cs 43

TWO WORKING ALGORITHMS FOR THE EIGENVALUES OF A
SYMMETRIC TRIDIAGONAL MATRIX

BY
W. KAHAN and J. VARAH

TECHNICAL REPORT NO. CS43
AUGUST 1, 1966

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY







TWO WORKING ALGORI THVMS FOR THE EI GENVALUES OF A
SYMETRIC TRI DI AGONAL MATRI X

by

*
W. Kahan and J. Varah

ABSTRACT

Two tested prograns are supplied to find the eigenval ues of a
symetric tridiagonal matrix. One program uses a square-root-free
version of the~QR algorithm  The other uses a conpact kind of Sturm
sequence algorithm These prograns are faster and nore accurate than
the other conparable prograns published previously wth which they have

been conpar ed.

The first author's present address is Mathematics Department, University
of Toronto.

*Stanford University, Conputer Science Department.

Prepared under Contract Nonr-225(37)(NR-Okk-211) OFfice of Naval Research.
Reproduction in whole or in part is permtted for any purpose of the
United States Government.







Description of procedure STDQR

STDQR finds all N eigenval ues E[1],E[2],...,E[N] of the symmetric
tridiagonal matrix with A[1],A[2],...,A[N] on the diagonal and
B[1],B[2], ® o=rB[N-1] on the superdiagonal.  The eigenval ues are not

found in any particular order. The input data A and B are not

changed
Accuracy:
In our experience, the absolute error in each value E[i] has not
exceeded a few units in the last place of max |E[31l. The larger
1<j<N

is N, the larger the error can be. But our besi rigorous error bounds
are far larger than the error observed in practice. Turning the matrix
end-for-end (by exchanging A[i] with A[N+1-i] and B[i] with
B[N-i]) can change the errors significantly because the eigenval ues
nearest the elements at the bottomof the matrix tend to be found first.
For best results when the matrix contains significant elements A[i]

and B(i] of very different magnitudes, the smaller elenents shoul d
appear at the bottom in which case the errors in their corresponding

ei genval ues may be as nuch as 100 times smaller than if the matrix were
" reversed.

The program contains provisions for scaling to prevent trouble wth
premature over/underflow It assumes that the conputer replaces under-
flowed arithnetic results by zero. Then each conputed eigenval ue E[i]
will be correct to the accuracy described above unless it overflows or

underf | ows.




Roughly proportional to N° . This is the fastest program known to
date for conputing all the eigenvalues E[i].If only a few eigenvalues
are wanted, then our RECURSECTION program may be faster. Because the QR
iteration used here is cubically convergent, little time can be saved by
relaxing the accuracy requirenent. In our experience, the tine required
for the whol e program corresponds to roughly N2 circuits of the inner

loop (see | abel LOOP in ALGOL 60 progran.

Met hod:
The QR iteration used here is based upon a square-root free version
of the criginal Francis algorithm [4], published by Otega and Kaiser
(51. However, the algorithmdescribed by the latter authors, and pub-
lished in ALGoL 60 by Businger [2], is nunerically unstable. (See exanple
1 of our test results and Welsch [7].) Revisions proposed by Rutishauser
(6] and WIkinson ([10], pg. 567) do not cure the problem Qur version
appears to be stable. W are indebted to J.H WIlkinson for a 2 X 2
exanmpl e containing the first intelligible evidence that the Otega-Kaiser,
and also the WIkinson-Rutishauser version, mght be nunerically unstable.
The origin-shift strategy (the choice of LAMBDA) is an inportant
contributor to the rapid convergence of the algorithm W set LAVBDA to .
t hat ei genvalue of the bottom 2 X 2 principal submatrix which is closer
to the last diagonal elenment, except when this choice is not unique, in
whi ch case the eigenvalue of smaller magnitude is selected.
The criteria for deciding when an of f-di agonal el enent B[i] is

negligible are discussed in reference [13].



ERQ§§DSEL STDQR(AsBsESN)}

N5 INJTEGER N3 ARRAY As»BsE}

K&GIN COMMENTS STOWUR FINDS ALL N FIGENVALUES E(1)2E[2)ree42ELN) OF THE
SYMMETRIC TRIDIAGUNAL MATRIX WITH AC1),AC2)s4¢02AIN} ON THE DIAGONAL
AND BL1JsB[2)seeerBIN=1) UN THE SUPER-DIAGONAL, THE EIGENVALUES ARE
FUUND IN NU PARTICULAR URDER,}

COMMENTS NWR IS A GLUBAL INTEGER VARIABLE, USED TO COUNT THE NUMBER OF
QR STEPS MADE .}

COMMENTS we ASSuvE GIVEN THE FOLLOWING MACHINE QUANTITIES:
HRASE = NUMBER BASE OF THE MACHINE
MACHINF = LARGEST £XACT POWER OF THE BASE LESS THAN 1/4 OF THE
MACHINE UVERFLOW LIMIT

MACHNEGL = SMALLEST NUKMALIZED POSITIVE NUMBER HEPRESENTABLE ON
THE MACHINE
MACHPREC = FLOATING=PUINT RELATIVE MACHINE PRECISION.}
INTEGER IsKysM;

REA| RﬁSpl’CpG’P;WLSCALE)EPSDDELTA;LAMBDA)EKI3
ARRAY HBB[OINIS

CUMMENTs FIRST SCALE MATRIX SO THAT ACIIt2 aw BC11t2 DO NOT OVERFLOW
AND ALLIT(=2) AND 8LIJ%(=2) DO NOT UNDERFLOW, FIRST FIND MAXIMUM
ELEMENI OF THE MATRI1IXe}

