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ABSTRACT

A theo;r”y is devloped to account for the convergence properties
of certain relaxation iterations which have been widely used to solve
the eigenprobl em

(A-MB) x=0, x£0 ,

with large symetric matrices A and B and positive definite B .
These iterations always converge, and al nost always converge to
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of the relaxation iteration applied to a sem-definite |inear
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Rel axation Methods for an Ei genprobl em

Gven are two real symmetric N xN matrices A and B with
positive definite B and very large ¥ ( > 500 ). Required are the

m ni num val ue xo of the Rayleigh Quoti ent
_ T T
Ax)=x Ax/x Bx  for x#0 ,

and a vector X, at which the minimumis achieved. |In other words, a

solution is required for the symretric eigenproblem

it

(A-» B) x =0

The nunerical solution of this last equation is conplicated by the size
of N; the matrices A and B occupy so nmuch storage that few of
to-day's electronic conputers could allow access to nore than a few rows
at atime. It is natural to'consider a relaxation iteration that approxi-
mates ‘x_ via a converging sequence X; 7 Xy,eee, X ,.e. 1N Which
X 41 differs from_:gn in Just one conmponent, because such a process can
make do with restricted access to the matrices A and B . But sone
questions arise. How best should a specified conponent of X be changed,
and what will the consequences be? Does the iteration necessarily converge
to the right answer? '

Surprisingly, these convergence questions have not yet been
discussed in print, although a variety of relaxation nethods have been

widely used for a long tinme. For exanple, see Shaw (1953) Ch. VIl and




Nesbet (1965). The object of this report is to shed sone theoretical |ight
upon the convergence questions. Since practical applications notivated
this work, the hypotheses are only as weak as are likely to fit nethods
currently in use. Consequently, the conclusions are not as general as
those of A Ostrowski (1965), with whose independent work there is some

over | ap.

1.) Prelimnaries

First, some convenient abbreviations. Since B is positive definite,

it can be used to define an inner product

BSTBX

Il

(x, ¥)

and a norm

el =/x, x)=/x" B x

with the usual properties. Hence
_ T 2
Ax) = <% A x/|x]

It is also useful to have the residual vector function

r(x) = (A- h(x) B) x

because r(x) has the sane direction as grad A(x) ;

an(x) = 2 r(x)T ax/lx|f .




This shows that A(x) is minimzed when

£0, and

A= A(x) is mnimzed .
o =0

Incidentally, the relation ET g(x) =0 wll be used without comment.
The next step is to replace the infinitesimal dx with a finite
increment &x . Starting with some arbitrary x # 0, and the

correspondi ng
A= A(x) and

E(E) P)

i
it

we consider the consequences of changing x to x + x . (One consequence

is that . changes to

Mo+ A= Ax F )

M = (2ot + (alax) - W) |lex|P1/llx + x|

W are incline&o prefer (x + &x) to x "whenever A < 0 .

Suppose now that &x is restricted to the form

Ox = Ep

where p is a given direction and ¢ is a scalar which we hope to choose




in such a way that &» < 0 . W shall abbreviate

7 = A(p)
and assume, without |oss of generality, that

L

(Gherwise x and p should be exchanged.) It is convenient to assune

further that

> M

for two reasons; first because much of what follows can be extended to
the case = = M via a suitable limting process with = - + .

the vector p will range over coordinate vectors |ike

T
e, =(0,0,..0,0,1,0,0,...,0)7 ,

with a lin the ith position, so the value =« wll range over the
quotients aii/bii of diagonal elenents of A and B; and an
infinitesimal increase in 8,y can be of little practical inportance.
Now setting Ax = gp produces

e

(n - 2) (e - 2n) Jpl¥/lx + epl

(x = A)(1 - 2n/6 ) Jlax]®/ lix + o)

where 1 is another abbreviation;

Second,



n=-pr/l(x - \)pl]

The last few equations, together with the inequality = - x>0
imply that & < 0 for any value of € strictly between 0 and 27 .
Unless 7 =0, there will be some latitude in the choice of ¢,
and it is natural to look for the best choice.

The "local ly best" value for & is defined now as that val ue
e =t for which & is a non-positive nininum That value ¢ al ways

exists, even when = = A, and satisfies the equation

2r/lRlB + (x - ME + [(x - A)p s x) - 2E)/ P = 0

This equation is derived from the condition

a-qg-./\.(x+§£):0at E=t,
i.e p' r(x + tp) =o

The last equation is simlar to one satisfied by n in which A(E + QE)

is replaced by » = A(x) :
T _
p (A =2B)(x +mp) = 0.

