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HOW DO YOU SOLVE A QUADRATI C EQUATI ON?
by

George E. Forsythe

Abstract

The nature of the floating-point nunber system of digital conputers
Is explained to a reader whose university mathematical background is very
linmted. The possibly large errors in using mathematical algorithns blindly
with floating-point conputation are illustrated by the fornula for solving
a quadratic equation. An accurate way of solving a quadratic is outlined.
A few general remarks are made about conputational mathematics, including
the backwards analysis of rounding error.

1. Stages of scientific conputation.

The automatic digital computer is one of man's nost powerful intellectual
tools. It forms an extension of the human mnd that can only be conpared
with the augnmentation of human nuscle provided by the nost powerful engines
in the world.

Conputers are used in a wide variety of applications, ranging from the
control of artificial satellites to the automatic justification and hyphen-
ation of English prose, and even to the storage and searching of vast
libraries of medical literature. However, conputers were originally invented
with the sole aim of permtting arithnetical conputations to be carried out
rapidly and accurately, and this remains one of the major uses of conputers
t oday.

For exanple, as early as Wrld War I, L. F. Richardson had indicated
how the weather mght be forecast with the aid of a vast conputation then
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far beyond human capability, provided that enough upper-air weather obser-
vations were available as input data. By the 1940's the upper-air
observations were beginning to appear in quantity, Hence, when John von
Neumann and others asked the Covernment for funds to support conputer
devel opnent, they promsed that conputers would make it possible to carry
out the arithmetical part of a nmodern version of Richardson% program

It was expected that the weather would soon be forecast routinely by com
puter, and this has occurred, It was even hinted that conputers m ght make
it possible to predict, for exanple, the future course of hurricanes after
a variety of human interventions, and thus lead to theeventual control of
t he weather!

There are many intellectual steps involved in a project |ike weather
forecasting by conputer. In the first place, a reasonable nodel of the
weat her nust be reduced to systems of equations, both algebraic and dif-
ferential, The actual solution of such systems of equations is conpletely
beyond the powers of any conputer, because the equations involve the infinite
nunber of variables needed to represent, for exanple, the wind at each of
an infinite nunber of points of space.

Consequently, the second stage of numerical weather prediction is to
replace the actual neteorological equations by a finite nunber of equations
This is done by first replacing the infinite nunber of points of space by
a finite nunber of points arranged in a cubical mesh which [ooks like a
nunber of huge coarse screens spaced above each other, made of squares
perhaps 100 mles square, Instead of trying to describe and predict the
wind at each point of space, one describes and predicts it at the points
of the nmesh (i.e. the corners of the squares of the screens). The equations
whi ch describe the exact flow of air and noisture are replaced by nuch
sinpler equations which relate these quantities at neighboring points of
the mesh. A great deal of mathematical analysis and experimental conpu-
tation are needed before one can discover sinple equations for the nesh
which in fact reasonably well simulate the actual equations for continuous
space. This is a subject that has interested mathematicians very nuch
It is, however, much too difficult and technical for discussion here.
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At the end of the second stage just described, we have a finite nunber
of equations to solve. Each equation deals wth unknown quantities which
are real nunbers. Recall that real nunbers may be thought of as infinite
deci mal expansions |ike

-3.3333333333 3333333333 3333333333 cceeeceeen
(3's continued without end), or
3.1415926535 8979323846 2643383279 ..........

(digits continued without end, but without a predictable pattern). Since
a conputer is necessarily a finite collection of parts, it cannot hold
even a single general real number, with its infinite nunber of decinals.
Hence the third stage of the use of conputers for weather prediction in-
volves the use of a finite nunber system to sinmulate the real nunber sys-
tem of mathematics.

The purpose of this note is to describe this conputer number system
and sone difficulties involved in using it. To illustrate the difficulties
we shall consider a mathematical problemthat is very nuch sinpler than the
equations of meteorology - namely the quadratic equation,

2. Floating-point nunbers

W shall first describe a sinplified computer nunber system the so-
called floating-point nunbers, and then show some of its behavior with a

sinple mathematical conputation.

