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I. Description of procedure STDQR

STDQ,R finds all N eigenvalues E[l],E[2],...,E[N] of the symmetric
l

tridiagonal matrix with A[l],A[2],*i..,A[N]  on the diagonal and

B[ll,B[21 J l o=rB[N-1] on the superdiagonal. The eigenvalues are not

found in any particular order. The input data A and B are not

changed.

Accuracy: 4

In our experience, the absolute error in each value E[i] has not

exceeded a fec'units in the last place of max IE[j]l. The larger
lsj<_N

is N , the larger the error can be. But our best rigorous error bounds

are far larger than the error observed in practice. Turning the matrix

end-for-end (by exchanging A[i] with A[N+l-i] and B[i] with

B[N-i]) can change the errors significantly because the eigenvalues

nearest the elements at the bottom of the matrix tend to be found first.

For best results when the matrix contains significant elements A[i]

and B[il of very different magnitudes, the smaller elements should
-

appear at the bottom, in which case the errors in their corresponding

eigenvalues may be as much as 100 times smaller than if the matrix were

I reversed.

The program contains provisions for scaling to prevent trouble with

premature over/underflow. It assumes that the computer replaces under-

flowed arithmetic results by zero. Then each computed eigenvalue E[i] .

will be correct to the accuracy described above unless it overflows or

underflows.
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Timing:

Roughly proportional to N2 . This is the fastest program known to

date for computing all the eigenvalues ~[i] l If only a few eigenvalues

are wanted, then our RECURSECTION program may be faster. Because the QR

iteration used here is cubically convergent, little time can be saved by

relaxing the accuracy requirement. In our experience, the time required

for the whole program corresponds to roughly N2 circuits of the inner

loop (see label LOOP in ALGOL 60 program).

Method:

The QR iteration used here is based upon a square-root free version

of the c.riginal Francis algorithm [4], published by Ortega and Kaiser

[5 1 l However, the algorithm described by the latter authors, and pub-

lished in ALGOL 60 by Businger [2], is numerically unstable. (See example

1 of our test results and Welsch [T].) Revisions proposed by Rutishauser

[61 and Wilkinson ([lo], pg. 567) do not cure the problem. Our version

appears to be stable. We are indebted to J.H. Wilkinson for a 2 X 2

example containing the first intelligible evidence that the Ortega-Kaiser,

. and also the Wilkinson-Rutishauser version, might be numerically unstable.

The origin-shift strategy (the choice of -DA) is an important

contributor to the rapid convergence of the algorithm. We set LAMBDA to .

that eigenvalue of the bottom 2 X 2 principal submatrix which is closer

to the last diagonal element, except when this choice is not unique, in

which case the eigenvalue of smaller magnitude is selected.

The criteria for deciding when an off-diagonal element B[i] is

negligible are discussed in reference [13].
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K&GIN COMlf*kNTl STuQK FlNDS ALL N EIGENVALU&S E[llrEt2J~e~~~EtNl  OF THE
SYMlvlElHlC  TRIDIAGUNAL MATnIX WITH A[l],A[2]rrrrrA[NJ  ON THE DIAGONAL
AND R[lJ,Ht23r red3tN-ll UN THE SUPER-DIAGONAL, THE &IG&NVALUES ARE
FUUND IN NU PAKTlCuLAK ORDER,;

CDMM&N?t NQR IS A GLuKAL INTEGER VARIABLEr USED TO COUNT THE NUMBER OF
dK ST&P'S MAD&r1

CUM;;;;8 Wt ASSU ME GIVEN 1HE FOLLQWING MACHINE QUA NT I T I E S :
= NUMHtH BASE OF THE MACHINE

MACHINF = LAHGLST LXACT POWER [IF THE BASE LESS THAN l/4 OF TH&
MACHINE uVEKfLOw LIMIT

MACHNLGL  = SMALLLSI'  NUKMALIZED POSITIVE NUMBER HEPRESENTABLE ON
THt MACHINE

MACtlPKt(; = FLOATING"PUINT RELAlIV& MACHINE PRECISIONIJ

CUMMLN_T: FlKST SCALE MATRIX SO THAl AtIlt AND RCIJf2 DO NOT OVERFLOW
AND AClJt(-2)  AND t3LIlf(-2) DO NOT UNDERFLOW, FIRST FIND MAXIMUM
ELEMENI OF THE MATK1X.i

K1=ABS(AINJ);
FOK It=N-1 STEP -1 UNIIl 1 Q.Q
FGIN S:=hUS(A[lI)I  IJ W-4 fHFN Rt=Si

S:=AtjS(tjCIJ)I  2 S>K THEN R(mS
ENi);
y R = 0 T tit. 1'~
B EGIN COMMtNll MATKlX 1S L&RU,J

C’OR I,=1 m 1 UNTlL, N [lil &[IjrrrO;
GO TO KLTUHN

L&c-

COMMENT8 FuR SCALING, W& ASSUME GIVEN THE MACHINE QUANTITIES
- MACHNUl = MIN(MACHINFrl/MACHNEGL)  (EXACT POWER UF THE BASE)

