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ABSTRACT

A theory is devloped to account for the convergence properties

of certain relaxation iterations which have been widely used to solve

the eigenproblem

(A - LB) 2 = 0 , rrfo )

with large symmetric matrices A and B and positive definite B .

These iterations always converge, and almost always converge to

the right answer. Asymptotically, the theory is essentially that

of the relaxation iteration applied to a semi-definite linear

system discussed in the author's previous report (1966).
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Relaxation Methods for an Eigenproblem

Given are two resl symmetric N X N matrices A and B with

positive definite B and very large N ( > 500 ). Required are the

minimum value Xo of the Rayleigh Quotient

and a vector x at which the minimum is achieved. In other words, a

solution is required for the symmetric eigenproblem

The numerical solution of this last equation is complicated by the size

of N ; the matrices A and B occupy so much storage that few of

to-day's electronic computers could allow access to more than a few rows

at a time. It is natural to‘consider a relaxation iteration that approxi-

mates 'x via a converging sequence 51 7 52 7**.7 & 7.a. in which

$+1 differs from & in Just one component, because such a process can

.
make do with restricted access to the matrices A and B t But some

questions arise. How best should a specified component of zn be changed,

and what will the consequences be? Does the iteration necessarily converge.

to the right answer? '

Surprisingly, these convergence questions have not yet been

discussed in print, although a variety of relaxation methods have been

widely used for a long time. For example, see Shaw (1953) Ch. VIII and
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Nesbet (1965). The object of this report is to shed some theoretical light

upon the convergence questions. Since practical applications motivated

this work, the hypotheses are only as weak as are likely to fit methods

currently in use. Consequently, the conclusions are not as general as

those of A. Ostrowski (1965), with whose independent work there is some

overlap.

1.) Preliminaries

First, some

it can be used to
--.

convenient abbreviations. Since B is positive definite,

define an inner product

and anorm

with the usual properties. Hence

It is also useful to have the residual vector function

i-(x) = (A - h(x) B)x- -

because r(x) has the same direction as grad A($ ;-1

wx) = 2 ;bd* ~Jll~l12 l



This shows that A(z) is minimized when

&) = 0 for &#O, and

. .

ho = A(&) is minimized .

Incidentally, the relation * g(x) = 0 will be used without comment.

The next step is to replace the infinitesimal dx with a finite

increment & .- Starting with some arbitrary 5 # 0 7 and the

corresponding

X - A(s) and

rZ 44 7
- --

we consider the consequences of changing 5 to x + x . One consequence

is that X changes to

X+M,=A(z+&x) ;

LA = [2 h*r + (A(&) - h>@~~~~l/~~ + mr_lj2 l
- -

We are incline&to prefer (2 + Lx) to z 'whenever M. < 0 .

Suppose now that &- is restricted to the form

where p is a given direction and 5 is a scalar which we hope to choose
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in such a way that M, < 0 . We shall abbreviate

* = A(g)

and assume, without loss of generality, that

x>x .

(Otherwise x and 2 should be exchanged.) It is convenient to assume

further that

--_

for two reasons; first because much of what follows can be extended to

the case IC = X via a suitable limiting process with n +X + . Second,

the vector p will range over coordinate vectors like

%
= (0 7 0 7***7 0 7 1 7 07 0 o)* 7

with a 1 in the i
th position, so the value 31 will range over the

quotients aii/bii of diagonal elements of A and B ; andan
e
infinitesimal increase in aii can be of little practical importance.

Now setting .aX- = Q produces

a = (a - A> a - 27) l19112/lk + Ql12

= ( n[- QO - *a 1 11~112/11~ + &II2

where 7 is another abbreviation;
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The last few equations, together with the inequality r[ - X > 0 ,

imply that M, < 0 for any value of 4 strictly between 0 and 2~ .

Unless 7j = 0 7 there will be some latitude in the choice of 5 7

and it is natural to look for the best choice.

The "locally best" value for 6 is defined now as that value

5 = [ for which A?L is a non-positive minimum. That value fs always

exists, even when x = X 7 and satisfies the equation

&lI~lJ2 + (s - x)C + [(a - x)(2 9 ri> - ~T~152/lkl12 = O l

-.