R1=ABSCAINIJ)}

FOK I$=N=1 STEP =1 UNILL 1 DU

BEGIN S8=AuS(A[11)5 1f S>R THEN Rt=S3$
St=zABS(6(I3)5 LIE S>r THEN R#=S

END

IfF R=20 THEN

BEGIN COMMENTS MATRIX LS ZERU,.3
U

1
FUR 14=1 STEP 1 UNILL N DU EfI11=0}
GO 10 KETURN

END

CUMMENT$ FUR SCALING, WE ASSUME GIVEN THE MACHINE QUANTITIES
- MACHNU1L MINCMACHINF»1/MACHNEGL) (EXACT POWER UOF THE BASE)
MACHNU?Z SMALL&ST EXACT POWER OF THE BASE LARGER THAN
SQRT(MACHNUL1) /MACHINF
THUS MACHNO2 = BASEY (ENTIERCCOSXLNCMACHNOL)=LN(MACHINF))/LN(BASE))

+1),5
SCALES$=]F NSMACHNU2 THEN MACHINF
ELSE BASETCENTIERCCO,5XLNCMACHNOL)=LN(R))/

LN(BASE)) )3

COMMENT s SCALE IS THE LARGEST EXACT POWER OF THE BASE REPRESENTABLE
SUCH THAT (RxSCALE)Y 2<MACHINF AND (RxSCALE)T (=2)>MACHNEGL .
THIS CUMPUTATION SHUULD BE DONE IN MACHINE CODE,
IT 1S PUSSIBLE THAT SCALE COULDUNDERFLOW IF THE MACHINE 1S SUCH
THAT MACHINFXMACHNEGL > SQRTC(MACHNOL1) BUT WE KNow OF NUO MACHINE
WHEKE 1HIS IS TRUE,.

ECNIISAINIXSCALE)




%%? H I$sN=1 STEP =1 UNTLL 1 pu
G ECI)s=ATIIxSCAA

BB[I]:'(B[I]XSCALL)Tz
ENDJ
BBl0ls=8BIN):=0; '
DELTAt=RXSCALEXMACHPREC/C100%XN)3 COMMENTINXDELTA Is SMALL
COMPARED WITH THE EXPECTED ERROR OF A UNIT IN THE (AS§T PLACE OF
THE LARGUEST EIGENVALUE (SCALED) .S
EPS!;?%LTAt25QUMMLNTtEPSIS USED TO TEST FUR THE NEGLIGIBILITY Of
8 T3
K$=NJ
FOR Ms=K wHILE M>0 QU
BEGIN COMMENT?® SCAN FUR NEGLIGIBLE BBL[K] IN ROWS AND CULUMNS M BACK
TO 1.3
N 5__3 Ki=K=1 wHILE TRUE DO IF BBLKI<EPS THEN GO YO NEXTJ
XT3
[FK=M=1 THFEN Bu[KJ¥=0 ELSE
BEGIN CUMMENTS UEAL WITH BQTTOM 2x2 BLOCK,:
ThOBY23
TesEIMI=E[M=1]3
Ri=BE[M=1]}
K<M=2 THEN
BEGIN COMMEN]® WEAKER TEsT FUR NEGLIGIBLEBBLM=1].}
Wiz=BB[(M=21}
Ci=TT23 S3=R/(C+W)}
Ib SX(W+SxCI<EPS THEN BEGIN Mt=zM=1}
BB[M]:=03
GO TO TwoBY2

END

P

END NEGLIGIBLE BB}

-t

F ABS(T)HISDELTA THEN S$=SQRT(R)
LSt BEGIN wi=2/1;
s==WxR/(>QRI<wT2xR+1)+1)
END3

e

[F KsM=2 THEN
BEGIN COMMENTS A 2%2 BLOCK HAS BEEN SEPARATED, SO WE STORE THE
EAGENVALUES o 3
ELMIS=ECMI+SH
EIM=1)1sE[M=1)=5}
BHC(KI$=0
b}
. ELS
BEGIN COMMENTS_DU A QR STEP UN ROWS ANO COLUMNS K+1 THROUGH M»
USING K AS THE |INCREMENT VARIABLE, IN THE NOTATION OF
URTEGA AND KAISER, C = C[KJIt2, S = S(KIt2, P = P(K],
G = GAMMALK], T = P{K]IT2+B(K]I'2, W = WORK SPACE,:
NWRI=NQR+M=K}
CUMMENTS FIRSI CHOOSE THE SHIFT PARAMETER LAMBOA,}
LAMBDAS=ELMI+5;
IF ABSCT)<VDELIA THEN
BEGIN WiSEI[M=1]1=S}
LIF ABS(W)<ABSCLAMBDA) THEN LAMBDA3=W
ENDJ
S$z03 GI=ELK+1]=LAMBDA} Ci=13

m|

™
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|

™
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RY?
C:= 3 SISW/TS Wi=Ggs
LK1 [K+11;
Gt=Cx(LEK1=LAMBDA) = Sx#u}
ECKJt=(HW=G)+EKL S '
ENTRY? IF ABSCG)<UELIA [HEN
G3=G+(1t G20 1HEN C ELSE <C)IXDELTAS
Pi1=Gr2/C3
KizsK+1;
Wi=BBLK])
ls=W+P3j
BBLK=113=SxT3;
lf K<M THEN GU TU COUP;
ELK):=G+LAMBOA
END WR STEP

———

END GF CONDITIONAL

ENT
LGOP P/
1=tk

END, M3

EO0R I8=1 QIEP 1 UNTIL N PDUELTIt=€ELI1/SCALES

N@R$=NQR/NJ COMMENTS NOR GIVES THE NUMBER OF EQUIVALENT FULL QR STEPS.$
RETURNS -

END STUQRS

I




[1* Description of procedure RECURSECTI ON

RECURSECTI ON fi nds

if K> 0 then the greatest K _eigenvalues E[1] > E[2] > .*. > E[K]
else if K< 0 then the least -K eigenval ues E[1] < E[2] <.** < E[ K]
of the given N X N symetric tridiagonal matrix with A[1],A[2],...,A[N]
on the diagonal and B[1],B[2],...,B[N-1] on the superdiagonal . The

input data A and B are not changed.