The resenbl ance is also apparent in the fornula

£ = 2o/t +\f2 + dnCall? + (2s VIl T

whi ch shows that ¢ and n differ by a relatively small amount whenever




nis small or, more precisely, whenever |n| < <|x|l/lle]l . . This
condition is satisfied when x is a sufficiently good approxinmation to
X, » SO there is sone justification for simply choosing ¢ = g as

is so often done in practice (e.g., by.Nesbet(1965)). But when q

is large then the choice ¢ = ¢ is nuch to be preferred. (Incidentally,
€1 < Txll/liell )

Wien ¢ = ¢ the change A\ satisfies

M < - (2?3 slplf Ikl?) where

s = max(A(u) - A(v)) overall u#0 and v #0 .

(i.e. s is the spread in the field of values of A.) A brief proof
of the last inequality is given in Appendix |. That proof suggests that
the choice of ¢ is not very critical. In what follows, we shall assune

only that ¢ approximates ¢ roughly, but well enough that
T 2
ax g - o)/ plPlxl?)

for sonme positive constant C which is independent of p and x . The
last inequality, weak though it is, suffices to establish convergence
of the iterations described in the next section.
It is of considerable practical inportance that the theory not
restrict &€ to be either n or ¢, even though the latter value is
the best value to use for any single step. Experience with relaxation processes
suggests strongly that the best strategy for choosing values of & to be
used in each of a long sequence of steps may well require that each value

of ¢ differ in sone systematic way from the correspondi ng val ue of ¢




in each step. For exanple, a policy of overrelaxation, in which

¢/t is kept roughly constant and greater than 1 in each step,

sometines produces faster convergence than the policy of keeping ¢/¢ =1 .
Unfortunately, the theory of overrelaxation is not as well devel oped

for the eigenproblemas it is for solving linear systems (cf. Varga(1962)).

2.) The lteration

Let e, denote the jth coordi nate vector,

=J
8= (0,0 ,.00, 0,1, 0,0, 0)F for 1IN,

with alin thejth position. Let

El ,22 20y, Bn 9 e

be a sequence constructed by choosing Ry = & for sone j = J(n)
Later, in section 3, nore will be said about the way in which J(n) should
behave. For the present, the notation for the sequence P, is used

merely to avoid a notation like

2 ey e, ) oo

;s » & e
Jq Jo dn

with subscripted subscripts.
Now we define the relaxation iteration to solve Axx = )“o B X,

for x, # 0 and the snallest possible value of A, = A(zo) . Begi nni ng

. . : 2 T
with an arbitrary x with | [ =% Bx >0 and

Mo=A(x) =3<_$ Agl/”?gllle , we define for n=1, 2, 3,...
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&, is an acceptable approximation to £, (see section 1),

=
]

v
>
]

Yl "X T By
I oo P = eI+ 2 6 pf B+ € Il
M= (- ) g - g I lP/llx I, ena

A=A+ .
n n

This conputation is sinpler than it seens because By is just one of the

co-ordinate vectors e, , Therefore EzIx A= Etg is the 3% row of A,
and P.,Il B = bg simlarly. There is no need to conpute r, explicitly,
T T T 2 . th
= - . =b,, .
merely p, r, =3 % - M Bo X The nunber Imnll TREE the §

diagonal element of B, and xn ='a /b Whenever

n, < < lEn“/".'Bn": ¢ need not be conputed but can be approxinated by

ﬁn; this will happen for all sufficiently large n. Since the bulk of
_ _ T T

the work is concentrated in the computation of p A x =3 xy and

EgBJ—cn"'-%i‘-n’ the work required to go fromx__n to x .4 S

roughly 2N nultiplications and 2N additions, possibly much less if

A and B are sparse. (If B, Vere not a coordinate vector, the work




woul d be N times | arger unless 22 A and EE B were already
known. )

By induction, X = A(gn) for all n. W can assune that
T, > xl for the reasons given in section 1, and hence prove by
induction that & < 0 . Therefore there nust exist a limting value

A =1limA aS n oo
0 n
such that

xlzxg?_---z)\.nzx

Because of the w&y g, was chosen, there is a constant C > 0 such that

(8 2,0/ U P, 1) < - & /e >0 a8 noo .

Therefore “n”Pn“/”En“ -0 and hence §nngnn/”§nu 40 as n-w.
Consequent |y

g = X/l 0l =0

However, there is no reason yet to conclude that X, or the normalized
x, = x,/lx |l approaches any limit. In the absence of further information
about the sequence B, ¢ the best that can be said is that the normalized
sequence X, has at least one point of condensation; and if there are
more than one then these points of condensation forma continuumwth

no isolated points.