MACHNU2 2: SMALL&ST LXACT VOWER OF THE HASE LARGER THAN
So~T(~AC~NUl>/MAC~INF,

THUS MACHNU2 = ~AS&T(&NTI~R~~OIS~LN(MACHN,O~)~LN(MACHINF))/LNCBASE))
+l)rJ

SCAL&t=E KsMACHNU2 THtN MACHINF
5LSk KAS&t(ENTIER((O,SxLN(MACHNOl)'LN(R))/

LN(BASE)))I

CI]MM&Nlt SCALE IS TH& LAKGEST EXACT POWER OF 'THE RASE KEPRESENTARLE
SUCH THHT (tjxSCALfd~2~MACYINF AND (RxSCAL&)f(+)>MACHN&GLr
THIS CUJ~VUTATIUN SHUULO 8& DONE IN MACHINE CODE,
IT IS PlrSSItjLE  THAT SCALE COULDUNDERFLOW IF THE MACHINE IS SUCH
THAT MACHINFXMACHNLW ) SuRf(MACHNU1) BUT WE KNOW Uf NO MACHINE
WHEKE InIS IS TKUE,j

PCNlr=AtNJxSCALEJ



kO H  II=N-1 STEP -1 UNTA
tiIN EEIJ:rAlfJxSCA iT?+

LRG

B~t13:=(61I]xSCALL)t2
ENI);
irinOlt=f3aCN]c=()i . .

DELTA~=RXSCALEXMACH~~E~/(~OOX~);  COMMENT8  NxDELTA  I s  SMALL
COMPAHcu  WITH Tdt EXPCCTEU ERHOR OF A UNIT IN THE LAST PLACE OF
THE LAH~EST ENLNVALUE (SCALED),;

LPSt=OELrAtZ; CUMMtNTI EPS 1s USE0 TO TEST FUR THE NEGLIGIBILITY Of
atm1.i

hr=N;
Pot4 hz=K WHILE; M>U &
hEGIN FX"';'":" SCAhJ FUH NkGL1GIBLE estK1 IN ROWS A N D  COLUMNS M BACK

E@ Kt=i-l WILL Il'cuK DQ ti RBCKl<EPS THEN m TO NEXTi
NEXT:

ff KsM’1 THFN l3t!CKJr=0  _ELSF;
$GlN SUMMENI: I)tAL WITH tdOTTOM 2x2 BLOCK,;

ThUaY21
Tt=tCMPECM-lJI
Ht=tk4[M-1];
u fl<M"2 Itif
!JEGlil ~OMMEN!~ WLAKEH T ES T  F U R  NEGLIGIBLE BBCM-il.;

Wt=tiB[M-2Ji
C :=Tt2; S~=K/(C+W);
& Sx(W+SgC)<tPS LHth 8EGIfv MgnM-l;

t3BCMJ~=O;
$CJ 10 TWOBY

plrJ
END ruEGLIGIt3Lt  dd;

If AdS(T)d)EiLTA IHLN S:=SoRT(R)
ELSt @EGIN wt=2/Ii

S:=WXK/(UK?(W~2xRtJ  )+I)
ENDi

If K=G THLN
!$m C&Q&&but A 2x2 BLOCK HAS BEEN SEPARATED, SO WE STORE THE.

LAGLNVALUES,I
tLMJ1=~tMJ+SI
tLM-lJl=E[M-lJ=S/
utd[KJwO

_ END
- ELsL
jjEGI& COMMENT1 DU A QR STEP Oh; ROWS AN0 COLUMNS K+l THROUGH MI

U S I N G  K AS THt INCREMENT VARIABLE, IN THE4OTATION dF
ORTEGA ANI) KAISEH, C = CtKJt2, S x StKlt2r P * PIHI,
G = GAMMACKI, T = P[Klt2t8tKlf2, W = WORK SPACE,;

NURIsNQHtM"KI
CUMMENJ: F1HSl CHOOSE THE SHIFT PARAMETER LAMt3OA.j
LAMt3OA1=E/MJ+b;
u ABs(T)<UELlA THEN'
PtGIN  WtsLCM-11-S;
u ABS(W)<ABS(LAMBOA)  m LAMBOA:=W

&lUli
St=01 Gl=ECK+ll-LAMUDA; Ct=1;
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LKlt=LIK+lJi
G;=Cx(tKl-LAMt+UAI  - SxW;
E[KI:=(W’ti~+LKl;

. .

thTHY  t u AHS(ti)<ULLlA IhEy
G:=li+(Q CiLO 1HFy C EL'SE -C)xOELTA;

Pt=Gt2/Ci
Kt=Ktlj
ht=t3BLKJi
1 S=W+P’J
8t3[K-lJt=SxT;
fi K<M THtN (iu fi C O U P ;

tlKJ:=G+LAMBUA
END UK STLP

&IT CONDITIONAL
thl), MI
@j I:=1 SlEP 1 pUlL N g ECJJ~=ECII/SCALE;
NQHt=fWR/NI  C('IMMLIVT~ N6)H c;IVtS THE 1UUMYER OF EQUIVALENT FULL (3A STEPS,;
KttTUHN1 --.
FI\u STUBHi



II* Description of procedure RECURSECTION

RECURSECTION finds

if K > 0 then the greatest K ..eigenvalues ~[l] 2 E[2] > l *. >_E[K]

else if K < 0 then the least- - -K eigenvalues E[l] <, E[2] 5 l ** 5 E[ -Kl

of the given N X N symmetric tridiagonal matrix with A[l],A[2],...,A[Nl

on the diagonal and B[l],B[2],...,B[N-11 on the superdiagonal. The

input data A and B are not changed.