The usual nunber system of a conputer reduces the infinite nunber of
deci mal places of real nunbers to a fixed finite nunber. W first consider
deci mal numbers with a sign and one nonzero digit to the left of the decimal
point, and exactly seven zero or nonzero nunbers to the right of the deci-
mal point. Exanples of such numbers are -7.3456780, +1. 0000000,
+3 03333333, -9.9808989 . Ve say that such numbers have 8significant
digits. One can represent approximtely 200,000,000 different nunbers
in this way, but they all lie between -10 and -1, or between +1 and +10 .
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To enable conputers to hold nuch bigger and nuch snaller nunbers, we add

a sign and two nore decimal digits to serve as an exponent of 10 . The
exponent is allowed to range from-50to + 49. Thus the nunber - g7 2/3
Is represented by

- 8.7666667 x 1071 ,

In this system which is nuch like so-called scientific notation, the

representabl e nunbers all have eight significant decimal digits, They
range from

~9. 9999999 X 10*2 to - 1.0000000 x 10~°°
and from
+ 1.0000000 x 107°° +t09. 9999999 x 1049

The nunber zero is added, and represented by + 0.0000000 X 107°° |

Appr oxi mat el y 20,000,000,000 distinct real nunmbers are thus representable
in the conputer, and these take the place of the infinite system of mathe-
matical real nunbers.

This conmputer nunber systemis called the floating-point nunber system
The "point" is the decimal point. The exponent permts the deci mal point
effectively to "float" as nmuch as 50 places away (to the left or the right)
fromits hone position.

By special programs it is possible also to use so-called double pre-
ci sion nunbers--nunbers which have not 8,but 16 significant digits,
with the exponent kept between -49 and + 50 . There is a penalty in time
for using these double precision nunbers, but this penalty varies greatly

among different conputers.

In this paper we shall wite floating-point nunbers in various ways,
but there will be understood to be exactly 8significant digits, For
exanple, we may wite the nunber eleven as 11 or 11.0 or + 1.1000000 x 10%°
or 1.1 x 10l .

Actual conputers nore frequently use number bases other than 10 - for
exanple, 2 or 8 or 16 - and the actual nunber of significant digits

4
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varies over wde ranges. However, the reader need not be distracted by
those considerations: our 8-digit decimal systemillustrates all the es-
sential matters very well

3. Conputer arithnetic

Resides holding floating-point nunbers, every scientific conputer nust
be able to performon them the elementary arithnetic operations of addition
and subtraction, nultiplication and division. Let us consider addition
first. Sonetines the exact sum of two floating-point nunbers is itself a
fl oating-point nunber. For exanple,

+00

YO0y 4 (+ 9.7182818 x 10

(+ 2.1415922 x 10 )

- + 1.1859874 x 1079 |

In this case, the conputed sumis the same as the exact sum and the
conputation is said to be without rounding error. More frequently the
exact sumis not a floating-point nunber. For exanple, the exact sum of
+ 6.6666667 x 1077 and + 6.6666667 X 107°F is 133.333334, a nunber
with 9 significant digits. Hence the exact sum cannot be held in the
computer, but nust be rounded to the nearest floating-point number - in
this case to + 1.3333333 xlo+02 . This is a typical exanple where com

puter addition is only approximately the sanme as mathenatical addition.

An even worse defect of conputer addition appears when the nunbers
are numerically very large, so that the sum exceeds the capacity of the
floating-point system For exanple, the true sumof + 9.9900000 x 10+l+9
and + 9.9990000 x 10+L+9 is 1.9989 x 1050, a nunber greater than the
| argest possible floating-point number. The conputer should signal in
some manner than an overflow has occurred, and give the problemsolving
program some option about what action to take. But it is inpossible to
store an answer which represents the exact sumto even one significant
digit.

