
cs41

ACCURATE  EIGENVALUES  OF A SYMMEl=R  IC
TR I AD IAGONAL MATRIX

BY

W. KAHAN

TECHNICAL  REPORT NO. CS41

JULY 22, 1966

COMPUTER SC IENCE DEPARTMENT
School of Humanities  and Sciences

STANFORD UN IVERS ITY





ACCURATE EIGENVALUES OF A SYMMETRIC

TRI-DIAGONAL MATRIX

BY

w .  KahaJT-I

ABSTRACT

Having established tight bounds for the quotient of two different

lub-norms of the same tri-diagonal matrix J , the author observes that

these bounds could be of use in an error-analysis provided a suitable

algorithm were found, Such an algorithm is exhibted, and its errors are

thoroughly accounted for, including the effects of scaling, over/under-

flow and roundoff. A typical result is that, on a computer using rounded

floating point binary arithmetic, the biggest eigenvalue of J can be

computed easily to within 2.5 units in its last place, and the smaller

eigenvalues will suffer absolute errors which are no larger, These

results are somewhat stronger than had been known 'Defore,
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Two Questions:

The following questions are connected with certain error-analyses of

the computed eigenvalues of the symmetric tri-diagonal NXN matrix

JZ

al
bl

bl
a2

b2

b2

b
N-l

Our notation is very much like Householder's (1964); we write

lubS(A) E (max. eigenvalue of H l/2A A) and lubE(A) = mm~-~~lA~~I = lubE(IAl > ,

where AI I ij
= A.. .I I1J

The questions are

1: What bounds can be found for lubS(J)/lubE(J) ?

2: What bounds can be found for lubs(J)/lubs((J() ?

We shall see that the answers are respectively

1: -$: lubs(J)/lubE(J) <, lubs(J)/lubs(I  JI) l

2: lubs(J)/lubs(\JI)  < 1 .

The only new results here are the lower bounds $ and $; the other

inequalities are well known and will not be proved here. (For proofs see

Householder's book, 5g2.2 to 2.4, with which the reader must be assumed

to have extensive acquaintance.) Part of the interest in the constants

$ and $ arises because they are best possible, andmuch larger
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than the lower bound T/m which would be required if J were replaced

by an arbitrary (symmetric) matrix in the inequalities above. A brief

survey of such more general (and therefore weaker) bounds is given by

Mrs. B. J. Stone (1962).

Proof of 1:

The results which we wish to prove are insensitive to diagonal simi-

larity transformations and to the replacement of J by -J . Therefore

we may assume without loss of generality that all bi > 0 . We shall write

b. = bN = 0 and

r.1 = bi + bi 1 .

Hence

lubE(J) = lubE( I JI > = mxi(IaiI  + ri)

= I Iak +'k

for some k defined (perhaps not uniquely) by the last equation. No

generality is lost by assuming that ak 2 0 , so

ak+ rk
= lubE(J) > lail + ri for all i .-

Now, lubs(J) is the largest of the magnitudes of the eigenvalues

of J, so the minimax characterization of those eigenvalues (see
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Householder's book, 0 3.3.1) implies that

lubs(J) > lubS(K)

for any principal submatrix K of J . It is particularly convenient

here to take

ak-l bk-l

KE
bk-l ak

0
bk

bk

'k+l

A related matrix K is obtained by reflecting K in its skew-diagonal;

I \
&k+l bk

0

bk ak bk-l

0 bk-l ak-l

\ /

.

This reflection changes no eigenvalue, so

lubs (K) = lubs(K) 1 $lubS(K + Kh) .

Consequently

where

lubS(J)/lubE(J) > lubs(X)

X= $(K + ?)/(a, + rk) .
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It i,s convenient now to define

1x E -r
2 d( "k + 'k> and

y = cakwl + ak+l)/ (2ak + ‘k) ’

Obviously 0 <, x <, i . Also -l<y< 1 because- -

lak-1 + ak+l 1 5 lak-ll + lak+ll

< (ak + rk - ‘k 1) + tak + ‘k - ‘k+l)

< (ak + rk - bk 1) + tak + rk - bk)

= 2ak + rk .

The matrix X can be expressed simply in terms of x and y thus:

Y-XY

X =

c

X 0

X 1-2x X

>

0

0 X Y-XY

A further simplification is achieved by the use of the orthogonal matrix
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and the 2x2 matrix

which are connected to X by the eigenvalue-preserving similarity trans-

formation

QTXQ =
Z

01 I0 y-icy .

Since y-xy separates the two eigenvalues of Z , these two eigenvalues

must be the algebraically greatest and least eigenvalues of X , Therefore

our progress so far can be summarized by the inequality

lubS(J)/lubE(J) 1 lub$) t

and our result no. 1 will be proved when we have shown that

lubs(Z) >, $ l

☺r

This last inequality is obtained below from a demonstration that

1
r=

min.lubs(Z) over (0 < x 5 i and -lLy<,l) l

Let the eigenvalues of Z be regarded now as functions of y for a

fixed x . They are both monotonic non-decreasing functions of y because
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any increase in y is tantamount to adding to Z some positive multiple

of the positive semi-definite matrix

The value

Y, = -(l - 2x)/(1 : x)

satisfies -1 < y, < 0 ; and when y = y, the eigenvalues of Z are-

just +zo and -z. , where

z = 2
0-

-4x+1 e

The values y, and z. are significant because for any other value of y

the matrix Z has either a positive eigenvalue 2 z.

or a negative eigenvalue C -z .
- 0

In other words,

Z =
0

min lubs(Z) over _ _-l<y<l

for any fixed x in 0 <, x <, $ e And zo's minimum value is taken
1

when x = t 0
3

The foregoing proof that Klubs(J)/lubE(J) >, I/T also points to an

example
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J =

with lubs(J) = fi and lubE(J) = 3 ; therefore the lower bound

cannot be increased.

