pet < 1023, »

plus dummy el enent.
Reset by: DECCON, OCTCON, FLOATCON, syntax analyzer.

sno (S-medium logical unit nunber). This internal variable is provided to
allow the coments and error nessages produced by various system routines

to be witten on an output device different than the P-nedium device (spe-
cified by the internal variable pno). If the value of sno is the dumy

el enent, then system conments will be witten on the output device whose
SCOPE | ogical unit nunber is given by pno. But if 1< sno<8 0 t hen
the comments will be witten on the output device whose unit nunber is given
by sno. If sno =0, then all system comments will be suppressed.

Initial value: dummy elenent. Legal values: 0 < sno < 80lo ,

plus dumy el enent.
Used by: system routines which output messages.

6

dno (D-nedium logical unit nunmber). This internal variable is intended to
control the output of the dunp primtives in the sane manner that sno con-
trols system nessages. Since the dunp primtives are not implemented in
COGENT 1.2, dno has no effect in this version of the system although its
standard setting and evaluating primtives are avail able.

Initial value: dumy elenent. Legal values: 0 < dno <80,

plus dummy el enent.
Used by: DuMPl, DUWPV, DUMPALL (eventually, but not in COGENT 1.2).

2. The following standard prinmtives (CPM p. 77) are available
for setting and evaluating the new internal variables described above:

SETI VRDM X) sets rdm
SETI VPCT(X) sets .pct.

SETI VSNO(X) sets sno.

SETI VDNQ(X) sets dno.

IVRDM() eval uates rdm
| VPCT() eval uates pct.
| VSNO() eval uates sno.
| VDNQ() eval uates dno.

3. Zero has been nade a legal value for the internal variables
gnon o , and bno (CPM pp. T74-76). Wen any of these variables has the
val ue zero, output produced for the corresponding output nediumwll be
suppressed. The various output primtives will still function in their
normal manner, but the actual records produced wll be discarded rather
than sent to an output device.

B. Testing Prinitives (CPM p. 79)

PSLARGER(X, Y). X and Y may be arbitrary list elenents. PSLARGER
fails unless X > Y according to an arbitrary but fixed ordering of all
list names; otherwise it returns the dummy elenent. The ordering defined
by PSLARGER satisfies:

1. If X>Yand Y >Zthen X > Z .
2. For any list names X and Y exactly one of the follow ng

holds: X>Y, Y>X or X=Y (where equality is defined
in the sense of the primtive EQIT).

C. Marking Primtives

Two one-bit conponents called markl and nmark2 have been added to
all normal |ist elements containing one or nore nane-conponents, i.e, to
all non-literal normal elements. These mark conponents have the followi ng
properties:

1. Al non-literal normal elenents produced by the syntax analyzer
as well as all such elements appearing in constant |ist structures have
both mark conponents set to zero.

2, Wen a non-literal normal element is created by an instantiated
copy (e.g., by a synthetic assignment statenent), the mark conponents are
copied without alteration,,

3. Wen two non-literal nornmal elenents are conpared by an analytic
assignment statement, the conparison fails unless both mark conmponents natch.

The following primtive generators test and manipulate the markl
conponent :

TSTMARK1 (X) | eaves markl unchanged.

SETMARK1 (X) sets markl to 1 .

CLRMARK1 (X) sets markl to O .

CMPMARK1 (X) conpl enents markl.
The argunment of each of these primtives nust be a non-literal normal
element. Each of these generators will return a dumy result if the
markl conponent of this element is 1, and will fail if it is 0
However, before returning or failing, the generators will reset the markl
conponent as shown above. These marking primtives nust not be used to
reset elements which appear in constant |ist structures

The following primtives test and manipulate the mark2 conponent:

TSTMARK2 (X) | eaves mark2 unchanged.

SETMARK2 (X) sets mark2 to 1 .

CLRMARK2 (X) sets mark2 to 0 .

CMPMARK2 (X) conpl enents mark2.

Their operation is simlar to that described above

D. Arithmetic Primtives (CPM p. 81)

RANDOM X). X nust be an integer or floating-point nunber elenment. RANDOM
first resets the value of the internal variable rdmto p(rdm), and then

8

returns the result (X-;Q@)/2h7 . This result is conputed and returned in
the same node as X .

The function o is chosen so that E?ccessive val ues of rdm cycle
) =

through the odd integers between 1 and -1 in a pseudo-random MANNEr.
The currently-used definition of pis

o(rdm) = (5. rdm nod oM

E. Qutput Prinmtives (CPM p. 96)

To increase the flexibility of output operations, a nunber of fa-
cilities have been added to COGENT 1.2, including the insertion of page
headings in printed output, the conversion of BCD card images into equiva-
lent binary imges, the insertion of checksuns in binary card images, and
the suppression of certain system nessages.

1. The Tape Table

To control these added facilities, a tape table has been introduced.
This table, which exists during the running of —alT COGENT programs, js jn-
dexed by SCCPE |ogical unit nunber, and contains the following entries for
each unit nunber

a. A paging flag.
b. An integer called the line count.
C An integer called the page count.

d. Alist nane called the title,, which nust be either an
identifier or the dummy elenent.

e. A Cnedium conversion flag.

f. A B-nmedium checksum fl ag.

Wien program execution begins, all flags in the tape table are turned off

all line and page counts are set to zero, and all titles are set to the
dunmmy el enent.
2. Paging

Wienever a P-medium record image, or a print-line image produced
by a system coment routine (or an image produced by a dunp generator, when
these generators are inplemented) is sent to an output unit with |ogica
unit number i, then if the paging flag for i is off, the record is
outputted without alteration. But if the paging flag is on, the follow ng
occurs:

a. If the carriage-control character of the record image is

9

a blank (indicating single-spacing) the line count for unit i s de-
creased by one. If the carriage-control character is 0 (indicating double-
spacing) the line count is decreased by two.

b. If the line count is negative, or if the carriage-control
character is 1 (indicating page ejection), then:

(1) The page count for unit i is increased by one.

(2) A special print line containing a carriage-control
character of 1 (page ejection), the current date, and the page
count is witten on unit i . If the title entry for unit i is
an identifier (rather than the dumy element), the character string
of this identifier will also appear in this print line.

(3) The line count for unit i is set to 56.

(4) The carriage-control character in the record inmage
is set to O (double-space).