Exemple 1: N=3, B=1I,

/1 -1 0 ' 1000
A=|-1 1 , x, = | 1000 ’
0 -1 1 -1

and all p are chosen from the pair e, and e,  Each of e, and

e, is assuned to appear infinitely often in the sequence P, - Now

=D
it can be shown that xn\ A, =0, and

N
x, = x/lx]l »(Vi/2, Viz, 0 ) .
But x diverges towards ( +w®, +«, -1) and

Mg >y =1-V2 .

Exanple 22 Here N =6 and B =1 and A is a diagonal sumof two

matrices A fromexanple 1 . Sinmlarly,

x, = (1000 , 1000 , -1 , 1000 , 1000 , -1 ) T

and al | p, are chosen fromthe set {t_e_l » €5 &5 & }
menbers of that set are assumed to occur infinitely often in the sequence
R, - Now

)\n\ A, =0> }»0

10




as before, but neither X, nor x, need converge. Instead, the
N\
poi nts of condensation of the sequence X constitute sone arc of

the curve traced by
T
(u:u:O}V)V’O)

when u >0, v>0 and 1§+v2=1/2.

Example 3: N, Aand B are as in exanple 1, but now X = (1,0 -1)T
and the sequence R, is arbitrary. In this case all M, S )‘1 =1, and
allx =x . Here is a case of convergence to a wong answer that is

not obviously wong. Fortunately, the limt X

on the intersection of two planes which separate all space into four dis-

is unstable. x lies

joint regions in which alternately A(x) > 1 and A(x) < 1 . In any open

spherical neighborhood of X1 » No matter how smal | the sphere, there

exist vectors x with A(x) <1, and if one of these is used to start

the iteration then the iteration will converge to a new linit A <1.

Exanple 4: Bis alnmost a unit matrix, in that all elements of B -1
are very small; and A's di agonal terns 84 differ by anounts that are
very large conpared with A's off-diagonal terns. i.e., each elenment of

A - diag(A) is small conpared with any difference 8y - a33 W th

143 .

X = & for sone J , and the sequence p, consists of those

coordinate vectors €y with j # J repeated infinitely often. Now

x ~converges to an ei genvector whose eigenvalue is very near a I f

Jd -’

a.. IS the algebraically |east diagonal elenent, then that eigenvalue is

JJ
the desired xo )

11



The foregoi ng examples show how necessary it is teo .specify

appropriate choi ces for X

convergence to the desired answer. In the follow ng sections of this

and the sequence p. in order to secure

report, sone assunptions are nade regarding those choices. The
assunptions are intended to be weak enough to be practical, yet strong
enough to guarantee convergence to an answer which, if it is not the

desired answer, can usually be checked and corrected.

3.) ‘The Conplete Iteration

Thi s section di scusses the consequences of choosing p, from t he
set of N coordinate vectors e in such a way that each set of M
consecutive vectors Py s Pos1 20t Bpamel i ncl udes each coordinate
vector e, at least once. Mis sone fixed integer no smaller than N.

In the previous section it was shown that ANA >A as N s
and that the sequence of nornalized vectors ;C_\n = }_n/llzi_nﬂ possessed a

N
continuum of points of condensation. Let x_ be any one of these points

of accunulation; it'will be the limt of sone subsequence of X, - Say

X 3

as n, - for k=1,2, 53,

n
4 X
—00

4

n
Evidently |x |l =21 . Furthernore, because

"§n+l - fn“/”ﬁn" -0 (see section.2) |
n ~
“lcn-i-l-lcn"—)O too ,
A ~
and t herefore gnk_,,l—)_}_cm as k -»» . |ndeed,

12




x>

l
P
&

as k e

L
>

for any fixed m, but we shall use this fact only for values of
m< M. -

N
Now let r =r /lx || for a11 n ;

n N N

r,o=x(x) = (A-AB)x  wvhere
N

b = A,)

Because of continuity,

n n e
rﬂlk-i'm ->r = r(x_) as k — o
The next objective is to deduce that n;m = 0 by show ng that
TN N
e; £, =0 for 3=1,2, .. and N. The fact that ;flzn-»o,
. . N
proved in section 2, is exploited to prove E?& = 0 as follows.
Let j be fixed. Gven k , it nust be possible to solve
Bnk-l-m=-e-j
for m=m between O and M| , because e_J appears at |east once

“in the sequence

Bn 2 Bn+d 2ttt Boamel

Theref ore eT

~ =T ;\
=3 Fmyctm T Enem Inm

-0 as k -« , gand hence

15




TN :
&y Ly T 0 as required.
A N .
Since r = 3(_;_:00) =0, x mst be an eigenvector and A
the corresponding eigenvalue of A with respect to B. This is so for

”\
every limt point x_in that continuum of limitpoints possessed by

t he sequencemg_:'n . If A, is a sinple eigenvalue, then ;(_:o must be
one of the two normalized eigenvectors differing from each other only
in sign, soin this case the nornalized sequenceA_y_:n must converge. But
if X is a multiple eigenvalue, the convergence of gn is a nore
difficult question which, together with the convergence of the unnormalized
sequence x "will be elaborated in the next section.