This equation is derived from the condition

-& A(2 + Q) = 0 at 5 = c 9

i.e. gTr(x+Q) =o .-I

The last equation is similar to one satisfied by q in which A(2 + (2)

e is replaced by X = h(z) :

g*(A - hB)(x + 72) = 0 l

The resemblance is also apparent in the formula

5 = 2?-&1 +7/: + 4rl(r111gl12  + (2  7 x>Mkl12 i 7

which shows that c and TJ differ by a relatively small amount whenever
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q is small or, more precisely, whenever 171 < < Ilxll/ll~ll . . This

condition is satisfied when x is a sufficiently good approximation to

537 so there is some justification for sirrlply choosing 5 = 7 as

is so often done in practice (e.g., byJ?esbet (1965)). But when 7

is large then the choice 5 = !: is much to be preferred. (Incidentally,

I r, I < lkll/ll~ll l 1

When 5 = fs the change AL satisfies

m 5 - (~*;>*/(3 s/P112 lkl12) where

S = max(A(u) - A(v)) overall g#O and x#O .

--_

(i .e. s is the spread in the field of values of A .) A brief proof

of the last inequality is given in Amendix I. That proof suggests that

the choice of 5 is not very critical. In what folluws, we shall assume

only that 6 approximates 5 roughly, but well enough that

* x 5 - c(Ji)*:>*/(  1~11211~112,

for some positive constant C which is independent of 2 and 2 . The

.
last inequality, weak though it is, suffices to establish convergence

of the iterations described in the next section.

. It is of considerable practical importance that the theory not

restrict 5 to be either 7 or c 7 even though the latter value is

the best value to use for any single step. Experience with relaxation processes

suggests strongly that the best strategy for choosing values of g to be

used in each of a long sequence of steps may well require that each value

of E differ in some systematic way from the corresponding value of {
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in each step. For example, a policy of overrelaxation, in which

E/c is kept roughly constant and greater than 1 in each step,

sometimes produces faster convergence than the policy of keeping k/c = 1 ;

Unfortunately, the theory of overrelaxation is not as well developed

for the eigenproblem as it is for solving linear systems (cf. Varga (1962)).

2.) The Iteration

Let e .th
-3 denote -lJhe J

coordinate vector,

gj = (0 7 0 7a.07 0 7 17 0

with a 1 in the j
th

position. Let

be a sequence constructed by choosing

Later, in section 3, more will be said

behave. For the present, the notation

merely to avoid a notation like
e

I...,,  o>* for lsjsN,

G = zj for some j = J(n) .

about the way in which J(n) should

for the sequence & is used

with subscripted subscripts.

Now we define the relaxation iteration to solve Axx = ho B &

for x+ # 0 and the smallest possible value of X0 = A(&) . Beginning

with an arbitrary 51 with lkxll
2 T
=zlBzl>O and

x1 =A&) = ET A 51/1151112 7 we define for n = 1 7 2 7 3 ,...
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52 0-n= r(x ) = (A - X,B)x+ 7

7[
n =fQ.J  7

\
cn + 4qn(1,11p+.J12 + g ~5M$e2 J 7

'n
is an acceptable approximation to & (see section 1). 7

x
n+l

= xn +@An .

This computation is simpler than it seems because g is just one of the

co-ordinate vectors
T

cj l
Therefore &l*

= zi is the jth rowof A9

and
T
EnB

= bT
-3

similarly. There is noneed to compute s ex@icitly,

T T T
merely k 5 = a x - )Ln k

-3 -n
x .

3-n
The number 1$112 = bjj . is the jth

.
diagonal element of B 7 and fin ='a

3 3

/b
33 l

Whenever

‘1, ’ ’ ll&~ll/ll~Il  7 Cn need not be computed but can be approximated by

in ; this will happen for all sufficiently large n. Since the bulk of
T T

the work is concentrated in the com,putation  of & A x+ = a x-3 -n
and

T T
&B5gp-bj5fJ7 the work required to go from x+ to &+l is

roughly 2N multiplications and 2N additions, possibly much less if

A and B are sparse. (If pn were not a coordinate vedtor, the work
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would be N times larger unless 2 A and -J$ B were already

known. )

By induction, hn = A(&) for all n .' We can assume that

'n ' x1 for the reasons given in secti'on  1, and hence prove by

induction that A$, 5 0 . Therefore there must exist a limiting value

xco =limXn as n+m

such that

--.
Because of the way En was chosen, there is a constant C > 0 such that

Therefore SnI/E,II/Il&II 40 and hence enll&ll/Il&ll 40 as n--.