¢c. The record image is witten on unit i

If the title is an identifier with nore than 87 characters, only
the first 87 characters will be printed. The title identifier should not
_ contain any output codes larger than 71;8.

*

3. BCD-to-Binary Card Image Conversion,

Whenever a C-nedium record image is sent to logical-unit number i,
then if the C nedium conversion flag for unit i is off, the record is out-
putted without nodification. But if the C nmedium conversion flag is on,
then the record will be replaced by a binary record which is equivalent,
i.e., which will cause the same card to be punched.

4. Checksum Insertion

Wienever a B-nediumrecord inmage is sent to logical unit nunber i,
then if the B-nedium checksumflag for unit i is off, the record is out-
putted without nodification. But if the checksumflag is on, a checksum
for the card image will be conputed and inserted in bit positions 25-48,
corresponding to colums 3 and 4 of the card. This checksum is conputed
according to the standard conventions for CDC 3600 binary cards.

5. Tape-Table Prinmtives

The following primtives set or reference entries in the tape table.
In all cases, the argument LUN nust be an integer nunber elenent denoting
a SCOPE logical unit nunber. Al of these primtives except PGCNT return
the dumy el enent.

10

PAGE(LUN, T). T nust be an identifier element or the dumy elenent. The
paging flag for logical unit LUN is turned on, the title entry is set to
the value of T, and the line count is set to zero.

NOPAGE(LUN). The paging flag for unit LUN is turned off.

PGCNT(LUN). Returns an integer nunber elenment giving the page count for
unit LUN.

CLRPGCNT(LUN). Sets the page count for unit LUN to zero.
CMDCNV(LUN). The G nedium conversion flag is turned on.
NOCMDCNV(LUN). The G- nedium conversion flag is turned off.
BCHKSM LUN). The B-nedi um checksum flag is turned on.
NOBCHKSM(LUN). The B-nedium checksum flag is turned off.
The argunment LUN = 0 is allowed for all of the tape-table prim-
tives. When LUN = 0 the tape table is not altered, and the dummy el ement

is returned.

6. Runni ng- Message Suppr essi on

Most of the messages produced by systemroutines are produced aqither
at the beginning of program execution or at program termnation. However,
certain nmessages called running messages may occur at arbitrary points during
program execution. These I nclude:

a. A conment whenever |ist storage recovery occurs.

b. A comment whenever 100 successive characters are read
in the anbiguity node.

The out put of these nessages is now conditioned by a running-
message flag; if this flag is off, the running nessages will be suppressed.

The running-nessage flag is-turned on when program execution begins,
and may be altered by the following primtives:

RUNMSS(). Turns the running-nessage flag on,
NORUNMVBS(). Turns the running-nessage flag off.
Both of these no-argument primtives always return the dummy el enent.

F. Tape-Control Primtives (CPM p. 103)

The follow ng tape-control primtives have been added:

SKIPR(LUN). Skips one record on the tape denoted by LUN. The dumy el enent
i's returned. ‘

11

MASTLUN(LUN). Returns an integer nunber elenent giving the master |ogical
unit number for the unit LUN. The master logical unit nunber is the unit
number to which unit LUN has been equivalenced by SCOPE control cards or

by SCOPE itself. In the absence of any equivalencing, the master nunber is
LUN itself.

Al of the tape-control primtives now accept the argument LUN = O;
when LUN = 0, the primtives performno action and return the dumy el ement.
When LUN £ 0, the prinitives act by neans of appropriate calls of the rou-
tine 10OP., which is now used for all input-output operations in COGENT.
This routine is described in the CDC 3600 FORTRAN Mai nt enance Manual .

Two characteristics of the tape-control primtives should be noted:

1. The tape-control primtives do not affect the tape table. Thus,
for exanple, if a tape which is being paged is rewound, appropriate tape-
table primtives should be called to reset the page and line counts.

2. The routine I10P. blocks records on SCOPE unit 61 when this
unit is magnetic tape. On this unit, the primtives BSPR and SKIPR will
nmove the tape by physical rather than |ogical records.

G Running-Status Primtives

The following primtives are provided to furnish information about
the running status of a COGENT program

DATE(). Returns an 8-character tableless identifier giving the date on
whi ch program execution began in the format mm/dd/yy .

TIME(). Returns an 8-character tableless identifier giving the current
time of day in the format hhmmb-ss, where b indicates a blank. In
the character-string conponents of the identifiers returned by DATE and
TIME, standard output codes (CPM p. 39) are al ways used, even when ot her-
wise overridden by character definitions.

CLOCK(). Returns an integer number element giving the nunber of milli-
seconds remaining before program termnation, i.e., before the program will
be automatically termnated by SCOPE.

| COUNT(). Returns an integer nunber element giving the number of calls
of the input editor which have occurred since program execution began.

FREELI ST(). Returns an integer nunber elenent giving the nunber of ma-
chine words in free list storage, i.e., the nunber of words available for
creating list structures before the next list storage recovery.

COLLECT(). Similar to FREELIST(), except that a list storage recovery
is performed before free list storage is counted.

12

CHAPTER 111
OPERATI NG | NFORMATI ON FOR COGENT 1.2

A Subprogram Structure

In relocatable binary form a COGENT program al ways consists of
the follow ng subprograns:

PROG BETADATA ANAGEN
STACK I0P, ARITHMTC
LI ST ALLCC. SCAN
I NI TI AL QuTPUT
INEDITOR IDENT
| NRPEXI T M SCPRI M
SYNTAX DUMP
SUBGEN - GARBCOLL

(Each of these subprograms contains an entry point whose name is the sane
as the subprogram nane.)

The three subprograns PROG STACK, and LIST are produced by the
COGENT conpiler. The remaining subprograms are the same for all COGENT
prograns and are called the running deck. The two subprograns |CP. and
ALLCC. are an input-output buffering package taken fromthe CDC 3600
FORTRAN |ibrary; the remaining subprograms in the running deck are witten
especially for COGENT. INITIAL is the main subprogram

Two nunbered common bl ocks occur. /1/ is a 1600g-word bit table
referred to by GARBCOLL. /2/ is one-word block referred to by INITIAL;
its only use is to insure that the loader will be overlaid (when the
STACK- bank is 0). .