There is another question. Does X, = A2 It is renotely possible
that »_> xo , but in this case A, cannot be a nunerically stable

limit. The next three paragraphs explain why.

Let C be the region containing all vectors v such that

My) <A = A(J_Ew).

Cis easiest to describe with the aid of a coordinate system for
T
v~ (vl', Vo senes vy)

in which B is represented by a unit matrix and A is represented by a
diagonal matrix of its eigenval ues Q Gy seees OLN . The eigenvectors
of Awith respect to B yield just such a coordinate system Then
A(_\_r_)<>\.°° means

™ } 2 } 2

L (@, -2\ i< L O -a)v; ,

1 )\.OO Oti < )\.oo

14




whi ch deseribes the interior of a cone in that subspace conpl ementary

to the invariant subspace spanned by the coordinate vector(s) corres-
ponding to the~e1genvalue(s)fo& =X . The region Cis the interior

of the cylinder swept out by the cone as its vertex is translated
throughout the invariant subspace.

Any open sphere 4 centered at 2; intersects Cin an open region

«¢. N o whose volume is a constant fraction f of the volune of z/ no
«matter how smal | 44' my be. And if attention is confined to the sphere
77 of normalized vectors §=\_r/||z|| , then the area of CNANYZ

is still the same fraction f of the area A N ¥Z. (I have used the
words "sphere", ‘"volume" and "area", as if the vectors v formed a three-
dimensional space, with the intention that they apply to the corresponding
N-di mensi onal generalizations.)

Instability, when X >\, , stens fromthe situation of all limt

poi nt's g; on the boundary off C . Since A(g;) >\, each nenber

of the sequence 2; nmust awoid: the region C . But g; is at |east

as close to Cas it is to any limt-point g; , and h(;3 decr eases
faster when ? is noved towards C than when 2 i's moved towards 2;,
except possibly when x lies in the subspace conpl enentary to that
spanned by those eigenvectors corresponding to eigenval ues a <A
Therefore, it seens easy to fmagine a force of attraction pulling each
~ 2n into C, and hard te imagine how the sequence can avoid succunbi ng
to. that attraction. The matter wll be discussed further in the next

section of this report.

O course, the foregoing argument cannot be used to prove that A =\
. o]

because this is not necessarily so. The argunent merely indicates how

15



unlikely it is that v > A, The risk is greater according as the
second-least stationary value is closer to A's m ni mum val ue Lo
because when ) is very close to Xo‘ then the region Cis very
narrow. This risk is not peculiar to the relaxation process. Gven

A, B ,Agc“ and A such that (A -\, B)g_c; =0, and no other
information, the only infallible al gorithns known so far to decide

whet her X ‘= A, oOr not all cost at |east as much time as the triangul ar
resol ution

(A-» B =LDL,

where L is a unit lower triangular matrix and D is diagonal.

()»u° =X if and only if no diagonal el enent of D is negative, however

My My have been obtained.) Fortunately for many applications, special
information is frequently available to help avoid the risk. For exanple,

one may know t hat X is the only eigenvector whose elenments do not

change sign (cf. boundary value problens with "pillow shaped" eigenfunctions).
O one may know how to start the iteration with an x; whose A(-’El) i's

| ess than A's second-|east stationary val ue.

The last task of this sectionis to prove that
N
zn:_gn/||3<_n[|—>o as n-—-w .
Let X,m be the invariant subspace of eigenvectors v satisfying
(A-r B =0,

and let P_be the B-orthogonal projector into that subspace; i.e.

16




(A- 2BEx =0 for every x , and

T _
(l -p) B =0.

