
cs40

HOW DO YOU SOLVE A QUADRATIC EQUATION?

BY

GEORGE E._ FORSYTHE

TECHNICAL REPORT NO. CS40

JUNE 16, 11966

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

1

\-

c.

‘L

L

t

HOW DO YOU SOLVE A QUADRATIC EQUATION?

bY

George E. Forsythe

Abstract

The nature of the floating-point number system of digital computers

is explained to a reader whose university mathematical background is very

limited. The possibly large errors in using mathematical algorithms blindly

with floating-point computation are illustrated by the formula for solving

a quadratic equation. An accurate way of solving a quadratic is outlined.

A few general remarks are made about computational mathematics, including

the backwards analysis of rounding error.

1. Stages of scientific computation.

The automatic digital computer is one of man's most powerful intellectual

tools. It forms an extension of the human mind that can only be compared

with the augmentation of human muscle provided by the most powerful engines

in the world.

Computers are used in a wide variety of applications, ranging from the

control of artificial sa:tellites. to the automatic justification and hyphen-

ation of English prose, and even to the storage and searching of vast

libraries of medical literature. However, computers were originally invented

with the sole aim of permitting arithmetical computations to be carried out

rapidly and accurately, and this remains one of the major uses of computers

today.

For example, as early as World War I, L. F. Richardson had indicated

how the weather might be forecast with the aid of a vast computation then

Prepared under Contract Nonr-225(37) (~~-044-211) at Stanford University.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

i

far beyond human capability, provided that enough upper-air weather obser-

vations were available as input data. By the 1$0's the upper-air

observations were beginning to appear in quantity, Hence, when John von

Neumann and others asked the Government for funds to support computer

development, they promised that computers would make it possible to carry

out the arithmetical part of a modern version of Richardson% program.

It was expected that the weather would soon be forecast routinely by com-

puter, and this has occurred, It was even hinted that computers might make

it possible to predict, for example, the future course of hurricanes after

a variety of human interventions, and thus lead to theeventual control of

the weather:

There are many intellectual steps involved in a project like weather

forecasting by computer. In the first place, a reasonable model of the

weather must be reduced to systems of equations, both algebraic and dif-

ferential, The actual solution of such systems of equations is completely

beyond the powers of any computer, because the equations involve the infinite

number of variables needed to represent, for example, the wind at each of

an infinite number of points of space.

Consequently, the second stage of numerical weather prediction is to

replace the actual meteorological equations by a finite number of equations,

This is done by first replacing the infinite number of points of space by

a finite number of points arranged in a cubical mesh which looks like a

number of huge coarse screens spaced above each other, made of squares

perhaps 100 miles square, Instead of trying to describe and predict the

wind at each point of space, one describes and predicts it at the points

of the mesh (i.e. the corners of the squares of the screens). The equations

which describe the exact flow of air and moisture are replaced by much

simpler equations which relate these quantities at neighboring points of

the mesh. A great deal of mathematical analysis and experimental compu-

tation are needed before one can discover simple equations for the mesh

which in fact reasonably well simulate the actual equations for continuous

space. This is a subject that has interested mathematicians very much.

It is, however, much too difficult and technical for discussion here.

I
1

+

i

At the end of the second stage just described, we have a finite number

of equations to solve. Each equation deals with unknown quantities which

are real numbers. Recall that real numbers may be thought of as infinite

decimal expansions like

-3.3333333333 3333333333 3333333333*....

(3's continued without end), or

3.1415926535 8979323846 2643383279e...

(digits continued without end, but without a predictable pattern). Since

a computer is necessarily a finite collection of parts, it cannot hold

even a single general real number, with its infinite number of decimals.

Hence the third stage of the use of computers for weather prediction in-

volves the use of a finite number system, to simulate the real number sys-

tem of mathematics.

The purpose of this note is to describe this computer number system

and some difficulties involved in using it. To illustrate the difficulties

we shall consider a mathematical problem that is very much simpler than the

equations of meteorology - namely the quadratic equation,

2. Floating-point numbers

We shall first describe a simplified computer number system, the so-

called floating-point numbers, and then show some of its behavior with a

simple mathematical computation.

