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Two Questions:

The follow ng questions are connected with certain error-analyses of

the conputed eigenvalues of the symretric tri-diagonal NXN matrix

1 1
Py 2 by
J= Py
’ Py-1
vt O

Qur notation is very nuch |ike Householder's (1964); we wite

1]

- - 1/2 - _
lubs(A) = (max. eigenval ue of AFA) and l_ubE(A) maxi‘zj lAijl = lubE(|A| )

wher e lAIij = IA.l.Jl . The questions are

1: What bounds can be found for lubS(J)/lubE(J)?

N

What bounds can be found for lubS(J)/lubS(IJl) ?

W shal|l see that the answers are respectively

1 ‘Vé;% Lubg (3)/ 1uby, (3) < Lubg (7)/1ubg (| I1)

. T ..
2: “v/;ji 1ubS(J)/1ubS(lJ|) <1.
The only new results here are the |ower bounds \/’ and ’\/2—, t he ot her

inequalities are well known and will not be proved here. (For proofs see
Househol der's book, §82.2 to 2.4, with which the reader nust be assuned

to have extensive acquaintance.) Part of the interest in the constants

‘\/——5]:' and \/g ari ses because they are best possible, andmuch |arger

1



than the |ower bound °\/1/N which would be required if

by an arbitrary (symetric) matrix in the inequalities above. A brief

survey of such nore general (and therefore weaker) bounds is given by

Mrs. B. J. Stone (1962).

Proof of 1:

The results which we wish to prove are insensitive to diagonal
larity transformations and to the replacenent of J by -J .

we may assunme wthout |oss of

o’
m
o’
1]
o
Q0
=}
o

{
H
—_
i
hd
+
o

Hence

lubE(J) = lubE( |a]) = ma.xi(|ai| + ri)
SRS

for some k defined (perhaps not uniquely) by the last equation. No

generality is lost by assum ng that akzo, o)

= + T, '
a, + = lubp(J) > |ai| r, for all i

Now, 1ubS(J) is the largest of the magnitudes of the eigenval ues

of J, so the minimax characterization of those eigenval ues (see

2

J were repl aced

Therefore

generality that all b, > 0. W shall wite



Househol der's book, § 3.3.1) inplies that

for any principa

here to take

~
m

~>
]

lubs(J) > lubS(K)

submatrix Kof J . It is particularly convenient
8k-1 b1 °
b1 % by
0 by fk+l

This reflection changes no eigenval ue, so

Consequent |y

wher e

\
ak+l bk 0
by & Pyl
0 bpp B
A 1 FaY
=. = +
Lubg (K) lubS(K) > QlubS(K K)

lubS(J)/lubE(J) > lubS(X)

X = %(K + ﬁ)/(ak tr) .




It is convenient now to define

»
m

%—rk/(ak + 1)  and

= (ak-l + ak+l)/ (2&k + r

<
I

»)

Qoviously 0 < x g% . Also -1<y< 1 because

s 4 Bl S la |+ |21 |

<(ap + 1 -7y ) + (8 + T - Ty

<(ay +r -Db )+ (et -D)

= +
Eak rk

The matrix X can be expressed sinply in terms of x and y thus:

y-xy X 0
X= X 1-2x X
0 X v-Xy

A further sinplification is achieved by the use of the orthogona

)
r—*o$

ﬁo
ol

_\/‘



and the 2X2 matri x

1-2x '\/Ex
Vex  y=xy |,

whi ch are connected to X by the eigenval ue-preserving smiaity t rans-

formation
Z
Qxq = 0
0 y-xy
Since y-xy separates the two eigenvalues of Z, these two eigenval ues
must be the algebraically greatest and |east eigenvalues of X, Therefore

our progress so far can be summarized by the inequality
lubS(J)/lubE(J) > lubS(Z) ,

and our result no. 1 will be proved when we have shown that

11
lubS(Z) 2 55

This last inequality is obtained below from a denonstration that

and -1<y<1)

) T

'\/%:= min.lubs(Z) over (0 <x <

Let the eigenvalues of Z be regarded now as functions of y for a

fixed x . They are both nonotonic non-decreasing functions of y because



any increase in y is tantanount to adding to Z some positive multiple

of the positive sem-definite matrix

The val ue
v, = -(1-2x)/(1 - x)

satisfies -1 <y <0 ; and wheny = y, the eigenvalues of Z are

j ust +2 and -z, wher e

z E‘\/6x2 -hx + 1
o]

The val ues Yo and z, are significant because for any other value of y
the matrix Z has either a positive eigenval ue > z,
or a negative eigenvalue < »z .

0)
[n other words,

N
1]

mn lubS(Z) ove-1 < y < 1

el ol

for any fixed x in 0 < x < And z's m ni mum val ue is taken

\/\/r1enx=3i°

, 1
The foregoing proof that lubS(J)/lubE(J) > ‘V

5 al so points to an

exanpl e




with lubs(J) = /3 and lubE(J) = 3; therefore the |ower bound \/I

cannot be increased.

W

Proof of 2:
: ’ 1
VW wish to show that lubS(J)/lubS(lJl)Z 5. As before, we
assume wi thout |oss of generality that all b, > 0. It is convenient to

begin with sone definitions. First let

=
]

1w (|a])

= mx. eigenvalue of |J| .

Second, define

1]

1
M= 3(lg] - 9)
Evidently Mis a non-negative diagonal matrix whose positive elenents
are just the positive diagonal elenents of -J . For the sake of symmetry
we should like to have a simlar definition for the non-negative diagonal
matrix P whose positive elenents are just the positive diagonal elements

of +J . Such a definition is provided in stages as follows. W define

E= diag(-1, +1,-1,..., (-1)Y),




and use it in an eigenvalue-preserving sinmlarity transformation to define

the matrix

=1

= =EJE

whose eigenval ues and diagonal elenents are just the negatives of those
of J . But 'J has the same off-diagonal elenments as J and |J] .

