
cs 47

AN LvTERP~~~ER FOR “~VERSON N~TAT~~NI~

BY

PHILIP S. ABRAMS

TECHNICAL REPORT CS47

AUGUST 17, 1966

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

I,.a
L
L
L
I
Ir
:L

i

i

L
L
L

L
L .
iL
L
.
L
L
i

. .

AN INTERPRETER FOR "IVERSON NOTATION"

PHILIP S. ABRAMS

Computer Science 239
Professor N. Wirth
Stanford University
&Y 30, 1966

CONTENTS

I. Introduction . 1

II. The Language O O . o . . o O o ., 2

III. Implementation Q o . O . o . e e . . 17

IV. Critique of Program . . O . . . o o 29

0Critique of the Language--. a 0 0 * 0 *......0 34

Q .* l l 45

. . l a 46

Acknowledgments o o . .

References O o o o . . .

Appendices

0

A. Transition Diagrams o a 48

B. Subprograms in the Interpreter 52

C. Examples of Programs . . e 54

I
i

1
1
i

i

- ----*- .
I: :

I
L
L
L
1
L
h
L
I-
I
1
L
i
i

I. INTRODUCTION

Kenneth E. Iverson's book, A Programming Language [4], presented a
-.

highly elegant language for the description and analysis of algorithms.

Although not widely acclaimed at first, "Iverson notation" (referred to

as "the language" in this report) is coming to be recognized as an impor-

tant tool by computer scientists and programmers.

The current report contains an up-to-date definition of a subset of

the language, based on recent work by Iverson and his colleagues. Chapter

III describes an interpreter for the language, written jointly by the

author and Lawrence M. Breed of IBM. The remainder of the paper consists

of critiques of the implementation and the language, with suggestions for

improvement0

--

II. THE LANGUAGE

Although the Iverson language has previously been described in the
-.

literature [2,4,5,6,7 3, the subset implemented includes a number of hither-

to unpublished changes and additions. This chapter will be devoted to a

brief description of the current state of the language.

A. Data

Data are either scalars or arrays of scalars. A scalar is a numerical

quanitity or a quoted alphanumeric character. Numbers are represented

either as integers, terminated decimal fractions, or either of these two

followed by a decimal scale factor, (e.g. 6.023~24, meaning 6.023 x 1024) .

.

A negative sign can be associated with a number or its scale factor, and

is written above the line, as -36 or 1.6~~19 e This is done to distin-

guish between the sign of a number and the operator '-' . A logical valued

numerical datum has as its value either 0 or 1.

Arrays can be of any rank. It is important to note the difference

between multidimensional arrays and lists of lists. EULER [11,12], for

example, represents a matrix as a list (ordered set) of lists, each of

the latter representing a row. The disadvantage of this approach is

that it singles out a particular coordinate, in this case rows, of the.

array, thereby making it difficult to deal with an arbitrary cross-section

of an array. In this language, arrays have a symmetric structure, in the

sense that no dimensions are distinguished. (This point is discussed fur-

ther in Chapter V, A.)

The rank vector pA of a datum A is a vector each of whose compon-

ents is the dimension ('number of elements) of the corresponding coordinate of A.

2

I
I
i

Hence, if A is a 5 by 7 matrix, we have PA = 5,7 l * (Notationally,

the elements of a vector are separated by commas.) If A is a scalar,

then pA is an empty vector, that is, a vector of no elements. Also,
-.

ppA gives the rank or dimensionality of A ,, Hence, for a matrix, the

rank is 2, while for a scalar, the rank would be 0 .

B. Identifiers

An identifier is defined in the usual way and can be used to name

data or functions. In the former case, the identifier is called a varia-

ble. A value can be assigned to a variable by the statement

variable t expression

The value of a variable- is the most recent value assigned to that variable.

The use of identifiers as function names is defined in section J of this

chapter,

C. Indexing

It is often necessary to refer to a subpart of an array. This is

. done by the indexing operation. Indexing is indicated by a pair of square

brackets containing a subscript list, immediately to the right of the quan-

tity to be indexed, with the syntax shown below.

indable ::= varb
indable ::= const
indable ::= (expr)
slistl ::= sexp]
slistl ::=]
slist ::= slistl
slist ::= ; slist
slist ::= sexp ; slist
indexedexp ::= indable[slist

I

i

*
The sign '3' will be used to denote mathematical equality, to avoid
confusion with the operator '==I of the language.