It should be enphasized that since the COGENT conpiler is witten
inits own |anguage and conpiled by itself, it is merely a particular
case of a COGENT program Thus in relocatable binary form the conpiler
consists of three subprograms PROG, LIST, and STACK, plus the same running
deck as would be used with any other COGENT program

B. Loading

1. Bank Allocation

Tne four subprograms PROG STACK, 1CP., and ALLOC. may be placed
in arbitrary banks (except for a restriction on STACK described bel ow);
we Wil refer to these banks as the PROG-bank, STACK-bank, etc. The
remaining subprograns are restricted as follows: BETADATA, LIST, INTIAL,
and common bl ock /2/ nust go into the STACK-bank; all other subprograns
and common bl ock /1/ must go into the PROG bank.

To insure proper bank allocation, all of the subprograms except
PROG, STACK, IOP., and ALLOC, contain (in COWPASS) bank pseudo-instructions

15

which allocate these subprogranms (and also the two common blocks) to the
same bank as PROG or STACK. (Thus in binary- form these subprograns begin
with bank control cards rather than IDC cards.) Therefore to specify
bank allocations while | oading a COGENT program it is only necessary to
provide a bank control card which gives absolute al | ocations for PROG
STACK, 10P., and ALLOC. Tnis card shoul d preceed the first binary deck.

2. Further Restrictions

The follow ng additional restrictions are inposed on the |oading
of COGENT programs. Violations of these restrictions will cause program
termnation imrediately after [oading.

a. Tne subprogram STACK nust be the first-1oaded (highest-
addressed) subprogram in the STACK-bank. Furthernore, either the STACK-
bank must be bank 0, or else no subprogram nmay be placed in a bank whose
bank address is larger than the STACK-bank. These restrictions are
necessary to allow the pushdown stack to be protected by the bounds register,
so that the exhaustion of the pushdown stack causes a bounds fault.

b. The subprogram INITIAL rmust be the last-loaded (Iowest
addressed) subprogram in the STACK-bank, and nust be immediately preceeded
by LIST (so that the lowest address in LIST is one larger than the highest
address in INITIAL). The routine INITIAL allocates a portion of available
_ menory in the STACK-bank, as well as the area occupied by INITIAL itself,
to be used for non-constant list storage. These restrictions insure that
these two areas are contiguous and that they are adjacent to the area in
LI ST wnich contains constant |ist structures.

c. The entry point LISTCHCK in the subprogram LIST nust have
an absolute address of |ess than or equal to 70000g. This restriction
assures that no list element will have an address within the range of
literal list names. (This restriction will not be violated as long as
the assenbly control paraneter STACKIEN in STACK is larger or equal to

4096, .)
3. Additional Comments

The restrictions discussed in-the preceeding sections still permt
a variety of nenmory allocations for a COGENT program Nornally, the optinmm
choice of allocation will be determned by two goals: (i) The program
must fit within the total nemory available; (ii) The available nenory
(remaining after loading) in the STACK-bank should be as large as possible
to maximze the size of list storage. Maximzing |ist storage wll increase
the speed of a COGENT program by reducing the frequency of |ist storage
recoveries.

To acheive these goals, the follow ng should be noted:
a. The subprogram DUW contains only the prinmtive generators

DUWPV, DUMP1l, DUMPALL, SETIVDNO, and |IVDNO It may be omtted for any
COGENT program wni ch does not call these primtives. (In COGENT 1.2

14

DUWPV, DUMP1, and DUMPALL are dummy routines which merely produce system
comments.)

h. Large COGENT prograns contain a very large nunber of
entry points and external synbols. In the case Were the PROGbank is
0 and the STACK-bank is not 0, the program size is limted by the collision
of program space with |oader tables. To mninize this limtation, it is
advisable that the last-loaded subprogram should go into the PROG bank
and should have reasonable size but only a small nunber of entry points
and external symbols. The best candidate for this position appears to
be GARBCOLL.

c. By means of assenbly control paraneters, the running deck
may be assenbled in either a "safe" or a "fast" version (see section C.1).
The fast version is significantly shorter.

4, Suggested Menory Allocations

The fol l owing nenory allocation for two banks has been used
extensively and is recommended for nost programs. |f the program (and/
or the SCOPE resident) is large enough to cause nenory overflow in bank
0, then 10OP. and ALLCC. should be noved to bank 1 and placed between
BETADATA and LI ST.

Bank 0 Bank 1

IOP. (SCOPE drivers)
ALLCC. STACK

PROG BETADATA

INEDITOR LI ST

| NRPEXI T I NI TI AL

SYNTAX (available menory)
SUBGEN Common bl ock /2/
ANAGEN

ARITHMTC

SCAN . .
QUTPUT ¢ |ncreasing
IDENT addr ess

M SCPRI M

DUWVP

GARBCOLL

(available menory)
Cormon bl ock /1,
(SCOPE resi dent)

The following nemory allocation is suggested for one-bank |oading.

The COGENT conpiler itself is too large to fit in one bank, but many
smal | er COGENT programs can be run with one bank.

15

Bank 0

(SCOPE drivers)

STACK

BETADATA

I0P,

ALLOC,

PROG

INEDITOR

| NRPEXI T

SYNTAX

SUBGEN

ANAGEN

ARTTHMTC

SCAN N i ncreasi ng
QUTPUT addr ess
IDERT

MISCPRIM

DUMP

GARBCOLL

LI ST

| NI TI AL

(avail abl e menory)

Conmon bl ocks /1/ and /2/
(SCOPE resident)

C. Assenblv Control Paraneters

As witten in assenbly |anguage, most of the subprograms conprising
a COGENT program contain one or nore assenbly synbols called assenbly control

paraneters. These synbols, wnicn are defined by EQU pseudo-instructions
near the beginning of the subprograms, are provided to allow various charac-
teristics of the programto be nodified easily. Tne following is a conplete
list of the assembly control paraneters in COGENT 1.2, giving the nane of
each parameter, the value given to the parameter in the subprogram versions
on the COGENT 1.2 Master Tape, the names of the subprograms containing the
parameter, and for each subprogram the COSY l|ine number of the card defining
the paraneter;

Assenbly Control Value on Subpr ogr ans Cosy Card
Par anet er Master Tape Using Paraneter Nunber

SAFE 1 ARITHMIC
SCAN
QuTPUT
IDENT
M SCPRI M

VERSCOPE p | NRPEXI T
QuTPUT

~\n U\t

cont.