Therefore the matrix
-1 =
p=3(lg] -7

is defined in nuch the sane way as was M. Note'that PM = 0 . Finally,

because J° and 3° have the same eigenval ues,

N lubS(J) = 1ubs(3) .

Now we may proceed to denonstrate that A/u 2\/% .

According to the theory of non-negative matrices outlined in §2.k4
of Househol der's book, there nust exist some non-negative vector v gych
t hat

|7y = wv > 0 and v'v = 1 .

Si nce (1ubS(J))2 = max.x Jox over x'x = 1,

2 > vty = vT(]a] - ew)Py

= u2 - J4-|.J.y_'IlM_w£ + MXTMEX .
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Simlarly

Addi ng and

But

Therefore

and so

as desired.

This proof points less directly than did the proof of result no

to an exanple

]

u2 - b}uy_TP! +hv -E’Zz .

using the fact that PM= 0 yields

2)\.2 > 2u2 - LI-XT(M + P)(uI - M- P)X .

M- P = aiag(la,|) , and

ol - fas 1) < w®/n

by (M + P)(I - M- Py < py'y = 2

2)\zzme_uz 2

Result no. 2 is proved

J for which the second bound is achieved,

Lubg (7) ::‘\/%-lubs( l7])

i.e.

1
for which




In fact, the foregoing proof was notivated by a foreknow edge of the fol-

| owi ng exanpl e.

e T

Let a, = %—(-1)1;: for 1<i <N, and b, =3 for 1<i<N.
The value of x wll be chosen later to be the sanme as « defined above,

but first we observe that now

and

. . : . 1 :
is an NXN matrix with zero on the diagonal and 5 on t he subdi agonal and

superdiagonal . The eigenvalues of C are well-known; they are just the

nunber s
7, = COS nr/(N + 1) for n=1,2,. ., N.

(See Househol der's book, p. 34 ex. 50. H's matrix J is defined on p. 2
and differs fromours. H's K= 2C.) In particular, since

19 =c+1é-x1,

2 2 .
Next let us conpute the largest eigenvalue » ©of J . The computation

I's considerably shortened by Jim Varah's observation that

J2 = Cg + []fng.

10




2 2 ‘ . . o
Therefore A° = 7t %xz. The ratio Mu takes on its mni num val ue

1

‘\/%j when x = p = 271. This exanple shows that the |ower bound /E
I

cannot be increased.

Appli cation:

Let the eigenval ues M of J be ordered thus:

and suppose the eigenval ues O‘i + axi) of (J + SJ) are ordered simi-
larly; A+ 8N < Ag . + 0\, . Here the mtrix 8J is a perturbation
attributed, possibly, to rounding errors in a nunerical caculation. We

shal | assume that dJ is tri-diagonal with el ements bounded by, sy,
|2a;| < ale;| ana |ov,| < Blb,|

where « and g are small positive constants. Gven «a and B, how

bi g can BN be ?

The easiest bound for . B\, uses the fact that, if the eigenval ues of

&J are

then 5, < B\ < B

11




A proof of this relation can be found in Househol der % book (1964) p. 79.

Consequent |y
stil < lubg(s7) < lubs(|8J|) < Lubp(87)
In particular, if a = then |83| < alJ] elenentwise, so
lon | < Ve m(0) = Va maxj|le

for all i by virtue of the inequality no. 2. Mre generally, inequality
no. 2 can be extended without any difficulty to the case that o # g and

yields the bound

Clen. | < b, (|s3]) A + 82 1w (T) .
i' = S - S

Though pessimstic, these bounds are slightly stronger than the best bounds

available in terns of lubE(J). But are there any practical circunstances

where such bounds may be of use? They rely upon the inequalities
|3a;| < afa,| and |eb,| < glv,] ,

whereas the typical rounding error analyses of the past have contained

weaker constraints |ike

Iaail < alup(J) and |6bil < plubg(J)

12




(cf. WIkinson's book (1965) p. 304). Thus we are faced with the follqu ng

probl em

G ven a set of error-bounds, find a nunerical algorithm to which

they are applicable.

This problem has an el egant solution which is described bel ow

13



The Al gorithm

VW shall now exhibit and conpletely error-analyze a sinple and effec-
tive nmethod for conputing any eigenval ue Mo of J . The basic nethod
was first put forth in Dr. Boris Davison's nunerical analysis |ectures at
the University of Toronto in 1959, and begins with

Sylvester's Law of Inertia

Suppose A = AT s symetric
L is non-singular, and

p=rta@™HT

I's diagonal.
Then the nunbers of positive, negative and zero
diagonal elements of D are the same respectively

as the nunbers of positive, negative and zero eigen-

val ues of A .
A proof may be found in any standard text on matrices; e.g. in Gantnacher
(1959) vol. | p. 297. W shall apply this Law to the triangular factori-

zation of

J-X =10 =1t

into triangular bi-diagonal matrices L and U obtained by Gaussian
elimnation without pivotal interchanges. It is unnecessary to conpute
any but the diagonal elenents Uy, of u . They are obtained fromthe
sinple recurrence

u a, - x and

N n n-1/ -1 forn = 2,5,...., N

14



This recurrence breaks down if and only if some value w, =0, but such
a thing can happen only if x takes on one of at nost %N(N + 1) excep-

tional values. Indeed, it is easy to see that

Uy = u () = @ (x)/o__, (x)

wher e cpn(x) is the characteristic polynomal of the first pxp princi pal

submatrix of J . In particular,
cpN(x) = det(J - xI) ,

Consequent|ly, the recurrence can break down only if x coincides wth
one of the eigenvalues of one of the |eading principal submatrices of J .
Let us postpone the discussion of these exceptional values of x ; suppose

for now that the recurrence is successful, and conpute
v(x) = (the nunber of val ues un(x) < 0)
Sylvester's Law inplies that
V(X) = (the nunber of J's eigenval ues A < x)

Therefore any selected eigenvalue N, can be conputed as the limt of a

Kk

sequence of nested intervals [x , x ] wth
-m Jul

Wz ) < k < v(Em) for all m,

15




< < x <X
x SX 0S¥ S X for all m,
and X =x -0 as m-ow

m -m

The nechani sm by which the successive val ues X and Em are chosen is
of no consequence here; a bisection nmethod could be used (cf. WIkinson
(1962)), though that is slow. A faster algorithm has been produced by the
author and Jim Varah (1966). But the error-analysis is independent of the
way in which the values X and ;m are chosen p“rolvi ded they have the
properties listed above.