One way to construct P_ is to assenble all the normalized eigenvectors

n

Yy sat isfying
A A AL AT PN
(A-—%;Bkzi = 0 and (Zi D Yy) =Ny B vy = 813
into a sum

/\/\T
Poo=zi‘—r'i-v-i B -

Note that (I - P )x|l represents the distance fromx to £

W already know that every limit x_ of' a convergent subsequence

n

N
X, liesin L, . This inplies that (I1-P)x -0 asn —w;

n
otherwise there would exist an infinite subsequence X for which

o

N

l(z-2)x ||>e>0 . This subsequence woul d contain a convergent
Tk " A

sub- subsequence, say Lnk itself, whose 1limit x woul d have to

satisfy

/\
Mr-2)x ll>e
too, contrary to what has already been proved. Finally,

n N
E‘_n = (A - )\‘nB) -}En
A N
=(A-AB) | - B) X, *+ (A- D) A
PN N
= (A-ABNT- B)x, + (- MBE, X

-0 as n-—>wo ,

17



4)The Iteration Converges |ike a Geonetric Series

In this section of the report, the previous section's conclusion,
n
t hat A oA and r, 20 as n-e, isreplaced by a stronger
deduction: the sequence X~ converges at | east as quickly as a geometric

series to an eigenvector X, corresponding to A's snallest stationary

val ue Ay » except in those rare and unstable cases when A Ay -

This deduction stens from the observation that

(A nore precise statenent of the last equation is proved in Appendix I1.)
The natural thing to do is find out whether replacing M by »_in the
iteration fornula for X, causes a significant change in the convergence
properties of the iteration.

It is convenient to begin with an exam nation of N, gn and L

\\& have

In 1/l Il = I2," =, 1/, - 2 lipy IP)

Va5 T, /i - 2 )lpl]

-0 as n-—-o .

IN

Therefore, gn/nn -1 except for those values of n when & = N, = 0.
The value & nust be so chosen that there exists a positive constant

C such that
A2 2
& < -C(p, x,) /e, for all n

18




(cf. the second-last paragraph of section 1); this inplies, by virtue

of the last paragraph of Appendix I, that there exists some positive

constant d < 1 :such that

le/n, -1l <a for all sufficiently large n

except when €, =1, =0. The last inequality plays an inportant role
in what follows.

Now let us replace A in the x-iteration by an independent
vari abl e w, - To dimnish the possibility of confusion, we shall replace
the letter x by y and re-define the iteration thus:

Given A » B, B, and T, = A(En) as before, replace X, by a

new sequence y defined with the aid of independent variables W, as

follows. The residual I, (A - an)_:En is replaced by

3 = (A - wPly,
The val ue N, = - gr.lTr_n/[(nn - xn)”;gn”g] is
replaced by o, = - QnT _s_n/[(n'n - pn)||gn||2] .
The value & is replaced by 7 =a /n . except that

Ty = 9, Wen gn:nn:O. Finally,

Yna1 In n =n °

Each vector %, is an analytic function of umfor m< n

whose only singularities occur when TR T but we shall restrict

p to the interval
m

19



from whi ch "~ has already been excluded. Clearly, if ¥, = X,
and w =r for ﬂlm>n,then%n=§mand§m=£mfor al |
m>n.. Onthe other hand, if y =x andyu = for all m>n,

then the relations
A =% =0 (r/|x|l)’ and
m 00 -=m’ "--m

(-}Em+l - Em)/“im” Y as m — o

imply that as N - =

(g - 2/l = 0 (/I ) and
(5, - 20/l = 0 (z,/lx )2

provided m-n is bounded as n -« . \% shall be interested mainly

in m=n+M. (Mwas introduced near the beginning of section 3.)
What is the special significance of setting My = A? When

this is done, the sequence Y, for m>mn coi nci des with what one

would get if he used a relaxation iteration to solve the linear system

(A-x B y=0

for a non-zero vector y , starting the iteration from ¥ T %,
Somet hing i s known about the convergence of that iteration.
Consider first the stable case A = M s w th By = A for all

m>n. Now (A - xoB) is a positive sem definite matrix, for which

20




the theory of the relaxation iteration has already been devel oped
in the author's previous report (1966). There it was shown that
there exists a constant K < 1 , dependent only upon (A - LOB) , M

and the constant d , such that
ls ol < el

where |l|=a ||| represents a certain vector norm whose definition
now requires a small digression.
— ' T
Let W= (Kl W ey 1_JN) be the orthogonal wmatrix (WW = |)

whi ch di agonal i zes A - xOB ; say

A=-\3B = Wdiag(ei)w 21 e, W, ¥ -1

Si nce A-LOB is positive sem -definite, all 8, >0 . Then for any

vector v define
2 7 1 T

In the special case where s is a residual vector
T
= (A-AB)y =), 6 ¥ ¥ ¥
2 T
Msll® = y(a - 2By,

but this formula is of no use when s is a general vector.