Anal ogous effects occur in conputer subtraction.
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Conputer nultiplication suffers from the sane two defects of conputer
addition - the necessity for rounding answers, and the possibility of ex-
ponent overflow. Wiile ordinary rounding is no nore serious than with
addition, overflow can be far worse, for the follow ng reason. The exact
sum of two floating-point nunbers cannot exceed 2 X 1050, but the exact
product of two floating-point nunbers can be as large as 9.9999998 X 1099‘
and the product of two numbers as small as 102 can lead to overfl ow,
Moreover, there is a possibility of underflow in nultiplication. For
exanple, the true product of 1.01 X 102° and 1.01 x 1077
1.0201 x 10°6° 107 than the smallest
nonzero floating-point nunber. The nost we can expect from the conputer

is that it replace the product by zero and give the program a signal that

is
. a nunber smaller by a factor of

underflow has occurred.
Anal ogous effects occur in conputer division

W assunme that our conputer operations of addition, subtraction,
mul tiplication, and division, in the absence of overflow or underflow,
will yield as an answer the floating-point nunmber which is closest to
the exact real answer. (In case of atie, we permt either choice.) In
fact many actual conputer systems achieve this accuracy, and none give
very nuch | ess.

4, Are floating-point nunbers satisfactory?

Any one who uses a digital conputer for scientific conputation is
faced with a nunber system which is only approximately that of mathematics,
and arithnetic operations which are only approxinately those of true ad-
dition, subtraction, nultiplication, and division, The approximtions
appear to be very good, being generally correct to [ess than one unit in
the eighth decimal digit. Only the nost sophisticated of all scientific
and engineering conputations (those in optics) deal with nunbers accurate
to anything close to eight decimal places, W mght therefore presunme that
rounding errors would provide no trouble in nost practical computations.
Moreover the range of nagnitudes from 107° to 10+49 safely covers the
range of all inportant physical and engineering constants, so that we
m ght presume that would have no trouble with overflow or underflow.

6
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I's the floating-point arithmetic system so good that we can use it
without fear to sinulate the real number system of mathematics? Conputer
designers certainly hope so, and chose the nunbers of significant digits
and the exponent range with this expectation.

The answer by now is clear: we may not proceed without fear! There
are real difficulties. On the other hand, it is often possible to proceed
with intelligence and caution, and get around the difficulties. However,
it has required an astonishing amount of mathematical and conputer analysis
to get around the difficulties, particularly in large problems. And so far
we know well how to handle only relatively sinple mathematical problens.

VW will illustrate some of the difficulties and their solution in the
context of an elementary but inportant problem the well known quadratic
equation of elementary al gebra.

5. The quadratic equation

The reader will recall considerable tinme spent in the ninth grade or
thereabouts, finding the two roots of equations |ike

(1) 6x2+5x—4:O.

One first acquires some experience in factoring the quadratic.  School
exanples do factor with a frequency bew | dering to anyone who has done
mat hemati cs outside of school: For exanple,

(2) 6x2 + Bx -4 = (2x-1)(3x+h) |

as the reader could have discovered after sone trial and error. If the
lefthand side of (2) is to be O, then either 2x - 1 or 3x + 4 nmust
be 0. The two possibilities tell us that the roots of (1) are 1/2
and -L4/3 .

However, factoring in whole numbers is not always possible, and turns
out to be unnecessary. For one soon learns a fornula which gives the two
roots of any quadratic equation without having to factor anything. The
main result is the followng, the so-called quadratic formla:
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If a, b, and c are any real nunbers, and if a £0, then the
quadratic equation

aX2 +bx+c =0

is satisfied by exactly two values of x, nanely

2
(3) Xl _ -b '|2ab —lLac
and
-b - ng-hac
() o = 2a

As an exanple of the use of the quadratic formula, the roots of
equation (1) are

5 +\Ei2- 4 (6)(-4)

Xl:
5+Vier 5+11 6 1
-T2 "1z 1278
5 -Via1 16 4
2 =" 12 ._...123

The roots agree with those found by factoring, of course.

The great power of the quadratic fornmula is that it provides a straight-
forward series of steps proceeding fromthe real nunbers a, b, c to the

sol utions The steps are those of evaluating the expressions in

X X
1’ 72
(3)and (4) in some systematic fashion. The assunption that a £ 0 is

necessary to be sure that an illegal division by 0 is not called for.

Any such systematic process for conputing sone desired answer is called
an algorithm In an algorithm no guesses are allowed--one proceeds directly
fromthe data to the answer The inportance of algorithms is that conputers
have been expressly designed to be able to carry out algorithms and nothing
but algorithms. That is to say, the |ogical steps performed by a conputer
are exactly those of an algorithm

Next we give a detailed algorithm for evaluation of the quadratic
formula (3). (It could be sinplified.)