3

t
i

I
1.-

L
I

i-

i

I
iL

i
L

;

t

‘

i

The number of semicolons in the slist of an indable A must be (WA) - 1 *

This subset of the language uses l-origin indexing. Thus, for a datum A

with rank vector pA (and (ppA) > 1) the subscripts for the jth coor--
-.

dinate must fall in the range

1 <, ij <, (pA)[jl for all 15 j 5 ppA

A subscript may be a vector, in which case a subarray is selected by

the indexing operation. For vectors, define A[il,i2,..., ik] to mean

A☯i& A☯i21, 00 l 9 A☯ikl l An analogous definition applies to vector sub-

scripts on higher m&k arrays. An empty subscript position is an elision
--.

meaning that the whole coordinate is to be selected. That is, if the ith

subscript of A is elided, it is taken to be @)[il . Thus, for exam-

ple, for a matrix M, MCI;] represents the Ith row of M . Indexing

returns a result with the smallest possible rank. Thus, in the example

just given, M[I; 1 is a vector.

.

D. Operators defined on scalars

1. The following simple binary operators (sops) are defined for sca-

lar-valued numerical arguments. In all cases, the result is also scalar.

Operator Function Definition Example

.
+ Addition As usual 3+5 = 8

Subtraction

X Multiplication ff I1 3x5 E 15

+ Division II II 3+5 = .6

L Minimum ALB is A or B, which- 3 c5 = -5
ever is smallest numeri-
cally

IL
4

(continued)

Operator Function Definition Example

r Maximum

Modulus

*

A

Exponentiation

Logical AND

V Logical OR

Relationals

ArB is A or B,
whichever is largest
numerically

3r5 3 5

R tAlB is the least 215 f i
positive number such that
for some integer Q,
B =R+AX&

A(B is undefined when
A I 03, and when both A E 0
and B< 0 .

As usual A*B E AB 2*3 =, 8

II 11 Arguments ILAO = 0
must be logical

11 11 valued NO = 1

A[iLB=-
1 iff A(@ holds ~ E 1

0 otherwise 'A' = 'T' E 0

(= and f: are defined in
the same way for character
scalars.)

2. If A and B are not scalars but are arrays with identical rank

a
vectors, then the operations defined above are applied to A and B

element-by-element to produce a result with the same rank vector. For

example,

If one argument of a sop is a scalar and the other is an array, the scalar

is extended to match the other operand in rank. For example, this rule

L
L
L
I
t

1
1
1
1
t

. .I -
1t

gives 3 + (4,5,6,7,-9) E 7,8,9,10,-6 . If any of the cases discussed

so far holds, the two arguments are said to be compatible. A binary opera-

tion in which the operator is a sop is undefined if its arguments are not
. .

compatible.

3. The following unary operators (also sops) are defined on numerical

scalars:

Operator Function Definition Example

rV

+

I
L

r

*

Complement

Unary +

Unary -

Absolute value

Floor

Ceiling

Exponential

C A must be logical valued
4 = 1-A

4s 0

+A = @-A =A

I A =A[-A

"greatest-integer-less-
than" LB E B-1IB L3*5=3

"least-integer-greater-
than" rB = - L-B

*A 3 e*A, e = 2.71828.. .

po5 = 4

If @ is one of the unary operators above and A is non-scalar,

then the value of OA is the result of applying 0 to all elements of A .

4. There is no operator hierarchy for any of the sops or oops (Sec-

tion F). Expressions are evaluated from right to left, with each operator,

acting binarily if possible, using the first available operands. Paren-

theses may be used in the normal way to alter the order of evaluation of

an expression.