Accuracy:

Each computed E[i] differs by a unit or two in its last place
--_

from the i-th eigenvalue of some tridiagonal matrix which differs

from that given by a few units in the last place of each off-diagonal

element. All told, no computed ~[i] can be in error by more than a

few

The

but

units in the last place of the largest eigenvalue of the given matrix.

error bound depends upon the details

is independent of N and K l

The program contains provisions for

of the machine arithmetic units,

scaling to prevent trouble with

premature over/underflow. It assumes the computer replaces underflowed

arithmetic results by zero. The program is such that any underflows

which do occur in intermediate results do not cause serious errors in

‘the final results E[i] . In fact, intermediate over/underflows can

contribute an absolute error no larger than

where MACHNEGL and MACHINF' are, respectively, the smallest and largest

positive numbers normally representable on the machine, and
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--

NORM = maxi max.(lA[i]l  , IB[i]l) .

Such an error is smaller than 10
-10

units in the last double precision

digit of the biggest eigenvalue of the matrix

This is in marked contrast with the Wilkinson

algorithm [yl, where premature over/underflow can cause disastrous errors

in the results. Then the user may be unaware of those errors if underflows

are replaced by zero with no message output from the machine telling him

of the underflow. For examples of this,( see our test results. But for

our program, each computed eigenvalue will be correct to the accuracy

described above unless it overflows or underflows. The program also

assumes that each arithmetic operation (+, -) X, /) is monotonic in

its two operands despite roundoff, which is the case on most machines

in single precision arithmetic For a detailed error analysis, see

reference [12].

Timing:

Roughly proportional to IKI x N. This program is the fastest known

a to date when 1~ IK/ << N. When 1~1 z N , our QR program is several

times faster in some cases. In particular, RECURSECTION is slowest to

- find those eigenvalues of the matrix which remain almost unchanged when

the last row and column of the matrix are deleted, because a binary chop

technique is used to find those eigenvalues. The other (and normally

most) eigenvalues are found more quickly by a superlinearly convergent

iteration. For this reason, RECURSECTION sometimes works faster after

the matrix is turned end-for-end via the replacement of A[i] by A[N+l-i]

and B[i] by B[N-I] .- Also, if any ~[i] = 0 , time can be saved by

feeding the matrix to RECURSECTION in two or more bites, although one
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must subsequently sort the eigenvalues of each bite to obtain the desired

ordering of the eigenrvalues ofthe Iwb~le mat~i&

In any case) RECURSECTION is,.subst~tially*fas~e~,,tb;an programs

t&ich apply a binary chop technique to' a,Sturm se~ue~ce,~, an&is: intmded

to supersede such programs.

Method:

The basic idea was fdrst p@t' forth at! the University. of Toronto

by Dr. Boris Davison in 1959, and follow6 from Sylvester'6 i;nartija,

theorem:

If A is a syzunetric matrix,, D &s dilagona&,, ard Ipj lis, non-

singular, and if

then the number of

same as the number

We apply this

tridiagonal matrix
.

change6 on A-XI ,

A-XI = Iax? A

A's eigenvalues less than or equal to x is the

ofj' negative or zero elements of D.

theorem in procedure S~VESTER to our symmetric

A by performing CaU6sian elimination without inter-

obtaining

TA-XI = LU,= LDL l

However, since we do not need L explicitly, we only compute the diagonal

elements ui of D and record the number of ui <, 0. The recurrence

relation for these ui is particularly simple:

= au1 l-?L

ui = (ai-b; l/ui l)-x t i=2,...,N .- I-
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Provided the time required for a single precision division is not appreci-

ably longer than that for a single precision multiplication, this takes

about l/3 as long as the usual Sturm sequence recurrence, partly because

no serious scaling problems are encountered in SYLVESTER. Also, provided
. .

the machine arithmetic is monotone, the recurrence for the {ui] is such

that the nutriber m(x) * of ui < 0 is a monotone non-decreasing function-

of x despite roundoff. This simplifies the logic of the program: For

a similar reason, we compute u. as shown rather than from
1

u. =1 ( ai-x) - by l/Ui 1 )

to preserve the strict monotonicity of uN(x) near its zeros.

Procedure SECTION chooses a sequence of values x to feed to

SYLVESTER in order to find the eigenvalues of *A. This procedure is

always entered with two abscissa LO and HI which are known to bracket

the eigenvalues we are seeking. We then proceed to find points x be-

tween LO and HI , using a method described below, in order to converge

to the eigenvalues. Whenever a value x is found which separates

(LO, HI] into two subintervals (LO,xl and (x,HI] , each known to

contain at least one eigenvalue, SECTION calls itself recursively to

deal with each subinterval separately. Mr. Michael D. Green suggested
e

this recursive calling of SECTION, and this seems to be the simplest way

-of coding the program so that the best bounds are used for each eigenvalue,

though stack-overflow may be encountered in some cases if too many

recursive calls are made. The depth of recursion cannot exceed IKI.

To form the sequence of values x , a binary chop method would work

in principle, but in practice that can be slow. To accelerate convergence

of the iterates x to the eigenvalues, we use a modified secant iteration,
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patterned after D. J. Wheeler's program F2 (see [8], pg. 84 and 130).

This iteration is applied to the function
'zu
(x) t where uN is

. .
the last element of D defined above. Now,

UN(") = a , where A(N-l) is the (N-l)X(N-1) matrix

formed from the first (N-l) rows and columns of A. Thus uN(x) is

a rational function with slope < -1 at all points, whose zeros are the

zeros of det(A-x1) , except for those zeros which are also zero6 of the

denominator to an equal or greater multiplicity. These zero6 are called--.