Consequently

IIL+l - ~II/ll&JI  -,o l

However, there is no reason yet to conclude that z& or the normalized
A
G = xJ&,J~ approaches any litit. In the.absence of further information

about the sequence %I
7 the best that can be said is that the norm&Lzed

A
sequence x+ has at least one point of condensation; and if there are

more than one then these points of condensation form a continuum with

no isolated points.
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Ekamplelz N=3, B=I,

andall
4-l

are chosen from the pair
21 and e-2 l

Each of zl and

s is assumed to appear infinitely often in the sequence & . Now

it can be shown %hat Xn\

A

zn = ~/ll&ll +

BUt Zn diverges towards

xcm =O, and

nm, v3,0)*.

( +~,+a~~-l) and

Example 2: Here N = 6 and B = I and A is a diagonal sum of two

matrices A from example 1 . Similarly,

2cl = (1000 7

and all & are chosen from the set [:1 7 5 7 c4 7 e+ ) l All four

members of that set axe assumed to occur infinitely dften in the sequence

En . Now

1000 7 -1 7 1000 7 1000 7 -1 ) T

$.p h00 =O>ho

10



A

as before, but neither x nor x need converge. Instead, the
A

points ofrcondensation  of the sequence x+ constitute some arc of
i

the curve traced by

when u > 0 7
2 2

v>O and u +v =1/2.

Ekample3:.N, A and B are as in example 1, but now zl = (1 7 0,; -1)
T

and the sequence & is arbitrary. In this case all Xn = kl = 1 , and

a l l  x+=zl. Here is a case of convergence to a wrong answer that is

not obviously wrong. Fortunately, the limit 51 is unstable. 51 lies
-..

on the intersection of two planes which separate all space into four dis-

joint regions in which alternately A(z) > 1 and A($ < 1 . In any open

spherical neighborhood of x
-1 7 no matter how small the sphere, there

exist vectors 5 with A(x) < 1 7 and if one of these is used to start

the iteration then the iteration will converge to a new limit k#<l.

Example 4: B is almost a unit matrix, in that all elements of B - 1

are very smaU.; and A's diagonal terms. ail differ by amounts that are

very large compared with A's off-diagonal terms. i.e., each element of

A- diag(A) is small compared with any difference ail - a
33

with

i�# s l

221 = 3 for some J 7 and the sequence
&n consists of those

coordinate vectors
%

with j # J repeated infinitely often. Now

%I converges to an eigenvector whose eigenvalue is very near aJJ l I f

aJJ is the algebraically least diagonal element, then that eigenvalue is

the desired X0 .
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The foregoing exsznples show how necessary it is U-specify

approprSate choices for 51 and the sequence $I in order to secure

convergence to the desired answer. In the following sections of this

report, some assumptions are made regarding those choices. The. .

assumptions are intended to be weak enough to be practical, yet strong

enough to guarantee convergence to an answer which, if it is not the

desired answer, can usually be checked and corrected.

34 -The Complete Iteration

This sectPon discusses the consequences of choosing & from the

set of N coordinate vectors in such a way that each set of M '
Ej

consecutive vectors &.-P&+1 'gg*p i&+&l includes each coordinate

vector
%

at least once. M is some fixed integer no smaller than N.

In the previous section it was shown that Xn\ La 3 X0 as n 400 ,
A

and that the sequence of normalized vectors x+ = &/Ibll possessed a

continuum of points of condensation. Let 2 be any one of these points

of accumulation; itwillbe the limit of some subsequence of s . Say

.
n n
X 4 X as

?k
403 for

-% -
k=1,2,3, . . . .

Widently
n

II IIL =l . Furthermore, because

IIlfplfl - ~II/Il~II  + O (see section2) ,

n

II%3+1 -$ll+o too ,

and therefore C
-3s

as k +a, . Indeed,
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for any fixed m , but we shall use this fact only for values of
-.

m < M .

Now let L = r+.Jll2&Jl for all n ;

n

5-i
= r(a) = (A - knB)zn where

'n
=

&.☺ l

Because of continuity,

. n n
r
?k

+r Er(:) as k+oo .-lpi - --

n
The next objective is to deduce that L = 0 by showing that

Tn
sj 50 =0 for j=1,2, and N . The fact that Tn. . . . &Sn4oj

proved in section 2, is exploited to prove Tn
2j 3x = 0 as follows.