The next step is from|ls .l <klllsll to

Nz < x5zl

21




wher e Kl<1and K is independent of n if nis sufficiently

large. The step is valid because

g 1/ Tl < W gl / Tyl + 0 (2l 11D

Kl s M/l ll + 0 (2 /I 1)

IN

1A

Kz /gl + 0 (2 /e

(Recall that |jx

X - as N —« . t Is necessary or nto
e/l || - 1 )it f

be sufficiently large that the term O(gn/[lgc_n+M|l)2 be smal| conpared
with (1 - )zl /1l -
Thus do we see that r, =0 at | east as quickly as the terms of

sone geonetric progression with common ratio Ki/M< 1 . And because

ey - 20 = le - Il < 2l ] e

_—
S EVEJ B-l-:‘-'m/(“n " )

-0 at least as quickly as Iq/M ’

t he sequence X, Must converge to its limt x, at | east as quickly as
some geonetric series with comon ratio Ki/M <1,

This is just the result we want, especially since it shows that
there is no need to compute the normalized sequence ric_n = ;_n/lgnﬂ :
Furthernore, the result is valid whether or not Mo is a repeated eigen-
value with several l|inearly independent eigenvectors. But the nethod

of proof conceals the closeness wth which K, can approach 1 when A

22




is merely the smallest of a cluster of nearly equal eigenvalues, in
whi ch case n may have to be exceedingly large before M IS
closer to Ao than to the next |argest eigenval ue. Besides, when
several eigenvalues are clustered near & there is an enhanced risk
that the limt of the sequence M will be an eigenvalue » > >‘o .

Consi der now the unstable case > A, - The |inear equation
(A= By =0

now has an indefinite matrix (A - xmB) , S0 the relaxation iteration
is alnost certain to produce a sequence of vectors Ly whi ch diverge

exponentially in such a way that
* .
Zm(A‘)“mB)Xm""” exponentially as m-—>e .

Sone justification for claimng that divergence is almost certain can

be found in section 4 of the author's previous report (1966). There it
was shown that if the sequences p — and 'rm/o-m are chosen in advance
of any know edge about y , then the sequence ¥, st di verge
exponentially unless the initial vector %, is placed into a certain
hyper pl ane '/‘41 wvhich depends upon (A - \B) and the sequences p
and ('rm/crm) in a practically undecipherable way. And since

(g, - x,)/lx |l =0 (Eﬁ/lllfnli)e , there is good reason to conclude that

M is nost unlikely to converge to a limt x> A unl ess the sequences
p, and & are correlated with X in some way designed to achieve

what woul d otherwise be a rare event.
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5.) Variations

At the cost of minor nodification, the foregoing analysis can be
extended to cope with two variations of the relaxation iteration Which
wi |l be nmentioned here.

One variation is "block relaxation", in which each step
X "% " §ngn is a suitable linear conbination of some specified
subset of the basis vectors ey . If the subset contains L vectors,
then the vector x + ¢ p which nininizes Mx, + & En) i S obtained
by solving an (L + 1) X(L + 1) eigenproblem Subject to this
conplication, the results in the foregoing sections can be applied to

block relaxation-with no inportant changes. Regrettably, the techniques

used in this report do not indicate when block relaxation is nore efficient

than the sinpler iteration.

Anot her variation seens to have been notivated by the fear that
X mght diverge to infinity or converge to zero even though the
normal i zed sequence En converges to the desired eigenvector. The
discussion in the previous section of this report should put such a
fear to rest, but in the absence of that discussion the natural thing to

do is find sone sinple way to normelize the sequence x . The sinplest

, . th
way is to fix some conponent, say the N'© , - of all vectors x, &t
some constant value, say 1 . This normalization is maintained by

restricting each nenber of the sequence 2, to the subset
(_e_l » € senns ﬁ\l-l} s

of which each el enent should appear at |east once in each set of M

24



consecutive vectors

Rys Bhyy o Bpyp 2ttt BpgMal

The anal ysis of sections 3 and 4 now requires some small nodification
to yield results which are outlined bel ow.
Let A and B' be obtained fromA and B by deleting their

respective last rows and colums, and |et

There is sonme risk that the restricted relaxation iteration will converge
to A, > A, but that risk is as negligible as before. The nost

likely event is that hp = A, @S bef ore, and that X, =X, with x/

. L T -
normal i zed by the condition & X, 1.. There is also a non-
—-o
negligible risk that the iteration may converge to )‘m=>‘é>)“o’ 'n
N

which case x, will diverge to infinity al though x =§_,1/||3<ﬂ|| will

n N
converge to a vector X such that gNTJ_cm =0 . The first N-1

n
conponents of x W ll provide an eigenvector y' # 0 satisfying
(ar - )”mB')Y.' =0 .