8
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Al gorithm for conputing one root Xy of the quadratic equation

aX2+bX+C:O.

(i) Conpute z = -b
(ii) Compute y = b°
(i1i) Conmpute w = 4a .
(iv) Conmpute v = w.c .

(v) Conpute u =y -v .
(vi) Compute t =Vu
(vii) Conpute s = z + t

(viii) Conpute r = 2a

s/r

(i x) Compute Xy

Notes: 1. For sinplicity we here assume that u = b° - bac i s not
negative, to avoid having to deal with imaginary nunbers like /-1 .

2. An algorithmfor conputing Xy requires the repl acement
of steps (vii) and (ix) by

(vii)' Conpute s' =12z -t

(ix)" Conpute x, =s'/r .

In mathematics the above algorithmis inplicitly understood to use real
nunbers, and to carry out with them exact arithnetic operations including
addition, subtraction, nultiplication, division, and even extraction of the
square root of u = b2 -4ac . As we showed in Sec. 3, a conputer cannot
carry out these exact arithmetic operations and, indeed, cannot even hold
arbitrary real nunbers a, b, ¢ . Thus, although a real digital conputer
can carry out the exact logical steps of the algorithm it nust replace
all nunbers by floating-point nunbers, and all arithnmetic operations by
approxi mate operations.

The question, then, is this: wll the linitations of actual conputer
floating-point systens make any appreciable difference to their use in
solving quadratic equations?

The answer is: sonmetimes yes, and sometinmes no. W shall give exanples
to illustrate both cases.
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6. Exanpl es of the quadratic fornula on a conputer

Exanpl e 1. 6x° + 5x - 4 = 0
For this exanple of (1), the algorithmof Sec. 5offers no difficulty

for a conputer with the precision we have given, except possibly for the
square root required in step (vi). Let us make the reasonable assunption
that we have a nethod (indeed, another algorithn) for conputing square
roots with an error not exceeding 0.8 of a unit in the |east significant
decimal place. In that case, we will find t :W:ng - Lkac to be

11. 000000 .

Then we find that

X, = (- 5+ 11.000000)/12 = .50000000 |,

a perfect result. The conputation of x, leads to no loss of accuracy

2
until the final division:

Xy = - 16.000000/ 12,000000 = -1.3333333

as rounded on the conputer. Since this is the correctly rounded val ue of

the true x,, we conclude that the conputer algorithm has done as good a
job as it could possibly do.
Exanpl e 2. x2 -~ 10Px+1=0

Before exanining the conputer solution, we note that the true solutions,
rounded to eleven significant decinals, are

1 100000,00001 = 1.0000000001 X 105 ,

and
6

X, = ~0000099999999999 =9.9999999999X10 )

Moreover, it can be shown that x, and X, are wel | determned by the
data, in that small changes of the coefficients 1, -10°, 1 cause only

slight changes in x; and Xo

Now | et us apply the algorithmof Sec. 5 and see what are the conputed
val ues of Xq and X,
10



W have

1.0000000 x 101°°

<)
1

b = -1.0000000 X 10"%

| - +00
L c 1. 0000000 x 10
| First, to get X,
C

z = -b = 1.0000000 x 10"
# y =b° = 1.0000000 x 10"1°
o

W = 4a = 4.0000000 x 10"
{ v = w-c = 4.0000000 x 1079
— u=y-v = 1.0000-00 x 1019 (see bel ow)
s t =1/u = 1.0000000 x 10"%
L s = z+# = 2.0000000 x 10707

r = 2a = 2.0000000 X 10"
L x, _ rls = 1.0000000 X 10"%
{ The step that calls for conment is the conputation of u =y -v,
L where the value of v is conpletely lost in rounding the value of u to
\ eight decimals. The final answer X, Is correct to eight decimals.
L

V¥ now conput e X,

-

z = -b = 1.0000000 x 10"
y = b° = 1.0000000 x 10"%°
C W = 4a = 4.0000000 X 1o+izo
v = w-c = 4.0000000 X 10
; u = y-v = 1.0000000 x 10"1°
- t = Vu = 1.0000000 x 107
ﬁ s" - w - o+ (see below
. r = 2a = 2.0000000 x 107°°

Xg:r/S' =0

r—

This tine the conputation of s results in conplete cancellation,

so s’ and hence x, are both O . Thus our algorithm has yielded a

val ue of X5 which differs by approxi mately 10°° fromthe correct

r—

b 11
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answer, and this might be considered a rather small deviation. On the
other hand, our conmputed val ue of Xy has a relative error of 100 per cent -
not a single significant digit is correct! Can this be considered a rea-
sonabl e computer solution of the quadratic?