Let j be fixed. Given k , it must be possible to solve

.
%+m = %

for m = mk between 0 and M-l , because e
-3

appears at least once

‘in the sequence

Therefore eTn-j+t=<+%n%%+O as k+a, and hence
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2; 33, = 0 as required.

n
=O, x- must be an eigenvector and Xca

the corresponding

every limit point
GA

eigenvalue of A with respect to B . This is so for
n
x- in that continuum of limit points possessed by

n
the sequence XX . If X00 is a simple eigenvslue,  then x- must be

one of the two normslized  eigenvectors differing from each other only
n

in sign, so in this case the normalized sequence & must converge. But
n

if x, 3s a multiple eigenvalue, the convergence of x+ is a more

difficult question which, together with the convergence of the unnormalized

sequence .f5nJ 'will be elaborated in the next section.

There is another question. Does Xco = ho? It is remotely possible

that km > A0 , but in this case h.co cannot be a numerically stable

limit. The next three paragraphs explain why.

Let C be the region containing all vectors v such that

h(v) < x, = n(xJ .

C is easiest to describe with the aid of a coordinate system for

. V- v2

ti which B is represented by a unit matrix and A is represented by a

. diagonal matrix of its eigenvalues CXl, , a2 tee*9 % . The eigenvectors

of A with respect to B yield just such a coordinate system. Then

h(v) < Aa m e a n s



which descMb,esthe interior of a cone in that subspace  complementary

to the invariant'subspacc  spanned by the coordinate vector(s) corres-

ponding to the~eigenvalue(ss)‘  CXi = km . The region C is the interior

of the cylinder swept out by the coneas its vertex is translated

throughout the invariant subspace.

4
n

Any open sphere centered at x- intersects C in an open region

UC, n 4 whose volume is a constant fraction f of the volume of I?4 no

!&matter how small Af may be. And if attention is confined to the sphere

z of normalized vectors then the area of C fL4hti

is still the same fraction f of the area ~8 n ?& (I have used the

words "s.pher&i, _,"volume"  and "area", as if the vectors v formed a three-

dimension&L  space, with the intention that they apply to the corresponding

N-dimensional generalizations.)

Instability, when x0, >Xo , stems from the situation of all limit
n

points x- on-the bounw of C . Since A(a) >, X, , each member
n

of the sequence x~ must a~~oidthe reg%on C . But a is at least

as close to C as it is to any limit-point 2 ,
n

and h(x) decreases

faster when Q is moved towards C than when 1 is moved towards g ,

. except possibly when 5 lies in the subspace  complementary to that

spanned by those eigenvectors  corresponding to eigenvalues ai < x0, 9

Therefore, it seems easy to Bagine a force of attraction pulling each

' Ir, into C , and hard to imagine how the sequence can avoid succumbing '

tothat attraction. The matter will be discussed further in the next

section of this report.

Of course, the foregoing argument cannot be used to prove that km = X0 ,

because this is not necessarily so. The argument merely indicates how
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unlikely it is that X, > X0 . The risk is greater according as the

secondyleast  stationary valfle is closer to A's minimum value X0 ,

because when km is very close to X0 then the region C is very
. .

narrow. This risk is not peculiar to the relaxation process. Given
n

A , B , x- and hW such that (A - km B); = o , and no other

information, the only infaLlible algorithms known so far to decide

whether X '= ho or not all cost at least as much time as the triangular00

resolution

(A - kW B) = L D LT ,

where L is a unit lower triangular matrti and D is diagonal.

(X =
00 hO

if and only if no diagonal element of D is negative, however

?L00 may have been obtained.) Fortunately for many applications, special

information is frequently available to help avoid the risk. For example,

one may know that x+ is the only eigenvector whose elements do not

change sign (cf. boundary value problems with "pillow-shaped" eigenfunctions).

Or one may know how to start the iteration with an zl whose A&) is

less than A's second-least stationary value.

.
The last task of this sectionis to prove that

G+ = ~/l$ll -,O as n3m .

Let d,co be the invariant subspace of eigenvectors 25, satisfying

(A - km B)v = 0 ,

and let Po. be the B-orthogonal projector into that subspace; i.e.
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One
n

%

,

(A - x,B)P2 = 0 for every 5, and

(I - Pa)T BPm = 0 .

way to construct Po. is to assemble all the normalized eigenvectors

sat isfyfmg

(A - kmB)gi = 0 and ($ , gj) z giT B ij = eij

in to  a sum

--

Note that ~I(I - ~,>xll represents the dista;nce  from If to 3 .00

We already know that every 15mi.t x- of' a convergent subsequence
n
X
-%

lies in X, . This implies that (I - P&n 40 as n 400 ;
n

otherwise there would exist an infinite subsequence x for which .