So far we have not seen anything very new. Indeed, the function

v(x) is just the nunber of variations of sign in the Sturm sequence

9, =1, 9(x) 5 0,(x) eens Bp(x)
which has been in use for over a decade to conpute the eigenval ues of
symetric tri-diagonal matrices. (See WIkinson's book (1965) p. 299-312.
Al so see Househol der's book (1964) p. 86-7ex. 10 and 11, and p. 175 ex. 1k;

hi s ?, differs fromours by a factor of (-1)® .) However, the T-recurrence
: .2
an = (an 4- x)q)n-l - bn-lan-E

takes nore tinme on most machi nes than does the u-recurrence; and over/

underflow is an inescapable conplication in the g-recurrence whereas the
u-recurrencelcan be rendered alnmost immune to over/underflow. These are
the reasons Davison gave for his preference of the u-recurrence. Unfor-
tunately, he died before he had the chance to show how well behaved his

method could be. The task of analysis is now ours.

16



Over/Underflow on the nmachine

Over/underflow in the u-recurrence can easily be rendered insignificant
by a proper prelimnary scaling of the data 8, and bi , The description

of the scaling process begins with a definition of certain machine constants

Q@ is the greatest floating point number normally
represented directly in the machine

n is the smallest positive (non-zero) floating point
nunber normally represented directly.

€ is the smallest positive floating point nunber
such that the conputed value of 1.0 + e differs
from1.0 after it is rounded or truncated to the

precision being carried.

The following table lists typical values for these paraneters:

17
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W nust also make certain assunptions about the treatment of arithmetic
over/underflows, because they will occur. First, we assune that whenever
any floating point arithmetic operation (+, -, X, /) underflows its
result will be cleared to zero. Second, we assume that whenever any opera-
tion overflows its result will be set to +Q or - with the correct sign.
The preservation of sign after overflowis essential. Fortunately, these,
conventions for the treatnent of over/underflow are widely used on nany
machi nes, including the IBM 709 and, possibly, the Burroughs B5500.
Unfortunately, the new | BM 360 series hardware forgets the sign after over-
flow, but presumably that oversight will soon be corrected. It is possible
to prevent the u-recurrence fromoverflowing at all, but to do so costs
a noticeable retardation on nmost conputers, as we shall see

If over/underflow is treated as described above, any over/underflow
occurring in the u-recurrence will be practically inconsequential for
reasons to be given later. Therefore we nust make a third assunption; we
assunme that the program can inhibit the production of diagnostic over/underflow
messages and can ignore any over/
underflow indicators that mght otherwi se serve as superfluous distractions
during the computation of the u's . (This is not neant to inply that
those indicators are superfluous in any other context. Quite the contrary:)

If all three assunptions about the treatment of over/underflow are
valid then they cope with the problem far nmore sinply, elegantly and econ-
omcally than any other scheme known to the author. There is reason to

doubt that any conparable scheme coul d ever be devised for the g-recurrence,

19




Scal i ng:

Now et the scale factor o be defined as the largest power of the

machine's arithmetic base which satisfies

olail < 10 and crlbil < for all i |,

wher e
.= nl/)-LQ-l/Q

The significance of this constant « 1is that over/underflow will later be
shown to contribute an absolute error no larger in magnitude than about

bt . g (J) to the conputed eigenvalues. The values of < tabulated

above show how small' < usually is conpared with the rounding error level €.
Evidently over/underflow will hardly ever restrict the range of nagnitudes
spanned by the accurately conputed eigenvalues of J nearly as nmuch as do
rounding errors.

Normal ly o s approximately
TQ/max,(maxilaiI , maxilbil) :

but there are exceptional cases-where that expression would overflow, so o
must be set instead to the largest power of the machines arithnetic base.
These cases are ignored in what follows because they are susceptible to a
sinpler analysis with the same results as are denonstrated below.

After o is known, the matrix J is scaled by being replaced by oJ .
Since o is a power of the base there are no rounding errors. But under-

flows may occur. These underflows result in the annihilation of at nost

20



t hose el enments a; and b, which satisfy

1/2
la.l < n

a. "Iub's-(;r) or Ibil < nl/ew 1ub§'(‘J)

These perturbations are negligible conpared with what follows, so they may
be ignored. Later the conputed eigenvalues A, wll be unscaled by dividing
themall by o . Any over/underflow which occurs here is fully deserved

and nust be reported by the diagnostic machinery mentioned above to indicate
that some eigenvalues (just the ones that over/underflow) cannot be repre-
sented in the normal way without over/underflow. Nothing more need 'be, said

about scaling: we nerely assume henceforth that

10 < lubg (J) <370

21




Two prograns:

Now is the time to wite out the u-recurrence explicitly in, say,
FORTRAN. There are two versions, according as overflow is prevented or

allowed. Both versions begin by constructing the arrays BB and A con-

t ai ni ng
BB(I) = b'i_l
, for I =1,2,..., N.
All) = 8y

| f IbI_ll < wjn then BB(l) wll underflow to zero, but this amounts to

a perturbation of no nore than

'\/-Tl-= . (10) < T.lubS(J)

inthe given matrix J, and is included in the error analysis given later

Note that BB(I) = 0.0 by definition, and that we can assume that
x| < 1w, (9) < 310
is satisfied by any nunber X which mght usefully be considered as an
estimate of an eigenvalue.
Here is the segment of code which prevents any overflow in the u-recur-

rence; the constant RTETA has the val ue

RTETA = 1.