I’

1
1
!
I
e
L
L
L
L
1
1

E. Reduction

If A is a vector (poA E 1) then for any binary sop 0, O/A

(read: 0 reducing A) is defined as follows:

If Z +-a/A then

Z = A[l]aA[2]0 . . . aA[oA]

where precedence is from the right to the left, as usual. If A is empty,

then Z is the identity element of 0 . For example,

x/to = 1

--.
If (WA) > 1, then O/A means reduction along the last coordinate

of A . In general, reduction can be carried out over any coordinate of

an array by subscripting the slash. We can define this general construction

as follows:

If Z +a/jM then

Pz f (@WL-.~ bM)[j - 11, (pM)[j + l],..., (oM)[&M]

Z[i,; i2; D *. . 0 ; .
ljol; lj+l;""; lPPM 1 =,

a/M[il; i2; * .0.0; .lj-1;; 'j+l; '*'; lpPM 1

for all combinations of the subscripts over the ranges

15 iK 5 (pM)[Kl, for all K E 1,2,..., j - 1, j f l,..., ppM

From the above, if M is multidimensional, then

c

1

c

F. Operators defined on non-scalars

There are a number of operators which are defined on non-scalars or

whose results have a different rank vector from their argument(s). This
. .

class of operators, the oops (Other operators) is summarized below and

defined in detail in section F.2. In the tables below, the following

abbreviations are used:

o Any one-element quantity (A is a one element. quantity iff
X/pA s 1 .)

v Vector

s Scalar

a Arbitrary rank

1. (a) Unary oops OA

Operator Rank of arg Rank of result Function

t 0 V Interval vector

P a V Rank vector

t V V 1tA

& V V 1JA

(b) Binary oops AOB

Operator Rank of A Rank of B Rank of result Function

a 0 0 V Prefix vector

cu 0 0 V Suffix vector

t V V V Index vector

E V V V Characteristic
vector

L
t

L
1
1
L
1
1

Operator Rank of A Rank of B Rank of result Function

P V a a Replication

t 0 V V Left rotation

4 0 V V Right rotation

7 V V V Catenation

L V V S Base value

T V 0 V Representation

2. Definitions of oops

(a) Unary oops

--. (i) Interval vector

undefined for nonintegral N and N< 0

tN 3 empty vector if N 3 0

(CN - l),N if N > 0

(ii) Rank vector

The operator p applied unarily to

a datum A produces the rank vector of A ,

Its meaning is defined in section A.

(b) Binary oops

(>i Prefix vector

NaJ = J> tN

(ii) Suffix vector

NcuJ= (N - J+ l)<tN-

9

A.

L
L
L
1
t
t
L
1.
L
L
t
1
1
t
i.
1
i
i

(iii) Index vector

If R tXGY, then pR z pY

For J E l,..., pR, R[J] is the least K such that

X[Kl = Y[J] . If no such K exists, then

R[J] 5 1+px.

(iv) Characteristic vector

If R tMeC, then pR z pM and

R = (PC) < C&M

--. That is, R[I] = 1 iff at least one component

of c is equal to Ml11 .

(v) Replication

If A t RpU, then pA s R

Let A' and U' be vectors formed from A and

U respectively, by taking the components of

each in row-major order. Then

A’[Jl E U'[l+ (pU')IJ - l], for J E 1,2,..., X/R

That is, A is built up in row-major order from

the elements df U taken in row-major order,

cycling on U as often as necessary. In particu-

lar, OPA, for any A, is an empty vector.

(vi) Rotation

Right rotation of U by J: RtJJU

R = U[l + (oU)I(z+U) - J + l]

10

i

1
1
1
1
1
1
Ic-

Left rotation of U by J: RtJfU

R = U[l + (pU))(tpU) + J - 1.3

(vii) Catenation -*

If R tA,B then R is a vector formed by

appending the components of B to the right

of A . That is,

RE AC1], . . .j AhAl, Bill,. . .y B[pBl

(viii) Base value

-e
If R tF&V, with B and V compatible,

let B' G B if B is a vector
(pV)PB if B is a one-component

quantity

and let W be defined as follows:

w[pv] = 1

WDI 5 W[I + l] X B'[I + l] ,

for I E ((pV) - l),..., 1

Then, R = +/w x v

(ix) Representation

R tVTN then pR s pV

R is a vector such that:

VJbR G (X/V)IN and A/V< R s 1

G. Generalized matrix product

The generalized matrix product, Ma1 ' a2N, for 01, O2 any two

binary sops, is a double operator between the operands M and N .