II< I- Pm)$II>E>O  l This subsequence would conta& a convergent
K n

sub-subsequence, say x
-k

i%self, whose linit 2 would have to

satisfy

too, contrary to what has already been proved. Finally,

n
G = (A - X,B> zn

= (A - X,B)( I - P,> a ' (A - 'nB)pi g

= (A - XnB)(I - p,) zn ' (X, - 'n)B '00 g
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4.) The Iteration Converges like a Geometric Series

In this section of the report, the previous section's conclusion,
n

that Xn +X _'lo and ~30 as n+m, is replaced by a stronger

deduction: the sequence s converges at least as quickly as a geometric

series to an eigenvector x+ corresponding to A% smallest stationary

value X0 ' except in those rare and unstable cases when ⌧m > ⌧0 l

This deduction stems from the observation that

n2 n
Xn - X, = O(G) as zn --) 0 .

(A more precise statement of the last equation is proved in Appendix II.)

The natural thing to do is find out whether replacing Xn by km in the

iteration formula for & causes a significant change in the convergence

properties of the iteration.

It is convenient to begin with an examination of 7, , 5, and 5, 6

We have

Therefore, $Jv, -,l except for those values of n when $, = q = 0 .'
n

The value tn must be so chosen that there exists a positive constant

C such that

Dxn < - ‘(hT ~n)2/llgn112 for all n

18



(cf. the second-last paragraph of section 1); this implies, by virtue

of the last paragraph of Appendix I, that there exists some positive

constant d < 1 such that

-.

sIrn/7n - ‘I 5 d for all sufficiently large n

except when e
n
= 7 = o .

n The last inequality plays an important role

in what follows.

Now let us replace Xn in the x-iteration by an independent '

variable pn . To diminish the possibility of confusion, we shall replace

the letter x by y and re-define the iteration thus:

Given A ) B ) gn and fin = A(k) as before-m I replace x-n by a

new sequence y
-n defined with the aid of independent variables pn as

follows. The

The value

replaced by

. The value 5,

z =un n when

residual r+ = (A - X,B)x-n is replaced by

$☺ = CA - PnB)⌧n  l

is replaced by 7n = u&q, , except that

5, = 7, = 0 . Finally,
I

J&+1 = 3& + Tn ,rm  l

Each vector & is an analytic function of pm for m < n

whose only singularities occur when pm = srn , but we shall restrict

clln
to the interval
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from which flrn has already been excluded. C$early, if & = x+

and pm = km for all m > n , then & = I& and zrn = & for all

m>n.. On the other hand, if xn = x+ and pm = X, for all m >, n ,

then the relations

( $+1 - &J/II&II + 0 as m --) O”

im@ythatas n 300
--_

(Yq - &)/It&l11  = O (~/ll&ll)2 and
>

provided m - n is bounded as n 300 . We shall be interested mainly

i n m=n+M. (M was introduced near the beginning of section 3.)

What is the special significance of setting pm = X,? When

this is done, the sequence & for m > n coincides with what one

.
*would get if he used a relaxation iteration to solve the linear system

(A - x, B) y = 0

for a non-zero vector x , starting the

Something is knuwn about the convergence

Consider first the stable case A0

iteration from xn = x+ .

of that iteration.
,

= x0 1 with pm = X0 for all

m>n. Now (A - LOB) is a positive semidefinite matrti, for which

20



the theory of the relaxation iteration has already been developed

in the author's previous report (1966). There it was shown that

there exists a constant K < 1 , dependen

and the constant d , such that ..

<

l only upon (A - LOB) , M

where l =aIll Ill represents a certain vector norm whose definition

now requires a small digression.

Let W = (xl , 5 t*'*Y w.N) be the orthogonal matrix (WTW = I)

which diagonalizes A - XoB ; say
--.

A - XoB = W diag(O,)WT = c T
i *A w-i iii l

Since A - AoB is positive semi-definite, all ei > 0 . Then for any-

vector v define

Ill Ill1 2 = xT( c
-1
% xi w-iT+ c

T
1

ei >  0

%

= o w-i wi ⌧ l

In the special case where s is a residual vector

s = (A - XoB)x =c .ei xi EST X 9

Ill ,111s 2 = XT@ - X,B>~ 9

but this formula is of no use when E is a general vector.