The usual number system of a computer reduces the infinite number of

decimal places of real numbers to a fixed finite number. We first consider

decimal numbers with a sign and one nonzero digit to the left of the decimal

point, and exactly seven zero or nonzero numbers to the right of the deci-

mal point. Examples of such numbers are -7.3456780, +l. 0000000,

+3 03333333) -9 l 9808989 l
We say that such numbers have 8 significant

digits. One can represent approximately 200,000,000 different numbers

in this way, but they all lie between -10 and -1, or between +l and +lO I)

L
3

i
t

t‘,
L

i
L

i

I

f
L

To enable computers to hold much bigger and much smaller numbers, we add

a sign and two more decimal digits to serve as an exponent of 10 . The

exponent is allowed to range from - 50 to + 49 . Thus the number - 87 213
is represented by

- 8.7666667 x lo+O1 0

In this system, which is much like so-called scientific notation, the

representable numbers all have eight significant decimal digits, They

range from

- 9* 9999999 x lo49 to - 1.0000000 X lo-5o

and from

+ 1.0000000 X 10-50 49to 90 9999999 x 10 0

The number zero is added, and represented by + 0.0000000 X 10 -50 .,

Approximately 20,000,000,000 distinct real numbers are thus representable

in the computer, and these take the place of the infinite system of mathe-

matical real numbers.

This computer number system is called the floating-point number system,

The "point" is the decimal point. The exponent permits the decimal po.int

effectively to "float" as much as 50 places away (to the left or the right)

from its home position.

By special programs it is possible also to use so-called double pre-

cision numbers --numbers which have not 8, but 16 significant digits,

with the exponent kept between -&9 and + 50 . There is a penalty in time

for using these double precision numbers, but this penalty

among different computers.

In this paper we shall write floating-point numbers in various ways,

but there will be understood to be exactly 8 significant digits, For

varies greatly

example, we may write the number eleven as 11 or
+Ol

11.0 or + 1.1000000 X 10

or 1.1 X lo1 .

Actual computers more frequently use number bases other than 10 - for

example, 2 or 8 or 16 - and the actual number of significant digits

4

1
i
I
1
Y
L

i

1
i

1L

L
L
I
1

1

t

L

varies over wide ranges. However, the reader need not be distracted by

those considerations; our 8-digit decimal system illustrates all the es-

sential matters very well.

3. Computer arithmetic

Resides holding floating-point numbers, every scientific computer must

be able to perform on them the elementary arithmetic operations of addition

and subtraction, multiplication and division. Let us consider addition

first. Sometimes the exact sum of two floating-point numbers is itself a

floating-point number. For example,

(+ 2.1415922 X lo+") + (+ 9.7182818 x lo+OO)

= + 1.1859871+ x lo+O1 *

In this case, the computed sum is the same as the exact sum, and the

computation is said to be without rounding error. More frequently the

exact sum is not a floating-point number. For example, the exact sum of

-t 6.6666667 x lo+O1 and + 6.6666667 X 10'01 is 133.333334, a number

with 9 significant digits. Hence the exact sum cannot be held in the

computer, but must be rounded to the nearest floating-point number - in

this case to
+02

+ 1.3333333 ⌧ 10 l This is a typical example where com-

puter addition is only approximately the same as mathematical addition.

An even worse defect of computer addition appears when the numbers

are numerically very large, so that the sum exceeds the capacity of the

floating-point system. For example, the true sum of + 9.9900000 x +4910
+49and + 9.9990000 X 10 is 1.9989 X 105', a number greater than the

largest possible floating-point nwnber. The computer should signal in

some manner than an overflow has occurred, and give the problem-solving

program some option about what action to take. But it is impossible to

store an answer which represents the exact sum to even one significant

digit.

Analogous effects occur in computer subtraction.

5

_-”
L: .

I
I .
L

i

iL

t
L

!
i

1

i

L

i

ic
IL
IL

ic

Computer multiplication suffers from the same two defects of computer

addition - the necessity for rounding answers, and the possibility of ex-

ponent overflow. While ordinary rounding is no more serious than with

. addition, overflow can be far worse, for the following reason. The exact

sum of two floating-point numbers cannot exceed 2 x 10YO, but the exact

product of two floating-point numbers can be as large as 909999998 X 1099,

and the product of two numbers as small as lo25 can lead to overflow,

Moreover, there is a possibility of underflow in multiplication. For

example, the true product of 1.01 x lo-3o and 1,Ol X lO-35 is

1,0201 x 10 -65 -15, a number smaller by a factor of 10 than the smallest

nonzero floating-point number.

is that it replace the product

underflow has occurred.