Proof of 2:

We wish to show that lubs( J)/lubs(IJI > 1 $- . As before, we

assume without loss of generality that all bi 2 0 . It is convenient to

letbegin with some definitions. First

= max. eigenvalue of IJI .

Second, define

MZ $(lJj - J> .

Evidently M is a non-negative diagonal matrix whose positive elements

are just the positive diagonal elements of -J . For the sake of symmetry

we should like to have a similar definition for the non-negative diagonal

matrix P whose positive elements are just the positive diagonal elements

of +J . Such a definition is provided in stages as follows. We define

E E diag(-1, +l, -l,..., (-l)N) )
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and use it in an eigenvalue-preserving similarity transformation to define

the matrix

J= -EJE

whose eigenvalues and diagonal elements are just the negatives of those

of J . But '5 has the same off-diagonal elements as J and IJI .

Therefore the matrix

P+IJI -5)

is defined in much the same way as was M . Note'that PM = 0 . Finally,

because f and ? have the same eigenvalues,

AE lub&J) = lubs(?) o

Now we may proceed to demonstrate that h/p > 1

II-
5 .

According to the theory of non-negative matrices outlined in $2.4

of Householder's book, there must exist some non-negative vector v such

that

I IJv --= cl.v > 0 and vTv = 1 a- -

Since (lubs(J))2 = max.xTJ2x over xTx = 1,- -

A2 > vTJ2v =-- - xT(lJl - 2M)2v

= p2 - 4pxTMx + 4vTr(i2v .
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as

to

Similarly,

A2 > vTFv =we - x'(IJI - 2P)*v

= p2 T 2- 4qThw + 41 P v .

Adding and using the fact that PM = 0 yields

2h2 2 2p2 - 4vT(M+ P)(IJ.I - M - P)v .

But M+ P = diag(la$ , and

lail(ll - lail) <, I+214 l

Therefore

4vT(M + P)(@ - M - P)v < p2vTv *- -  - - =v

and so

2h2 > 2p2 - /A
2 = p2

desired. Result no. 2 is proved.

This proof points less directly than did the proof of result no. 1

an example J for which the second bound is achieved, i.e. for which

lubs(J) =



In fact, the foregoing proof was motivated by a foreknowledge of the fol-

lowing example.

1 '
Let ai = p(-l)ix for 15 i 5 N , and bi =$ for lji<N.

The value of x will be chosen later to be the same as p defined above,

but first we observe that now

P+M=$I,P-M 2zLxE ,

and

C= J -$I=J+EI I

1is an NxN matrix with zero on the diagonal and 2 on the subdiagonal and

superdiagonal. The eigenvalues of C are well-known; they are just the

numbers

'n
E cos nsr/(N + 1) for n = 1,2, . . ., N .

(See Householder's book, p. 34 ex. 50. His matrix J is defined on p. 2

and differs from ours. His K= 2C .) In particular, since

I IJ &+&I,

1
p=71+Fx  l

Next let us compute the largest eigenvalue A2 of J2 . The computation

is considerably shortened by Jim Varah's observation that

J2 = c2 + ix21 .
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Therefore A2 1.2=y;+q* . The ratio X/p takes on its minimum value

1
Y-

1
2 when x = p = 2y

1' This example shows that the lower bound
I / -

3

cannot be increased.

Application:

Let the eigenvalues h. of J be ordered thus:
1

Al <, A2 < . . . -lI’J’j;

and suppose the eigenvalues (h
i + 6hi) of (J + SJ) are ordered simi-

larly; hi + mi < A.
- 1+1

+ 6h
i+l ' Here the matrix 6J is a perturbation

attributed, possibly, to rounding errors in a numerical calculation. We

shall assume that 65 is tri-diagonal with elements bounded by, say,

l6ail <, alail and I’biI <, PIbiI

where CI! and B are small positive constants. Given cx and p , how

big can SXi be ?

The easiest bound for . 6hi uses the fact that, if the eigenvalues of

6J are '

e1 5 E2 5 . . . <, eN ,

then s1 <, 6hi 5 bN .
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A proof of this relation can be found in Householder% book (1964) p. 79.

Consequently

lSX,l 5 lub$J) <, lua,(ISJl) 5 lubE(6J) .

In particular, if Q = 8 then 1~~1 < CIIJI elementwise, so

l6h.I < $i!&lu~(J) = -f-ax.Ik.Il- 3 3

for all i by virtue of the inequality no. 2. More generally, inequality

no. 2 can be extended without any difficulty to the case that Q # f3 and

yields the bound

c lSX,l 5 lubs(16JI) <+2 + p2 lQbs(J) .

Though pessimistic, these bounds are slightly stronger than the best bounds

available in terms of lubE(J) . But are there any practical circumstances

where such bounds may be of use? They rely upon the inequalities

Isail 5 alail and lsb,l <, BIbi 9

whereas the typical rounding error analyses of the past have contained

weaker constraints like

I6ail < alubs(J) and lSbil < @lubs(J)
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(cf. Wilkinson's book (1965) p. 304). Thus we are faced with the follqwing

problem:

Given a set of error-bounds, find a numerical algorithm to which

they are applicable.

This problem has an elegant solution which is described below.

13



The Algorithm:

We shall now exhibit and completely error-analyze a simple and effec-,

tive method for computing any eigenvalue hk of J L The basic method

was first put forth in Dr. Boris Davison's numerical analysis lectures at

the University of Toronto in 1959, and begins with

Sylvester's Law of Inertia:

Suppose A = AT is symmetric

L is non-singular, and

D 5 L-lA(L-l)T is diagonal.