Exanple 1 of section 2 illustrates this possibility. The possibility

that A, =M > can easily be detected by performng a final

n

rel axation x = x

/N
X T Xyt E, gy, SINCE Ay S X)) <MK =N,

unl ess A= M Therefore, the restricted and unrestricted relaxation
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iterations can differ in only one inportant respect; one dterative met hod
may converge faster than the other. The author's linmted experience
with both methods indicates that the unrest&ed iteration should
normal |y be preferred despite the existence of rare exanples (like that
in section 3 of his earlier report (1966))where the restricted iteration

seens to be faster.

6.) Final Remarks

So far, the relaxation iteration for solving
(A - )\.OB)zc_o =0

has been discussed w thout reference to rounding errors. Their nost
noticeable effect will appear in the sequences A, and |EA|2 whose
conputed' values are obtained indirectly during the iteration defined in

section 2. Roundoff W || prevent the conputed val ues

Mg = Myt O, (rounded) and

1" ||__n|| + 2 &, gn Bx  + Ei Ilgnll2 (rounded)

from precisely satisfying the equations

Mgy = AMx +l) and
T
lx +1" Xl By

The remedy is sinply to reconpute the values ) and "3‘-n“2 directly
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fromtheir definitions once or twice during the course of the iteration.

For exanple, one good tine to reconpute A and ||1cn||2 i s when

(xn - Xn+l) has first remained no |arger than about 10n units in

the last place of Ml for M consecutive val ues of n .Another

good time to recompute M and r, = (A -AhB)gn Is just before accepting

X, as an adequat e approximation to X the smal | ness of I, is a .

useful indication of the accuracy of X provi ded one has sone infornation

about the separation between Xo and the next larger stationary value

of A and a bound for the size of B! . (See Appendix I, part (iii).)
Utimtely the iteration index n wll becone |arge enough that

(A -M 1) is negligible although |x ., - x | i's not negligible yet.

This occurs because

- 2 -
A=A =0 (x /llx D whi | e
% T O(zn)
as is shown in Appendix Il. For all subsequent values of n it nay

be worthwhile to skip those parts of the calculation whi ch up-date
”§n+l”2 and M., . The time saved is noticeable when A and B are

such sparse matrices that the conputation of

T T

By Iy = (py (A -2B))x,

consunes fewer than a dozen arithnetic operations. A can be held con-
stant forseveral iterations, and reconputed fromthe definition

A = A(fn) sufficiently infrequently that the time spent upon

n
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reconputation is a small fraction of the tine saved by not updating
M at each iteration. The conclusions in section 4 remain valid

however A, may be defined provided that
Py = Al = 0 (/I 1D
n o -n’ = *

But the definition of » given in section 2 (based upon the scheme

used by Nesbet (1965))is the nicest that the author has seen.
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Appendi x 1

Here is an outline of the proof that when ¢ =¢ ,
T 2 a2 2
A< -(pr)/Gs ol Ix17)

where s = max(A(u) - A(v)) over u#0 and v #0.

For the sake of sinplicity, and without |oss of generality,

assuned that
Ilell = x|l =1 and =x>2=0

Now we abbrevi ate;
a = pTr and B = (p

The nunbers o, 8 and = can be bounded;

2
B = (p, x)° < Ipl® Ixl® = 1.
2

_ G Tgl/2 (B-l/E ) p-1/2 )281/22/§_TB§ < 2

£
11

A(B) <s.
Now | et us express &\ as a function of & :

M= g(E + 2ofx)/(1 + 2 BE + £0) .

This is mnimzed when ¢ = ¢, at which point aayag = 0 .
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a” = (BT;:)Q < (P_TB_E)(ETB'lE) by the Schwartz inequality,

Ther ef or e,




By = (2t + @)/(L 4B)
which may be combined with the former equation to yield
M= a/(p + 1/t) and

(nﬁ-a)§2+ng+a20.

Solving the |ast equation and substituting into the forner yields

¢t = - 2af(x +'\/n2 - hpan + e ) and

o= -20/(x - 2 + 4 - bgam + 4P )

An application of the bounds

t<s, -0B<s and a2<32

yields
Mmin <- dz/(as) P)

as was clained.