"hidden eigenvalues".

We use the modified secant iteration on uN(x) when our current

bounds LO and HI are such that uN(Lo) > 0 and uN(HI) < 0 . Because

of the nature of the function UN )(X 9 this ensures that there is at least

one zero of UN )( X between LO and HI . Otherwise we use binary chop

to find the next point x = (LO + HI)/2 . Thus for cluster6 of eigenvalues

and the "hidden eigenvalues" mentioned above, the binary chop strategy will

. be used a large part of the time. But once a zero of uN is isolated, the

secant strategy will be used from then on, giving superlinear convergence

to this eigenvalue, with average asymptotic order 31/3 1 1.44 .
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PRO EDURE HECUHSECIIUI~(A~~~E~~~K);
'+NrK; INTEtitK N,t(i AHRAy ApB,E;
bEGIN COMMtNTt HECUKSECTlUN CIdDS

IF K>O lHEN THE GHtATLST K EIGENVALUES EflJ~E[2J~,,,E[ttJ
ELSE 11 Kg0 THE11 THL LtASl (-K) EIGENVALUES E[lJ~E[2JS,,,SE[-K3
OF 1Ht NXN SYMMETHIC  TKIOIAGONAL MATRIX WITH A[lJ,AC2Jr.,oA[NJ ON
THE DIAbUNAL AND HClJrW2J r,,r,BCN-1‘1  UN THE SUPER-DIAGONAL. THE
INPUT UATA A AND R AHE NOT CHANGED,;

CD,MMENlt tit ASSUML tilVtN THE FULLOwING MACHINE QUANTITIES; ,
BASL = NUMtikH U&Sk UF THE MACHINE

r MACtIINt = LAHGtST tXAC1 PCtiER OF THE HASE LESS THAN l/4 OF THE
M4CHINE UVEKFLDr(  LIMIT

MACHNLGL  = SMALLtSl NUKMALIZED POSITIVE NUMRER REPRESENTABLE ON
THt MACHINE.;

IhTEGEK Ii
HEA&LUIH~~LUIHU,CIK,K~,S~T~SCALE~
_URRAY AAddCitNJi

PRUCEDURL  SYLVESTtKobUrM);
VALUE Xj INTEGtK -M; Hm AIU;

bEGIN S;OMPltNT: SYtVtSTtK  SETS M TO THE MUdBEH DF EIGENVALUES OF THE
NXN sYi4lflETHIC 1KIUIAGUNAL  FATRIX WITH DIAGONAL AAtll,.r.,AAtNI, AND
SUPtRhlAGONAL SWKT~BtitZJr ,.,,RBtNJ)r WHICH ARE I X, U IS SET To T H E
VALUE Ut 1HE LAS1 PlVUC IN THE GAUSSIAN ELIMIfvATION OF ((THE MATRIX)
-XXI), hI1H THE CUNSTKALNI THAT XL-XH 5 U(X) I XH'XLI HHERE XL AND
Xh ARE IHt BEST BUUtUUS hE HAVE FOR THE LEAST AND GREATEST
E1GLNVALUES.I

LhTEGEK Ii OhN HEAt XbXHI HEALDi
U;=AA[lJgXi~zOi  l:=li 9 u L$
LODPr

I t=I+li Ut=(AACl Jm.SdlI  J/U)mXf
Lt c U<O.lHLN HEGiN Mr=M+l;

Q- U=O THEN lJ;=-MACHNEGL
ENOi

$UMMENl; THISflUE ASSUMES UVERFLOWS  ARE ALLOWED, AND THAT WHEN
IHtY UCCUK, THt AHGUMENT IS REPLACED BY THE LARGEST MAGNITUDE

a WIlH THE SAML SIGN, IF THIS IS NOT AVAILABLE TO THE USERr  hE CAN
HEPLACE THE CuUE AF IER LABEL L$ BY THE FOLLOWINGI MORE TIME'"
CONSUMING CUUtt
Lt Q U < HTMACHNtGL THEN BEGIN M;=M+l.

u U>=RTMACHNEGL THEN Ura*RTMACHNEGL
END

:wHthct HTMACHNtGL = SQRT(MA8%EGL),I

E ItN IHtN GO fi LUUPi
fi WN TtWY XHt=X
ELSE I): M=U ‘J.Hfi$ XLI=X
tLSE BEGIN D1=XH-XL;- -

E AHS(U)>U -lHtN U:=UxSIGY(U)
END CUNSTHAINING U

thl) SGthlEHi

HEAL PhUCttiUKE NEXT(XrY)j
TAiUE XrYi BtAL X#Yj
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ie #?#$E N;;;;X$-$  ;;&NEXT  VALUE AFTER X tlErwEm X AND Y
X BY AN AF(OUNT  WHICH IS AT LEAST

AS LARGE AS 1 UivlT  IN THE LAST PLACE OF Y-X THIS
PRLICLDUHE SHUULD tiE WRITTEN IN MACHINE C O D E , ;Hf COOING
GIVth HEHE IS JUST AN tXAMPLE, AFYD“CANNOT 8c EXPECTED TO fjE
OPTlMAL FUR ALL MACHINkS, THE MACHINE QUANTITY ULP IS ASSUME0
GIVLlv  TO f3E THt SMALLEST POSITIVE NUMBEH SUCH THAT
l,O+~LPqjASk # 1.0 IN IHE MACHINE , ;