Then the numbers of positive, negative and zero

diagonal elements of D are the same respectively

as the numbers of positive, negative and zero eigen-

values of A . ,

A proof may be found in any standard text on matrices; e.g. in Gantmacher

(1959) vol. I p. 297. We shall apply this Law to the triangular factori-

zation of

J - XI = LU = LDLT

into triangular bi-diagonal matrices L and U obtained by Gaussian

elimination without pivotal interchanges. It is unnecessary to compute

any but the diagonal elements u of u .
n

They are obtained from the

simple recurrence

u1 = al - x
and

2
u =a - x - b
n n nml/Unml for n = 2,3,..=, N .
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This recurrence breaks down if and only if some value un = 0 , but such

a thing can happen only if x takes on one of at most -$N(N + 1) excep-

tional values. Indeed, it is easy to see that

u =
n u,(x) = cp,w/cp,-,bd

where q,(x) is the characteristic polynomial of the first nxn principal

submatrix of J . In particular,

q,tx) = det(J-- x1) ,

Consequently, the recurrence can break down only if x coincides with

one of the eigenvalues of one of the leading principal submatrices of J .

Let us postpone the discussion of these exceptional values of x ; suppose

for now that the recurrence is successful, and compute

v(x) z (the number of values
u,(⌧)  < 0) l

Sylvester's Law implies that

v(x) = (the number of J's eigenvalues yx) .

Therefore any selected eigenvalue hk can be computed as the limit of a

sequence of nested intervals [s , Frn] with

. V(G) < k 5 v(Fm) for ail m ,

J-5



%ll
<x <x <;;
-m+l- til- m

for all m ,

.-
and X -x 40 as rn-+a .

m -m

The mechanism by which the successive values 5 and xrn are chosen is

of no consequence here; a bisection method could be used (cf. Wilkinson

(1962)), though that is slow. A faster algorithm has been produced by the

author and Jim Varah (1966). But the error-analysis is independent of the
i’ ’

way in which the values %n
and z

m
are chosen provided they have the

properties listed above.

So far we have not seen anything very new. Indeed, the function

v(x) is just the number of variations of sign in the Sturm sequence

,...

which has been in use for over a decade to compute the eigenvalues of '

symmetric tri-diagonal matrices. (See Wilkinson's book (1965) p. 299-312.

Also see Householder's book (1964) p. 86-7 ex. 10 and 11, and p. 175 ex. 14;

his cp, differs from ours by a factor of (-l)n .) However, the T-recurrence

takes more time on most machines than does the u-recurrence; and over/

underflow is an inescapable complication in the q-recurrence whereas the
I

u-recurrence can be rendered almost immune to over/underflow. These are

the reasons Davison gave for his preference of the u-recurrence. Unfor-
.

tunately, he died before he had the chance to show how well behaved his

method could be. The task of analysis is now ours.
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Over/Underflow on the machine

Over/underflow in the u-recurrence can easily be rendered insignificant

by a proper preliminary scaling of the data ai and bi , The description

of the scaling process begins with a definition of certain machine constants:

is the greatest floating point number normally

represented directly in the machine.

is the smallest positive (non-zero) floating point

number normally represented directly.

is the smallest positive floating point number

such that the computed value of 1.0 + E differs

from 1.0 after it is rounded or truncated to the

precision being carried.

The following table lists typical values for these parameters:



Y
0
;;’
00.

cn
In

I
0
i-4

2
I
0
r-l

?I

r-i

II

2
I
cu

\D
I
0
l-l
X

E
.

II

In
I

2,

$
C

l-l ii
In

I
co II

3
C

;
ul N

% z

v 1

%

KJ F
r-4

cu r

v 11
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We must also make certain assumptions about the treatment of arithmetic

over/underflows, because they will occur. First, we assume that whenever

any floating point arithmetic operation (+ , - , X , /) underflows its

result will be cleared to zero. Second, we assume that whenever any opera-

tion overflows its result will be set to +s2 or -R with the correct sign.

The preservation of sign after overflow is essential. Fortunately, these,

conventions for the treatment of over/underflow are widely used on many

machines, including the IBM 7094 and, possibly, the Burroughs B5500.

Unfortunately, the new IBM 360 series hardware forgets the sign after over-

flow, but presumably that oversight will soon be corrected. It is possible

to prevent the u-recurrence from overflowing at all, but to do so costs

a noticeable retardation on most computers, as we shall see.

If over/underflow is treated as described above, any over/underflow

occurring in the u-recurrence will be practically inconsequential for

reasons to be given later. Therefore we must make a third assumption; we

assume that the program can inhibit the production of diagnostic over/underflow
messages and can ignore any over/
underflow indicators that might otherwise serve as superfluous distractions

during the computation of the u's . (This is not meant to imply that

those indicators are superfluous in any other context. Quite the contrary:)

If all three assumptions about the treatment of over/underflow are

valid then they cope with the problem far more simply, elegantly and econ-

omically than any other scheme known to the author. There is reason to

doubt that any comparable scheme could ever be devised for the q-recurrence,
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Scaling:

Now let the scale factor o be defined as the largest power of the

machine's arithmetic base which satisfies

0aI i/ 5 TR and o(bil 5 z~ for all i ,

where

= 1/+9-/2
T-V .

The significance of this constant z is that over/underflow will later be

shown to contribute an absolute error no larger in magnitude than about

42 l lubs(J) to the computed eigenvalues. The values of z tabulated

above show how small' T usually is compared withthe rounding error level E o

Evidently over/underflow will hardly ever restrict the range of magnitudes

spanned by the accurately computed eigenvalues of J nearly as much as do

rounding errors.