16

Assenbly Control Value on Subpr ogr ans Cosy Card

Paramet er Master Tape Using Parameter Nunber
\
MINBUFF1 0 I NI TI AL 11
MINSNSK1 1500 | NI TI AL 12 Storage Al location
MINLIST1 510 [NI TI AL 13 > Parameters for
EXCSNSK1 10 I NI TI AL 1k (One- bank Loadi ng
EXCLIST1 80 | NI TI AL 15
/
MINBUFA2 0 | NI TI AL 17)
M NSNSK2 3000 | NI TI AL 18 Storage Al location
M NBuFB2 0 [NI TI AL 19) Parameters for
M NLI ST2 510 [NI TI AL 20 Two- bank Loadi ng
EXCSNSK2 0 I NI TI AL 21
EXCLIST2 100 [NI TI AL 22)
M NLI ST 500 GARBCOLL 29
PAGESIZE 59 QUTPUT 6
DELBLANK 1 INEDITOR 5
PSECF 1 INEDITOR 6
EOFCODE 101B INEDITOR 8
STACKLEN Lo96 STACK 2
1. SAFE

The paranmeter SAFE conditions the assembly of instructions which
test the validity of arguments of primtive generators. Wnen SAFE = 1,
a safe version of the subprogramis assenbled in which the calling of
primitives With invalid arguments (in nost cases) wll cause abnornal
program termination. \Wen SAFE = 0, a fast version is assenbled which
is shorter and considerably faster than the safe version, but in which
invalid arguments will have unpredictable consequences.

2. VERSCOPE

The paraneter VERSCOPE should be set to 5 or 6, depending upon
the version of SCOPE being used. #nen VERSCOPE = 6, code will be assenbled
to select interrupt on abnormal termination in order to close (output
buffers for) logical unit 61 after an abnornal ternination.

3. Storage Alocation Paraneters

As soon as a COGENT program has been | oaded, the routine I N TIAL
will determne the extent of available storage (the storage areas between
subprograns and conmon bl ocks in each bank, plus the area occuppied by
INNTIAL itself) and divide this storage into areas for three purposes:
list storage, the syntax stack, and input-output buffers. The anount
of storage used for each purpose is determned by the eleven assenbly
control parameters called storage allocation paraneters.

17

(To avoid confusion, it should be noted that a COGENT program
contains two distinct storage areas called the stack (or pushdown stack)

and the syntax stack, The stack is located in the subprogram STACK,
and is used to store the local variables, input variables, and various
tenporary quantities used by generators. The syntax stack is |ocated
in available nmenory in the PROG bank, and is used to store return
addresses for recognizers, i.e., syntax-analysis subroutines,)

Two cases are distinguished and controlled by separate sets of
paraneters: one-bank |oading, where the PROG and STACK-banks are the
sanme, and two-bank |oading, where the PROG and STACK-banks are different,,
In both cases, the various storage areas are assigned m nimum anounts
specified by the paraneters named MINxxxxx, and then the excess storage
is divided anong the areas according to percentages specified by the
paranet ers named EXCxxxxx.

The allocation fornulas for one-bank |oading are:

excess = available storage size - MINBUFFl- MINSNSK1 ~ MINLIST1
syntax stack size = MINSNSK1 + excess X EXCSNSK1 / 100

|ist storage size = MINLIST1 + excess X EXCLIST1 / 100

buf fer size = MINBUFF1 + excess X (100 - EXCSNSKl - EXCLIST1) / 100

If the excess is negative, an error nessage will be witten and abnormal
termnation will occur.

In two-bank |oading, the syntax stack is allocated in the PROG-bank,
and list storage is allocated in the STACK-bank. 1/0 buffers may be
allocated in either bank or both. The allocation formlas are:

PROG-bank excess = available storage in PROG bank - M NBUFA2 - M NSNSK2
STACK- bank excess = avail abl e storage in STACK-bank - MINBUFB2 - MINLIST2
syntax stack size = MINSNSK2 + PROG bank excess X EXCSNSkK2 / 100

PROG bank bhuffer size =
MINBUFA2 + PROG bank excess x (100 - EXCSNSK2) / 100

L list storage size = MNLIST2 + STACK- bank excess X EXCLIST2 / 100

STACK- bank buffer size =
MINBUFB2 + STACK-bank excess x (100 - EXCLIST2) / 100
If either the PROG bank or STACK-bank excess is negative, an error ternn-
ation will occur. (For either one- or two-bank |oading, slight deviations

from the above fornulas will occur; e.g., the syntax stack wll always
contain an even nunber of words.)

18

; The storage allocation paraneters nust always satisfy the followng
restrictions:

Al paraneters nust be non-negative.
MINLIST1 > 510

EXCSNSK1 + EXCLIST1 < 100

M NLI ST2 > 510

EXCSNSK2 < 100

EXCLI ST2 < 100

In sone cases there may be available storage in other banks
than the PROG or STACK-bank; this storage will be used entirely for
/O buffers. Specifically, if a bank b is not the PROG or STACK-bank,
and if either the STACK-bank = 0 or b < STACK-bank, then all available
storage in b will be allocated for I/0 buffers.

4. MNLIST

Tnis paraneter determnes the mninmum size of free list storage.
i If a list storage recovery produces |ess than MNLIST words, then the
; program will termnate. MNLIST should always be at |east 500.

5. PAGESIZE

This parameter appears in the routine which controls paging.
it gives the maxi num number of print lines (including the heading Iine)

per page.
6. DELBLANK, PSECQF, and EOFCODE

These parameters control the assenbly of the input editor., |f
DELBLANK £ 0, the editor will delete blank characters., |f PSECF £ o,
the editor will interpret a pseudo-end-of-file card (with asterisks in

colums 1 to 72) as an end-of-file, EOFCCDE gives the input code to

be outputted by the editor for an end-of-file. The val ues DELBLANK = 1,
PSECF = 1, and ECFCCDE = 101B are used for the standard input editor,
i.e., the Version of the input editor which nusi be used with the COGENT
conpiler itself.