M and N are compatible for matrix product if the dimensions of the

last coordinate of M and the first of N agree. That is, if

bM)[wMl 3 (pN)[ll .

11

t

1
1
t

1.
L
1
I
f

i

If one of the operands is a scalar, it will be extended in the normal

way to a vector matching the other operand.

In general, the result Z of the matrix product M Ol l $?2N is
. .

defined as:

E ol/M☯il; i2; e l l ; i(ppM)-l;] a2N☯; j,; jppN]

for all values of the subscripts in the ranges:

12 ik 5 (pM)[k] , k E l,..., (ppM) - 1
--.

For example, suppose M and N are matrices. Then the familiar matrix

product of linear algebra is given by: ZtM+.xN; for suppose that

pM s m,n and pN E n,p . Then from the above definition, we have

.

Z&J] = +/M[I;]xN[;J] for all 1~ I 5 m

and lLJ<p-

Other uses of the generalized matrix product are discussed in [4].

For two vectors X and Y, the outer product R tX O. @Y, where Q

- is the null operator, is defined as:.

PR = (PX>, PY

R[I;Jl = X[Ila Y[J]
l<I<_pX
l<_JLoY

As an example, t O.(M) = tM is the identity matrix of order M .

12

L

. . “;

kI .

L
LL
1
1
t
1
1
1
1
1
1
I
1
1
1
L
L
i

H. Compression, expansion

The compression of a vector A by a compatible logical vector U

is denoted by X +-U/A and defined as follows:

PX E +/U, Then X is derived from A by suppressing those elements

A[I] for which U[I] E 0 . This operation can be defined by the program

below.*

The expansion of a vector A by a logical vector U with oA s +/U,

is denoted by X +U\A and has the following properties:

px = pU and X is a vector such

--
u/x f A and (4)/X E (+/--U)pO

that

.

These operations are generalized to arbitrary arrays in the same way as

reduction.

VX +U/A

[l] I tl

[2] X tOoA

[31 + (1 > PA)/0

[41 + (0 = uDl)/6

[51 X +X,ACI]

[6] I +I + 1

[71 -+3

V

I. Statements

The syntax for a statement (stmt) is

st ::= leftpart +-expression

* This program is written in the style described in section J.

1-3

-
---1(

st ::= -3 expression
st ::= expression
leftpart ::= varb
leftpart ::= varb[slist]
leftpart ::= Cl
stmt ::= st3
stmt ::= label : stmt -.
label ::= varb

Varb and varb[list] are to be interpreted as (possibly subscripted) vari-

ables. The symbol ' 0 ' (box) suggests a blank page and denotes the

output string, Assignment to 0 causes the expression assigned to be

evaluated and printed.

The symbol '-4 (right arrow) designates a branch and is used to alter

the flow of control in the execution of a function. Let 1 be the value

of the expression to the right of the right arrow. If c is an integral

single-component quantity and is within the range of the line numbers in

the currently executed function, then control passes to the statement on

line numbered 1 ; if E is an integral single-component quantity out of

this range, the function is exited and control is passed to the point at

which the function was entered. If & is an empty quantity, control is

passed to the next statement if such exists; otherwise the function is

exited as above. If none of these cases applies, the statement is unde-

fined and (in an implementation) an error is indicated.

Each statement must begin on a new line, and the symbol '
3

' in the

syntax is an end-of-line marker indicating this. A statement consisting

solely of an expression has as its effect the calculation of that expres-

sion. In general this effect is used to call a function.

J. Functions and programs

A function is defined by a program consisting of a head followed by

a body of statements., The entire function definition is enclosed in

14

L,
L
1
1
1
L
1
1
1
1
L
L
1
1
1
1
i

function quotes ' V' o The head establishes the function's' name, the

number of parameters, and whether or not it returns a value. A function

definition has the following syntax:
. .

functiondef ::= V head 3 body V
head ::= head1
head ::= varb theadl
head1 ::= varb dfn varb
head1 ::= dfn varb
head1 ::= dfn
dfn ::= varb
body ::= stmt
body ::= stmt body

The varbs in the function head identify the parameterso If there
--

is a. left arrow preceded by a varb in the head, the function is expected

to return a result. This is done by an assignment to this result variable

within the body of the function. A function is invoked by mentioning its

name in an expression, together with the appropriate number of parameters,

A function has the same syntax within an expression as a binary or unary

sop or a varb, depending on the number of parameters it takes. Actual

parameters are transmitted to the function program by value.