Normally CJ is approximately

Tfl/max.(maxilail , maxilbil) ;

but there are exceptional cases-where that expression would overflow, so 0

must be set instead to the largest power of the machine5 arithmetic base. '

These cases are ignored in what follows because they are susceptible to a

simpler analysis with the same results as are demonstrated below,

After CT is known, the matrix J is scaled by being replaced by aJ O

Since a is a power of the base there are no rounding errors0 But under-

flows may occur. These underflows result in the annihilation of at most

20



those elements ai and bi which satisfy . .

Iail < q l/2 - _
a. lubs(j) o;r lbil < ~ 112z lub;(J) ' : 1

These perturbations are negligible compared with what follows, so they may

be ignored. Later the computed eigenvalues hi will be unscaled by dividing

them all by 0 . Any over/underflow which occurs here is fully deserved

and must be rep<orted  by the diagnostic machinery mentioned above to indicate

that some eigenvalues (just the ones that over/underflow) cannot be repre-

sented in the normal way without over/underfloti. Nothing more need 'be, said

about scaling: we merely assume henceforth that

TO 5 lubs(J) <, 3td .
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Two programs:

Now is the

FORTRAN. There

time to write out the u-recurrence explicitly in, say,

are two versions, according as overflow is prevented or

allowed. Both versions begin by constructing the arrays BB and A con-

taining

BB(1) = b-Fml

A(I) = aI
1 for I = 1,2,..., N .

If lb,-,1 < fi then BB(I) will underflow to zero, but this amounts to

a perturbation of no more than

Jr7 T= . (~0) c, T l lubs(J)

in the given matrix J , and is included in the error analysis given later.

Note that BB(l) = 0.0 by definition, and that we can assume that

1x1 <, lubE(J)  5 3~fi

is satisfied by any number X which might usefully be considered as an

estimate of an eigenvalue.

Here is the segment of code which prevents any overflow in the u-recur-

rence; the constant RTETA has the value

RTETA = q .II--
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The FORTRAN symbol ".GT." stands for ">" .

u ,= 1.0’

U = (A(1) - BB(I)/U) - X

IF (U .GT. RTETA) G0 To 3

1

'2

3

IF (U .GT. - RTETA) U = - RTETA

N-u =NU+l . . . when U < 0 .

mNT1NuE

. . . Now N-U = v(X) . . .

. .

Whenever the computed value of ,uI lies between -fi and +fi , it

is replaced in statement 1 by -Jrv . Consequently the quotient

never exceeds

so overflow is impossible. Of course, UI may have been decreased

statement 1 by as much as _ 2-l/T, but this too is no larger than
.

have been caused by decreasing aI by the allowable perturbation

in

might

2Jr11 5 2~ . lubs(J) .

Here is a simpler and faster program segment which is useable whenever

overflow is treated according to the conventions described above. The

constant ETA = '1 .
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U = 1.0

Nu=o

DO 3 I = l,N

U = (A(1) - BB(I)/U) - X

IF oJ> 2, 1, 3

u = -ETA . . . if U was 0,

NU= Nu+ 1 . . . if U was < 0 .

CWINUE

. . . Now N-U = v(X) . . .

Note that whenever any uI vanishes it is replaced in statement 1 bY

uI = -r\ to forestall a subsequent division by zero. Whenever (rarely)

any UI overflows, its sign remains unchanged so that NU is treated

correctly; then uI+~ is in error because the computed value of bg/uI

must be larger in magnitude than it should be. But the error in uI+~

is no worse than might have been caused by perturbing by at worst

And underflow,

is negligible.

All told, these subterfuges for circumventing the ill effects of over/

(dl)‘/n = T(TQ) <, T l lubs(J) .

if it occurs, causes no more perturbation than '1 , which

underflow cause the computed value NU to be, instead of v(X) , some

value that would have been obtained ha-d J first been changed in each

element by at most

2T l lubs(J) (in the first program) or

24



z l lubS(J) (in the second program)

before v(X) was computed without any intervention on behalf of over/under-

flow. These perturbations will be shown later to affect the computed

eigenvalues by no more than 42 l lubS(J) . First we should consider one

last programming detail.

The kth eigenvalue
'k

is the kth jump-point of the integer valued

function v(x) ;

lim v(x) < k 5 Urn-,- V(X) .
x.&Y.-

k
x4-; +

k

(The multiplicity of the jump-point hk is just the difference between

_ the upper and lower limits.) Can a similar statement be made about the

computed approximation N-u(x) ? If so, any algorithm that works properly

for the exact function v(X) will work properly for its approximation

N-m) l If not, if NU(X) could have more than N jump-points, then

great care would be required to design the algorithm in such a way that

it could not be confused by spurious jumps down. As it happens, no such

care is required on most machines.

We shall demonstrate below that,- despite rounding errors and over/

underflow, the computed function NU(X) is a monotonic non-decreasing

integer valued function of X with just N jumps. The only assumption

is that each arithmetic operation executed by the machine is a monotonic

function of its arguments despite rounding. For example, if A , B and

C are all positive numbers represented in the machine, and if the FORTRAN

program



Xl = A+B

Y1 = (A + C) + B

X2= A-B

Y2 = (A + C) - B

u= A*B

Y~=(A+C)*B

X4= A/ B

y4 = (A + C) / B

x5 = B/ b+c)

Y5 = B/A

is executed, then XI 5 YI for all I = 1,2&t or 5 . This assumption

is certainly valid for single precision computations on all of the machines

listed in the table above. Indeed, the builder of any machine which failed

to satisfy this assumption should be ashamed of himself.
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The Monotonicity of NU(X):

The monotonicity of NU(X) will be derived as a consequence of the

properties of the successive values of U , for which some notation is

required. Given any argument X , a number representable in the machine,

either program above will produce a sequence of values un(x> and Nlr,(x) 9

the values taken by U and NU respectively after statement 3 has been

executed for the nth time. In particular,

uo(x) E 1.0 and No(X) E 0 ;

up0 = [A(l) - X] -rounded etc. and

Nu1(x) = 0 if X 5 A(1) - 0

= 1 if X >A(l) - 8 ,

where 0 = ~~7 in the first program

= q in the second program .