@ALUlt,F;
El=ABS(Y-X);  F:=AtlS(X)I
F:=Ul=(g E>F JHLN t kLSF F)xULP%SIGN(Y+);
u 030 IHEN m t:=X+D WHILE E=X u D:sD+F

ELSE t:=X+(Y-X)/2i
NfXl t=t

E& NEXT;

_PROCLDUHfj,  SECTIUN(L~-~~LU~~UILG~HI,LM,HM);
VALQL~HILU~HUILU~HI,LMIH~;
4NTLGLN L,HJ @ACCUdiU,LU,HIpLM,HMI

bEGIN _COIWNT~ SECTI-UN 1s A cCURSIVE PROCEDURE WHICH SEEKS EIGENQLUES
ECLJQ.lL+l]s .rdt[HJ UK THE N(xN SYMMETRIC TRIDIAGONAL MATRIX WITH
D I A G ONA L AA[l] v*uAA[Nl 4hD SUPER-DIAGONAL S8RT~BBC23,.,.,@8C~]~,
WHLN CULLLI,)I IT 1s hSS'JMEU IHAT LO ( ALL DESIRED EIGENVALUES 5 hI#
A N D  THkl U(LU)/LU  ' 1 AND U(HI)/HU > 1, WHERE U(X) IS THE OUTPUT OF
SvLVEbltt?(XrU,M), Lid AtuO HP ARE ACCELERATION PARAMETERS,;

;:;k,;;lJ’ INTEGkR Mi

IF Lb50 v HUlO TtitN
<@GIN C_DM~+NT: UO 4 HlSECllON STEP.;

XI=LDt(tiI~LQ)/Zi  $ilMMLNTt  THIS ShDULD HE DONE IN SUCH A WAY THAT
THE CflNSEWUEivCLS  OF UNiKt?FL(IW TO ZEHO IN (HI-LO)/2 UH IN X ARE
CONS’JNAIJT ki It-’ THE IREATMENT OF UNDERFLOW IN NEXT(LO,HI)r;

t r\ 0
LLSE X,=Lu+(LU/(LU~Hu))x(H1-LG); COMMENT: DO A SECANT STEP,;

cOb!~kNTt IrlE NEXT SIX LINtS tiUARANTEE THAT LO < X < Hid
U:=NLXT(LU0iI); z X<U IHtN X:=U;
U:~NEXT(HbLU); u X>U THtfJ Xr=U;
u x=HI V X=LO THtNp
8EGIru CDMMtN_Tt TtiEtdL AKk (H-Ltl) EIGENVALUES AT X,i

FUH M:=L STc-e 1 UNTIL H @ E[M]$=)(
the-
g?E1
tJEGIb ‘SYLVtSlEH(X~U,M)i
c h<L .IHLy
HtiGfN CUMvENlt 1NCHtASt LUlvER HUUND,;

l.()t=Aj LUz=Ui LMI=ZI
HM :‘-Cr,5XHMj  HU8=kiUXHMj

<;o 1~ START
wi
u k/H I ti k N
_HtGIN $bMMt:NI 8 tlLCHtASt  UPPER HOUND,;

hIr=Ai HU#=Ui HMt=2i
LM:=ti,5xLM;  LU;=LUxLM;
$g & S~AHT
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fiFbIL-M Nit AT THIS f-‘UlNl LsMtrl SO hE CAN FIND EIGENVALUES L ThHDkGH M
ANO 14t.1 THHUUtiH  t-i StPAKA1ELY.J .

SLCTIU'~tL~M,LUrurLU~X,LMI2)i
SEC1Iul~(M+l,H,UrHU,x,Hlr2rHM)i . .

Lhll
jiii SECTIurv;

CLj~~tlult NUW dEGIN MA111 ~'HiJCtDURF: HECURSECTIDN,;
JJ K=O THtl\ G[1 u KtTclKNi
E AHS(K)>iu  JHEN K:=Nxblb~Y(K)i

CGpMkNrt IkUW SCALE MAIKIX SO THAT EACH SCALED ABS(AtII)  AND ABS(B(II)
IS LESS ThAN MACHNO, A MACHINE QUANTITY DEFINED BELUW. FIRST FfNO
MAXIMUM ELEMLNT UF IHL MAIHIX,;

HI=AdS(A[tiJ)i
FBI It=N-1 STEP -1 UNTIL, 1 &
bLGIIi bt=AtiS(A[IlJi Q- S>H TrlFry Ht=S;

St=AdSid[  I1 )i u s>K THEN Rt=Sc-
LpJi --

HEGIN, COMMtNT: MATKI~  Ib LtHO,;
FljH 18~1 STEP 1 UNIIL, ABS(K) w E[IJrto;
aTo htTUHN

kh[)i

COhMCNI: F UR sCALINC;~ wii ASSURE GIVEN THE MACUINE QUANTITY
dACHNO  = LAHGEST tXHCT PflwE1-4  OF THE BASE SMALLER THAN

SQHT~M9ClllNF~SQHl(MACHNEGL~~,
ThUb MACHNO = UASL~~LNTIE~((~,SxLN(MACHINF  )+0,2TxLN(MACtiNEGL))

/LN(BASE))),i

SCALt:=SIGN(~K)x(It t-4 5 MACHNWMACHINF  THEN MACHINF
ELSL ~AS~t(thTIE~((LN(MACHNO)“LN(~))/LN(~ASE))));