Accuracy:

Each conputed E[i] differs by a unit or two in its last place
fromthe i-th éi genval ue of sone tridiagonal matrix which differs
fromthat given by a few units in the last place of each off-diagonal
element. Al told, no conmputed E[i] can be in error by nore than a
few units in the last place of the largest eigenvalue of the given matrix.
The error bound depends upon the details of the machine arithmetic units,
but is independent of N and K .

The program contains provisions for scaling to prevent trouble wth
premature over/underflow. It assumes the conputer replaces underflowed
arithmetic results by zero. The program is such that any underflows
which do occur in internediate results do not cause serious errors in
‘the final results E[1]. In fact, internediate over/underflows can

contribute an absolute error no larger than
(3X(MACHNEGL 1 0.25 )/ (MACHINF 1 0.5 ) )XNORM

where MACHNEG. and MACHINF are, respectively, the smallest and |argest

positive nunbers normally representable on the nachine, and




NORM = max_ max.(|A[1]] , |B[1]]) .

Such an error is smaller than 10'10

units in the last double precision
digit of the biggest eigenvalue of the matrix on any computer we know.
This is in nmarked contrast with the WIkinson Sturm sequence - bisection
al gorithm [9], where premature over/underflow can cause disastrous errors
in the results. Then the user may be unaware of those errors if underflows
are replaced by zero with no message output fromthe nachine telling him
of the underflow. For exanples of this, see our test results. But for
our program each conputed eigenvalue will be correct to the accuracy
described above unless it overflows or underflows. The program al so
assunes that each arithmetic operation (+, -, x, /) s monotonic in
its two operands despite roundoff, which is the case on nost machines

in single precision arithnetic For a detailed error analysis, see

reference [12].

Roughly proportional to |kl x N. This programis the fastest known
to date when 1< |kl << N. Wen |k|] ® N, our QR programis several
tinmes faster in some cases. In particular, RECURSECTION is slowest to

-find those eigenval ues of the matrix which remain al nost unchanged when
the last row and colum of the matrix are del eted, because a binary chop
technique is used to find those eigenval ues. The other (and normally
most) eigenval ues are found nore quickly by a superlinearly convergent
iteration. For this reason, RECURSECTION sonetines works faster after
the matrix is turned end-for-end via the replacement of A[i] by A[N+1-i]
and B[i] by B[N-i] .- Also, if any B[1] = 0 , tinme can be saved by

feeding the matrix to RECURSECTION in two or nore bites, although one



must subsequently sort the eigenval ues of each bite to obtain the desired
ordering of the eigenvalues of the whale matrix.

In any case, RECURSECTI ON is-.substantially faster than prograns
widch apply a binary chop technique to a Sturm sequence,, and is intended

t 0 supersede such prograns.

Met hod:

The basic idea was first put: forth at the University. of Toronto
by Dr. Boris Davison in 1959, and followe from Sylvester's inertia
theorem

If Ais a ;ymetric matrix,, D is diagonal, and I, is non-

singular, and if

A-xTI = Iz.IDLT »”

then the number of A's eigenvalues less than or equal to x is the
sane as the number of negative or zero elements of D.

Ve apply this theorem in procedure SYLVESTER to our symmetric
tridiagonal matrix A by perforning Gaussian elimnation wthout inter-
change6 on A-xI , obtaining

A-xT = LU = LDL'

However, since we do not need L explicitly, we only conpute the diagonal

elements u, of D and record the nunber of u, < 0. The recurrence

i 1
relation for these ug is particularly sinple:
u; Ta;-x
u, = (a b2 _/u )-x , i=2 N
i i "+1+1 ? I




Provided the tine required for a single precision division is not appreci-
ably longer than that for a single precision nultiplication, this takes
about 1/3 as long as the usual Sturm sequence recurrence, partly because
no serious scaling problems are encountered in SYLVESTER Al so, provided
the machine arithnetic is nonotone, hthe recurrence for the {ui} i's such
that the number m(x) - of uy < 0 is a monotone non-decreasing function

of x despite roundoff. This sinplifies the logic of the program For

a simlar reason, we conpute u, as shown rather than from
_ 2
U = (a;=x) - b7 4/u;

to preserve the strict nonotonicity of u.N(x) near its zeros.
ProcedureRSECTI(]\l chooses a sequence of values x to feed to
SYLVESTER in order to find the eigenvalues of A. This procedure is
always entered with two abscissa LO and H which are known to bracket
the eigenvalues we are seeking. W then proceed to find points x be-
tween LO and H , wusing a method described below, in order to converge
to the eigenval ues. Wienever a value x is found which separates
(Lo, HI] into two subintervals (LO,x] and (x,HI] , each known to
contain at |east one eigenvalue, SECTION calls itself recursively to
deal with each subinterval separately. M. Mchael D. Geen suggested
this recursive calling of SECTION, and this seens to be Ehe sinpl est way
“of coding the programso that the best bounds are used for each eigenval ue,
t hough stack-overflow may be encountered in sone cases if too many
recursive calls are made. The depth of recursion cannot exceed |k|.
To formthe sequence of values x , a binary chop nmethod woul d work
inprinciple, but in practice that can be slow. To accel erate convergence