The most we can expect from the computer

by zero and give the program a signal that

Analogous effects occur in computer division

We assume that our computer operations of addition, subtraction,

multiplication, and division, in the absence of overflow or underflow,

will yield as an answer the floating-point number which is closest to

the exact real answer. (In case of a tie, we permit either choice.) In

fact many actual computer systems achieve this accuracy, and none give

very much less.

4. Are floating-point numbers satisfactory?

Any one who uses a digital computer for scientific computation is

faced with a number system which is only approximately that of mathematics,

and arithmetic operations which are only approximately those of true ad-

dition, subtraction, multiplication, and division, The approximations

appear to be very good, being generally correct to less than one unit in

the eighth decimal digit. Only the most sophisticated of all scientific

and engineering computations (those in optics) deal with numbers accurate

to anything close to eight decimal places, We might therefore presume that

rounding errors would provide no trouble in most practical computations.

Moreover the range of magnitudes from 10-50 +49to 10 safely covers the

range of all important physical and engineering constants, so that we

might presume that would have no trouble with overflow or underflow.

6

t

i
i

L

IL

I
I
c

f
t
i

i
i

e
II6

L

i

Is the floating-point arithmetic system so good that we can use it

without fear to simulate the real number system of mathematics? Computer

designers certainly hope so, and chose the numbers of significant digits

and the exponent range with this expectation.

The answer by now is clear: we may not proceed without fear! There

are real difficulties. On the other hand, it is often possible to proceed

with intelligence and caution, and get around the difficulties. However,

it

to

we

has required an astonishing amount of mathematical and computer analysis

get around the difficulties , particularly in large problems. And so far

know well how to handle only relatively simple mathematical problems.

We will illustrate some of the difficulties and their solution in the

context of an elementary but important problem, the well known quadratic

equation of elementary algebra.

5a The quadratic equation

The reader will recall considerable time spent in the ninth grade or

thereabouts, finding the two roots of equations like

0) 6x2 + 5 x - 4 = 0 0

One first acquires some experience in factoring the quadratic. School

examples do factor with a frequency bewildering to anyone who has done

mathematics outside of schoolI For example,

(2) 6x 2 + 5x - 4 = (2x-1)(3x+4) ,

as the reader could have discovered after some trial and errore If the

lefthand side of (2) is to be 0, then either 2x - 1 or 3x + 4 must

be 0. The two possibilities tell us that the roots of (1) are l/2

and -413 l

However, factoring in whole numbers is not always possible, and turns

out to be unnecessary. For one soon learns a formula which gives the two

roots of any quadratic equation without having to factor anything. The

main result is the following, the so-called quadratic formula:

L

i
i

7

If a, b, and c are any real numbers, and if a 1 0, then the

quadratic equation

2
ax +bx+c=O

is satisfied by exactly two values of x, namely

(3 >

and

-b + b -4acIF-
x1 = 2a.

-b -7/b'&ac
x2 = 2a

0

(”
t

As an example of the use of the quadratic formula, the roots of

equation (1) are

x1 =
-5 +7/52 - 4(6)(-4)

12

-5 +7/121 -5 + 11 6 1
= =12 12 =12=2 '

i
-5 J/121 16 4

x2 = =12 m-z-- 12 3 *

‘i
L,.

c
i
i

I
I
L

t
L

fe
ti
i,

The roots agree with those found by factoring, of course0

The great power of the quadratic formula is that it provides a straight-

forward series of steps proceeding from the real numbers a, b, c to the

solutions Xl' 53 * The steps are those of evaluating the expressions in

(3) and (4) in some systematic fashion. The assumption that a 1 0 is

necessary to be sure that an illegal division

Any such systematic process for computing

an algorithm. In an algorithm no guesses are

by 0 is not called ford

some desired answer is called

allowed--one proceeds directly

from the data to the answer The importance of algorithms is that computers

have been expressly designed to be able to carry out algorithms and nothing

but algorithms. That is to say, the logical steps performed by a computer

are exactly those of an algorithm.