COMMLNT1 AdS(SCALtJ  IS NUW THE LAHGEST EXACT POWER OF THE EIASE
HLPtiEStNTABLE SUCH IHA. AtiS( SCALE)xR<MACHNO, THIS COMPUTATION

a SHOULU tiE DONE IN MACHINE COOEel

S;GMMEN~Z  rLuw SCALP MATK~x ANO FIND upPER AND LOWER GERSCHGORIN BOUNDS
FOH THt E1GENVALUtS.I

Ct=AIl JxSCALLJ
Hlt=ABS(8Cl]xSCALL~I
LC$=C+Kl; HI1zCtHl;
C1=AACNJ:=~[NJXSCALti  K:=Oi
tCiH I!=N-1 SlEr -1 LjNllI, 1 DtJ
fi;~~“:f~;S’“‘I]xSGALkL)I

T1=&1j IF LOal THtN LOt=T;
T:=Ctdll k HI<T -ii HIt=T;
C:=AACllr=A[Il%S~ALt;
r4t=5;
MOIItlJ~=S 2

ui
tU=AbS(LO)tABS(HI)I

13



LG~=NEXT(LU,LO-~1; HI~=Nf.Xl(flIrHI+K);  CQMMENT; TO INCLUDE KOUNOOFF
- EKRUR  lfv GEKSCI-WIKI~I  UUUNLJS.;

$&Q&&I: NUW MAKE THE 1NIlIAL CALL CF PROCEOURF: SECTIO& THIS INITIAL
CALL 15 SLr Uf' TU FI.NU THk GREATEST o‘k LEAST ABS(K) EIGENVALUES, IF
SoME UlhEH CONF~~UKUTIUN UF EIGEhVALUEs IS flESIREOI ThE USER CAN
ChANGI. tHlS INITlAL  CALL  ACCOHDIhGLY,;

t3tlclJ:=oi
SYLVESTEh(LU~LU,I)i
SYLVLSfEK(HI,HU,I)I
SECTiU~~(lrU~s(~>rLurhU~Lu~HII2r2)Ir
$CMMLNTI i'JUW UNSCALt IHt LIGthVALUES,;
$,;;;t &!&f 1 lj! Atis ,u E[I]:=E[I]/SCAt..E;

&@ hkCUKStCTIONI

14



III. Test Results

Several tridiagonal matrices were fed to RECURSECTION and STDQR,

and the results produced compared with those from some other programs,

as shown below. Except in a few cases where the eigenvalues could be

computed in closed form or were otherwise known, we were unable to verify

our claims to accuracy because RECURSECTION is the most accurate program

we have. The differences between RECURSECTION's results and those from

the other programs were never in excess of the known error bounds for the

other programs.

The other programs compared were:

--_
"WBIs2" - Wilkinson's binary chop Sturm sequence algorithm [g].

“OKBQR” - Ortega and Kaiser's QR method, published by Businger [2].

(The version proposed by Rutishauser and Wilkinson was

also tested).

"FJLLT" - Sturm sequence - LLT algorithm proposed by Fox and Johnson

[31 l

In the results listed below, we let

* T = time in seconds to produce IKI eigenvalues (K given). However

the actual time taken depends on the machine used, so we also let

F = (number of full passes (i.e. N times) through the inner

loop(s))/lKI  >

and tabulate "T sec."/"F passes/eigenvalue".

However a direct comparison of the numbers F is still unfair

because the inner loop for each program requires a different number of

operations. For convenience, we give here a table listing the number

of operations in each inner loop.

15



divisions

Wilkinson-
Rutishauser
version

3

RECURSECTION 1

WBIS2 0

FJLLT #1 1

#2 0--_

multiplications

4 -.

3

additions - array
subtractions references

5

7

6

1

comparisons

1

1

1.

l2J-/

The FJLLT program really has two separate inner loops, each of

which is described separately above. In the counting of inner loops

executed, each was counted separately and then the results were added.

Note that we count the number of "full passes" through the inner loop.

In the QR methods, this is not the same as the number of QR steps

made, since we do not always work with the full matrix. A similar con-

sideration affects FJLLT. For RECURSECTION, the count is just the number

of calls of procedure SYLVESTER per eigenvalue, and for WBIS2 just the

number of calls of procedure sturms sequence per eigenvalue.

All results were obtained on a Burroughs' B5500 with 13 octal digits

of significance in floating-point (i.e. about 11 decimal digits). Division

on this machine takes twice or thrice as long as multiplication, so the

procedure RECURSECTION appears in its least favourable light compared

with WBIS2. Timing on this machine is unreliable because of multiprocessing,

16



SO the times tabulated below should be regarded merely as rough indica-

tions.

To assure as fair a comparison as possible, all programs were set
. .

up to yield results of comparable accuracy. The following adjustments

were required:

In WBIS2 , the user is expected to state how many binary chops w

he wants done for each eigenvalue. This means that each eigenvalue will

be in absolute error by at most about 2-tx /largest  eigenvaluel l I f

t is chosen just large enough to yield a desired relative accuracy in

the larger eigenvalues, the smaller eigenvalues may suffer unacceptable

--.
relative errors. Therefore we set t = 50 even though our machine uses

only 39 binary digits of significance. To save time, we also modified

Wilkinson's program to stop chopping as soon as the computed bounds for

an eigenvalue differed by no more than a unit or two in their last place.