The next step ss from ~~~~n+Mll[<~~ll~~n~~~  to

21



where
K1

< 1 and FL is independent of n if n is sufficiently

large. The step is valid because

Ill gn+MII I / IIsn+MII 5 III &+MIIl ! II&+MII + 0 (~/Il~II  J2

I KIII&~II/II&+MII  + 0 (~n/ll~n+~lI)2  l

(Recall that Ilx+,,ll/llrr,ll +l as n +a .) It is necessary for n to

be sufficiently large that the term 0(~rJl~M11,~ be small compared

with (1 - ~)IIl~lll  /IIzn+MII .x_
Thus do we see that xn 40 at least as quickly as the terms of

some geometric progression with commOn ratio /M <l. And,because

IISn+l - -nx II = l9nl ’ II&II  < 21Vnl l llE,ll

I 2 -v' T B-1
L 5n /( n -

n X,)

20 at least as quickly as StIM 9 I

the sequence & must converge to its limit x+ at least as quickly as

some geometric series with common ratio I.M < 1 .

This is just the result we want, especially since it shows that
n

there is no need to comute the normalized sequence -~fn = rr,//xJ .

Furthermore, the result is valid whether or not X0 is a repeated eigen-

value with several linearly independent eigenvectors. But the method

of proof conceals the closeness with which Kl can approach 1 when Lo
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is merely the smallest of a cluster of nearly equal eigenvalues, in

which case n may have to be exceedingly large before Xn is

closer to X0 than to the next largest eigenvalue. Besidea, when
. .

several eigenvalues are clustered near Xo there is an enhanced risk

that the limit of the sequence Xn will be an eigenvalue X, > )Lo .

Consider now the unstable case X, > X0 . The linear equation

(A - x, B)x = 0

now has an indefinite matrix (A - LmB) , so the relaxation iteration

is almost certain to produce a sequence of vectors & which diverge
--.

exponentially in such a way that

&n(*A - ?L~B)~+- 00 exponentially as m+oo.

Some justification for claiming that divergence is almost certain can

be found in section 4 of the author's previous report (1966). There it

was shown that if the sequences J&l and -(nJ"m are chosen in advance

of any knowledge about J& , then the sequence ~1 must diverge

exponentially unless the initial vector & is placed into a certain
.

hyperplane 7$'n ,which depends upon (A - X,B) and the sequences &

and (Tm/a,) in a practically undecipherable way. And since

f& - &J/ll$Jl  = 0 (~/11$11~2 1 there is good reason to conclude that

km is most unlikely to converge to a limit La > X0 unless the sequences

Em and 'rn
are correlated with & in some way designed to achieve

what would otherwise be a rare event.

23



5.) Variations

' extended to cope with two variations of the relaxation iteration

will be mentioned here.
. .

One variation is 'block relaxation", in which each step

At the cost of minor modification, the foregoing analysis can be

which

-X
%+l -n

= En& is a suitable linear combination of some specified

subset of the basis vectors 2j l
If the subset contains L vectors,,

then the'vector & + c,e, which minimizes A(& + 5, gn) is obtained

by solving an (L + 1) X (L + 1) eigenproblem. Subject to this

complication, the results in the foregoing sections can be applied to

block relaxation-with no important changes. Regrettably, the techniques

used in this report do not indicate when block relaxation is more efficient

than the simpler iteration.

Another variation seems to have been motivated by the fear that

$ might diverge to infinity or converge to zero even though the
n

normalized sequence %I converges to the desired eigenvector, The

discussion in the previous section of this report should put such a

fear to rest, but in the absence of that discussion the natural thing to

.
do is find some simple way to

way is to fix some component,

s;ome constant value, say 1 .

normalize the sequence %I* The simplest

say the N
th

, f of all vectors x--A at

This normalization is maintained by

restricting each member of the sequence & to the subset

of which each element should appear at least once in each set of M
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consecutive vectors

The analysis of sections 3 and 4 now requires so111c? small modification

to yield results which are outlined below.

Let A' and B1 be obtained from A and B by deleting their

respective ,last rows and columns, and let

A'(v') =x -IT A'v'/II -IT B' v' and

%
= min h'(v*) over y#o .