Labels on statements in functions are varbs which are initialized

to the line number on which they appear. These variables are non-local

to the function and may be used in arithmetic expressions at will. Chang-

ing their values by assignment may affect their use as labels.

Example: The function below computes the GCD of two numbers.

VX +-A GCD B

Ll: X +-A

AtABI
BtX

+ (A 1 O)/Ll

V
15

The function might be used later as follows:

L
R t4 + 6 GCD 15 ,

L
I
t

I

in which case the value of R will be 7 at the completion of execution

of this statement.

It should be noted that arguments to a function are passed exactly

as they appear in the calling statement; that is, there is no extension

as in the case of sops. Also, it is meaningless to use a binary function

in a reduction or matrix product.

1 --_

16

--- -

III. IMPLEMENTATION

The language defined in the previous chapter was implemented by an

interpreter for the IBM 7090/7094 by the author and L. M. Breed of IBM.

Except for a small number of machine dependent functions such as bit-

pushing and type conversion, the entire system was written in FORTRAN IV

to run under the IBSYS operating system. FORTRAN was chosen because it

was the only high-level language available to both programmers.

This section describes the organization of the interpreter and dis-

cusses interesting techniques used in programming. For purposes of ex-
--_

position, the organization of data and the logic of the program are

described separately.

A. Data organization

All references to variables, constants, operators, defined functions,

and temporary storage are made through a symbol table. In the interpreter,

the symbol table is an array named S; its structure is shown schematically

in figure 1.

All S-entries are either two or three machine words, depending on

the class (syntactic category) of the entity represented. The first word

is the class number (CLASS); the second is its base address (SPTR) in the

M array; and the third, if present, is a pointer to a BCD print name in

the high order part of S . The only entries which have print names are

variables, function names, and language primitives.

In the program, the pointer to the symbol table entry under considera-

tion at any time is generally in SYPTR, and CLASS and SPTR have values

corresponding to S(SYPTR) and S(SYPTR+l), respectively. (In describing

the program, FORTRAN notation wili be used where appropriate.)

17

L
i

i

ii

1

i

PNPTR Print names

TbPSYM

TCSYM

Constants,

Variables,

Dfns,

Temps

--.
Entries for

Operators (C.onstant

and symbol

Language table)

1 Primitives

Figure 1: Symbol table (S) organization

!
I
I

i

1i

!

1
i

1

L

.

The values of SPTR for operators and primitives are "ma.gic numbers"

which are used by the interpretation rules. For variables, constants,

and temps, SPTR points into M to the value of the entity, and for func-

tion names (dfns) SPTR is the base address in M of the branch vector

. of the function.

TCSYM points to the top of the fixed symbol table; TOPSYM is the

index of the next unused S location; PNPTR is the bottom of the print-

name section. When TOPSYM > PNPTR, table overflow has occurred and an

error is signalled. Note that storing the BCD print names from the top

of s instead of in the lower part of S with the rest of the entry

facilitates table searching, as there are no variable-sized entries in S .

18

MLIM

Mx

I
--_ Data

Entries

100

Location counter vector,

other system data
1

Figure 2: "Memory" (M) organization and typical data entry

(Pm11

PPA

* SYPTR length

' I TYPe

LYarbage marker

< SPTR
+ length

SPTRAf

The organization of M is shown in figure 2. Statements are trans-

lated into a code string of pointers to S and are stored down from the

top of M o CBOT is the index of the bottom of the code for dfns, which

is not changed, while MLIM is the bottom of the code for the current outer-

level statement. MX points to the next piece of M availa.ble for data

storage. All data space in M is allocated by the subroutine GETSPA.

When N words are requested of GETSPA and MX + N 2 MLIM, a garbage

collection is made to reclaim abandoned space in M .