Thus the actual code changed was the j-loop in the procedure tridibi-

section 2:

for j := 1 step 1

begin lambda := h +

until t do

(g-h)/2 i

if lambda = h or lambda = g then go & continue;

sturms sequence ;

if al > d then h := lambda else g := lambda

end j ;

continue: ml := ml + 1 ;

w[ml]:= h + k-h)/2 i..

This modification can only improve the program.

17



The Businger version of Ortega and Kaiser's QR method was found

to be numerically unstable in certain cases. We modified the loop in

the way suggested by Rutishauser and Wilkinson without curing the instabi-

lity. (See example 1.) Even when the'answers were correct, the program

usually took somewhat longer than our STDQR despite the fact that our

program has an extra multiplication in its inner loop. (See example 2.)

We attrtbute the speed of our program to a better strategy for choosing

the acceleration parameter lambda than was used by Businger. '

The Fox and Johnson program was amended slightly, mainly to correct

a few syntactic errors in the AIGOL listing and to add a scaling block.

This program combines a Sturm sequency-binary chop method with a secant

iteration applied to the characteristic polynomial of the matrix, and

uses the Q-D transformation, organized like Ortega and Kaiser's r.LJT
algorithm, to deflate successive eigenvalues out of the matrix. In .

order to guarantee accuracy comparable to that of our STDQR, we found *

it necessary to set eps2 = 10-" and ,epsl-  = 10 -21 inthisprogrsm.

18



TEST NO. 1

Matrix: 1

.' 1

1 . .
-X

1 -1

This matrix was run with different small values of x to testthe

The results for x = 10-5 and x = 10
-12

QR programs. were particularly

interesting. We believe the true eigenvalues are as follows to 10 figures,

since our most accurate programs gave results agreeing to 10 significant

figures: --_

-5x=10: hl = 2.061498246 x = lo-12: kl = 2.061498851

x2 = 0 l 3963369917 h2 = o .w33531o

5 = -0 hg38171874 k3 = -0.6938224565

h4 = -1.764018050 x4 = -1 l 764014925

T sec./F. passes/eigenvalue

STDQR 0.05/1.5

- OKBQR 0.05/1.8

RECURSECTION o-13/14

WBIS2 0.42/h

F;LLT 0.10/6.0

-5With x = 10 , the original Ortega-Kaiser QR, as published by Businger,

gave results accurate to only 2 decimal places. And with x = 10
-12

, the

Rutishauser-Wilkinson amendment to this gave results accurate to at best

one decimal place. For both matrices, our STDQR gave results accurate

to 10 figures.



TEST NO. 2.

Matrix:

! X 1

1 -X

1

for x = 1:

0mQR 1.6/1.g

RECURSECTION 3 412 0.8116 0.8/16

WBIS2 13/38 2 -3139 2.6139

FJLLT 3-O/7.2

1 -.
X 1

1 -x 1

. . .

. . .

1 -X NXN

-- T sec./F passes/eigenvalue

K =N=30 K = +5 'K = -5

1.2/1.3

hk = [x2 + 4 COB2 nk I./2(N+E)l

+,$+1-k = 'hk , k=l,... t b/21.

%+1
- = 0 (if N is odd).2

The timing was nearly the same for each x tried, except as noted below.

The errors in RECURSECTION and wBIS2 were at most 2 units in the

last place and for STDQR and the other programs at most 2 units in the

last place of the largest eigenvalue.

With x = 10 -5, OKBQR again gave very bad results, with errors in

the third decimal place. For x = 0 , that program gave acceptable results,

but took 11 seconds to find them.

With x = 10,000, no results were obtained from WBIS2 because flqating-

point overflow occurred, causing the program to be terminated. Also, we *

obtained no results from FJLLT for x = 10000 , even after allowing it

to run for 4 minutes, because that program is very slow to find near-repeated

eigenvalues, especially when underflows intervene.

20



TEST NO. 3.

Zeros of the Bessel Functions J,(x)

Because of the three-term recurrence relation satisfied by the Bessel

functions, the non-trivial zeros ek m (k = 1,2,...,m > 0) of J,(x)
9

are given by

!t. k,m
= 2/K , where pl > p2 > % > 0..

are the eigenvalues of the following infinite symmetric tridiagonal matrix:

u with

a = 2
n (m+2n-l)(m+2n+l)

bn = 1 , n=1,2,... .
(m+2n+l) m+2n)(m+2n+2)

Furthermore, the first several + are closely approximated by the eigen-

values of the matrix formed by taking the first N (say) rows and columns

of the above matrix, provided N is large enough.

In particular, we took N = 50 to obtain approximations to the

first 20 zeros of Jo(x) (and Jl(x)) , using both the matrix as given

above (matrix A) , then flipped end-for-end (matrix B).

T sec./F passes eigenvalue

matrix A (50X50) I matrix B (50X50)

STDQ,R

ODQR

RECURSECTION

wBIS2

FJW

x = 50

2.210.9

2471.2

12/&Q

K = 20 K =5

lo/37

22143

2.6/s
5.2142

I
'K= 50

I /
2.9 1.2

~ 3.ljl.4

18116

K = 20 K=5

4.2/B 0.9/13

20/43 4.5142
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To examine the accuracy, we compared the results with the tables

given in [lJ, pg. 409-411. The results from RECURSECTION for both

matrices A and B agreed with the tables to the machine limit of 11

decimal digits. The results from WkS2 agreed to 11 digits for the

first two zeros, but the others were progressively more inacurrate, with

some incorrect in every digit, because of machine underflow.