Next we give a detailed algorithm for evaluation of the quadratic

formula (3). (It could be simplified.)

8

Algorithm for computing one root x
2 1 of the quadratic equation

ax +bx+c=O.

(i) Compute z = -b .

(ii) Compute y = b2 .

(iii) Compute w = 4a .

(iv) Compute v = w l c .

(v) Compute u = y - v .

(vi) Compute t =fi

(vii) Compute s = z +'t

(viii) Compute r = 2a

' (ix) Compute x1 = s/r .
,

Notes: 1. For simplicity we here assume that u = b2 - 4ac is not

negative, to avoid having to deal with imaginary numbers like Jr--1 .

2. An algorithm for computing x2 requires the replacement

of steps (vii) and (ix) by

(vii)' Compute s' = z - t .

(ix)' Compute x2 = s'/r .

In mathematics the above algorithm is implicitly understood to use real

numbers, and to carry out with them exact arithmetic operations including

addition, subtraction, multiplication, division, and even extraction of the

square root of u = b2 - 4ac . As we showed in Sec. 3, a computer cannot

carry out these exact arithmetic operations and, indeed, cannot even hold

arbitrary real numbers a, b, c . Thus, although a real digital computer

can carry out the exact logical steps of the algorithm, it must replace

all numbers by floating-point numbers, and all arithmetic operations by

approximate operations.

The question, we& is this: will the limitations of actual computer

floating-point systems make any appreciable difference to their use in

solving quadratic equations?

The answer is: sometimes yes, and sometimes no. We shall give examples

to illustrate both cases.

9

IL
L
1
1
tc
1

6. Examples of the quadratic formula on a computer

Example 1. 6x2 + 5x - 4 = o

For this example of (l), the algorithm of Sec. 5 offers no difficulty

for a computer with the precision we have given, except possibly for the

square root required in step (vi). Let us make the reasonable assumption

that we have a method (indeed, another algorithm) for computing square

roots with an error not exceeding 0.8 of a unit in the least significant

decimal place. In that case, we will find t =r vm to beu =

11.000000 .

Then we find that

x1 = (- 5 + 11.000000)/12 = .50000000 ,

a perfect result. The computation of x2 leads to no loss of accuracy

until the final division:

x2 = -
16.000000/12.000000 = - ~3333333 ,

as rounded on the computer. Since this is the correctly rounded value of

the true x2, we conclude that the computer algorithm has done as good a

job as it could possibly do.

Example 2.
2

X
5-10x+1=0 *

Before examining the computer solution, we note that the true solutions,

rounded to eleven significant decimals, are

x1
= 100000,00001 = 1,0000000001 X lo5 ,

and

x2 = ~0000099999999999 = 909999999999 ⌧ 10

-6
l

Moreover, it can be shown that x1 and x2
are well determined by the

data, in that small changes of the coefficients 1, 5-10 , 1 cause only

slight changes in x1 and x2 l

Now let us apply the algorithm of Sec. 5, and see what are the computed

values of x1
and x2O

10

I
i
L

i

I

i

i.

‘i
c

We have

= 1.0000000 x 10+ooa

b = -1.0000000 X 10+05

c = 1.0000000 x 10+oo .

First, to get xl:

z = -b = 1.0000000 x 10+05

y=b'= 1.0000000 x 1o+lO

w = 4a = 4 .0000000 X lo+"

v = w*c = 4 . 0 0 0 0 0 0 0 x lo+OO

u = y-v = 1.0000~00 x +lO10 (see below)

t = fi= 1.0000000 x 10+05

S = z+t = 2.0000000 x 10+05

r = 2a = 2.0000000 X lo+"

x1 =
r/s = 1.0000000 X 10+05

The step that calls for comment is the computation of u = y - v,

where the value of v is completely lost in rounding the value of u to

eight decimals. The final answer x1 is correct to eight decimals.

We now compute x2:

z = -b = 1.0000000 x 1$05

y = b2 = 1.0000000 x lo+1°

w = 4a = 4.0000000 x lo+OO

v = w-c = 4.0000000 x lo+O"

u = y-v = 1.0000000 x +lO10

t = j/Y= 1.0000000 x +0510
f

s = z-t = 0 (see below)

r=2a = 2.0000000 x +oo10

x2 =
r/s' = 0 0

This time the computation of s' results in complete cancellation,

so s' and hence x2 are both 0 . Thus our algorithm has yielded a

value of x2 which differs by approximately 10- 5 from the correct

5 11

i
c

v
I
L
f,L
i

I
i

f
L

1
i

L
iL

\
I,

4
ti.