Note that no Un(X) can lie closer to zero than +8 or -8 . At the end

of the DO-loop,

U = v,(x) and NU = NU(X) = NUN(X) .

The interesting values of X are those where some Un(X) changes

sign. These points shall be identified precisely with the aid of a notation

Xl for the successor of X ; if X is a number representable in the ma-

chine and eligible to be an argument for the programs above, then X' is

the next larger eligible argument. Normally X' will exceed X by one



unit in their last place being carried in the computation.

A "zero" z of un(x) is now defined to be any argument Z which

satisfies both

Un(Z) > 8 and -0 > Un(Z') .

A "pole" Y of un(x> is any argument Y which satisfies

uJx> can change sign only at a zero or a pole, though Un(X) may fail

to change sign at some poles. Between any two zeros of Un(X) must lie

at least one pole where Un(X) changes sign, and possibly some other

poles where Un(X) does not change sign. Let us examine these poles more

closely.

If Y is a pole of Un(X) then

because the contrary relation would prevent

up = [[A(n) - [BB(n,/U,  ,(X)1 1 - Xl t

where each pair of brackets means

"round [...I and take care of over/underflow, if any" ',

28



from increasing when X moves from Y to Y' . (Note that the over/

underflow subterfuges do not destroy the monotonicity of the arithmetic /

operations even if Un(X) has to be replaced by -6.) Therefore eiiher

Y is a pole of Un ,(X) where Un 1 does not change sign, or Y is a

zero of U (x>n-l * A backward induction yields the following statement:

If Y is a pole of Un(X) , then there exists

some positive integer m<n such that

u,(y) > 0 > v,(f) 9

and for all integers i (if any) strictly between

m and n

U&Y> < Ui(Y')

with no change of sign,

We abserve that U,(X) has no poles and just one zero, Therefore,

as V,(X) is carried from U2(-fi) = s2 to U2(!J) = -R I it can have at

most two zeros separated by one pole where
u2 changes sign, or one zero

and one pole where U2 does not change sign, or one zero and no poles if

BB@) is very tiny, In all cases one can verify with ease that NU2(X)

is a monotonic non-decreasing function of X with at most two distinct

jumps from NU2(-R) = 0 to NU2(R) = 2 D. Rather than extend this desired

property to NUn(X) for all n by a long constructive argument, we shall

show that a failure of NUn(X) to be monotonic would create a contradiction,,
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Let n be the smallest integer for which Nun(X) is not a monotonic

function. Obviously n > 1 . Suppose Nun(X) fails to be monotonic at Y ;
.

since

0 = N-u&n) 5 Nun(X) 5 n = MJ$J) 1

the failure must take the form

y.p) > Jyp’) .

However, our hypothesis about n implies that NUn ,(X) is monotonic,

which means

Also,

yp) - mnwl (X) = 0 if U (X) > 0n

= 1 if Un(X) < 0 ,

so

0 > NUJY') - Nun(Y)

= ENqY'> - ~n-lwH

+ hn-l@3 - Nu,-J~)l

+ CNuI1_JY) - Jypl

> (0) + (03 + (-1) = -1 .
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But this implies, (term) by (term} , that
\

N'Un(Y') = Nun ,(Y') and V,(Y') > 0 ,

Nu,_,(Y') - Nun-$) = 0 , and

NUn(Y) = NUnml(Y) + 1 and V,(Y) < 0 o

Evidently Y is a pole of Un(X) q Therefore there exists some positive

integer m < n for which Y is a zero of Urn(X) ; we shall have

U,(Y) > 0 > v,(Y') D

Therefore Wm(Y') = NUm ,(u') -b 1 because U (Y') C 0 ,
m

> NUm ,(Y) + 1 by monotonicity ,-

= NUm(Y) + 1 because V,(Y) > 0 o

Also, if there are any integers i strictly between m and n-l ,

Nui(“) - N”i,l (y’> = Nui(Y) w NLTi ,(Y)

because Y is a pole of Ui with no change in sign, Therefore

Nun ,(Y') - NUn ,(Y) = N-U (Y') - NU (Y) > 1 ,.- m m -

whereas we saw a'bove that

Nun ,(Y') - Nun ,(Y) = 0 0



T..“:”
;

This contradiction proves that NJ(X) is a monotonic non-decreasing function

of x, as desired.

It seems surprising that so strong a result can be proved with no

appeal to the continuum, nor any estimate for the errors in the values un(⌧>  l

On the contrary, the values of Un(X) can be completely different from the

mathematically exact values u that would have been obtained withoutn

rounding errors nor over/underflow, even to the extent of having the wrong

signs. Fortunately, the errors in the intermediate results Un(X) are

of no interest beyond an assurance that the errors are not haphazard. And

the behaviour of NU(X) provides just that assurance.
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Bounding Rounding Errors:

The next step is to show that if 1x1 5 lubE(J), then NU(X) is pre-

cisely the value that v(X) would have taken if J had been replaced by

some nearby matrix J(X) and all computations had been carried out in-

finitely precisely with neither rounding errors nor over/underflow subter-

fuges. The principles behind the analysis that follows are very much like

those to be found in Wilkinson's books (1963,  1965). We shall try to describe

the elements of J(X) in terms of the numbers that actually appear in the

ar%thmetic registers of the machine during the computation, and in terms of

the rounding error bound E tabulated above for several machines The

ideas involved are best illustrated by the following examples,

The FORTRAN assignment statement

C =A*B

will not replace C by the product of A and B , but will instead set

C toavalue

C = (1 + 7)AB

in which 7I I is normally bounded by, say,

Note that A , B and the new value C are defined quite precisely, and

satisfy the previous equation exactlye The only unknown quantity is 7 ,
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but Irl is bounded by a known value E except when over/underflow inter-

venes. Similarly, the assignment statement ,

C = A/B

actually stores a value

where

C = (1 f @)A/B

Id <E .

