WHEN TO NEGLECT OFF-DIAGONAL ELEMENTS OF SYMMETRIC TR I-DIAGONAL MATRICES

BY

W. KAHAN

TECHNICAL REPORT NO. CS42
 JULY 25, 1966

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UN IVERS ITY

by

w. Kahan ${ }^{*}$

ABSTRACT

Given a tolerance $\epsilon>0$, we seek a criterion by which an off-diagonal element of the symmetric tri-diagonal matrix J may be deleted without changing any eigenvalue of J by more than ϵ.
The criterion obtained here permits the deletion of elements of order $\sqrt{\epsilon}$ under favorable circumstances, without requiring any prior knowledge about the separation between the eigenvalues of J.

[^0]
Introduction:

The computation of the eigenvalues λ_{j} of the symmetric tri-diagonal matrix

can be shortened, sometimes appreciably, if any off-diagonal element b_{i} happens to vanish. Then the eigenvalues of the two shorter tri-diagonal matrices, of which J is the diagonal sum, can be computed separately .

This is the motive for seeking off-diagonal elements bi which are merely small. The deletion of several $b_{i} \neq 0$ cannot cause any eigenvalue of J to change by more than $2 \max _{i}\left|b_{i}\right|$, so the interests of economy may be well served when zero is written in place of all the b_{1} which satisfy, for example,

$$
\left|\mathrm{b}_{\mathrm{i}}\right|<\frac{1}{2} \in,
$$

where ϵ is some pre-assigned tolerance compared with which any smaller error in the eigenvalues is negligible.

But experience suggests that there must be many circumstances when the deletion of $a b_{i} \neq 0$ causes an error much smaller than $\left|b_{i}\right|$; something of the order of $\left|\mathrm{b}_{\mathbf{i}}\right|^{2}$ would be more typical. Indeed, Wilkinson (1965, p. 312) shows that the error so induced should not much exceed ϵ if bi is deleted whenever

$$
\left|\mathrm{b}_{i}\right|^{2} / \alpha<\epsilon
$$

where

$$
0<\alpha \leq \min \cdot\left|\lambda_{k}-\lambda_{j}\right| \text { over } k \# \quad j
$$

Unfortunately, the constant α of minimum separation between the eigenvalues is unlikely to be known in advance of a knowledge of the eigenvalues λ_{j} being computed, so the last criterion for deleting $a b_{i}$ could stand some improvement.

One might easily be tempted to approximate α in some sense by a difference $\left|\mathbf{a}_{\mathbf{k}}-\mathrm{a}_{3}\right|$ between diagonal elements. For example, we might ask whether b_{i} can be deleted whenever

$$
\mathrm{b}_{i}^{2}<\epsilon\left|\mathrm{a}_{i+1}-\mathrm{a}_{i}\right| ?
$$

The answer is definitely-no. And the condition

$$
b_{i}^{2}<\epsilon \min \cdot\left|a_{k}-a_{j}\right| \text { over } k \neq j
$$

is not acceptable either. The example

$$
J=\left(\begin{array}{ccc}
1 & \sqrt{2} & 0 \\
\sqrt{2} & 2 & b \\
0 & b & 0
\end{array}\right)
$$

has eigenvalues two of which change by roughly $\sqrt{\frac{1}{3}} \mathrm{~b}$ when a tiny value of b is replaced by zero.

Evidently any criterion for deleting off-diagonal elements of the order of $\sqrt{\epsilon}$, instead of ϵ, must be more complicated. The following theorem is complicated enough to give a useful indication that b_{i} may be deleted whenever all three of b_{i-1}^{2}, b_{i}^{2} and b_{i+1}^{2} are of the order of $\epsilon\left|a_{i+1}-a_{i}\right|$.

Theorem: Let J be the symmetric tri-diagonal NXN matrix shown above, and let $b_{o}=b_{N}=0$. For any fixed i in $l \leq i<N$ define

$$
\begin{aligned}
& h_{i}=\frac{1}{2}\left(a_{i+1}-a_{i}\right) \quad \text { and } \\
& r_{i}^{2}=\left(1-\sqrt{\frac{1}{2}}\right)\left(b_{i-1}^{2}+b_{i+1}^{2}\right)
\end{aligned}
$$

Then the changes $\delta \lambda_{3}$ in the eigenvalues λ_{3} of J caused by replacing b_{i} by zero are bounded by satisfying the inequality

$$
\Sigma_{j}\left(\delta \lambda_{j}\right)^{2} \leq \frac{b_{i}^{2}}{h_{i}^{2}+r_{i}^{2}}\left\{2 r_{i}^{2}+\frac{h_{i}^{2} b_{i}^{2}}{h_{i}^{2}+r_{i}^{2}}\right\}
$$

For example, if $b_{i+k}^{2}<\frac{1}{3}\left|a_{i+1}-a_{i}\right| \epsilon$ for $k=-1,0$ and +1 , then the deletion of b_{i} will not change any eigenvalue λ_{i} of J by so much as ϵ.