I
t

L

I
L

1

I
L
I
tL

L

answer, and this might be considered a rather small deviation. On the

other hand, our computed value of x2 has a relative error of 100 per cent -

not a single significant digit is correct! Can this be considered a rea-

sonable computer solution of the quadratic?

A study of ways in which quadratics are applied leads to the conclusion

that the measure of accuracy should be that of relative error. As long as

a root of a quadratic is well determined by the data, a good algorithm should

give it correctly to several or most of its leading digits, however large

or small the root may be.

Thus we must conclude that the quadratic formula for x2 gave us

'practically no useful information about the root x2 ., It follows that

the algorithms of Sec. 5 are an inadequate way of solving a quadratic

equation, because an adequate algorithm must work in every case within its

domain of applicability.

Example 3. 6 x &Ox=! + 5 x ld'x - 4 x do = o .

The present example is simply that of Example 1, with all its coef-

ficients a, b, c upscaled by the factor ldO * Thus the roots are un-

changed.

However, the algorithm of Sec. 5 breaks down at the second step,

because y = b2 is truly 2.5 x 1061
, a number outside the range of

floating-point numbers. Thus the algorithm of Set, 5 is again inadequate,

though for a very trivial reason. A simple scaling of the coefficients

would prevent the overflow.

Example 4. lo-?Ox2 - ldOx + Id0 = 0 0

Here the true roots are extremely close to 106' and 1 e One of the

roots is outside the range of floating-point numbers, and we could hardly

expect to get it from a computer algorithm. The problem is: can a reason-

able computer algorithm get the root near 1 ?

Note that a simple scaling to make the first coefficient equal to 1

will cause the second and third coefficients to overflow. Hence a scaling

suitable for Example 3 will break down with Example 4, Certainly our

algorithm of Sec. 5 will not work.

12

Does the reader feel that equations with

occur in practical computations? Let him be

physically important result of a computation

inside the range of floating-point numbers.

often appear with nonzero magnitudes smaller

lo49 .

such a large root will not

assured that they do. The final,

is almost certain to lie safely

However, intermediate results

than 10-50 or larger than

Recently several computing experts agreed that one of the most serious

difficulties with many current computer systems is that they automatically

replace an underflowed answer by zero, without any warning message. In

such a system, lo-3o X 10W3' X 12' X ld" would be computed as 0,

Whereas 10-30 X 12' X 10m3' X Ido would be computed as 10 .

Example 5. 2
X - 4.ooooooox + 3 . 9 9 9 9 9 9 9 = 0 .

The correctly rounded roots are, to 10 significant digits,

x1 = 2.000316228

and

x2
= 1.999683772 .

If we apply the algorithm of Sec. 5, we find that

Z = -b = 4.0000000

Y = b2 = 16. ooooooo

w = 4a = 4.0000000

v = w-c = 16.0000000

U' = y-v =_o

t = 7ru = o

S = z+t = z-t = 4 . 0 0 0 0 0 0 0

r = 2a = 2.0000000

=x =
x1 2

s/r = 2.0000000 .

The computed roots are both in error by approximately 0.0003162 .

I.e., out of 7 computed digits to the right of the decimal point, only

3 are correct. Also, the computer mistakenly finds a double root instead

of two distinct real roots.

13

1
!
i-

i
L

L

i

I

t

f
I

The accuracy seems quite low0 However, the roots of' Example 5 actually

change very rapidly when the coefficients are changed, In fact, the two

computed roots = x
x1 K

= 2.0000000 are the exact roots of the nearby

equation 0.999999992~ - 3 *999999968x + 3 0999999968 = 0 e Thus, though

x1
and x

2 are wrong roots of Example 5 by some 3162 units in their

last decimal place, they are true roots of an equation with a, b, c

differing from those of Example 5 by no more than 0~8 of a unit in their

last decimal place.