22




The FORTRAN synbol ".gT." stands for ">" .

D3 I =1,N
U= (A1) - BB(l)/U - X
|F {U .GI. RTETA) G® T3

1 |F (U.GI. - RTETA) U = - RTETA
"2 NU =NU + 1 ... when U< O .
3 CONTINUE

Now NU = v(X) . . .

Wienever the conputed value of wu; lies between -\/m and +\/n , it

Is replaced in statement 1 by —\/q. Consequent |y the quotient b?/uI

never exceeds

(PNT=2 ,

so overflow is inpossible. Of course, up My have been decreased in
statement 1 by as nuch as  24fn , but this too is no larger than might

have been caused by decreasing a; by the all owabl e perturbation

2q/m < 2t . lubg(J) .

Here is a sinpler and faster program segnent which i s useable whenever

overflow is treated according to the conventions described above. The

constant ETA = n .
23



U= (A1) -BB(I)/U - X

IFr (U) 2, 1,3

1 u= - ETA .. . if Uwas 0.
2 NU= Nu+ 1 ... if Uwas <0 .
3 CONTINUE

. Now WU = w(X) . . .

Not e that whenever any U vani shes it is replaced in statement 1 by

u, = -n to forestall a subsequent division by zero. Wenever (rarely)

I
any uy overflows, its sign remains unchanged so that NU is treated

correctly; then Urg is in error because the conputed val ue of bi./uI
nmust be larger in magnitude than it should be. But the error in Uryg

is no worse than mght have been caused by perturbing a by at worst

I+1

(19)2/9 = 1(10) < T.lubs(J)

And underflow, if it occurs, causes no nore perturbation than n, which
i's negligible.

Al told, these subterfuges for circunventing the ill effects of over/
underflow cause the conputed value NU to be, instead of v(X) , some

val ue that would have been obtained ha-d J first been changed in each

el ement by at nost

21 .lubs(J) (in the first progran or

24




T .1ubS(J) (in the second program

before v(X) was conputed w thout any intervention on behal f of over/under-

flow  These perturbations will be shown later to affect the conputed

ei genval ues by no nore than lm.lubS(J) . First we should consider one
| ast programmng detail.
th . . th . . .
The k eigenvalue N _ is the k junp-point of the integer valued

k
function v(x) ;

lim v(x) < k < lim, v(x) .

x—i\.k - x—:?\;:k+

(The multiplicity of the junp-point N is just the difference between

k
the upper and lower linmts.) Can a simlar statement be made about the
conputed approximation NU(X) ? |f so, any algorithm that works properly
for the exact function v(X) will work properly for its approximtion
NU(X) . If not, if NYX) could have nore than N junp-points, then
great care would be required to design the algorithmin such a way that
it could not be confused by spurious junps down. As it happens, no such
care is required on nost machines.

Ve shal|l denonstrate bel ow that,- despite rounding errors and over/
underflow, the conputed function NJX) is a nonotonic non-decreasing
integer valued function of X with just N junps. The only assunption
is that each arithnetic operation executed by the machine is a nonotonic
function of its arguments despite rounding. For exanple, if A, B and

C are all positive nunbers represented in the machine, and if the FORTRAN

program

257




X = A+ B

Yl

(A+C +B

X2 A- B

Y2=(A+C -8B

X3 = A% B
Y3 =(A+C)*B
X% = A/ B

™= (A+0C /B

x5= B/ (A +¢C)

Y5 = B/ A

is executed, then XI < Yl for all | =1,2,3,4% or 5. This assunption
is certainly valid for single precision conputations on all of the nachines
listed in the table above. [Indeed, the builder of any machine which failed

to satisfy this assunption should be ashamed of hinself.

26



The Monotonicity of NUYX):

The nonotonicity of NJX) will be derived as a consequence of the
properties of the successive values of U, for which sone notation is
required. Gven any argument X , a number representable in the machine,
ei ther program above will produce a sequence of values Un(x) and NUn(x) s

the val ues taken by U and NU respectively after statement 3 has been

executed for the nth

time. In particular,

UO(X) = 1.0 and NUO(X) =0 ;

U, (X) = [A(1) - X] -rounded etc. and
NUl(X) =0if X< AL -0

=1if X>A(1) -6,

wher e

D
1

A/m in the first program

n in the second program.

Note that no Un(X) can lie closer to zero than +6 or -6 . At the end

of the DO | oop,

U= UN(X) and NU = NYX) = NUN(X) :
The interesting values of X are those where some Un(X) changes
sign. These points shall be identified precisely with the aid of a notation
x’ for the successor of X ; if Xis a nunber representable in the na-

chine and eligible to be an argunent for the programs above, then X is

the next larger eligible argument. Normally X wll exceed X by one
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unit in their last place being carried in the conputation.