As a matter of fact, the situation is not always as described above.

In double-precision the values of 'B and y can be as large as 3~ on a

7094, 5~ on

errors are so

them directly

a B5500, and 16~ on a 360. These unnecessarily large

repugnant to the author that he takes the liberty of passing

from the machines' manufacturers to the reader, who may ac-

commodate them by multiplying E in the bounds given below by whichever

factor is appropriate for his machine. For a similar reason, the author

chooses to presume that the FORTRAN statement

C = A + B

causes C to take precisely the value

C = (A + B)/(l f a)

with I IQ <E. Only in double-precision, and then only on some machines,

is it necessary to replace the last two relations by

c= (1 + a)A + (1 + ,3)B
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with I IQ! <E and Id <E, but this will weaken the error bounds to

be given below by a factor no larger than two.

The Construction of J(X) near J:

The first step in the construction of J(X) is the definition of

certain values A
I

and B
I corresponding respectively to aI and b o

I '

Let us set

BI
s bI if B2I does not underflow ,

In either event, IBI - bI( < fi l And

BB
I

s RB(1) = (1 + $)Bf 1 ,

where $; is the relative error due to multiplication and satisfies

I@ I; <e. (The primes used during the construction of J(X) do not de-

note successors.)

The value of AI depends upon X , and differs from a
I only to the

extent required to compensate for the effects of over/underflow. Reasons

j
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have already been given why we should, expect that

IAI - a-& <, 2 fi in the first program ,

<-Jrq in the second program ,

execpt for an ignorable contribution no larger than 7 . Let us stay with

the second program from now on, and ignore not only the scaling underflow

error q by setting

A(1) E aI ,

but also agree to ignore the comparable error induced by underflow or state-

ment 1 during the computation of UI .

The dissection of the FORTRAN statement

U = ((A(1) - BB(I)/U) - X)

to find its rounding errors is an inductive process. For I = 1 we define

Al
‘3 A(1) =. al and

v1
=-Al-X precisely, and

Ul = [[A(l) - 0.1 - x] = v,/(l + a;) ,

where I Icl!; < E . kridently  sign(vl) = sign(Ul) . .
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We also set a: E pl Z 0 and v s 1 .
0

The induction hypothesis is that

for n = 1,2,..., I-l we may write

V
n

= An - (1 + @;)(I + a; 1)(1 + 4 $BB /vn 1
n - - (1 + Q')X 9n

IAn - anI rfi 9

IP I; < E , IdI < E 9 lc(l < c ) and

either v = (1 + c?)(l + CQJ, or
n

I I'n
= R and 0 < U

n!
vn < 1 and an = ak = 0 .

.I In any case, sign(vn) = sign(Un) 1 0 .

The hypothesis is obviously true for n = 1 , since BBl = 0 . Note that

'n
represents what was earlier referred to as un(x) 9 and is a number

actually stored in the computer. The values BBn and a are also stored
n

in the computer, but A will not be stored if it differs from a and
n n'

V
n

is a figment of the imagination except, for'Sts sign.

Now for the advance to n = I . The first value to be inspected is

[BB(I)/UI  ll’ou”hed = (1 + P;)BBI/UI 1 ,

where If3 I'; < E unless overflow occurs. (Underflow is being ignored.)

If this quotient overflows then the remaining arithmetic operations are

irrelevant because the scaling has ensured that neither A(1) nor X can

be bigger than
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< (1 + e)(70)211/nl = (1 + E) 7/;r .

The factor 1 + e is unimportant and shall be dropped.+ Note too that ,

A(I) - [BB(I)/UI-ll = AI - (1 + @';)BBI/vI  1

therefore overflow will cause UI to be given the value

uI = -0 &3n(UI~l) 1

and we may define

AI E aI , BI; I I
s a' z a" 3 0 , and

VIP I-(A BBI/UI  $ - X ._

These values satisfy the induction hypothesis.

If the quotient [BBI/UIgl ] does not overflow, there is still the

possibility that the previous quotient [BBI-~/uI-~I  overflowed to be

considered. In this case Iv,-11
= R and 0 < UI l/vi 1 < 1 , and we

define

AI = A(I) - [BB(I)/UIgl 1 f (1 + d..DBI/�I-L  l

Evidently

IAI - aI 1 = (1 + B';)BE+/UIgl  - 1/"1-~l

= AI - (1 + p;)(l + d. $1 + ~;-l)BBI/~I-l  0
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The last relation is satisfied too if neither [BB(I)/uI 11- nor

[BB(I-1)/UI-21 overflowed, in which case we set AI Z-A(I) = aI , because

then VI-~ = (1 + q110
+ $1

N☺
1-l l

Continuing, if [BB(I)/UI-ll  does not overflow then the value stored

for UI will be

uI = [[AI - (1 + $)(I + a; $ + c$l)BBI/~I-ll - Xl

C ( (A I - (I+ p';)(l + ol;-l)(l  + a; l)BBI/vI ,)/(l + a;)

- x)/O + $1

z qm + $)(l+ cq)

_ where the rounding errors of addition are bounded by Iail < E and

A Icl!; < E . This result advances the induction from n = I - 1 to n = I

as desired, and lays a firm foundation for an error bound for the eigen-

values.