19

When an M entry with base address SPTR is no longer needed, it is

marked as garbage by a bit in M(SPTR+l) . Garbage collection moves active

entries down into abandoned space. The SYPTR and length entries are used
-.

by the garbage collector (GCOL) to update S for moved entries. One

implication of this organization is that each M entry can be pointed to

by only one S entry. This simplifies garbage collection but causes

inefficiencies in M usage, as discussed in the next chapter.

Data in the system are classified into four type groups, which deter-

mine their internal representation. These types are:

1. Logical variables are represented as bit strings, packed

2.

3.

4,

32 bits per machine word.

Integer values are represented as 360bit sign-magnitude

integers, 1 per word.

Floating values are represented in 7090 floating point

format, 1 per word.

Character values are represented as a-bit bytes, packed

4 characters per word.

For numeric values, quantities are represented as the lowest possible type

in an attempt to conserve storage.

Each data entry in M contains the rank and rank vector of the data

.
being stored. For multidimensional arrays M, the X/pM entries are

stored in row-major order following the rank vector. That is, the mapping

function used is exactly the base value function with the rank vector as

radix. For example, if B is a floating array, the element

B[il; i2; '. . . ; iPPB] has M index

SPTR + 3 + *(opB) f (oB)L(il, i2, .=., ippB) - 1 .

20

B. The program

The purpose of the interpreter is to execute statements; that is, a

statement is read, executed, and the cycle is repeated. In order to provide

for programs with branching, such programs are defined as functions and

are executed by calling the function.

Because of the limited character set of the 7090-1401 system in general

use, it was necessary to transliterate the names of most of the symbols

of the language. These are all reserved words in the system, and are part

of the constant symbol table (see Eigure 1). A table of correspondences

between language symbols and their transliterations is given on the next page.

One of the two major subprograms in the system is TYPEIN, which scans

each statement from left to right as it is read in and does the following

tasks:

1. Recognizes reserved words and system symbols.

2. Creates symbol table entries for new identifiers.

3. Converts constants into M entries with matching S entry.

In this process, constant vectors are treated as a single

quantity, saving space in M and eliminating unnecessary

catenation operations. For example, the statement

x= Y MIN 3,4,7,9,4&Z - R DIV 3

will be scanned and the underlined part will be entered

into M as a 5-element vector rather than as five scalars

and four operators.

4. Each statement is converted into a code string of pointers

to appropriate entries in S, and these code syllables are

21

I
L
t

:L
1
L.

I

L-

i-

L

Symbol Transliteration Class Meaning

+

X
2
;

L
r

I
A
V

<
<-
=

>
7

1
N

a
03
E
24

P
r

4_
T

11-m
w-w
N-m

[
(
1
>
;
:
0
t
+
/.

a
0

m-m
--m
w-m
n
V

-MB
--F
w-w

+

*

DIV
EXP

MIN or FLOOR
MAX or CEIL
ABS or MOD

AND
OR
LT
LE
EQ
GE
GT
NE
NOT

ALPHA
--. OMEGA

EPS
IOTA
RHO

ROTL
ROTR
BASE
REP
w-w

09

0 .

0

GOTO=

w-w

LOCN
DEFINE
HYPHEN
DEBUG

FINISH

16 Operators, see chapter II
16
16
16
16-
16
16
16
16
16
16
16
16
16
16
16
16
17
17
1-7
17
17
1-7
17
17
17
4 Temporary result (temp)
5 Variable (varb)
6 Constant (const)
7
8
9

10
11
12
13
14
15
18
19
20
21 Used in outer product
22 Function name (dfn)
23 Actual parameter (dummy)
24 Reserved word (used internally)
25 Location counter
-I Function quote
mm Continuation to next card
Be Set diagnostic level
-- End of run

Table 1: Language symbols and transliterations

22

! ’
L.

L

L
t
t
L
I-
L
1
L
L
L
t
1
L
L
1
L
L

stored in M from CBOT down. The left-most syllable of

a statement is in the high part of M and the right-most

has the lowest index in M. TYPEIN inserts a colon (:) as

the left-most symbol in every code string, to be used by

SYNTAX as a statement terminator.