A "zero" z of Un(x) is now defined to be any argument Z which

satisfies both
Un(z) > 6 and -6 > Un(Z ) .
A "pole" Y of Un(X) is any argument Y which satisfies
s
Un(Y) < Un(Y ) .
Un(X) can change sign only at a zero or a pole, though Un(X) may fail
to change sign at sone poles. Between any two zeros of Un(x) nust lie

at |east one pole where Un(X) changes sign, and possibly some ot her

pol es where Un(X) does not change sign. Let us exam ne these poles nore

closely.
If Yis a pole of Un(X) t hen
[BB(n)/U,_,(¥)] > [BB(n)/U__, (¥")]
because the contrary relation would prevent
v (X) = [[A(n) - [BB(n)/U_ (0] 1 -x7,

where each pair of brackets means

“round [...] and take care of over/underflow, if any"
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from increasing when X noves fromY to Y . (Note that the over/

underfl ow subterfuges do not destroy the monotonicity of the arithnetic ’

operations even if Un(X) has to be replaced by -€.) Therefore either

Y is a pole of U, l(X) wher e U does not change sign, or Yis a

zero of Un_I(X) . A backward induction yields the follow ng statenent:

If Y is a pole of Un(x), then there exists

sone positive integer m < n such that
/
Um(Y) >0 > Um(Y )

and for all integers i (if any) strictly between

m and n
Ui(Y) < Ui(Y )
with no change of sign,

V& abserve that Ul(x) has no poles and just one zero, Therefore,
as U2<X) is carried from Ug(-sz) =qQto UE(Q) = -0, it can have at
nmost two zeros separated by one pole where U, changes sign, or one zero
and one pol e where U, does not change sign, or one zero and no poles if
BB(2) is very tiny, In all cases one can verify with ease that NUE(X)
i's a nonotonic non-decreasing function of X with at nost two distinct
junps frommu,(-2) = 0 to NU,(@) = 2 .. Rather than extend this desired
property to NUn(X) for all n by a long constructive argunent, we shall

show that a failure of NUn(X) to be nmonotonic would create a contradiction,,
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Let n be the smallest integer for which NUn(X) is not a nonotonic
function. Cbviously n > 1 . Suppose NUn(X) fails to be nonotonic at Y ;

si nce

0 = NU_(-0) < NU_(X) < n = NU (@),
the failure nmust take the form

NUn(Y) > NUn(Y’)

However, our hypothesis about n inplies that NU_ l(X) i s nonot oni ¢,
whi ch neans
- N, (Y) <Nu o (Y0)
Al so,
NUn(X) -NU_,(X) =0if Ur{X) >0
=1if Un(X)<O,
S0

0> NUn(Y') - NUn(Y)

1]

{vw (v') - (¥)]
+ {w €9 - N, (V)]
+ {nvu__, (¥) - N (Y))

{0} + {0} + {-1} = -1 .

v
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But this inplies, (tern) by (tern} , that

7 _ ’ /
NUn(Y ) = NU_ l(Y ) and Un(Y ) > 0 ,

w _,(¥') - w . (¥) =0, and

Nu (Y) = NU _ (Y) + 1 and U (Y) < O .

Evidently Y is a pole of Un(X)u Therefore there exists sone positive

integer m< n for which Y is a zero of Um(X) ; we shall have

v (¥) >0 > Um(Y’) .

il

7 / N
Theref ore NUm(Y ) NU_ l(Y ) + 1 because U I%Y') <0,

> NU l(Y) + 1 by nonotonicity ,

I

NU (Y) + 1 because U (Y) > 0 .
m m

Also, if there are any integers i strictly between m and n-|

NUi(Y’) - NU,

L, (Y) = W (Y) -

i l(Y)

because Y is a pol e of Ui with no change in sign, Therefore

N (Y) - N L (Y) = YY) - NU(Y) > 1

whereas we saw a' bove that
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This contradiction proves that NJ(X) 1is a nonotonic non-decreasing function
of x, as desired.
It seenms surprising that so strong a result can be proved with no

appeal to the continuum nor any estimate for the errors in the values Un(X) )
On the contrary, the values of Un(x) can be conpletely different from the
mathematical ly exact values u_ that woul d have been obtained w thout
rounding errors nor over/underflow, even to the extent of having the wong
signs. Fortunately, the errors in the intermediate results Un(X) are

of no interest beyond an assurance that the errors are not haphazard. And

t he behavi our of NU(X) provides just that assurance.
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Boundi ng Rounding Errors:

The next step is to show that if [x]< lubE(J)‘ then NY(X) is pre-
cisely the value that v(X) would have taken if J had been replaced by
some nearby matrix J(X) and all conputations had been carried out in-
finitely precisely with neither rounding errors nor over/underflow subter-
fuges. The principles behind the analysis that follows are very much |ike
those to be found in WIkinson's books (1963,1965). W shall try to describe
the elements of J(X) in terns of the nunbers that actually appear in the
arithmetic regi sters of the nachine during the conputation, and in terms of
the rounding error bound ¢ tabulated above for several machi nes The
ideas involved are best illustrated by the follow ng exanples,

The FORTRAN assignnent statenent

C=A*%B
will not replace C by the product of A and B, but will instead set
C toaval ue
C=(1+T7)AB

in which 7 is normally bounded by, say,

7] < e

Note that A, B and the new value C are defined quite precisely, and

satisfy the previous equation exactly. The only unknown quantity is 7 ,
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but |y| is bounded by a known value ¢ except when over/underflow inter-

venes. Simlarly, the assignment statenent

C=AB
actual ly stores a value
C=(1+p)AB
wher e gl < e

As a matter of fact, the situation is not always as described above.
I n doubl e-precision the values of B and y can be as large as 3¢ on a
T709%, 5¢ on a B5500, and 16e on a 360. These unnecessarily |arge
errors are so repugnant to the author that he takes the liberty of passing
them directly fromthe machines' nmanufacturers to the reader, who may ac-
commodat e themby nultiplying e in the bounds given bel ow by whichever
factor is appropriate for his machine. For a simlar reason, the author

chooses to presune that the FORTRAN st atement

C=A+B

causes C to take precisely the value

C=(A+B)/Q1+a)

Wth |a| < e . Only in double-precision, and then only on some machines,

is it necessary to replace the last two relations by

C=(1+aA+(1+8)B

34




with |of <e and |g| < e, but this will weaken the error bounds to

be given below by a factor no larger than two.