Let the matrix J(X) be defined now to have

An - c$X in place of a
n' and

,
b
1 f Fn)(l + $)(l + 6n 1)(1 + &n 1) Bn 1 in place of bc n-l '

I . -* i . I i > * II
Certainly J(X) is close to' J ; '

/ c-f-:::::  :. , \’ 1 ,t’<’
more precisely, ,but neglecting terms

'i '2' :‘: ,,\ I\)' 'I I , ,) .) 3, '(\ :' ( : II I
of order E and '1 9

IJ(X) - JI <, 24J - diag JI + ~1x11 +fiH

elementwise, where
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J - diag J z only the off-diagonal terms b in J
n

H" the tri-diagonal matrix with all elements = 1 .

Denote the eigenvalues of J(X) by

to correspond with the eigenvalues hi of J .
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The Absolute Error in hk:

The reason for constructing J(X) was that NU(X) 'would be the, number

of J(X)% eigenvalues 'i(X) ' ' :, and now this can be proved. ' F o r

N-ax) = the number of values Un(X) < 0

= the number of values vn < 0 ,

I 1

and the v are ton J(X) what the uncontaminated values u are-to J.
n

And each eigenvalue. hi(X) differs from the corresponding hi by no more

than

lubS(J(X) - J) 5 2~ lubS(lJ - diag JI> + EIXI

I I

‘fi lubs (H) 0

Here

and

filubS(H)  536= 3d@ 53~ lubs(J) 3

2~ lubs(lJ - diag ~1) <, 2~ lubs(J)

by virtue of the more general form of our earlier result no. 2 with

$v =$x i Finally, the only values of X that will

concern us below are those which approximate some 'eigenvalue hi, so I

we can certainly assume that ~1x1 < 6 max,Ih,) = k lubS(J) to within-
I I

a negligible extra error of the order of ~~1x1 D For those values'of X

we have

I Ih3Ihp -. ‘il Lr = 3(E + z)max
j
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as a bound for the difference between the corresponding eigenvalues of

J(X) and of J . This means that, as X varies over the allowable

arguments, each eigenvalue 'i(X) remains confined to some fixed interval

ki - r <, Xi(X) < hi + r .

We have already seen that for any given k there is precisely one value Xk

which, with its successor Xk 9 satisfies

w(xk) < k <, m(x;) ;

these values can easily be computed. And the relationship between NU(X)

and the hi(X) tells us that

xk 5 ‘k(s) <, ‘k + r

'k - r 5 hk(Xk) < Xk l

and

I

Since

“9,:-x,_< ?E maXilXi( on a rounding machine

< E max.&j on a truncating machine

(we might as well assume now that arithmetic is rounded), we can accept

either Xk or Xk as an approximation to Lk and commit an error no

larger than

r + 2E IIBXjlhjl = (5c + 3’IaaxjIhj  I ’
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This bound compares favourably with that obtained by Wilkinson (1965,
_. .,

p. 3&-5) for the Sturm-sequence (q-recurrence) algorithm in the absence

of over/underflow, in our notation 'his bound is 17~ maxjl~J 9 ,although

the use of our more refined methods reduces this to 8.75~ ma.xjIhjI  .

This bound is not appreciably increased if Wilkinson's 1962 program is

amended to cope with over/underflow, but then the (p-recurrence becomes

much slower than the u-recurrence. Therefore the u-recurrence has all the

advantages of speed, simplicity and accuracy over the v-recurrence.. On a

computer using rounded binary floating point arithmetic, the biggest eigen-

value can be computed to within a guaranteed relative error of 2.5 units

in its last place, and no eigenvalue will suffer a larger absolute error.
'.

For chopped arithmetic the guarantee is 4 units in the last place. These

bounds are impressively small; but they are substantially larger than most

of the errors observed in practice.

Why?
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The Class of neighbours of J :

A nicer appreciation of the accuracy of the u-recurrence can be achieved

through the consideration of the class of symmetric tri-diagonal matrices

J which satisfy

I J- jl <, 2elJ - diag JI .

For example, on the rounding binary camputer mentioned above the class 1
consists of those matrices j obtained from J by changing each off-

diagonal element of J by at most one unit in its last place. The set

9 is a convex set in the sense that if to and jl are members of 9 j

then so are all matrices of the form

til + (1 - t)jo for 0 5 t < 1

lying "between" j. and jl . Each matrix 5 in has a set of eigen-

values

fi, <, x2 < . . . < Ggl c $ ;

and as ? varies over
9

each eigenvalue 'k
varies over some set !k

which can also be shown to be a closed convex set. In other words, associa-

ted with the class 8 of matrices 3 is the set of N intervals

+c 0 the set of all x = tk for some j in 2 .
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Some of these intervals may overlap, but it is soon seen that no Ak can

be containedstrictly inside another. Therefore.the intervals, A,, share

the same ordering as the eigenvalues Ak . Obvious -y% Iis contained in

but the interval Ak hardly ever occupied more than a small fraction of

that latter interval.

' The significance of the interval Ak is that for most practical pur-

poses any number in Ak is as acceptable an approximation to
'k as any

other. Such might be the case,, for example, if each off-diagonal element

bi
of J we,re independently in error by as much as 2&$ because of

previous rounding errors. The independence of the errors is essential;
--

correlations among the errors in the b.1
could conceivably cause the

eigenvalues of J not to be in error at all, as would be the case if

1+e 0 1-E were erroneously computed as

As long as the errors in the bi are independent, the width of the inter-

val
hk

is an indication of the extent to which h
k <

must be regarded as

inescapably uncertain And that the error introduced by the programs

analyzed here contributes negligibly to this inescapable uncertainty shall

now be demonstrated.
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Let j(X) be defined to<have elements Qn = an and