T, STACKLEN

This paraneter determnes the nunber of words used for the
pushdown stack. Wen necessary it may be altered to provide a |arger
stack, or to provide nore list storage or I/O buffers at the expense
of the stack. However, a lower limt is inposed on STACKLEN by the
requirement that location LISTCHCK in the subprogram LIST nust have
an absolute address less than or equal to 700008 (See section B.2.c. of

19

this chapter), The exact lower linit depends 'upon the particular program
and |oading arrangement, but STACKLEN > 4096 will always be sufficient.

STACKIEN is the only assenbly control paraneter which appears
in a subprogram produced by the conpiler rather than in the running deck,
Thus, in addition to altering STACKLEN by a COSY correction, it is also
possible to alter the conpiler itself to produce a different EQU for
STACKLEN, Tnis may be done by changing the large constant in the gener-
ator PROGEND (in the version of the conpiler witten in its own |anguage),
and then reconpiling the conpiler.

DO The Compiler

As nentioned earlier, tne COGENT conpiler is nerely a specific
case of a COGENT program consisting of the subprograms PROG STACK, and
LI ST. obtained by conpiling the conpiler, plus the usual running deck.
Specifically, the conpiler 1s a program which reads input in the COGENT
| anguage from SCOPE | ogical unit number 60, and produces COWPASS card
i mges on logical unit 1, plus an output listing on logical unit 6l.
(Note that logical unit 1 is a programmer-defined unit.)

1. Loading

Li ke all COGENT programs, the compiler is subject to the |oading
restrictions discussed in section B of this chapter; since it is a very
|l arge program the comments in B.3 are especially pertinent. The sub-
program DUW nay be omtted, and the "fast" versions of AR THWIC, SCAN,
QUTPUT, 1DENT, and M SCPRI M shoul d be used.

The nenory allocation for two-bank |oading given in section B,k
is recommended, (with DUWP omitted) although it may be necessary to place
| OP. and ALLOC. in bank 1 rather than bank 0 if the SCOPE resident is
large. The conpiler is too large for one-bank | oading.

2. input

Tne input programto be translated by the conpiler nust appear
as a sequence of BCD card images on logical unit 60, Tnis program should
be i mredi atel y preceeded by the RUN-card which initiates execution of the
conpiler, and inmediately followed by either an end-of-file or a pseudo-
end-of -file card (asterisks in colums |-72). If the conpiler termnates
normally, it will |eave tape 60 positioned immediately beyond the end-of-
file or pseudo-end-of-file card,

5. COWPASS Qut put

The primary output of the conpiler is a sequence of BCD COVPASS
(not COSY) card images on logical unit 1. [f the conpiler terninates
normal ly, this tape will have the follow ng format:

20

IDENT PROG

END
SCOPE
IDENT STACK

END
SCOPE
IDENT LI ST

EM
SCOPE
end-of -file

and the tape will be rewound by the conpiler.
Tne COWPASS output will include REM cards indicating the beginning

of each generator, each recognizer (Syntax anal yzer subroutine), and
various tables. In addition, many machine instructions will have one or

more names, phrase class names, or statement numbers listed in their comment
fields; these comments are provided to identify various internally generated

assenbly symbols: appearing in the corresponding instructions.

bk, Printed Output

The conpiler also produces printed output on logical unit 61.
This output includes an imge of eacn card in the COVPASS out put, plus

a. Atable of all primry productions (wth conpound
productions reduced to sets of sinple productions) along with their
production code numbers. This table appears at the beginning of the
printed output.

b. A simlar table of all secondary productions, appear-
ing between the COWPASS-instruction listing of the syntax analyzer and
the listing of the production code nunber table.

C Various system comments and error nessages.

d. At the end of the printed output, a count of the number
of error nessages.

Tne printed output does not include a listing of the input program

21

5. Qutput Vol unme

Tne conpiler frequently produces a very large valume of both
COWPASS and printed output. As an extreme exanple, when the conpiler
is used to conpile itself, it reads 1491 cards and produces about 28000
COWPASS card inmages plus 622 pages of printed output. Because of this
vol ume of output:

a. Tne COWPASS out put shoul d not be punched directly
onto cards. It is usually better to use the COWASS assenbler to
convert this output into COSY desks.

b, For large programs such as the conpiler itself, the
COWPASS output may extend onto a continuation reel.

E ' The COGENT Master Tape

Tne COGENT system i &iormally distributed in the form of & CogeENT
Master Tape. Tnis tape contains an 80-character (SCOPE 6.x-type) | abel
with the name (COGENTbl.2bMAS), foll owed by twd-files.

Tne first file consists of 21 binary COSY decks for the follow ng
subprogranms (in order):

STACK

BETADATA

ifféc versions for use witn SCOPE 5.4
IOP,
ALLOC,
LIST ~

I NI TI AL
PROG
INEDITOR
| NRPEXI T
SYNTAX
SUBGEN
ANAGEN
ARl THMIC
SCAN
QUTPUT
IDENT

M SCPRI M
DUWP
GARBCOLL

versions for use with SCCPE 6.0

The subprogranms STACK, LIST, and PROG are specific to the COGENT conpiler,
whi I e the remaining subprograms constitute the running deck and are used
with all COGENT programs. Tne versions of IOP. and ALLCC. are taken from
the FORTRAN |ibrary of a particular 3600 installation (Argonne); at other
installations it may be necessary to replace these subprogranms by |ocal
ver si ons.

22

o Tne second file of the master tape contains BCD card images
giving the programfor the COGENT conpiler in its own |anguage. ~Sone

of the card images in this file contain sequence nunbers in colums
77-80; these nunbers pertain to an earlier version of the conpiler and
shoul d be ignored,

F, Illustrative Job Decks

Tne following sections give illustrative job decks for the pre-
paration of a COGENT system from the Master Tape, and for the conpilation
assenbly, and execution of a COGENT program Numerous variations are
possible to neet the needs of particular installations, users, or prograrnms,
In the following, the ‘synbol "?" is used to denote a 7-9 punch, and the
symbol "¢" is used to denote a 11-O-7-9 punch

1. To prepare a |load-and-go tape of the COGENT conpiler to be
used with SCOPE 0.0 or o.1l:

?J0B, char ge number,id,20
?EQUIP,1=(COGENTb1.2bMAS),SV
?EQUIP,2=(COGENTb1.2bBIN),SV
?FILE,2