A study of ways in which quadratics are applied |leads to the concl usion
that the measure of accuracy should be that of relative error. As long as

a root of a quadratic is well determned by the data, a good al gorithm should

give it correctly to several or nost of its leading digits, however |arge
or small the root may be.

Thus we must conclude that the quadratic formula for x, gave us
"practically no useful information about the root X, - It follows that
the algorithnms of Sec. 5are an inadequate way of solving a quadratic
equation, because an adequate algorithm nust work in every case within its

domain of applicability.

Exanple 3. 6 X 1050x2 + 5x 1050 -4X 1050 =0 .

The present exanple is sinply that of Exanple 1, with all its coef-
ficients a, b, ¢ upscaled by the factor 1050 . Thus the roots are un-
changed.

However, the algorithm of Sec. 5 breaks down at the second step,
because y = b2 s truly 2.5x 1061‘ a nunmber outside the range of
fl oating-point numbers. Thus the algorithm of Sec.5is again inadequate,
though for a very trivial reason. A sinple scaling of the coefficients

woul d prevent the overflow

Exanpl e k. 102%? - 10% + 100° = 0

Here the true roots are extremely close to 106o and 1 . One of the

roots is outside the range of floating-point nunbers, and we could hardly
expect to get it froma conputer algorithm The problemis: can a reason-
abl e computer algorithmget the root near 1 ¢

Note that a sinple scaling to nmake the first coefficient equal to 1
will cause the second and third coefficients to overflow. Hence a scaling
suitable for Exanple 3will break down with Exanple &, Certainly our
algorithmof Sec. 5 will not work.

12
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Does the reader feel that equations with such a large root will not
occur in practical conputations? Let himbe assured that they do. The final,
physically inportant result of a conputation is alnost certain to lie safely
inside the range of floating-point numbers. However, intermediate results

often appear with nonzero magnitudes snaller than 1079 or | arger than
49
107

Recent|ly several conputing experts agreed that one of the nost serious
difficulties with many current conputer systens is that they automatically
replace an underflowed answer by zero, without any warning nessage. In

-30 -30 AL % 1090
such a system 10 X 10 X1 X 1 woul d be conputed as O,
Wiereas 1077 x 101 x 107° x 10° woul d be conputed as 10 .

Exanpl e 5. < L .0000000x + 3.9999999 - o .

The correctly rounded roots are, to 10 significant digits,

X, = 2. 000316228

and

X, = 1.999683772 .

If we apply the algorithmof Sec. 5 we find that

z = -b = 4.0000000
Yy = b2 = 16. 0000000
4a =4.0000000

v=w-c=16. 0000000

g
I

u =Yy-V =0

=\yu=o0
s =zt=2t=4.0000000
r = 2a = 2.0000000

X =% = s/r = 2.0000000 .

The conputed roots are both in error by approxi mately 0.0003162 .
l.e., out of 7 conputed digits to the right of the decimal point, only
3 are correct. Also, the conputer mstakenly finds a double root instead
of two distinct real roots.

13
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The accuracy seens quite low. However, the roots of' Exanple 5 actually
change very rapidly when the coefficients are changed, |n fact, the two
conputed roots x, =X, = 2.0000000 are the exact roots of the nearby

1
equati on 0.999999992xg - 3.999999968x + 3 .999999968 = 0 . Thus, though

Xy and X, are wrong roots of Exanple 5 by sone 3162 units in their
| ast decimal place, they are true roots of an equation with a, b, ¢
differing fromthose of Exanple 5 by no nore than 0.8 of a unit in their

| ast decimal place.

Exanple 5 illustrates two different ways of neasuring relative errors
in any conputation. In the so-called forward approach to relative error

one notes that the conputed roots x. and x, differ by so many units

1 2
(here 3162) in the last place fromthe true roots of the given equation.