of the iterates x to the eigenvalues, we use a nodified secant iteration,




patterned after D. J. Wheeler's program F2 (see [8], pg. 84 and 130).
This iteration is applied to the function uN(x) » Where Yy is

the |ast elenent of D defined above. Now,

w(x) = de‘("(f(*;_‘{; . where A1) is the (N-1)%(N-1) matrix
det(A ~-xI

formed fromthe first (N-1) rows and colums of A Thus uN(x) is
a rational function with slope < -1 at all points, whose zeros are the
zeros of det(A-x1) , except for those zeros which are also zero6 of the
denom nator to an equal or greater multiplicity. These zero6 are called
"hi dden ei genval ues".

W use the nodified secant iteration on UN(x) when our current
bounds LO and H are such that uN(Lo) > 0 and uN(HI) < 0 . Because
of the nature of the function uN(x) s this ensures that there is at |east
one zero of uN(x) between LO and H . Qherwise we use binary chop
to find the next point x = (LO+ H)/2 . Thus for cluster6 of eigenvalues
and the "hidden eigenval ues" mentioned above, the binary chop strategy will
be used a large part of the time. But once a zero of Uy is isolated, the
secant strategy will be used from then on, giving superlinear convergence

33 =1,

to this eigenvalue, with average asynptotic order 1.4h .

10




PROCEDURE RECURSECTIUNCA,BsEsNsK)3
v F NsKs |NTE.thR Ny K3 AHHA! Ar»B,E
BEGIN COMMENT® RECUKSECTLIUN FINDS
IF K>0 IHEN THE GREATEST K EIGENVALUES E[1]2E[2)24e¢ELK]
ELSE It K<Q THEN THt LEAST (=K) EIGENVALUES EC[(1JSEL2)S.0ssSEL=K]
OF THE NXN SYMMETRIC THIDIAGUNAL MATRIX WITH A[135A02)seeesALN] ON
THE DIAGONAL AND BL11sBL2JseeasBIN=*1) UN THE SUPER-DIAGONAL. THE
INPUT UATA A AND B ARE NOT CHANGED, ;

COMMENIT S Wt ASSUME GIVEN THE FULLOWING MACHINE QUANTITIES;
BASE = NUMBER BASE OF THE MACHINE
MACHINF = LARGLST £XACT PCWER OF THE BASE LESS THAN 1/4 OF THE
MACHINE UVERFLOW LIMIT
MACHNEGL = SMALLEST NUKMALIZED POSITIVE NUMRER REPRESENTABLE ON
THE MACHINE. ;

INTEGER 11
LUpHIPLUsHU»CsRsR1»S»T»SCALES
ARRAY AA,HBBL1IN)S

PROCEDURE SYLVESTER(X»UsM)}
VALUE X3 INJEGER M3 REAL A,U3
HEGIN CQMMENTS SYLVESTER SETS M TO THE NUMBER DOF EIGENVALUES OF THE
NXN SYMMETRIC TRIUIAGONAL MATRIX WITH DIAGONAL AA[L1JseeesAAIN]s AND
SUPER=ULAGONAL SWURT(BBL2)»444sBBINI)» WHICH ARE € Xe U IS SET TO THE
VALUE WF THE LAST PLVUT IN THE GAUSSIAN ELIMINATION OF ((THE MATRIX)
«Xx[)» wITH THE CUNSTRAINT THAT XL=XH S U(X) € XH=XL» WHERE XL AND
XH ARE |Ht BEST BOUNDS WE HAVE FOR THE LEAST AND GREATEST
EIGENVALUES,/
INTEGER 1i OWN REAL XLsXH3  D3AL
Ut=AAL1)=xs M31=20} 18=1; GU TU L3
LCoPs
1831415 Us=(AALT J=BBILI 1/U)=x3
Lt IF USO- IHEN BEGIN Mi=M+13
IF U=0 THEN U3==MACHNEGL
ENDS -
COMMENI$ THIS CODE ASSUMES OVERFLOWS ARE ALLOWED, AND THAT WHEN
IHEY OCCUR» THE ARGUMENT IS REPLACED BY THE LARGEST MAGNITUDE
- WITH THE SAME SIGUNe IF THIS IS NOT AVAILABLE TO THE USERs HE CAN
REPLLACE THE CUDE AF TER LABEL L3 BY THE FOLLOWING» MURE TIME""
CONSUMING CODES
Ls LF U < RTMACHNEGL THEN BEGIN M3iz=M+}
IF U>=RTMACHNEGL THEN U#==RTMACHNEGL
END

e

TWHERE RTMACHNEGL = SQRT(MACHNEGL),}

F I

=

—t

<N ITHEN GO JU LUUP;
THEN XH3=X
SE IF M=0 THEN XL3=X
SE BEGIN D$=XH=XL}
IF ABS(U)>D THEN Uz=sUXSIGN(U)
END CUNSTRAINING U

P

SYLVESIERS

—
-

m X
—Z

l?