£ BANK, (0) ,PROG, (1),STACK, (0), IOP.,ALLOC. ff,}fxﬂ_“ /... »(1),I0P,,ALLOC.
?FILE END 4 necessary \
?COMPASS,Y=1,X=2,L,R,M
CosYy STACK
Ccosy BETADATA
BYPASS 2 7 . BYPASS L
Cosy I0P. SCOPE
COSY atroc.f °F |7FILE,2
< Binary relocatable decks for |ocal
versions of IOP. and ALLCC,
?FILE END
(?COMPASS,Y=1,X=2,L,R,M
CcosY LI ST
COosy I NI TI AL
Ccosy PROG
cosy INEDITOR
REPLACE 5
VERSCOPE EQU 6
CosY | NRPEXI T
COoSY SYNTAX
COSY SUBGEN
COSsY ANAGEN
REPLACE 5
SAFE EQU 0
CosY ARITHMIC
REPILACE 5
SAFE EQU 0
COSY . SCAN
REPLACE 5
SAFE EQU 0

23

REPLACE 7

VERSCOPE EQU 6
COSY OUTPUT
REPLACE >

SAFE EQU 0
cosy IDENT
REPLACE 5

SAFE EQU 0
COSsY M SCPRI M
BYPASS 1
COSY GARBCOLL
SCOPE

2, To produce a safe version of the running deck (on binary
rel ocatable cards) for use with SCOPE 6.0 or 6.1:

?JOB, char ge number,id,10
?EQUIP, 1= (COGENTb1. 2bMAS) ,SV
?COMPASS,Y=1,P,L,R,M

BYPASS 1
COosY BETADATA
BYPASS 2
COSsY IOP, or if local versions of
CosYy ALLCC. IOP. and ALLOC. are to be used {BYFASS 5
BYPASS 1
Ccosy I NI TI AL
BYPASS 1
COSY INEDITOR
REPLACE 5
VERSCCOPE EQU b
COSY | NRPEXI T
Ccosy SYNTAX
COSY SUBGEN
CosY ANAGEN
COosyY ARl THMIC
Cosy SCAN
REPLACE 7
VERSCOPE EQU 6
CosYy QUTPUT
COSY IDENT
CoSY M SCPRI M
CcoSY DUWP
Ccosy GARBCOLL
SCCOPE

3. To conpile, assenble, and execute an COGENT program using
the two-bank allocation suggested in section B.4 of this chapter:

?J0B, char ge number,id,total time limt

?EQUIP,2=(COGENTb1.2bBIN),SV

7EQUIP,1=SV (include to save conpiler output)
?LOAD, 2

2k

?RUN, , conpi lation tine limit,print limit,l (conpi | ation)
COGENT Program to be conpiled
Card with asterisks in colums 1-72

?COMPASS,I=1,X,P,L,R,M (assenbly of PROG
?COMPASS,I=1,X,P,L,R,M (assenbly of STACK)
?FILE,69

Binary relocatable deck for BETADATA
?FILE END

£BANK, (0) ,PROG, (1),STACK, (0),I0P. ,ALLOC,
Binary rel ocatable decks for: IOP.
ALLOC,
?LOAD, 69
Binary relocatable decks for: INTIAL
INEDITOR
INRPEXIT
SYNTAX
SUBGEN
ANAGEN
ARI THMTC
SCAN
QUTPUT
IDENT
M SCPRI M
DUWP
GARBCOLL
?RUN, execution tine limit,print limit,l (execution)
Data cards
Wth SCOPE 6.0 or 6.1, this type of job cannot be used if the programis
so large that the conpiler output on logical unit 1 runs onto a continua-
tionreel. In this situation, conpilation and assenbly nust be perfornmed
as separate jobs,

25

CHAPTER |V
SYSTEM AND COWPI LER ERROR MESSAGES

Two types of "messages" occur in COGENT: System nessages are
produced by routines in the running deck:, and may appear during the
execution of any COGENT program, including the conpiler, Some of these
messages indicate the cause of an error termnation, while others nmay
occur during the operation of a correct program Conpiler error messages
are producedlonlly by the COGENT conpiler; these messages never cause
program termnation,

A. System Messages

~In general, system nessages are outputted to the logical unit
specified by the internal variable sno (See II.A.1). During the
operation of the conpiler these messages.appear On logical unit 61,

For eacn nessage described in this section, a reference by sub-
program name and COSY line nunber is given to the code within the running
deck which produces the nessage.

1, Initialization Mssage (INITIAL, 152)

As soon as a COGENT program begi ns execution, the subprogram
TINTIAL will output a nessage giving the current time of day and a
description of the allocation of available menory:

EXECUTI ON STARTED AT hhmm -ss

ALLOCATI ON OF AVAI LABLE MEMORY
b fffff LIST STORAGE sSSSSS
b fffff SYNTAX STACK sssss
b fffff |/O BUFFERS sssss

The octal nunbers b, f, and s are the bank, |owest address, and |ength
of each section of storage, |If 1/0 buffers occur in nore than one bank,
then a line will be witten for each bank containing buffers,

If INITIAL causes an error ternmination because of inproper |oading
order or inadequate available nenory, the initialization nessage will not
occur,

2. Running Messages

These nessages may occur anytine during program execution. Their
output is conditioned by the primtives RUNVBS and NORUNMSS (See II.E.6).

a., List Storage Recovery (GARBCOLL, 38b)

The fol I owing message occurs at the conpletion of each
list storage recovery:

26

(LIST STORAGE RECOVERY, f WORDS RECOVERED. p WORDS | N ACTI VE PUSHDOWN
STACK. ELAPSED TIME t M5)

where f is the size of the recovered free list storage area, and t is the
tinme (in mlliseconds) taken by the recovery routine. The quantity p

I's the nunber of active words in the pushdown stack (excluding the sub-
stack) and represents the nmemory in use for the input variables, |oca
variables, and tenporary storage of all generators in the calling chain
at the instant when recovery occurred. Al nunbers in this nmessage are
deci nal

b. Anbiguity-Mde Character Count (SYNTAX, 430)

An anbi gui ty-node character counter is initialized to zero
whenever the anmbiguity node Is entered by the syntax analyzer, and is
incremented each tine a character is read in the anbiguity node. When-
ever this counter passes through a nultiple of 100,,, its content is
printed," along with the number of calls of the inpug editor which have
occurred since program execution began:

(c CHARACTERS HAVE BEEN READ IN AMBIGU TY MODE. |INPUT EDI TOR HAS BEEN
CALLED n TI MES)

where ¢ and n are deci mal nunbers.