--_

There is some risk that the restricted relaxation iteration wU.1 converge

to km > y‘ , but that risk is as negligible as before. The most

likely event is that hW = X0 as before, and that x+ 4x+, with x+,

T
normalized by the condition $ x+ = 1.. There is also a non-

negligible risk that the iteration may converge to hW = Xo > X0 , in

which case x-n will diverge to inf%nity although $ = &#$Jl WilJ
n

converge to a vector
Tn

x such that $ x- = 0 . The first N - 1
4 n

components of L will provide an eigenvector 1' # 0 satisfying

/ Example 1 of section 2 illustrates this possibility. The possibility

that kW = x; > ‘x0 can easily be detected by performing a final
n

relaxation kl = s + & G , since x0 5 A(%,) < f& = km

unless X = X0 . Therefore, the restricted and unrestricted relaxation00

25



iterations can differ in only one important respect; .one &terative method

may converge faster than the other. The author's limited experience

with both methods indicates that the unrest&ted iteration should

normally be preferred despite the existence of rare examples (like that

in section 3 of his earlier report (1966)) hw ere the restricted iteration

seems to be faster.

6.) Final Remarks

So far, the relaxation iteration for solving

--. (A - LOB)& = 0

has been discussed without reference to rounding errors. Their most

noticeable effect will appear in the sequences

computed'values are obtained indirectly during

section 2. Roundoff will prevent the computed

x
n+l

= kn + A$

xn and x+II II2 whose

the iteration defined in

values

(rounded) and

. ll~+J12 = llsl12 + 2 6, kT BX,, + E: II&II2 (rounded)

from precisely satisfying the equations

x
n+l = Ab&+1) and

1$+,112 = g+1 %&+l l ’

The remedy is simply to recompute the values An and IlxJ2 directly
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from their definitions once or twice during the course of the iteration.

For example, one good time to recompute X and II II is whenn I Ifn

0n - Ln+l) has first remained no larger than about 10n units in-.

the last place of Xn+l for M consecutive values of n l Another

good time to recarrCpute Ln and xn = (A - X,B& is just before accepting

5 as an adequate approximation to x+ ; the smallness of & is a .

useful indication of the accuracy of x+, provided one has some information

about the separation between X
0

and the next larger stationary value

of A, and a bound for the size of B-1 l (See Appendix II, part (iii).)

Ultimately the iteration index n will become large enough that

('L,-X,+l) is negligible although llzn+l - xJ is not negligible yet.

This occurs because

'n - '0 = O (~/ll&.Jl~2 while

as is shown in Appendix II. For all subsequent values of

be worthwhile to skip those parts of the calculation which up-date

llzn+l112 and Xn+l . The time saved is noticeable when

n it may

A B are

such sparse matrices that the computation of

consumes fewer than a dozen arithmetic operations. Xn can be held con-

stant for several iterations, and recomputed from the definition

'n = A@$ sufficiently infrequently that the time spent upon
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recomputation is a small fraction of the time saved by not updat,ing

'n
at each iteration. The conclusions in se,ction  4 remain valid

however Xn may be defined provided that
. .

I ‘n - ‘01 = O (~n/ll&ll12 ’

But the definition of Xn given in section 2 (based upon the scheme
I

used by Nesbet (1965)) is the nicest that the author has seen.

28



Appendix 1

Here is an outline of the proof that when E = c ,

a 5 - (gT~12/(Js 1$112 11~112>

where s = max(A(u) - A(v)) over u#O and v#O 4

For the sake of simplicity, and without loss of generality, it is '

assumed that

1$11 = 111~11 = 1 and 31 2 X = 0 .
--.

Now we abbreviate;

a = pTr and- - B = (2 , 2) = 9TB,_ .

The numbers a, @ and r[ can be bounded;

P2 = (2 Y XI2 c llgl12 11~112  = 1 l- -

a2 = (~~5)~ < (gT%)(rTBolr) by the Schwartz inequality,

= xTB1/2 (B'~/~A B-1/2 2 l/2)B dxTBx<s2 .- --

3l = A(n) 5 s .

Now let us express M, as a function of 5 :

AA = n !(( + 2cX/n)/(l + 2 @! + E2) .

This is minimized when 5 = c , at which point dAhJd( = 0 . Therefore,
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which may be cabined with the former equation to yield

M.tin = CL/(@  + l/f) ad

( B a)[2Jr - + Yrc + a = 0 .

Solving the last equa;t;ion and substituting into the former yields

An application of the bands

x<s, -a$<~ and 02<s2

yields

.
as was claimed.