The results from STDQR for matrix A were in error by at most 30

units in the last place (for the larger zeros), andby at most 300 units

in the last place for matrix B with the small elements at the top of the

matrix. However, these errors in the zeros f were reflections of

absolute errors'jin  the eigenvalues @ of only a few units in the last

place of the largest eigenvalue. The results from OKBQR were comparable,

and those from FJLLT were somewhat more in error in all cases.

The results for J1(x) were comparable. The errors did not change

when the matrix size was increased from N = 50 to N = 100 , but times

were about doubled for RECURSECTION and WBIS2 and quadrupled for STDQR,

OKBQR, and FJLLT, since all 100'eigenvalues p were found in the latter

cases.
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. .

Matrix:

TEST NO. 4.

/ 10 19 1 1
1 8 1

. . .

. . .

1 -9 1

1 -10 1

N = 41.

T sec./F passes/eigenvalue

YTDQR

OK=@

KECURSECTION
e

WILKINSON

FJLLT

K-N= 41

1*7/1*0

2.ql.a

12/23

23/&l

6.7/w

K = +5

0.5p7.0

2.5138

K = -5

=/35

2*7/39

. The results from all methods differed by at most 2 units i.n the last

place of the largest eigenvalue. We do not know the eigenvalues  exactly,

but we list here the results ob%ained for r;ome of the eigenvalues.  Because

of the agreement among the methods, we feel these results are correct to

the 10 figures given.
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The computed eigenvalues are:

lo. 74619418 (twice)

9.2X%78647  (twice)

8.038941119  (twice)

7.003952003 (twice)

6.000225680  (twice)

.

l

.

l.
l

.  .
.

-7.86;7go781

-8.210678647

-9.052465632

-9 l 746194183

-u.125441$2

This matrix is interesting for two reasons. First, its twenty

algebraically larger eigenvalues occur in almost indistinguishable pairs,

while its ten lesser eigenvalues are well separated. None the less, the

well separated eigenvalues are "hidden" to RECURSECTION, which must there-

fore use the slow binary chop to find them (see under K = -5). The nearly

double eigenvalues look like simple zeros of
uN( )

x to RECURSECTION,  which
-

therefore converges to them superlinearly (see under K = +5).

Second, the nearly double eigenvalues do not retard the convergence

oz the QR algorithms at all. But this is not surprising in view of the

known theoretical results about QR (see Wilkinson [ll]). What is

surprising is that the theoretically nettlesome phenomenon of mdisordered

latent roots", exhibited by this example, seems to have no more practical

significance than that the eigenvalues are not computed in any predictable

order.
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Matrix:

TEST NO. 5 .

4-l

4V1 4-2

402 4-2 4-3

. .

. .

-.e.

._

. .

4l-N $(41-y
/

N = 30

This matrix was input first as above (matrix A), then turned end-for-

end (matrix B).

T sec./F passes/eigenvalue

smQR

OKBQR

RECURSECTION

.
wBIS2

FJLLT

Matrix A Matrix B

K=N=30 K=5 K=N=30 K=5

0.210.2

0.2/0.2

w39

30147

0.7/1.6

1.9139

5.0/42

o.a/o.a

0.4/0.4

7.7125

27.2147

1.312.7

0.6112

3.5143

For matrix B, no results were obtained for RECURSECTION at first,

because stack overflow caused the program to be terminated. However,

when the stack length was doubled, RECURSECTION ran as usual.

Although we do not know the exact eigenvalues of this matrix, the

results from RECURSECTION agree except for the last place in both modes

of input. The results from WBIS2 agree comparably only for the largest
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two eigenvalues, the error in the others presumably due to underflow.

The results from STDQR, OKBQR, and FJLLT differed from those of

RJXURSECTION  by at most 2 units in the last place of the largest eigenvalue.

Changing each element of the matrix by a unit in its last place

causes a change in each eigenvalue of at most a few units in its last

place, except that the eigenvalue zero may change by an absolute amount '

comparable to the change in the smaller elements. Only RXXlRSECTION

computed the eigenvalues as accurately as they are determined by the data.

We list here some of the eigenvalues computed by FUXURSECTION.  Be-

cause of the agreement of these results in the two modes of input, we

feel these eigerivalues are correct to,the 10 places given.

6.56343370 x 10-l

1.346533638  x 10-l

3.187715678 x 10’~

7.852609156  x loo3

1.955655725  x 10’~
.

...

4.4408giigg x lo-l6

l.uo2228go x 10
-16

2.774313194 x 10
-17

6 l 37Xogg28 ⌧ lo-l8

0.0
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Conclusions:

Our analyses and test results indicate that STDQR is the fastest

program known to date for finding all the eigenvalues of a symmetric tri-

diagonal matrix. Tk absolute error in each eigenvalue has never exceeded

a few units in the last place of the largest. Conceivably, the program

could be speeded up, in those cases where only a few eigenvalues are

wanted, if some way were found to force the desired eigenvalues to come

out first. Until that is accomplished, RECURSECTION is the fastest

method known to date for computing a few specified eigenvalues of a very

large matrix. This program is also at least as accurate as any general

purpose program can be expected to be. With very few changes RECURSECTION

can be generalized to cope with the more general eigenproblem

det(A - LB)

with symmetric tridiagonal matrices A and B, and positive definite B.
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