Example 5 illustrates two different ways of measuring relative errors

in any computation. In the so-called forward approach to relative error

.one notes that the computed roots
x1 and x2 differ by so many units

(here 3162) in the last place from the true roots of the given equation0

In the so-called backward approach to relative error one says that the

computed roots
x1

and x
2

are the exact roots of an equation with coef-

ficients which differ by no more than so many units (here 0.8) in the last

place from those of the given equation. The forward measure of error is

perhaps more natural and certainly is traditional. The backward approach

to error is more recent, but in many contexts turns out to be considerably

easier to analyze and just as useful in practice, Backwards error analysis

is one of the major ideas to be developed in the last decade of research

in computational mathematics. Cornelius Lanczos devised the backwards

approach in another context in the 1940's. Wallace Givens exploited it

in 1954 for computing roots of certain equations. But James Wilkinson has

done the most in the years since 1958 to exploit it as a basis for analyz-

ing errors in floating-point computations on digital computers0

The reason why backwards error analysis is so useful is this: In

the floating-point arithmetic system neither addition nor multiplication

is an associative operation, and the two are not distributive0 Thus the

basic properties on which algebra is based fail to hold for floating-

point arithmetic. Hence a forward error analysis, which is based directly

on the floating-point operations, is extremely difficult to carry out.

On the other hand, backwards error analysis interprets the result of each

computer product, for example, as the true product of two real numbers which

differ very slightly from the factors of the computer product. Thus in

L 14

: , .L, -.
L
iL
I
t

backwards error analysis one deals with true mathematical multiplication

and addition, which are associative and distributive. This permits analysis

to be much more easily carried out, and often leads to closer bounds for

the error.

This is not the place to develop these ideas further, but we hope to

have given the reader an inkling of why backwards analysis, when applicable,

is often so much more satisfactory.

I c
i

IL

t
i

L
I
L

i

I
I
i

c
t
P

t

L
cL
i
L

7* Criteria of a good quadratic equation solver

The above examples illustrate the variety of behavior of the quadratic

algorithm of Sec. 5. Examples 2, 3, and 4 make it clear that the algorithm

is not satisfactory for all cases, and hence that it is an unacceptable

algorithm. What do we really expect from a quadratic equation-solving

algorithm?

Should we be content with the computer solution of Example

error of 3162 units in x1 and
x2J

since the computed roots

an equation which is so close to the given one?

5, with its

do satisfy

We might be quite content with the results of Example 5, if we didn't

know how to do better, but certainly not with Example 2. Quadratic equa-

tions arise in exceedingly many contexts of mathematics and computing.

They are so basic that we should like to be able to compute their roots

with almost no error, for almost any equation whose coefficients are float-

ing-point numbers. Such performance can be achieved, and it is vastly

important to have such algorithms in the computer library. Then, when

a quadratic equation occurs in the midst of a complex and imperfectly

understood computation, one can be sure that the quadratic equation solver

can be relied upon to do its part well and permit us to concentrate atten-

tion on the rest of the computation.

We want a quadratic equation solver that will accept any floating-

point numbers a, b, c, and compute any of the roots xl9 x2 that lie

safely within the range of floating-point nuTnbers. Any computed root

should have an error in the last decimal place not exceeding, say, 10

units. If either x1 or x2 underflows, or overflows, there should be

a message about what happened.
15

8. Some aspects of an accurate algorithm

Such an algorithm has been devised by William Kahan of the University

of Toronto. The most difficult matter to take care of is the possibility

of overflow or underflow. It will not be possible to describe the complete

algorithm, but we can give some of the more accessible ideas,

First, we discuss the steps taken to overcome the great inaccuracy

in root x2'
as computed in Example 2. In step (vii)' of Example 2, we

subtracted two equal numbers z and t, toget sf =0 e The true value

of t was not quite equal to z, because in step (v) the true u was

not quite equal to y e But t and z, like u and y, could not be

'distinguished, with only 8 decimal digits at our disposal.

An easy cure for the difficulty is to use another method of computing

x2.'
in which the answer does not result from the subtraction of nearly

equal numbers.