'n-1 = 1 + @n)(l + $)(l + $ 1)(1 + an) bngl , where'the Greek

letters were defined during the construction of J(X) . Except for terms

of order e
2

which shall be ignored,

I ingl - bngll <, 2E Ibngll

so j(X) belongs to 8 and each eigenvalue 'kcx) of J(X) lies in its

corresponding interval Ak . Also,

I ( 1ix - J(X)\ <, &+ +fi H

except for ignorable terms of order q , so

Ik,(X) - hk(X)I 5 r(X) s ElXl + 3T maxilhil l

And if Xk and its successor Xk are defined, as before, by

m(xk) < k <, m(x;)

then

xk <, Ak(xk)  <, fk(xk)  + dxk) and

If arithmetic is rounded, then

x;; - xk <, 2E mx*( Ix,l t Ix;\)
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(except possibly when X' - X = v ,
k k which is ignored). Putting all the

facts together shows that either Xk or Xk differs from x(X$ or

'('k) respectively by no more than

3~ max*( Ixkl ) Ix;Cl> + 3’ ma⌧il�il l

On a binary machine with rounded floating point arithmetic we may summarize

this result as follows:

' The computed approximation to the kth eigenvalue 'k of J need

not differ by more than 1 $ units in its last place from the kth eigen-

value x, of some matrix j
k

each element of which differs from the cor-

responding element of J by at most one unit in its last place, plus an

absolute error of

from over/underflow subterfuges.

In other words, if J is already uncertain in each element by several

units in its last place, and if

IhkIImxiIhiI  ’ 3T/E

(which is not often a restriction since 3T/E < log10 on each of the machines

tabulated, even in double-precision), then the additional uncertainty intro-

duced by the computation of hk will be insignificant when compared with

the intrinsic uncertainty in Xk caused by uncertainty in J . If Xk
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is intrinsically uncertain by only a few units in its last place, then the

approximation to
3s

will be accurate to within a few units in its last

place too despite the fact that hk is much smaller than max$J . This

partially explains why some of the very small eigenvalues of symmetric tri-

diagonal matrices have been computed to such unexpectedly fine relative

precision by the u-recurrence.

m._ ;,,, I,I__ :
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Insensitive Eigenvalues:

But why are the smaller eigenvalues of J so frequently (but not

always) so much less sensitive to small relative perturbations in 3 than

might be suggested by simple examples like the following?

J = ) Al = E , A2 = 2-E .

Unlike this example are many others where even the tiniest eigenvalues suffer

relative (rather than absolute) displacements which are of a com$rable  order

of magnitude with the relative changes in the off-diagonal elements 'of J ,

cAlthough not always easy to explain, it is oftenobserved that J*s eigen-

values are less sensitive to relative perturbations in the off-diagonal

elements than to comparable relative perturbations in the diagonal elements.)

An extreme example of this phenomenon is provided by those matrices J

whose diagonal elements all vanish. These matrices turn up during certain

computations of singular values; see Golub and Kahan (1965) p. 213. The

methods used above can be exploited to prove that

If J is an NXN symmetric tri-diagonal matrix,

if diag J = 0 , and if ISJI < 4Jl 9,

then the ordered eigenvalues hi of J and

hi + 6hi of J + 6J satisfy

provided NC < 1 0
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An outline of the proof follows. Write

bi + 6bi 5 bi(l + pi) with IQ < E .

Without loss of generality we may assume

bib for lsi<N .

Corresponding to the u-recurrence applied to J - x1 is the corresponding

v-recurrence, say, that belongs to (J + SJ) - x1 ; they can best be compared

when written side by side thus:

% E -x J v1 = -x '

u. = -x - b 2 u
1 Ii-l i-l '

It is well known and easy to show that both J and J + 6J have only sim-

ple eigenvalues Ak and Ak + 6Ak respectively, and that uN = 0 if and

only if x is an eigenvalue of J , and that vN = 0 if and only if x

is an eigenvalue of J+6J. (cf. Wilkinson (1965) p. 300.)

Our object now is to show that each Ak is the kth eigenvalue of

some matrix which differs from J + 6J by terms of order EAk rather

than EIJI . There are two cases according as N is odd or even.

If N = 2n-1 we define the factors (1 + yi) via

l+yn =l

' + 'i+l 3 (1 + pi)2/(l + yi) if i 1 n

IL + Y-i-1 s (1 + pi 1)2/(1 + yi) if i 5 n .
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Then we set

Wi E (1 + yi)ui and xi = -yix ,

and observe that

=x -x
w1 1

W. =x. -x-
1 1

(l + Big~)b~g~/wi-l  *

This is just the w-recurrence, say, belonging to the matrix

J(x) - x1 5 J + 65 + diag(xi) - x1 .

_ Since I J + 6J - J(x)J = (xldiag17il

<, 1x1 dia,g((l - E)-~~+~ - 1)

< Ne)xII/(l - NC)

if NE < 1 , the kth eigenvalue hk + 6Ak of J + 6J differs from the

kth
th

eigenvalue of J(x) by no more than ~elxl/(l - NE) . But the k

eigenvalue of J(Ak) is just Ak since sign(wi) s sign(ui) for all x

and w
N
= s = 0 for x = Ak . Therefore

I Ak + 6Ak - Akl < Nf[hkl/(l - NE)_

as claimed.
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A similar scheme works when N is even. Thus, one can hardly be

surprised in this case when each computed eigenvalue of such a matrix J

is correct to within N units in its last place despite a wide variation

in the orders of magnitudes of the eigenvalues.

The possible persistence of high relative precision in many of the

tiny eigenvalues of wider classes of matrices J awaits a systematic

explanation with predictive powers, in the absence of which it is hard to

say when a small computed eigenvalue has higher relative precision than is

implied by the absolute error bound

(5E + 3~)maxjIAjI '

Conclusion:

There are faster programs than those described here, but none more

elegant nor more accurate.
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