3. Normal Ternmination Message (INRPEXIT, 79)

Wienever a program termnates normally, the current time is
printed:

NORVAL TERM NATI ON AT hhnm -ss

L, Abnormal Termi nation Messages

The running deck routines detect a variety of errors, all of
which cause abnormal termination, In all cases, a system nessage is
produced with the general form

ABNORVAL TERM NATI ON AT hhmm -ss AFTER n CALLS OF THE | NPUT EDI TOR
TERM NATION DUE TO specific error nessage

where n is decimal, The following are specific system error nessages:

a. Initialization Errors

. | MPROPER ORDER OF LOADI NG

(INNTTAL, 219). Aviolation of the loading restrictions discussed in
[11.B. 2.

. | NADEQUATE AVAI LABLE MEMORY |IN BANK b
(INTIAL, 224). A negative excess quantity, as discussed in III.C,3.

b. Syntactic Errors

. ILL-FORMVED INPUT STRING

(SYNTAX,488) . The string of cnaracters produced by the input editor
cannot be parsed according to the primary productions.

... AMBI GUOUS | NPUT STRI NG

(SYNTAX, 437) . Tne string of characters produced by the input editor
can be parsed according to the primary productions in nore than one
vy .. This error does not occur until an entire goal specifier has
been parsed,

c. Storage Exhaustion Errors

.o LI ST STORAGE EXHAUSTI ON

(GARBCOLL, 400). A list storage recovery has recovered |ess than MINLIST
words, (See III.C.4),

... LI ST STORAGE EXHAUSTION BY COPYING n

(SUBGEN, 55). An attenpt to create an instantiated copy of the Iist
structure named n has used all of free list storage. The name nis an
absolute octal list name, i.e., either the absolute address of a Iist
element, or a literal name. This error will occur if an attenpt is nade
to copy a cyclic list structure,

... BOUNDS FAULT BY | NSTRUCTI ON AT LOCATION n (PROBABLY SYNTAX STACK
EXHAUSTI ON)

(INRPEXIT, 63). The execution of the instruction at the 18-bit absol ute
octal address n nas caused a bounds interrupt. Since the pushdown stack
is protected by the bounds register, this error will occur if the push-

down stack is exhausted, which will occur if an infinite recursion or a
recursion over a very large list structure is attenpted. Note that this
error nessage is incorrect; it should indicate the probable exnaustion

of the pushdown stack, not the syntax stack.

. SYNTAX STACK EXHAUSTION

(swNtax, 60). The syntax stack has been exnaustédrby-ancexcessivély
deep recursion within the syntax analyzer.

.. CONVERSI ON BUFFER EXHAUSTI ON BY SYNTAX ANALYZER

(SYNTAX, 1tk). The syntax analyzer, under the control of a character-

28

packing special |abel, nas attenpted to store an excessive nunber of
characters in the conversion buffer, The nunmber of characters in this
buffer, plus the nunber of characters with output codes |arger or equal
to 75g, must not exceed 1016lo for identifiers or 1oehlo for numbers.

. CONVERSI ON BUFFER EXHAUSTI ON BY IDENT ,CIDENT ,DECCON,OCTCON,OR FLOATCON
(scan, 690).
... CONVERSI ON BUFFER EXHAUSTI ON BY IDENT OR Cl DENT
(IDENT, 145). Both of these nessages indicate that an identifier- or
numbercreating primtive has attenpted to store an excessive nunber of

characters in the conversion buffer. The linmts on the wuffer Size are
gi ven above.

d. Illegal Argunment Errors

Wthin the subprograns ARITHMrC, SCAN, OUTPUT, IDENT,
and MSCPRIM there are a large number of checks for illegal arguments
of primtive generators, These checks, which are only assenbled if the
assenbly control -paraneter SAFE = 1 (See 1I1,C.1), lead to the follow ng

error nessages:
| LLEGAL VALUE n ASSIGNED TO nane of one or nore internal variables

if the primtive is a standard setting generator for an internal variable,
or

. ILLEGAL ARGUMENT n GIVEN TO name of one or nore primtive generators

for all other primtives, In either case, n is the illegal argument,
given as an absolute octal list name.

e. Mscellaneous FErrors

. CALL OF ABEXIT FROM LOCATION n

(INRPEXIT, 86). The primtive generator ABEXIT has been called, Tne
absolute octal address n is the biased return address given to ABEXIT

by the calling generator,
. ERROR IN READING LUN n

(ouTPUT, 871). An irrecoverable parity error has occurred in reading
| ogical unit nunber n (decimal), i.e., a READ CHECK BUFFER DECI MAL call
of 10P. has returned with bit 19 of the A-register set. This nessage
will be witten on the system coment unit (logical unit 64) as well as

the unit specified by sno.

29

... FAILURE OF CGENERATOR CALLED BY SYNTAX ANALYZER FROM LI NKAGE ADDRESS n

(SYNTAX, 188). A generator called by the syntax anal yzer nas fail ed;
nis the absolute octal address of the generator linkage (in PROG from
which the generator was called.

... | LLEGAL LI ST ELEMENT FOUND DURI NG STORAGE RECOVERY AT LOCATION n

(GARBCOLL, 97). During the searcn over all active list elenents perforned
by the list storage recovery routine, a non-literal (absolute cétal) 1i#t
nane n has been found which is not the address of a valid list elenent.

oo« LLEGAL LI ST ELEMENT FOUND DURI NG ANALYSI S AT LOCATION n

(ANAGEN, 23). During the execution of an analytic assignnent statenent,
a non-literal (absolute octal) list name n has been found in the tenplate
list structure which is not the address of a valid list elenent.

... | LLEGAL | NSTRUCTI ON AT LOCATION n

(INRPEXIT, 50). An illegal instruction at the 18-bit absol ute octal
address n has been executed. A few illegal instructions appear in the
running deck at program points which should not be reached except under
extraordinary circunstances,

.»» UNEXPECTED | NTERRUPT

(INRPEXI T, 71). This message occurs (if the assembly control paraneter
VERSCOPE = 6, see III.C.2) for all abnormal terminations which do not
produce other system nessages. The nost common cause is exceeding a
time or print limt set by SCOPE,,

5. Dunp Message (DuMP, 8)

Tne dunp primtives have not been inplemented in COGENT 1.2.
A call of the primtives DUMPV, DUMPl, or DUMPALL W || cause the system
nessage

(DUVP GENERATOR- CALLED FROM LOC r WTH ARG n. SORRY, BUT THESE GENERATORS
ARE NOT CCDED YET)

to be witten on the unit specified by sno. The absolute octal nunbers
n and r are the argument of the dunp generator (if any) and the biased
return address given to the dunp generator by its calling generator,
The dunp generator will return the dummy el ement.