[ ad
—

A

e
o]

EAL PROCEUURE NEXT(XsY)}
VALUE X»Y; REAL X»YJ

=X




BEGIN MMENTS NEXTC(X»Y) IS THE NEXT VALUE AFTER X BETWEEN X AND Y
: SIVE "THAT UIFFERS FROM XX BY AN AMOUNT WHICH 1S AT LEAST

AS LARGE AS 1 UNITIN THE LAST PLACE OF Y-X « . THIS
PRUCELDURE SHUULDO BE WRITTEN IN MACHINE CODE, THE COOING

GIVEN HERE 1S JUST AN tXAMPLE» AND CANNOT BE EXPECTED TO BE
OPTIMAL FUR ALL MACHINES. THE MACHINE QUANTITY ULP IS ASSUMEO
GIVEn TO HE THE SMALLEST POSITIVE NUMBER SUCH THAT
1,0+LLPxXBASE # 10 IN THE MACHINE, ;

UrksF3

E3=ABS(Y=X)}3 F1=ABS(X);

Ft=0t=ClF E>F JHEN & ELSE FIXULPXSIGNC(Y=X)3}

IF D#0 IHEN FOR E3=X+D WHILE E=X DU Ds=D+F

tLSE E3=X+(Y=X)/23
NEXT t=tE
END NEXT;

PROCEDURE SECTIUNCLAHsLUSHUSLCsHIsLMsHM)}
LoHsLU» HUSLUPHI»LMsHNM}
INTEGER LsH3 HUHUSLUSHTI,LLMyHMS
GEGIN COMMENTS SECTIUN IS A RECURSIVE PROCEDURE WHICH SEEKS EIGENVALUES
ECLISELL+1)SeseSELH) UF THE NXN SYMMETRIC TRIDIAGONAL wWATRIX WITH
DIAGONAL AA[LL13seeerAAIN] AND SUPER-DIAGONAL SQRT(BB(2J),seesBBIN]),
WHEN CaLLEDs, IT IS ASSUMEU THAT LO < ALL DESIRED EIGENVALUES <HKI,
AND THA} UCLU) /LU > 1 AND yYC(HID/Hu > 1, WHERE UCX) 1S THE OUTPUT OF
SYLVESIER(XsUsM), LW AN HM ARE ACCELERATION PARAMETERS, ;
REAL X»U’5 INTEGER M3
START ¢
IF LLUSO V HU20 THEN
BEGIN COMMENT: DO A BLSECTLION STEP.S
X3=L0+(HI=~LO) /25 COMMENT S THIS SHOULD HE DONE IN SUCH A WAY THAT
THE CONSEQUENCES UF UNUERFLUW TO ZERO IN (HI=LO0)/2 UR IN X ARE
CONSUNANT WL TH THE IREATMENT OF UNDERFLOW IN NEXTCLOsHI) .3

'aal laat
>
=

X3=Lu+t(LU/CLU~HU)IX(H]={G)3 COMMENT: DO A SECANT STEP,;

COMMENTS THE NEXT SIX LINES GUARANTEE THAT LO < X < Hls3
Ut=NEXT(LU»HI)3 LF X<U JHEN Xi=U3
UIENEXT(HL»LU) 3 1F X>U THEN X3=y3}
1F Xx=sHI Vv X=L0 THEN
BEGIN COMMENT: THERE AKE C(H=L+1) EIGENVALUES AT X.3
FUR M3=L STEP 1 UNTIL H DU E[{MIs=X

s

z
=

—
—

I.

s 9

EG { SYLVESTER(XsUsM)j
F M<L [HEN
HEGIN LUMMENT: INCREASE LUWER BUUND3
LOt=4A3 Lyt=Us; LMI=2;
HM 32U 4SxHM3 HUSSHUXHM;
G0 TU START
ENDT
IF M2H LtitN
BEGIN CUMMENT 8 DECREASE UPPER HOUND, ;
HIS=A3 HUI=U; HMiI=z2;
LMI=U,5%X0LM3 LUS=LUXLMS}
GO lu START

o

i

x

12




EKUF
MENLS AT THIS PUINT L€M< SO WE CAN FIND EIGENVALUES L THRODGH M
AND #+1 THRUUGH H SLPARATELY .}
SECTIUNCLsM,LUsUsLUSXsLM»2)3
SECTIUNCM+1,HoUsHUSI A HIS2sHM)Y}
END
END SECTIUNS

COMMENTS NUW BEGIN MAIN PROCEDURE RECURSECTION.?
1F K=0 THEN GO 10 RETUKRNS
IF ABSCKI>N THEN K:i=NXSIGN(K)}

CCMMENTS NUW SCALE MATRIX SO THAT EACH SCALED ABSCALI]) AND ABS(B(I)
IS LESS THAN MACHNU» A MACHINE QUANTITY DEFINED BELUW. FIRST FIND
MAXIMUM ELEMENT UF [HE MAIRIX,$

Ki=ABSCAINI);

FOR. I$=N=1 STEP -1 UNTIL. 1 Du

BEGIN S:=ABSCA[L1])s IF S>R THEN R$=S}

St=ARS(BC 1) LF S>K THEN Ri=$S

EAD;
IF R=0 THEN
BEGIN COMMENT: MATRIX IS LERO .
FOGR T#=1 STEP 1 UNITLL ABSC(K) DO ECI):=0;

GO 10 KETURN
3
COMMENT® FUR SCALING» WE ASSUME GIVEN THE MACHINE GUANTITY
MACHNU = LARGEST EXACT POWER OF THE BASE SMALLER THAN
SQRT(MACHINFXSQRT(MACHNEGL)),
THUS MACHNO = BASETCENTIERCCOoSXLNCMACHINF )*+0+25xLNCMACHNEGL))
/LN(BASE))) .