The Construction of J(X) near J:

The first step in the construction of J(X) is the definition of

certain val ues AI and BI correspondi ng respectively to a; and bI

Let us set

[we]
Hy

I bI i f B? does not underflow ,

0 if |bI|<~\/'n"'. o

1

In either event, IBI - bII < y/m -And

2

BB, = BB(I) = (1 + BI)BI 1

I
wher e 5& is the relative error due to nultiplication and satisfies

|B:'[| < e . (The primes used during the construction of J(X) do not de-
note successors.)

The val ue of Al depends upon X, and differs from a only to the
extent required to conpensate for the effects of over/underflow  Reasons
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have al ready been given why we should, expect t hat

|AI - aI| <271 1in the first program,

</nin the second program,

execpt for an ignorable contribution no larger than n . Let us stay with
the second program from now on, and ignore not only the scaling underflow

error n by setting

A(l) = ar

but also agree to ignore the conparable error induced by underflow or state-
ment 1 during the conputation of Ul

The dissection of the FORTRAN st atenent

U= ((A(1) -BB(1)/Y - X

to find its rounding errors is an inductive process. For I =1 we define
Ay = A(l) = a, and
v, = Al - X precisely, and
_ _ - ¥l = /"
U, = [[A(1) - 0.] - X] Vl/(l + al) ,
wher e |a']'_|< € . Evidently sign(vl) = sign(Ul) .
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W al so set ai = ei’ =0 and v =1 . The induction hypothesis is that

for n = 1,2,..., |- we my wite

v S A - (LB A )0 of 1)BB /v 4 - (1 + @)X,
A, -l <yn,

IB;|<e,|a;l|<e,|a’r’1|<e, and

either v = (1+ O‘/r,l)(l + O(;I)Un or

|U|:QandO<Un/v <land o' =ad =0.
n n n n

In any case, sign(v ) = sign(U ) £0 .

The hypothesis is obviously true for n =1, since BB, = 0 . Note that
U, represents what was earlier referred to as Un(X) , and is a nunber
actually stored in the conputer. The val ues BB and a, are al so stored
in the conputer, but A will not be stored if it differs from & and
v is a figment of the imagination except, for its sign.

Now for the advance to n =1 . The first value to be inspected is

[BB(I)/UIl]rounded = (1 + BI)BBI/UI 1
wher e |{3’i|< e unless overflow occurs. (Underflow is being ignored.)
If this quotient overflows then the remaining arithmetic operations are

irrel evant because the scaling has ensured that neither A(1) nor X can

be bigger than
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310 << €

therefore overflow will cause U to be given the value

Uy = -0 sign(UI_l) ,

and we may define

A = a s; =g =d

<
1]

1= (Ap - BB/Up 1) - X

These values satisfy the induction hypothesis.

If the quotient [BBI/UI_l] does not overflow, there is still the

possibility that the previous quotient [BBI_ﬂﬁJ 2] overflowed to be

considered. In this case |UI_1| =qand 0 <U /v, <1, andue
define
A = A(l) - [BB(T)/U ]+ (1 + B?'[)BBI/VI_]_
Evidently
AL - aI| = (1 + B;)BBI|1/UI_1 - 1/v1_1|
<(1+)@2Yal=(1+E Vn .
The factor

1 +eis uninportant and shall be dropped.+ Note too that ,

A(I) - [BB(I)/UI-l] AI - (1 + B&)BBI/VI 1

14

A= (1 + B+ o )L+ oy [ )BBY/ vy
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The last relation is satisfied too if neither [BB(I)/UIl]. nor

[BB(I-l)/UI_Q] overflowed, in which case we set Al =aA(I) = a; , because
— 14 I'4
then vy, = (1 +of )@ oy )0,

Continuing, if [BB(I)/UI_l] does not overflow then the value stored

for U wll be

o = ttag - (14 e+ of D+ af mey/vy )1-%
= ((Ap - (0 + A + o DA+ ap BB /v, )+ ar)

- X)/ (1 + of)

- " I'd
= v/ (L + o)1+ a)))
_ where the rounding errors of addition are bounded by |a£| < ¢ and
|a’i|< € . This result advances the induction fromn =1 -1ton = |
as desired, and lays a firmfoundation for an error bound for the eigen-

val ues.

Let the matrix J(X) be defined now to have

/ .
A -aXxin pl ace of a, and

4 " " I's .
-\/{1 + en)(l + an)(l + o l)(1 + l) B, in pl ace of bn-l

Teoelnee Lo,

Certainly J(X) is close to' J ; more precisely, , but néglecting ternms

’ oD 0 il

of order € and n ,

|3(x) - J| < 2¢|g - diag J| + e|x|T +/n H

el ementwi se, where
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J -diag J = only the off-diagonal term;nb inJ
H =the tri-diagonal matrix with all elenents =1 .

Denote the eigenvalues of J(X) by

M) S A(X) < e (XD

to correspond with the eigenval ues A of J .
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The Absolute Error in xk:

The reason for constructing J(X) was that NJYX) 'would be the nunber

of J(X)'s eigenval ues )\i(x) <X, and nowthis can be proved. ©* For

NU(X) = the nunmber of val ues Un(x) <0

t he nunmber of val ues i <0,

and the v, are to J(X) what the uncontaninated val ues un are-to J .

And each eigenvalue xi(x) differs fromthe correspondi ng M by no nore

t han
Lub (I(X) = 9) < 2¢ Lubg (|7 - diag I +elx]
+-\/TTlubS(H)
Her e
VT Lubg (H) < 3V = 31(0) < 37 lubg(7)
and

2¢ lubS(lJ - diag J|) < 2e Lubg (J)

by virtue of the nmore general formof our earlier result no. 2 with

~\Jo? + 8% =1\Jo + (2¢)% . Finally, the only values of X that will

concern us below are those which approximate sone 'eigenvalue . , so
1
we can certainly assume that e|x| < & max, || = ¢ lubg(J) to within
a negligible extra error of the order of ¢°|X|. For those values of X

we have

In ) - n ] <r=3(e+ T)maxj |xj|
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as a bound for the difference between the corresponding eigenval ues of
J(X) and of J . This neans that, as X varies over the allowable

arguments, each eigenval ue A.i(x) remains confined to sone fixed interval

,\i~rg>\i(x)<>\i+r.