In the so-called backward approach to relative error one says that the
conputed roots Xy and X, are the exact roots of an equation with coef-
ficients which differ by no nore than so many units (here 0.8) in the |ast
place from those of the given equation. The forward neasure of error is
perhaps nore natural and certainly is traditional. The backward approach
to error is nore recent, but in many contexts turns out to be considerably
easier to analyze and just as useful in practice, Backwards error analysis
is one of the major ideas to be developed in the last decade of research
in conputational mathematics. Cornelius Lanczos devised the backwards
approach in another context in the 1940's. \allace Gvens exploited it
in 1954 for conputing roots of certain equations. But James WIkinson has
done the nost in the years since 1958 to exploit it as a basis for analyz-
ing errors in floating-point conputations on digital computers.

The reason why backwards error analysis is so useful is this: In
the floating-point arithnetic system neither addition nor multiplication
s an associative operation, and the two are not distributive, Thus the
basic properties on which algebra is based fail to hold for floating-
point arithmetic. Hence a forward error analysis, which is based directly
on the floating-point operations, is extremely difficult to carry out.
On the other hand, backwards error analysis interprets the result of each
conputer product, for exanple, as the true product of two real nunbers which
differ very slightly fromthe factors of the conputer product. Thus in

1k
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backwards error analysis one deals with true mathematical multiplication

and addition, which are associative and distributive. This pernits analysis
to be nuch nore easily carried out, and often leads to closer bounds for

the error

This is not the place to develop these ideas further, but we hope to
have given the reader an inkling of why backwards anal ysis, when applicable,
is often so nmuch nore satisfactory.

7. Criteria of a good quadratic equation solver

The above exanples illustrate the variety of behavior of the quadratic
algorithmof Sec. 5. Exanples 2, 3, and 4 make it clear that the al gorithm
Is not satisfactory for all cases, and hence that it is an unacceptable
algorithm What do we really expect from a quadratic equation-solving
al gorithn?

Should we be content with the conputer solution of Exanple 5, with its
error of 3162 units in Xy and X5 since the conputed roots do satisfy
an equation which is so close to the given one?

W mght be quite content with the results of Exanple 5, if we didn't
know how to do better, but certainly not with Exanple 2. Quadratic equa-
tions arise in exceedingly many contexts of mathematics and conputing
They are so basic that we should like to be able to conpute their roots
with almost no error, for almost any equation whose coefficients are float-
I ng-poi nt nunbers.  Such performance can be achieved, and it is vastly
inportant to have such algorithms in the conputer library. Then, when
a quadratic equation occurs in the mdst of a conplex and inperfectly
understood conputation, one can be sure that the quadratic equation sol ver
can be relied upon to do its part well and permt us to concentrate atten-
tion on the rest of the conputation.

Ve want a quadratic equation solver that wll accept any floating-
point nunbers a, b, ¢, and conpute any of the roots X1 X5 that lie
safely within the range of floating-point numbers. Any conputed root

shoul d have an error in the last decimal place not exceeding, say, 10

units. |f either X, or X, underflows, or overflows, there should be

a message about what happened. 15
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8. Sone aspects of an accurate al gorithm

Such an algorithm has been devised by WIIiam Kahan of the University
of Toronto. The most difficult matter to take care of is the possibility
of overflow or underflow. It wll not be possible to describe the conplete
algorithm but we can give sone of the nore accessible ideas,

First, we discuss the steps taken to overcome the great inaccuracy

in root x5, @s conputed in Example 2. In step (vii)" of Exanple 2, we
subtracted two equal nunbers z and t, to get s’ =0 . The true value
of t was not quite equal to z, because in step (v) the true u was
not quite equal toy . But t and z, Ilike u and y, could not be

"distinguished, with only 8 decinmal digits at our disposal.

An easy cure for the difficulty is to use another method of conputing
X5 in which the answer does not result from the subtraction of nearly
equal nunbers.