SCALEI=SIGN(=K)X(IF R 5 MACHNO/MACHINF THEN MACHINF
ELSt BASEY CENTIERCCLNCMACHNO)=LNCR))/LNCBASE))))}

COMMENT S AUS(SCALE) IS NUW THE LARGEST EXACT POWER OF THE BASE
REPRESENTABLE SUCH THAT AYSC SCALE)YXR<MACHNQ., THIS COMPUTATION
SHOULD BE DONE IN MACHINE CUDE.S

COMMENT: NUW SCALE MATRIX ANO FIND UPPER AND LOWER GERSCHGORIN BOUNDS
FOR THt EIGENVALUES )
Ce=A[1 IxSCALE
R1:z3ABS(BL1]IxSCALE);
LCs=C=K13 HIt=C+R1;
Ci=AA(N]S=A[NIXSCALLS Ki=03
FCR ls=N=1 STEP =1 UNTLL 1 QU
UXSCALE)RABS(B(I
R1s$=R+5)
Ti=C=R1J} IF LO>1 THEN LO$=T3
Ts=C4nl) JF HI<T THEN HIt=T}
Ci=AALLJs=ALIIxXSCALL}
Ri=S83
Bull+1)8=8 2
END
RESABSCLUOD+ABS(HI) S

=
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LCISNEXT(LU»LO=r)3 HIZ=NEXT(HI»HI+R)3 COMMENTS TO INCLUDE KOUNOOFF
- ERRUR IN GERSCHGUKIN BUUNUS.}

COMMENTs NUW MAKE THE INIITIAL CALL CF PROCEDURE SECTION, THIS INITIAL
CALL 1S SET UP 1y FINU THE GREATEST 0OR LEAST ABSC(K) EIGENVALUES. IF
SOME UTHER CONFIUURATIUN UF EIGENVALUES IS NDESIRED» THE USER CAN
CHANGE IHIS INITLAL CALL ACCORDINGLY,.}

BBL1131=0;

SYLVESTER(LODsLU» 1)

SYLVESTER(HI»HUs 1))

SECTIUNCL»ABS(K)sLUsHUSLUSHI»2,2)3

CCMMENT: NUW UNSCALE THEEIGENVALUES.S

%%ﬁ ﬁ==1 SIEP 1 UNTLL ABSCK) QU ECIXs=ELI)1/SCALES
TURN?S

END HECURSECTIONS
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[1l. Test Results

Several tridiagonal matrices were fed to RECURSECTI ON and STDQR,
and the results produced conpared with those from sone other prograns,
as shown below. Except in a few cases where the eigenval ues coul d be
conputed in closed formor were otherw se known, we were unable to verify
our clains to accuracy because RECURSECTION is the nmost accurate program
we have. The differences between RECURSECTION's results and those from
the other prograns were never in excess of the known error bounds for the
ot her prograns.

The other prograns conpared were

"wBIs2" - VW{kinson‘s bi nary chop Sturm sequence al gorithm [9].
"OKBQR' — Ortega and Kaiser's QR nethod, published by Businger [2].
(The version proposed by Rutishauser and WIkinson was
al so tested).
"FJLLT" - Sturm Sequence - e al gorithm proposed by Fox and Johnson

[3]

In the results listed below, we |et

T =time in seconds to produce |k| eigenvalues (K given). However
the actual time taken depends on the machine used, so we also |et

F = (nunber of full passes (i.e. N tines) through the inner

100p(s))/ x| ,

and tabulate "T sec."/"F passes/eigenvalue" .

However a direct conparison of the nunbers F is still unfair
because the inner loop for each programrequires a different nunber of
operations. For convenience, we give here a table listing the nunber

of operations in each inner |oop
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o o additions - array
divisions nmultiplications subtractions  references  conparisons

STDQR 3 4 ) 5 b 1
OKBQR 2 3 7 b 1
Wilkinson-
Ruti shauser 3 3 6 4 1.
version
RECURSECTI ON 1 0 2 2 11/2
WBIS2 0 2 2 2 3
FJLIT #1 1 0 2 L 1

#2 { 0 2 1 i 0

The FJLLT programreally has two separate inner |oops, each of
which is described separately above. In the counting of inner |oops
executed, each was counted separately and then the results were added.
Note that we count the number of "full passes" through the inner |oop
In the QR nmethods, this is not the same as the nunber of QR steps
made, since we do not always work with the full matrix. A sinilar con-
sideration affects FJLLT. For RECURSECTION, the count is just the number
of calls of procedure SYLVESTER per eigenvalue, and for WBI S2 just the
nunber of calls of procedure sturnms sequence per eigenval ue.

Al'l results were obtained on a Burroughs' B5500 with 13 octal digits
of significance in floating-point (i.e. about 11 decinmal digits). Division
on this machine takes twice or thrice as long as nultiplication, so the
procedure RECURSECTI ON appears in its |east favourable light conpared

with WBIS2. Timing on this machine is unreliable because of multiprocessing,

16



sothe tinmes tabul ated bel ow shoul d be regarded nmerely as rough indica-
tions.

To assure as fair a conparison as possible, all prograns were set
up to yield results of conparable accuracy. The followi ng adjustnents
were required:

In WBIS2 , the user is expected to state how many binary chops (t)
he wants done for each eigenvalue. This means that each eigenval ue wll
be in absolute error by at nost about 2'tx | Largest eigenvaluel Jf
t is chosen just large enough to yield a desired relative accuracy in
the larger eigenvalues, the smaller eigenval ues may suffer unacceptable
relative errors.  Therefore we set t = 50 even though our nachine uses
only 39 binary digits of significance. To save time, we also nodified

W kinson's programto stop chopping as soon as the conputed bounds for

an eigenvalue differed by no nore than a unit or two in their last place.