5. When a function quote is encountered, TYPEIN sets an internal

switch to change its mode from immediate execution to function

definition mode. In this mode, the header of the function

is scanned and the names of the formal parameters and the

function are determined. As each statement is scanned, it

is processed as described in steps 1 - 4 above. In addition,

lines are numbered sequentially from 1, and when labels

are encountered, they are given as value the current line

number. The function name has as its value an integer vector

of which the i+ le element is a pointer to the right-

most code syllable of statement (line number) i . The first

element of this vector points to information obtained from

the header, which is used for syntax checking.

When an identifier corresponding,'to a formal parameter

is scanned, a. negative code syllable is emitted. These are

interpreted as relative stack references by the syntax

analysis, and are the mechanism for parameter linkage in

function execution, Finally, when a closing function quote

is found, TYPEIN returns to immediate execution mode, resets

CBOT, and looks for the next statement.

6e When the end of an immediate statement is reached, TYPEIN

terminates and control is passed to SYNTAX for statement

execution, 23

I?.

;,I.
: : !

L
I
t

1
t
L
t
1
L
L
L
l-
i
L
L
IL
t
L

The second major subprogram in the system is SYNTAX, which performs

syntactic analysis of statements and controls execution through a series

of interpretation rules.

Syntactic analysis is based on the separable transition diagram scheme

of Conway [l]. In this scheme, the syntax of a nonterminal symbol of the

grammar is represented by a transition diagram, the edges of which cor-

respond to another grammatical symbol. To each edge there corresponds

an interpretation rule (c.f. [ll], [12]), which providesthe semantics of

the language. Each node in a diagram represents a set of alternatives.

These are examined in a fixed order, thus providing a degree of context

sensitivity. A circled edge from a node corresponds to "none of these"

and is a default branch which is always satisfied if none of the others

are. Self-recursion is replaced by looping within a given diagram.

Figure 3 is an example of the diagram for stmt and the complete set of

diagrams necessary to scan a statement is given in Appendix A.

The only syntax built into the transition diagrams is for a state-

ment. Flow of control between statements is handled by the end-of-

statement interpretation rule (S13 in figure 3). Also, note that in

syntactic analysis, a statement is, in effect, scanned from right to left,

Under the assumption that expressions will be written to take advantage

of the right-to-left precedence rule of language operators, this scheme

tends to conserve stack space.

The syntactic analysis described above is necessarily recursive;

this recursion is handled by the "translator stack," ST (actually 2

arrays, ST1 and ST3 .) In SYNTAX, SI is always used as the stack

pointer for ST e

24

I
I
i

Figure 3: Transition diagram for stmt

There is also a "value stack," SV, indexed by SVI, which holds

all temporary values (actually pointers to S) and function parameters.

.
In general, each interpretation rule gets values from the top of SV,

operates on them, and pushes the result(s) back into SV. The sub-

program PUSH(V) puts V on the top of SV, increases SVI, and checks

.
for stack overflow.

Interpretation rules, most of which are straightforward, make up

the main body of SYNTAX. An examination of a typical rule will be in-

structive. The rule below is a simplified version of M6, which is

encountered in traversing a smurg after having seen a sop followed by

a basic.

25

L
I
i

L
i

L
L
1
i
L
1
L
L
7
L

L
L
L
i

980 SVI = SVI - 3
T2 = sv(sv1)
Tl = SV(SVB2)
CALL GETTEM(V)
CALL DOSOP(V,Tl,SV
CALL PUTTEM(T1)
CALL PUTTEM(T2)
CALL PUSH(V)
Go ~0 205

(SVI+l),T2 >

When this rule is encountered, the stack looks like this:

SVIV

SYPTR for left operand

SPTR for operator sv
--. SYPTR for right operand

..

.

The routine GETTEM(V) creates a symbol table entry of class temp (4)

and assigns the SYPTR to V . DOSOP performs the operation coded in

SV(SVI+l) on Tl and T2 and assigns the result to V . PUTTEM

marks temporary M storage for T as garbage and returns the symbol

.

table entry for T to a linked temp list. This scheme keeps the number

of temp S entries small. Thus, when GETTEM is called, it has to

create a new S entry only if there are not any returned temp entries

available, Finally, PUSH(V) pushes the result of executing the sop
.

onto SV . The statement GO TO 205 returns control to the syntactic

analyzer.