If a, b, ¢ are any real nunbers, and if a £#0_and ¢ £ 0, then
the quadratic equation

aX2+bx+c=O

is satisfied by exactly two values of x, nanely

2c

(5) X, _
L= b - Vb® - hac
and
2C
(6) XA — \
e = -b +\/b2 - Lhac

Formul as (5) and (6) can be proved, for exanple, by first applying
formulas (3) and (4) to the follow ng equivalent form of the given quadratic

equati on:
2
RSCRR
X X

Note that if b is negative, then there is cancellation in formula (4)

for x but not in fornula (6), and there is cancellation in fornula (5)

2)

16
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for XI, but not in formula (3). The reverse statenents hold in case b
is positive. So, for any quadratic equation in which neither a nor c

is zero, one selects fornulas (3) and (6) when b is positive or zero,

and formulas (4) and (5) when b is negative. For Exanple 2, formula (6)
| eads to the conputer result that

2.0

-5
=——=—-— = 1.0000000 x 107,
2 105 + 105

X

a perfectly rounded root.

The inaccuracy of Exanple 5 cannot be so sinply cured, because it is

"inherent in working with only 8 decimals, as is revealed by the rapid

change of the roots with changes of -a, b, ¢ . The best known cure is to
identify the delicate part of the conputation, and use greater precision
for it. So Kahan's al gorithm uses double precision (here 16 significant

decimals) in the conputation of u = pe - hac, followed by rounding to
single precision. The rest of the conputation does not need extra pre-
cision, and is done in the normal way. There is a small penalty in the
extra time required for that double precision conputation, but it is a
negligible part of the total time, which goes nostly toward scaling and
otherwi se detecting and correcting overflow or underflow possibilities.

Reconputation of x, 1in Exanple 5 1ooks as follows

1

z = =b = 4.0000000

y = b2 = 16.0000000 0000000
w = 4a = 4.0000000 00000000

=w-c = 15.9999996 0000000
u = y-v = 0.0000004 00000000 0000000
= 0. 0000004 0000000, returning to
single precision
t= /u =0.0006324 5553
s =z+t = 4.0006325
2a = 2.0000000

X, = s/t = 2.0003163, rounding up.

Not e t hat X, is in error by only o0.72 of a unit in the last deci-
mal pl ace.

<

~
I
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It is not practicable to discuss scaling and dealing wth possible
overflow and underflow.  The details are many and technical, and depend
intimately on particular features of the conputer on which they are carried
out. They are extremely inportant to actual conputing, but carry less
general interest than the ideas just presented. (One of the obvious features
i nvol ves testing whether any or all of a, b, or ¢ are zero.

9. Concl usi on

W have described sone of the pitfalls of applying the quadratic for-

.mula blindly with an automatic digital conputer. W have given sound cures

for two of the pitfalls, and indicated what other work has been done to
create a first-class algorithm for solving a quadratic equation

The quadratic equation is one of the sinplest mathematical entities,
and is solved alnost everywhere in applied mathematics. Its actual use
on a conputer mght be expected to be one of the best understood of conputer
algorithms. In fact, it is not, and some nore conplex computations were
studied first. The fact that the algorithmof Sec. 5is so subject to
rounding error is not very wdely known anobng conputer users, or anong
witers of elenentary textbooks on conputing methods, and certainly not by
nost witers of mathematics textbooks. O course it is known to special -
ists in numerical analysis. Thus even in this elementary problem we are
working at the frontiers of common conputing know edge,

The majority of practical conputations are understood still less than
the quadratic equation. A very great deal of difficult research and devel -
opnent remains to be done before conputers will be used as wisely and wel
as they can be. It is alnost certain, for exanple, that various parts of
the conputations for weather forecasting contain pitfalls like those of the
quadratic equation, and that ignorance of these pitfalls is introducing
conputational errors that are interfering with progress in weather fore-
casting. The sane can be said about nost nontrivial fields of scientific
conput ati on.

The noral of the story is that users of conputers for mathematica
probl ens require some know edge of numerical nmathematics. It is not

18
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sufficient to learn some programmng |anguage, and then sinply translate
formulas from a textbook of pure mathematics into the |anguage of a conputer.
The fornmulas and algorithms to be found in nost mathematics texts were de-
vised for the exact arithnetic of the real nunber system Few authors have
given any attention to the robustness of the fornulas--that is, to the be-
havior of the fornulas when used with the approximate arithnmetic of conputers.
Until attention is given to robustness in mathenmatics textbooks, the would-
be scientific conmputer nust consult people and witings specifically concerned
with machine conputation.
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