B. Conpiler Error Mssages

Conpi | er error messages are produced by the COGENT conpiler,
rather than by the running deck. Unlike systemerror nessages, they
do not cause abnormal termnation, so that a single conpilation may
produce several error messages. These messages appear in the printed

30

output on logical unit 61, with the standard fornat
R R¥XX¥ERROR TYPE k ERROR COURT | S n¥*¥%%,,,,

foll owed by enough asterisks to fill out the print line. The nuneral

k indicates the type of error, while n is the ordinal of the appearance
of the error nessage in the conpiler output.

At the end of the conpiler output, a nessage will appear giving
the total number of error messages. Since the conpiler will give a
normal termnation even when one or nore conpiler error nessages occur,
it is advisable to check this final error count before running a conpiled
program It is also advisable to check for error messages in the sub-
sequent assenbly of & conpiled program Certain types of errors, such
as undefined or nultiply-defined statement numbers, will not be detected
by the conpiler but will lead to assenbly errors.

The following is a list of all- error types by their nunerals..
For each type a reference is nmade to the generator or generators in the
COGENT conpiler (as witten in COGENT, i.e., file Il of the master tape)
whi ch detect the error. Sone error types, designated as unusual, indi-
cate that the conpiler is behaving in an unforseen manner, either because
of faulty design of the conpiler or because the input program Contains
some error for which specific checks have not been-built into the
conpi ler.

1. (SAL op EXEC). The conpiler 'has attenpted to conpile code
to store into, or call as a generator, sone quantity denoted by a com
pound expression (unusual).

2. (MOVE). Either (i) a pseudo-constant appears in a position
in which only a variable is allowed (i.e., a position indicating assign-
ment to the variable). or (ii) a pseudo-constant which does not denote
a generator element appears in a position indicating a generator to
be cal |l ed.

3. (GENEND). Either (i) a generator is defined with a nane
whi ch has not been declared (even inplicitly) as a generator nane, or
(ii) more than one generator has been defined with same nane (and under
the sane declaration).

L, (pcoN). A name which is not a pseudo-constant has been used
in a position where only a pseudo-constant is allowed.

5. (CANA), An anal ysis string contains nore than 50 itens.

6. (ParscoN). A constant has been encountered which cannot
be parsed according to the total set of productions.

7. (PARSCON). A constant has been encountered wnicn has nore
than one parsing according to the total set of productions. The conpiler
will make an arbitrary choice of the parsing to be used.

8. Not used,

9. (TRANCON). In parsing a constant, a $NOP/ special |abe
has been found on a production with nore than one phrase class name in

its construction string, The conpiler will disregard the &MHV speci a
| abel

10. Not used,

11, (SETCON or CONDEFl)., Wthin sone constant, a paraneter
has been found wnose i ndex 1s-zero-or larger’than 50. The index will
be replaced by 1. This error will be found when code is generated for
the constant, rather than when the constant is actually read,

12, (OBSETA). A left-hand constant in an identifier declaration
does not denote an identifier element, The erroneous itemin the
declaration will be ignored,

13. (PROGDEC). A local declaration has appeared in the main
decl aration sequence.

14. (IDENTDEF). An identifier elenent within some constant
list structure contains too many characters. This error will be found
when code is generated for the constant, rather than when the constant
is actually read.

15. (uHper) . The entity on the left-hand side of a character
definition is not an object character representative. Tne definition
will be ignored

16. (RECFLOW. A pnrase class nentioned in the primry syntax
description is enpty, i. e,, the primary productions give no nethod for
constructing any phrase of the class. This nessage is a warning rather
than an error; the conmpiler will generate a syntax analyzer which wll
never recognize any phrase of the enpty class

Each enpty phrase class gives rise to two error nmessages.: a
type lo message when the flow graph of the recognizer for the phrase
class is being calculated, and a type 18 nessage when code for the
recogni zer is actually generated. The location of the type 16 nessage
does not indicate the name of the corresponding enpty phrase class, but
each type 18 nessage wi || appear imediately before the conpiled recognizer
for the enpty phrase class.

17. (CHRVEC). A nmember of a term nator sequence is not an
obj ect character representative.

18. (RECCOMP). A phrase class nentioned in the primary syntax
description is enpty. This nessage is a warning rather than an error;
See 16.

32

19. (PRODCOMP). A primary production with a $NOP/ special [abel
nas nore than one phrase class name in its construction btring.

20. (GOALCOW). a goal in a goal specifier is not a phrase
cl ass nane.

21. (PROGBEG). The total set of productions, after the reduction
of conpound to sinple productions, contains more than 1024lO producti ons.

22. (TRANCON). |In parsing a constant, a paraneter has been
found in a portion of-an object string which is to be converted into
a number or identifier element, i.e., wnich is parsed under the contro
of a character-packing special label. This nessage is a warning rather
than an error; the parameter will be ignored in creating the nunber of
identifier.

23. (PROGOUTZ). The conpiler-has attenpted to output an instruction
which violates the format of COWPASS cards (unusual).

2.4. (PDCNTABG). Wiile generating the production code nunber
table or the character scanning table, the conpiler has been unable to
find any production with a given code number (unusual).

25. (GENLINK). A production |abel contains an inproperly
declared nanme, i.e., a name which is neither a generator nane nor a
universal own variable. ™his message appears ‘wnen’tne correspondi ng
generator |inkage code is generated, not when the erroneous production
i's read.

26. (CONDEF). An inconsistency has been found while generating
code for a constant (unusual).

2p. (OUTCODE). An ill-formed constant of the form $$< object
character representative > has been encountered

28. (OBIDENT). A paraneter has been found in an identifier
obj ect string.

29. (CILANA). In an analysis statement whose tenplate expression

is a constant, an analysis itemappears which is not matched by any
parameter in the tenplate

35