W have already seen that for any given k there is precisely one value X

I

which, with its successor Xk , satisfies

NU(X, ) < k < NUCXD)

these values can easily be conputed. And the relationship between NU(X)

and the xi(x) tells us that

X, < xk(xk) SN *T and

N - TS N (XD) < X
Si nce
0< X, - X < 2 max || ona rounding machine
<e maicilxil on a truncating machine

(we mght as well assume now that arithmetic is rounded), we can accept

. /
ei t her Xk or X

K as an approximtion to N and commit an error no

| arger than

r + Qemalele = (5¢ + BT)malekj |
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Thi s bound conpares favourably with that obtained by WIkinson (1965,
p.304-5) for the Sturmsequence (g-recurrence) algorithnlih t he abséﬁce
of over/underflow, In our notation 'his bound is 17e malexj|, although
the use of our nore refined nethods reduces this to 8.75¢ malekjl.

This bound is not appreciably increased if WIkinson's 1962 programis
amended to cope with over/underflow, but then the (p-recurrence becomes

nuch slower than the u-recurrence. Therefore the u-recurrence has all the
advantages of speed, sinplicity and accuracy over the v-recurrence.. On a
conputer using rounded binary floating point arithnetic, the biggest eigen-
val ue can be conputed to within a guaranteed relative error of 25 units
inits last place, and no eigenvalue will suffer a larger absolute error

For chopped arithnmetic the guarantee is 4% wunits in the last place. Thesé
bounds are inpressively small; but they are substantially larger than nost

of the errors observed in practice.

Wy ?
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The d ass 9 of neighbours of J :

A nicer appreciation of the accuracy of the u-recurrence can be achieved
through the consideration of the class 9 of symmetric tri-diagonal matrices

J which satisfy

|5 ~ 3| < 2¢|g - diag J] .
For exanple, on the rounding binary computer mentioned above the class 1
consi sts of those matrices J obtained fromJ by changi ng each off-
di agonal element of J by at nost one unit in its last place. The set
9 is a convex set in the sense that if 50 and 51 are nenmbers of g
then so are all matrices of the form

tJl+(1-t)J.0for05t<1

lying "between" 50 and 51 . Each matrix J in 9 has a set of eigen-

val ues
<K <. .. K< < A\
f\l - )\2 XN-l KN
. . . 1[4 .
and as J varies over 9 each eigenvalue A, varies over sone set A
whi ch can also be shown to be a closed convex set. In other words, associa-

ted with the class 8 of matrices J is the set of N intervals

A, = the set of all x:ikfor some Jin 9
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Sone of these intervals may overlap, but it is soon seen that no A can
be containedstrictly inside another. Therefore.the intervals, A, share

. K
the sane ordering as the eigenval ues N Qovi ous 1y A is contained in

'\’k - 2¢€ malexj| <x< A+ 2¢ maxj|>\j| R

k
but the interval Ak hardly ever occupieé nore than a small fraction of
that latter interval.

- The significance of the interval A, is that for nost practical pur-
poses any nunber in A Is as acceptable an approximation to A as any
other. Such mght be the case,, for exanple, if each off-diagonal elenent
b, of J were independently in error by as much as eelbi| because Of
previous rounding errors. The independence of the errors is essential;
correlations anong the errors in the b.1 could conceivably cause the

eigenvalues of J not to be in error at all, as would be the case if

0 1l+te O 0 1l-e O
I+¢ 0 1-E were erroneously conputed as l-e 0 1l+e
\ 0 1l-¢ O 0 1l+e O

As long as the errors in the b, are i ndependent, the width of the inter-
val A is an indication of the extent to which N st be regarded as
I nescapably uncertain And that the error introduced by the prograns

anal yzed here contributes negligibly to this inescapable uncertainty shall

now be denonstrated.
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Let J(X) be defined to have el ements 8 =a, and

L 7 " 14 / .
b, =-\/(1 + 5n)(1 + Bn)(l + o l)(1 + an) b . . where the G eek
letters were defined during the construction of J(X) . Except for terms

of order e2 whi ch shall be ignored,

Ibn-l - bn-ll < 2e |bn-—ll

so J(X) bel ongs to 8 and each eigenval ue )lk(x) of J(X)lies inits

correspondi ng interval A Al so,
|3(x) - 3(x)| < elx|T +/n &
except for ignorable terns of order 5, so
lik(x) - xk(x)l < r(x) = e|x| + 37 maxi\xil
And if X, and its successor Xl'{ are defined, as before, by
NU(X, ) < k < NU(Xp)

t hen

X, < xk(xk) < ik(xk) + r(Xk) and

(J z / / 4
M) - e <A X X
[f arithmetic is rounded, then

X, - X <2e max. (x|, %)
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(except possibly when )ﬁ - § =1, which is ignored). Putting all the
facts together shows that either X, or Xé differs fron1X(Xé) or
(X

k) respectively by no nmore than

56 max'( IXkl b IX};l) + BTm‘axilhiI

On a binary machine with rounded floating point arithnetic we may summarize
this result as follows:

~ The conput ed approxi mation to the kth ei genval ue Me of J need
not differ by nore than 1 % units in its last place fromthe KR eigen-
val ue ik of some matrix jk each element of which differs fromthe cor-
responding element of J by at nost one unit in its last place, plus an

absolute error of
31 maxi|>\i|

from over/underflow subterfuges.
In other words, if J is already uncertain in each elenent by severa

units in its last place, and if
kal/maxilxil > 37/e

(which is not often a restriction since 3t/e < 107 on each of the machines
tabul ated, even in double-precision), then the additional uncertainty intro-

duced by the conputation of MNe will be insignificant when conpared wth

the intrinsic uncertainty in x_caused by uncertainty inJ . [f A

k k
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isintrinsically uncertain by only a fewunits inits last place, then the
approximation to >‘k will be accurate to within a few units in its |ast
place too despite the fact that A_is nuch snaller than ‘maxilxil . This
partially explains why some of the very small eigenvalues of symetric tri-
diagonal matrices have been conputed to such unexpectedly fine relative

precision by the u-recurrence.
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I nsensitive Eigenval ues:

But why are the smaller eigenvalues of J so frequently (but not
always) so nuch less sensitive to small relative perturbations in J than

m ght be suggested by sinple exanples like the follow ng?