Incidentally, if E/c is held constarit as 1: 40 ,'

:!wamin -+I - (s/r; - u2 ; in general, AA approxtites  AL* with

a relative error that is smaller than that with which 5 approximates
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Appendix II

For the sake of completeness, here is a short proof of the

classical result that as r(x)&11 40 'and A(z)* X, , a-0

stationary value of A(z) ,

To be more precise, given real symmetric matrices A and B with B

positive definite, and any vector 5 , we define

r = r(x) - (A - XB)x ,0 110

T -1 T
e = 2 B dxBx , and0 -

x =
co A(&) for some eigenvector x- # 0

such that (A - $,B)flm = 0 ;

and we prove that

.
(i) The functional A(x) has at least one stationary value

xo. between X - e and\ X + e inclusive.

(ii) If La is the only stationary value in the aforementioned

closed interval [k-e , k+e] , and ai are the other

stationary values, then kW lies in the smaller interval

[X- 2e / min (Qi - X) , X + e2/ min (X - CQ] ,

ai ' ?x ai < x00
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provided that, for example, when all ai > km then

e2/ min

ai < ?xl

(X - ai) = 0 by definition .

(iii) If for 6 > e we define x, to be the subspace  spanned

by all the eigenvectors corresponding to eigenvalues

(stationary values of A ) in the interval [X-6 , x+6] ,

and if 8 is the angle between x and x6 , then

--.
(The angle 0 is defined by

and can be viewed as the smallest non-negative angle between x and-

a vector 21 in the hypeqlane 31"6 . When the interval [X-6 , x+8]

contains only one eigenvalue, sin 8 is a measure of the error with

which x approximates a corresponding eigenvector, even when the eigen- ,.

value is repeated.)

The proof is essentially due to Kate (1949) with a few

modifications. In particular, the results obtained here are valid,even

if xo. is a “degenerate eigenvalue fl whose eigenvectors span a subspace

of dimension greater than 1 . Also, result (iii) is simpler>than  K&to%.

First, the positive definite symmetric matrix &/2 can be

used to replace B by I,
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A by A'=B
-l/2

A Boll2 ,

x b y x ' = B112 x ,  a n d

-l/2r by r, = B., 2 Y

with no other changes. Therefore, there is no loss in generality if

B is assumed to be I at the outset.

Now suppose the interval [p , V] contains no eigenvalue a! of

A. This means that (Cl - ~)(a!  - v)>O if a isaneigenvalueof A,

so (A - @)(A - VI) is positive definite. Therefore--.

T
5 (A - pI)(A - vI)x > 0 or

e2 + (X - p)(h - v) > 0 .
l *

2
Conversely, if e + (X - p)(k -v) = 0 , then [p , v] contains '

at least one eigenvalue. Thevalues p=X-e and v=:X+e

satisfy this equation and prove (I).

If the closed interval [L-e , k+e] contains only one eigenvalue
.

xm , though x, may be a repeated eigenvalue, let aSi be the other

eigenvalues and let

lJ4 - CXi + , or -00 ifall ai>h .

ai < %o
co

As ~1 decreases to its limit, it becomes less than X - e l Now set

2 2, V= k+e/(h-p)LX+e/ min

ai c ?x

0 - ai>
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For the same reason as before, we conclude that [,L , v] contains

at least one eigenvalue. But because

max yp<h- e<‘X<V<X+e
ai < x00

if p is close enough to its limiting value, there can be only one

eigenvalue in [v , VI , and that is X l00 This proves part of (ii),,

and a similar limiting process in reverse proves the rest of (ii).

Finally, write x = w + u where w e x0 0 - 6 and &$ (8; is

the orthogonal complement of x, .) Since x, and i,' are both

invariant subspa&% of A , in the sense that AR&o and

d&f;,

r = (A - XI)X = (A - XI)w + (A - XI)20 a

where (A - XI)w e 8, and (A - XI)u e ge Therefore,

e2 = [wT(A - kI)2W  + uT(A - U)2~I/xTx- 0 -0

> [uT(A - ~I)2~uTu][uT~xTx] .- - -0 - --

NW,
T

ET!&5 tf
2=sin 8; and

E~(A - ?LI)~$L~u > min- - -
I % - xl > 6

(ai - k)2

cc.
I

because the restriction of A to 6 has no eigenvalues in the

interval IL-8 , x+6] . This proves (iii).

It is possible to show with examples that each of the bounds
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implied by (i), (ii) and (iii) can be achieved, though not

necessarily simultaneously. These results provide satisfactory error

bounds except when the separation between adjacent eigenvalues is not

much larger than the residual e , for which case see section 3 of

Kate's paper (1949).
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