Here is a proof of the theorem. Nothing irretrievable is lost by considering simply the 4×4 matrix

$$
J=\left(\begin{array}{cccc}
a_{1} & b_{1} & 0 & 0 \\
b_{1} & a-h & b & 0 \\
0 & b & a+h & b_{3} \\
0 & 0 & b_{3} & a_{4}
\end{array}\right)
$$

and taking $i=2, b_{i}=b$ and $a_{i+1}-a_{i}=2 h \neq 0$.
Changing J to ($J+\delta J$) by replacing b by zero changes J's eigenvalues λ_{j} to $(J+\delta J)$'s eigenvalues $\left(\lambda_{j}+\delta \lambda_{j}\right)$. But another way can be found to change b to zero without changing the eigenvalues λ_{j}. Let us apply one step of the Jacobi iteration to liquidate b . This requires the con: (action of an orthogonal matrix
in which c and s are specially chosen so that $\stackrel{2}{c}+s^{2}=1$ and P^{T} JP has zero in place of b. The choice consists in the determination of φ in the interval

$$
-\pi / 4<\varphi<\pi / 4
$$

such that

$$
\tan 2 \varphi=T=\mathrm{b} / \mathrm{h} ;
$$

(*)
then

$$
c=\cos \varphi \quad \text { and } s=\sin \varphi .
$$

The following abbreviations will be useful in what follows:

$$
\begin{aligned}
& C=\cos 2 \varphi=1 / \sqrt{1+T^{2}} \\
& S=\sin 2 \varphi=T C \\
& C=\cos \varphi=\sqrt{\frac{1}{2}(1+c)} \\
& S=\sin \varphi=\frac{1}{2} S / C \\
& \sigma=\sin \frac{1}{2} \varphi
\end{aligned}
$$

Then we define $D=J+\delta J-P^{T} J P ;$

$$
D=\left(\begin{array}{cccc}
0 & 2 \sigma^{2} b_{1} & -s b_{1} & 0 \\
2 \sigma^{2} b_{1} & 2 s(c b-s h) & S h-C b & s b_{3} \\
-s b_{1} & S h-C b & 2 s(s h-c b) & 2 \sigma^{2} b_{3} \\
0 & s b_{3} & 2 \sigma^{2} b_{3} & 0
\end{array}\right)
$$

No use has been made yet of the relation (*) above ; on the contrary, the best value for φ might very well satisfy

$$
\tan 2 \varphi=\mathrm{T} \neq \mathrm{b} / \mathrm{h}
$$

and it could be much worth our while to leave φ unfettered for now while preserving the foregoing definitions for T, C, S, C, S, σ, and D in terms of φ.

The significance of D is revealed by the Wielandt-Hoffman theorem, which is stated and proved in an elementary way in Wilkinson's book (1965, p. 104-9):

If A and B are symmetric matrices with eigenvalues

$$
\begin{aligned}
& \alpha_{1} \leq \alpha_{2}<\ldots \cdot \leq \alpha_{N} \quad \text { and } \\
& \beta_{1} \leq \beta_{2} \leq \cdot * * \leq \beta_{N} \quad \text { respectively }
\end{aligned}
$$

then

$$
\Sigma_{j}\left(\alpha_{j}-\beta_{j}\right)^{2} \leq \operatorname{tr} \cdot(A-B)^{2}=\Sigma_{i} \Sigma_{j}\left(A_{i j}-B_{i j}\right)^{2}
$$

Let this theorem be applied with

$$
\begin{aligned}
A=J+\delta J, & \alpha_{\boldsymbol{j}}=\lambda_{\boldsymbol{j}}+\delta_{3}, \\
B= & P^{T} J P, \\
& \quad \beta_{\boldsymbol{j}}=\lambda_{\boldsymbol{j}},
\end{aligned}
$$

Then

$$
\begin{aligned}
\Sigma_{j}\left(\delta \lambda_{j}\right)^{2} & \leq \operatorname{tr} \cdot D^{2} \\
& =8 \sigma^{2}\left(b_{l}^{2}+b_{3}^{2}\right)+2 b^{2}-4 S b h+8 s^{2} h^{2}
\end{aligned}
$$