If a, b, c are any real numbers, and if a k 0 and c IO, then

i ic

I
i

t
i

!
i

I

i

t

i

the quadratic equation

2
ax +bx+c=O

is satisfied by exactly two values of x, namely

(5) x1 = -b -;+

and

(6)
2c

. x2 = 1 .a

Formulas (5) and (6) can be proved, for example, by first applying

formulas (3) and (4) to the following equivalent form of the given quadratic

equation:

Note that if b is negative, then there is cancellation in formula (4)

for x2, but not in formula (6), and there is cancellation in formula (5)
t
i

16

‘L
I

i

E
L

IL

6

i

i

i
L

1

f
L

f
i

for Xl, but not in formula (3>. The reverse statements hold in case b

is positive. So, for any quadratic equation in which neither a nor c

is zero, one selects formulas (3) and (6) when b is positive or zero,

and formulas (4) and (5) when b is negative. For Example 2, formula (6)

leads to the computer result that

2.0
x2= 5

=
10 + lo5

1.0000000 x lo-5 ,

a perfectly rounded root.

The inaccuracy of Example 5 cannot be so simply cured, because it is

'inherent in working with only 8 decimals, as is revealed by the rapid

change of the roots with changes of - a, b, c o The best known cure is to

identify the delicate part of the computation, and use greater precision

for it. So Kahan's algorithm uses double precision (here 16 significant

decimals) in the computation of u = b2 - 4ac, followed by rounding to

single precision. The rest of the computation does not need extra pre-

cision, and is done in the normal way. There is a small penalty in the

extra time required for that double precision computation, but it is a

negligible part of the total time, which goes mostly toward scaling and

otherwise detecting and correcting overflow or underflow possibilities.

Recomputation of x1 in Example 5 looks as follows

Z = -b = 4.0000000

y = b2 = 16.0000000 ooooooo

w = 4a = 4.0000000 0 0 0 0 0 0 0 0

v = W”C = 15.9999996 o o o o o o o

u = y-v = - 0.0000004 00000000 0000000

= 0.0000004 0000000, returning to

single precision

t = $ = o.0006324 5553
S = z + t = 4.0006325

r= 2a = 2.0000000

x1 =
s/r = 2.0003163, rounding up.

Note that x1 is in error by only 0.72 of a unit in the last deci-

mal place.

17

i

L
i
L

It is not practicable to discuss scaling and dealing with possible

overflow and underflow. The details are many and technical, and depend

intimately on particular features of the computer on which they are carried

out. They are extremely important to actual computing, but carry less

general interest than the ideas just presented. One of the obvious features

involves testing whether any or all of a, b, or c are zero,

9* Conclusion

We have described some of the pitfalls of applying the quadratic for-

.mula blindly with an automatic digital computer. We have given sound cures

for two of the pitfalls, and indicated what other work has been done to

create a first-class algorithm for solving a quadratic equation.

The quadratic equation is one of the simplest mathematical entities,

and is solved almost everywhere in applied mathematics. Its actual use

on a computer might be expected to be one of the best understood of computer

algorithms. In fact, it is not, and some more complex computations were

studied first. The fact that the algorithm of Set, 5 is so subject to

rounding error is not very widely known among computer users, or among

writers of elementary textbooks on computing methods, and certainly not by

most writers of mathematics textbooks. Of course it is known to special-

ists in numerical analysis. Thus even in this elementary problem we are

working at the frontiers of common computing knowledge,

i

i

f
I

L
i

i
L

The majority of practical computations are understood still less than

the quadratic equation. A very great deal of difficult research and devel-

opment remains to be done before computers will be used as wisely and well

as they can be. It is almost certain, for example, that various parts of

the computations for weather forecasting contain pitfalls like those of the

quadratic equation, and that ignorance of these pitfalls is introducing

computational errors that are interfering with progress in weather fore-

casting. The same can be said about most nontrivial fields of scientific

computation.

The moral of the story is that users of computers for mathematical

problems require some knowledge of numerical mathematics. It is not

18

sufficient to learn some programming language, and then simply translate

formulas from a textbook of pure mathematics into the language of a computer.

The formulas and algorithms to be found in most mathematics texts were de-

vised for the exact arithmetic of the real number system. Few authors have

given any attention to the robustness of the formulas--that is, to the be-

havior of the formulas when used with the approximate arithmetic of computers.

Until attention is given to robustness in mathematics textbooks, the would-

be scientific computer must consult people and writings specifically concerned

with machine computation.

19