Thus the actual code changed was the j-loop in the procedure tridibi-
section 2:

for j :=1 step 1 wuntil t do

begin | anbda := h + (g-h)/2 ;
if lanbda = h or lanbda = g then go to continue;
sturms sequence ;
if al >d then h:=1anbda else g := | anbda
end j ;
continue: m :=m +1;

wlmll:= h + (g-h)/2 ;

This nmodification can only inprove the program

17



The Businger version of Ortega and Kaiser's QR method was found
to be nunerically unstable in certain cases. W modified the loop in
the way suggested by Rutishauser and WIkinson wthout curing the instabi-
lity. (See exanple 1.) Even when the'answers were correct, the program
usual Iy took somewhat [onger than our STDQR despite the fact that our
program has an extra nultiplication in its inner loop. (See exanple 2.)
W attribute the speed of our programto a better strategy for choosing
the acceleration parameter |anmbda than was used by Businger.

The Fox and Johnson program was anended slightly, mainly to correct
a few syntactic errors in the ALGOL |isting and to add a scaling bl ock.
This program conmbi nes a Sturm sequency-binary chop method with a secant
iteration applied to the characteristic polynomal of the matrix, and
uses the QD transformation, organized like Otega and Kaiser's LLT
algorithm to deflate successive eigenvalues out of the matrix. In
order to guarantee accuracy conparable to that of our STDQR, we found

-11 -21

It necessary to set eps2 = 10 and -epsl. = 10 in this program.
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TEST NO 1

X 1
Matri x: 1 1
1 -X 1

This matrix was run with different snall values of x to test:the

QR prograns. The results for x = 107 and x = 10°1% vere particularly
interesting. W believe the true eigenvalues are as follows to 10 figures,

since our nost accurate programs gave results agreeing to 10 significant

figures: -
x = 107°: M = 2.061498246 X = 107 M = 2.061498851
Ny = 00 SR Y, B0 3963385310
M o L0 693817187k M3 = 0. 6938224565
N, = - 1764018050 M, = -1.764014925

T sec./F. passes/eigenvalue
STDQR 0.05/1.5
OKBQR 0.05/1.8

RECURSECTION  0.13/1k4

WBIS2 0.42/41
FILLT 0.10/6.0
With x = 10'5, the original Otega-Kaiser QR, as published by Businger,
gave results accurate to only 2 decimal places. And with x = 10'12, the

Ruti shauser-W I ki nson anendnent to this gave results accurate to at best

one decinal place. For both matrices, our STDQR gave results accurate

to 10 figures.
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Matri x:

TEST NO 2.

X 1
! ix )1( 1 (xk = [ + 4 conl() V2
1 -x 1 < Mitlok = Mg o k=1,...,[N/2].
. A1;—’—1:0(ifNis odd) .
1 1
1=/ nxn
for x = 1
T sec./F passes/eigenvalue
K=0N=30 K=+45 ‘K = -5
STDQR 1.2/1.3
OKBQR 1.6/1.9
RECURSECTION  3.8/12 0.8/16 0.8/16
WBIS2 15/38 2 .3/39 2.6/39
FILLT 3.0/7.2

The timng was nearly the sane for each x tried, except as noted below.
The errors in RECURSECTI ON and wBIS2 were at most 2 units in the
| ast place and for STDQR and the other programs at nmost 2 units in the
| ast place of the largest eigenval ue.
Wth x = 10'5, OKBQR agai n gave very bad results, with errors in
the third decimal place. For x = 0 , that program gave acceptable results,
but took 11 seconds to find them
Wth x = 10,000, no results were obtained from WBI S2 because floating-

point overflow occurred, causing the programto be terminated. A so, we

obtained no results from FJLLT for x = 10000 , even after allowing it
to run for 4 mnutes, because that programis very slow to find near-repeated

ei genval ues, especially when underflows intervene.
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TEST NO. 3.
Zeros of the Bessel Functions Jm(x)

Because of the three-term recurrence relation satisfied by the Bessel

functions, the non-trivial zeros & (k
k,m

4

= 1,2,...,m > 0) of Jm(x)

are given by

= 2/Yu ves
'Ek)m 2/pk, where p, >, > g, >
are the eigenvalues of the following infinite symretric tridiagonal matrix:

/ 2

2 Py % T Tw*2n-1)(w on+1)

b a, b,

o2 e wi th .

b a b b=

% (mten+1)Y(mten) (ment2 ) ’

Furthernore, the first several . are closely approximated by the eigen-

values of the matrix fornmed by taking the first N (say) rows and col ums

of the above nmatrix, provided N is |arge enough.
In particular, we took N = 50 to obtain approximtions to the
first 20 zeros of J_ (x) (and Jl(x)) , using both the matrix as given

above (matrix A) , then flipped end-for-end (matrix B).

T sec./F passes eigenval ue

matrix A (50x50) matri x B (50X50)

n=1,2,... .