Incidentally, if &/¢is held constarit as t -0,
_ 2 _ :
_Ax/Axmn-al-(g/g-l) ; in general, A\ approximates A\ . with
a relative error that is smaller than that with which ¢ approxi mates

¢ .
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Appendi x_11

For the sake of conpleteness, here is a short proof of the
classical result that as r(x)/|xll =0 "and A(x)—> 1 , a

stationary value of A(x),
Ax) - », = 0 (z(x)/ 1) -

To be nore precise, given real symretric matrices A and B with B

positive definite, and any vector x , we define

Mx) = ETAE/?ETBE ’

>
]

r=r(x) = (A-M)x,

- T

e =V BlyEe , and

A, = A(x_) for sone eigenvector x_ #0
such that (A -AB)x =0 ;

and we prove that

(i) The functional A(x) has at |east one stationary value

A between ) - e and A + e inclusive.

(ii) If x_  is the only stationary value in the aforenentioned
closed interval [re , Me], and o, are t he ot her
stationary values, then A lies in the smaller interval

- min (@ -2),  A+e/min (h-a)l,

ai>x°° ai<}"cc
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provi ded that, for exanple, when all o > M t hen

?/ min (n-a)=0 by definition .

ai<)\.°°

(iii) If for & > e we define o(\fs to be the subspace spanned
by all the eigenvectors corresponding to eigenvalues
(stationary values of A)in the interval [A8& , A+8],

and if & is the angle between x and 0\55 , then

sin 8 < e/ min I» - a
v -oal>38

il -
(The angle © is defined by

cos® © = max (ETB 1)2/(£TB X lr_TB v) ,

e£5
#£0

i<

i<

and can be viewed as the snallest non-negative angle between_x and
a vector v in the hyperplane 566. When the interval [A=8 , A+8]
contains only one eigenvalue, sin @& is a neasure of the error with
whi ch x approxi mates a correspondi ng ei genvector, even when the eigen- |,
value is repeated.)
The proof is essentially due to Kato (1949)with a few
nodi fications. In particular, the results obtained here are valid even
if A is a “degenerate eigenvalue” whose eigenvectors span a subspace
of dinension greater than 1 . Also, result (iii) isS simpler than Kato's.
First, the positive definite symretric nmatrix Bl/2 can be

used to replace B by I,
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A by A" =352 5 p2/2

xbyx':Bl/zx, and

r by r' = B:'l/er

= s

with no other changes. Therefore, there is no loss in generality if

Bis assumed to be | at the outset.

Now suppose the interval [p, v] contains no eigenval ue a of

A. This means that (¢-p)a=- v)>0 if a

I sanei genval ueof A,

so (A - uI)(A -ka) is positive definite. Therefore

T

X (A-pI)(A-vI)x >0 or

e2+()\,-u)()\.-v) > 0

Conversely, if 2+ (M =u)X=v)=0, then [p, v] contains

at least one eigenvalue. Thevalues p=A-e and v=X\A+e

satisfy this equation and prove (1).

If the closed interval [A-e , Ate] contains only one eigenval ue
my be a repeated eigenvalue, |et
ei genval ues and | et

A, , though X\ o, be the other

B = max Cti+, or = if all Q, > A
a, < A 17 e
i )

As p decreases to its |limt, it becomes | ess than A - e . Now set

o]
v=x+ec/()\.-p)\sk+eg/ m n

ai<xm

()" - ai)
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For the same reason as before, we conclude that [p , v] contains
at |east one eigenvalue. But because

MmX Q& <u<i-e<A<V<A+e

i
Ot1<)\,m

if wis close enough to its limting value, there can be only one
eigenvalue in [p, vI, and that is M. This proves part of (ii),,
and a simlar limting process in reverse proves the rest of (ii).
. . L 4
Finally, wite x = W +_U where Wc-:)f8 and ge,f,s . (pfs is
_ 1
the orthogonal conpl enent of ):5 .) Since st and fa are hoth
invariant subspaces of A, in the sense that A-CBQJ% and

L ¥
sl ek,

r=(A-M)x=(A-MN*+ (A -2

4
where (A = MI)w € 065 and (A = M) € "ts - Therefore,

2 - wh(a - a1y + uT(a - AD)Pal/x'x

(¢]
I

[w7(a - A)%w/ulu)lw/xx] -

IV

Now,  wu/x'x =si n’e; and

- x_)e

Y]

mn (o

u'(a - M) u/u'y s
oty - M >0

_ L . :
because the restriction of Ato xs has no eigenvalues in the

interval [A-8, M8] . This proves (iii).
It is possible to show with exanples that each of the bounds
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implied by (i), (ii) and (iii) can be achieved, though not
necessarily simultaneously. These results provide satisfactory error
bounds except when the separation between adjacent eigenvalues is not
much larger than the residual e , for which case see section 3 of

Kato's paper (1949).
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