The right-hand side is minimized by one of the values of φ at which its derivative vanishes; i.e. when

$$
\frac{7}{3} s\left(b_{1}^{2}+b_{3}^{2}\right)-C b h+S h^{2}=0
$$

This equation seems too cumbersome to solve precisely, but it does show that there is a value of $|\varphi|$ between 0 and $\pi / 4$ at which tr. D^{2} is minimized. Over this range

$$
\frac{1}{2} \leq \sin \frac{1}{2} \varphi / \sin \varphi=1 /\left(2 \cos \frac{1}{2} \varphi\right) \leq 1 /(2 \cos \pi / 8)
$$

so the bound we seek will not be weakened much if σ^{2} is increased to $s^{2} /\left(4 \cos ^{2} \pi / 8\right)$. Therefore, let us now choose φ to minimize the righthand side of

$$
\Sigma_{j}\left(\delta \lambda_{j}\right)^{2} \leq 2 b^{2}-45 b h+8 s^{2}\left(h^{2}+r^{2}\right)
$$

where

$$
r^{2}=\left(1-\sqrt{\frac{1}{2}}\right)\left(b_{1}^{2}+b_{3}^{2}\right)
$$

The minimizing value of φ satisfies

$$
\tan 2 \varphi=T=b h /\left(h^{2}+r^{2}\right),
$$

and therefore $1 d$ lies between 0 and $\pi / 4$ as is required to justify the simplifying inequality $\sigma / s \leq I /(2 \cos \pi / 8)$ used above.

Substituting the foregoing value for T yields

$$
\Sigma_{j}\left(\delta \lambda_{j}\right)^{2} \leq \frac{2 C}{1+C} \frac{b^{2}}{h^{2}+r^{2}}\left\{2 r^{2}+C b^{2} h^{2} /\left(h^{2}+r^{2}\right)\right\}
$$

This inequality is much too clumsy to be useful, so it will be weakened slightly by using the fact that $\mathrm{C} \leq 1$; in most cases of practical
interest C is not much less than 1. The weakened inequality is

$$
\Sigma_{j}\left(\delta \lambda_{j}\right)^{2}<\left[2 r^{2}+h^{2} b^{2} /\left(h^{2}+r^{2}\right)\right] b^{2} /\left(h^{2}+r^{2}\right)
$$

and is just the inequality in the theorem except for a change of notation. The theorem's most promising application is to those compact square-root-free versions of the $L L^{T}$ and $Q R$ iterations described, for example, in Wilkinson's book (1965, p. 565-7). In these schemes, each iteration overwrites J by a new tri-diagonal matrix J' with the same eigenvalues as before but with off-diagonal elements which are, hopefully, somewhat smaller than before. The element located at $b_{N} 1$ usually converges to zero faster than the other $b_{i}{ }^{\prime} s$; and the theorem proved here can be a convenient way to tell when that $\mathrm{b}_{\mathrm{N}} \mathrm{l}$ is negligible. For example, $\mathrm{b}_{\mathrm{N}-1}$ can be deleted whenever

$$
\frac{b_{N-1}^{2}}{\left(a_{N}-a_{N-1}\right)^{2}+b_{N-2}^{2}}\left\{b_{N-2}^{2}+\left(a_{N}-a_{N-1}\right)^{2} \frac{b_{N-1}^{2}}{\left(a_{N}-a_{N-1}\right)^{2}+b_{N-2}^{2}}\right\}<\frac{1}{4} \epsilon^{2}
$$

without displacing any eigenvalue by more than ϵ. This simplified criterion has been used satisfactorily in a QR program written by the author and J. Varah (1966), but the program'is not much slower when the simpler criterion

$$
\left|\mathrm{b}_{\mathrm{N}-1}\right|<\frac{1}{2} \epsilon
$$

is used instead.

Acknowledgement:

This work was done while the author enjoyed the hospitality of Stanford University's Computer Science Department during a six months leave of absence from the University of Toronto.

References:

W. Kahan and J. Varah (1966) "Two working algorithms for the eigenvalues of a symmetric tridiagonal matrix" Computer Science Department Technical Report CS43 August 1, 1966 - Stanford University

J. H. Wilkinson (1965) "The Algebraic Eigenproblem" Oxford U. P.

[^0]: *Stanford University Computer Science Department and University of Toronto -Departments of Mathematics and Computer Science. Prepared Under Contract Nonr-225(37) (NR-044-211) Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