X =50 K=20 K=5]K=250 K= 20 K=5
STDQR 2.2/0.9 2.9/1.2
OKBQR 2.7/1.2 3.1/1.4
RECURSECTION 10/37 | 2.6/39 4.2/15 | 0.9/13
WBIS2 22/43 | 5.2/k2 20/ 43 4.5/42
FJLLT 12/10 18/16
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To examne the accuracy, we conpared the results with the tables
given in [1], pg.409-411. The results from RECURSECTI ON for both
matrices A and B agreed with the tables to the machine limt of 11
decimal digits. The results from wBIS2 agreed to 11 digits for the
first two zeros, but the others were progressively nore inacurrate, with
some incorrect in every digit, because of nachine underflow

The results from STDQR for matrix A were in error by at nmost 30
units in the last place (for the larger zeros), and by at nost 300 units
in the last place for matrix B with the small elenents at the top of the
matrix. However, these errors in the zeros ¢ were reflections of
absol ute errors™n the eigenvalues u of only a few units in the |ast
place of the largest eigenvalue. The results from OKBQR were conparabl e,
and those from FIJLLT were sonewhat nore in error in all cases.

The results for Jl(x) were conparable. The errors did not change
when the matrix size was increased fromN = 50 to N = 100 , but times
were about doubl ed for RECURSECTION and WVBI S2 and quadrupl ed for STDQR
OKBQR, and FJLLT, since all 100 'eigenvalues p Wwere found in the latter

cases.
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TEST NO. 4.

Matrix: 1 -10 1

1 9 1
110 N = 41.
T sec./F passes/eigenvalue
K-N= 41 K =45 K =-5
YTDQR 1.7/1.0
OKBQR 2.8/1.8
KECURSECTION |  12/23 0.5/7.0 2.0/35
W LKI NSON 23/k1 2.5/38 2.7/39
FJLLT 6.79.1

The results fromall nethods differed by at nmobst 2 unitsin the last
pl ace of the largest eigenvalue. W do not know the eigenvalues exactly,
but we list here the results obtained for some of the eigenvalues. Because

of the agreenent anong the nethods, we feel these results are correct to

the 10 figures given.
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The conputed ei genval ues are:

10. 74619418  (twice)
9.210678647 (twice)

8.038941119 (twi ce) -7.86§79o781
7.003952003 (twi ce) -8.210678647
6.000225680 (twice) -9.052465632

-9. 746194183
-11.12544152

This matrix is interesting for two reasons. First, its twenty
al gebraically larger eigenvalues occur in alnost indistinguishable pairs,
while its ten lesser eigenvalues are well separated. None the less, the
wel | separated eigenvalues are "hidden" to RECURSECTION, which nust there-
fore use the slow binary chop to find them (see under K = -5). The nearly
doubl e eigenval ues | ook like sinple zeros of uN(x)to RECURSECTION, whi ch
therefore converges to them superlinearly (see under K = +5).

Second, the nearly double eigenvalues do not retard the convergence
of the QR algorithns at all. But this is not surprising in view of the
known theoretical results about QR (see WIkinson [11]). What is
surprising is that the theoretically nettlesome phenomenon of "disordered
latent roots", exhibited by this exanple, seens to have no nore practical
significance than that the eigenvalues are not conputed in any predictable

or der.
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Matrix:

TEST NO. 5.

12 7t

u-? ,4—2 h‘}

1L2 -N . hE-N hl-N

N N = 30

This matrix was input first as above (matrix A), then turned end-for-

end (matrix B).

T sec./F passes/eigenvalue

Matrix A Matrix B
K=N-=30 K=5 K=N=30 K=5
STDQR 0.2/0.2 0.8/0.8
OKBQR 0.2/0.2 0.4/0.k
RECURSECTI ON | 11/39 1.9/39 7.7/25 0.6/12
WBIS2 30/47 5.0/k2 27.2/47 3.5/43
FJLLT 0.7/1.6 1.3/2.7

For matrix B, no results were obtained for RECURSECTION at first,
because stack overflow caused the programto be terninated. However,
when the stack length was doubl ed, RECURSECTION ran as usual.

Al though we do not know the exact eigenvalues of this matrix, the
results from RECURSECTI ON agree except for the last place in both nodes

of input. The results from WBIS2 agree conparably only for the |argest
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two eigenvalues, the error in the others presumably due to underflow.

The results from STDQR, OKBQR, and FJLLT differed from those of

RECURSECTION by at mpst 2 units in the last place of the |argest eigenval ue.
Changing each elenent of the matrix by a unit in its last place

causes a change in each eigenvalue of at nost a few units in its |ast

pl ace, except that the eigenvalue zero may change by an absol ute anount

conparable to the change in the smaller elements. Only RECURSECTION

conputed the eigenvalues as accurately as they are determned by the data.
W |ist here some of the eigenval ues conputed by RECURSECTION. Be-

cause of the agreement of these results in the two nodes of input, we

feel these eigerivalues are correct to the 10 places given.

6.56343370 X 107% :
1.346533638 X 107+ ;
5.187715678 X 1072 b 440892099 x 1071
7.852609156 X 107 1.110222890 x 10 1
1.955655725 X 107 2.77431319% x 1077
: f0 e R0

0.0
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Concl usi ons:

Qur analyses and test results indicate that STDQR is the fastest
program known to date for finding all the eigenvalues of a symetric tri-
di agonal nmatrix. The absolute error in each eigenval ue has never exceeded
a few units in the last place of the largest. Conceivably, the program
could be speeded up, in those cases where only a few eigenval ues are
wanted, if some way were found to force the desired eigenvalues to cone
out first. Until that is acconplished, RECURSECTION is the fastest
met hod known to date for conputing a few specified eigenval ues of a very
large matrix. This programis also at |east as accurate as any general
purpose program can be expected to be. Wth very few changes RECURSECTI ON

can be generalized to cope with the nore general eigenproblem
det (A - AB)

with symmetric tridiagonal matrices A and B, and positive definite B.
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