Unlike this exanple are many others where even the tiniest eigenvalues suffer
relative (rather than absolute) displacenents which are of a comparable order

of magnitude with the relative changes in the off-diagonal elenments 'of J ,
Outhough not always easy to explain, it is oftenobserved that J's eigen-
values are less sensitive to relative perturbations in the off-diagonal
elements than to conparable relative perturbations in the diagonal elenents.)

An extrene exanple of this phenonenon is provided by those matrices J
whose diagonal elenents all vanish. These matrices turn up during certain

conputations of singular values, see Golub and Kahan (1965) p. 213. The

met hods used above can be exploited to prove that
[f J is an NXN synmetric tri-diagonal natrix,
if diagJd =0, andif |83 < €lg| ,

then the ordered eigenval ues N of J and

N, + B\, of J + 8&J satisfy
1 1
[sxil < Welr |/ (1 - we)

provided Ne < 1.
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An outline of the proof follows. Wite

b, +8b, = b (L + B,) with lail < e .

Wthout loss of generality we may assume

b, £#0 for 1<i<N

Corresponding to the u-recurrence applied to J - xI is the correspondi ng

v-recurrence, say, that belongs to (J + SJ) - xI ; they can best be conpared

when witten side by side thus:

B X 1= "0

2 2
=D iy vi=x - (L Bi-;l)abi-l Vial

[t is well known and easy to show that both J and J + &J have only sim

pl e ei genval ues Ne and Nt A respectively, and that v = 0if and

and that v, = 0 if and only if x

only if x is an eigenvalue of J , N

is an eigenvalue of J+ &J . (cf. WIkinson (1965) p. 300.)

th

Qur object now is to show that each Mo is the k ei genval ue of

sone matrix which differs fromJ + 8J by terns of order en rather

than e|J| . There are two cases according as Nis odd or even.

If N=2n-1 we define the factors (1 + 71) via

l+7n =1

- 2 S
l+7i+l=(l+Bi)/(12+7i)|f i >n
L+74 % (1 + ﬁi l)/(l + 7i)ifi <n
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Then we set

w, = (1 + 7i)ui and xi = -7i%
and observe that

wl =X1 - X

w, =X -x-(l+B )bg/w .

i i-1771-17 "i-1

This is just the wrecurrence, say, belonging to the matrix
J(x) ~xI=J +58J+ diag(xi) - xI .

_ Since [ + 85 - J(x)| = |X|di&g|7i|

< |x| aiegl(1 - €)% - 1}

< Nel|x|1/(1 - we)

if Ne<1, the k%

kth ei genvalue of J(x) by no nore than Nelxl/(l - Ne) . But the K

eigenvalue A, + BA of J +&J differs fromthe
th

ei genval ue of J(xk) is just A since sign(wi) = sign(ui') for all x
and Wy T vy T 0 for x = N Therefore

[+ 8ny - A | < Nela /(1 - we)

as cl ai ned.
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A simlar scheme works when N is even. Thus, one can hardly be
surprised in this case when each conputed eigenval ue of such a matrix J
is correct to within Nunits in its last place despite a wide variation
in the orders of magnitudes of the eigenval ues.

The possible persistence of high relative precision in many of the
tiny eigenvalues of wder classes of matrices J awaits a systematic
expl anation with predictive powers, in the absence of which it is hard to
say when a small conputed eigenvalue has higher relative precision than is

implied by the absolute error bound

(5¢ + BT)maxJ.IA.J,I .

Concl usi on:

There are faster programs than those described here, but none nore

elegant nor nore accurate.

Acknow edgenents:

This work was done while the author enjoyed six months at Stanford
University on leave of absence from the University of Toronto. The author
thanks Professor G E. Forsythe and Dr. J. Varah for their help and en-

cour agenent .

52




Ref er ences:
F. R Gantnmacher (1959) "The Theory of Matrices," 2 vol., translated by
K.A. Hrsch for Chelsea, New York.

G Golub and W Kahan (1965) "Cal cul ating the Singular values and Pseudo-
Inverse of a Matrix" J. SIAM Nunmer. Anal. Ser. B, 2 p. 205-223.

A S. Househol der (1964) "The Theory of Matrices in Numerical Analysis"
- Bl aisdel |, New York.

W Kahan and J. \'/arah.(l.966) "Two working Algorithms for the Eigenvalues
of a symmetric tridiagonal Matrix", ¢sk3, Conputer Science Dept.Stanford,Calif.

Betty Jane Stone (1962) "Best possible ratios of matrix nornms" Nuner. Math.
4 p. 114-6. For nore detail, see the Stanford University Applied
Mat hematics and Statistics Lab. tech. report no. 19 (May 10, 1962)
of alnost the same nane.

J. H WIlkinson (1962) "Cal cul ation of the eigenvalues of a symetric
tridiagonal matrix by the nethod of bisection. Numer. Math. 4

p. 362-367.

J. H WIkinson (1963) "Rounding Errors in Al gebraic Processes " Notes
on Appl. Sci. no. 32, HMSO, London.

J. H WIkinson (1965) "The Al gebraic E genproblemt xford U. P.

23