Within the system is a location counter vector, LOCN, which records

the current line numbers of all active functions. In immediate execution

mode, LOCN starts off as an empty vector. Each time a function is

entered, a. new element, starting at 1, is catenated to the right of LOCN.

26

Ic-
1

i

,

i

;j

L

!-

I<
L

i
L-

L

L

i

When a function is exited, the last element of LOCN is deleted. The

location vector is updated by function calls, the branch interpretation

rule, and the end-of-statement interpretation rule. When a statement has

been completely executed and LOCN is an empty vector, SYNTAX returns

control to TYPEIN to read the next statement.

Function execution is straightforward. Actual parameters (if any)

are copied to temp storage, if necessary, and are pushed into SV . If

a result is indicated, a temp for the result is pushed. All actual param-

eters are given the type actual in S . Also on SV are put the SYPI'R

of the function name and certain global variables that record the current
--.

state of the syntactic analysis. A pointer FPTR is reset to indicate

the innermost function being executed. LOCN is changed as described above,

and execution of the function begun.

Upon exit, LOCN is reset, as are the global variables from the

stack, and the result, if any, is pushed back into SV .

A complete list of the subroutines in the interpreter and their

functions is given in Appendix B.

Extensive error checking is done in all parts of the program. When

an error is detected, execution of the statement is abandoned and control

is returned to TYPEIN to read and attempt a new statement. A diagnostic

message indicates the cause of the error and the state of the interpreter

when it was detected.

The interpreter includes almost all of the language described in

chapter II. Those features which were not implemented are outlined below:

1. Subscripting of the operators / and \ is not in the

system. - The most obvious modifications to the transition

L

i

L
L

2.

3-

--

4.

- -e

diagrams to allow this, also introduce syntactic ambigui-

ties, When this feature is added to this or another inter-

preter, one would also like to add subscripting of some of
. .

the oops (for example t, J,L) to provide for their

extension to multidimensional data. Such generalizations

to matrices are descirbed in [4].

The mask and mesh operators [4] have not yet been programmed.

(See chapter V, D)

In [4], compression on the left of an assignment arrow is

allowed, as in the statement:
u/⌧ + 2,319 l Although this

is a convenience, the same thing can be said using ordinary

indexing: mJ/wxl + 2,3,9, and thus this feature was not

included in the interpreter.

The constant high minus sign and the exponential form of

constants have not been implemented.

28

L
L
L
b
1
I
L
t
L
I
I
t
1
1
1
LI
L
i

IV. CRITIQUE OF PROGRAM

The interpreter just described has been thoroughly tested on a number. .

of programs and appears to be reasonably bug-free. Little effort was put

into any attempt to make the program efficient with respect to timing,

and it appears that the interpreter is indeed rather slaw. It is diffi-

cult to give meaningful timing figures, since each different kind of

operator takes a varying amount of time; as an example of this, note the

timings of the sample programs in Appendix C.

If the system were to be rewritten, there are several changes that

should be considered, based on experience gained from this implementation.

Some of these proposals have been suggested by L. M. Breed, based on work

with the TSM system (see below).

1. The 7090 system is difficult to use because of the trans-

literation of symbols necessary to present a program to the

machine. This problem can be solved by using an input de-

vice such as a CRT terminal or an IBM 1050 or 2741typewriter

terminal for which a typing element (type-ball) with the

Iverson character set is available. For example, Breed

adapted an earlier version of the interpreter for use on

the now defunct TSM time-sharing system at IBM. With the

inclusion of simple text-editing statements in the language,

its usability was increased manyfold by being available at

an online terminal with the proper character set.

2. Organization and allocation of M storage can be changed

to simplify the interpreter and increase M usage efficiency.

29

There are several aspects to consider:

(a) The major reason for storing statement text as a series

of S pointers was to allow for text editing and re-

construction of statements for error diagnostics.

Editing does not exist in the current implementation

but would be necessary in any online use of this sys-

tem. Under the current arrangement, a special garbage

collector would be needed to reclaim abandoned code

space at the top of M . It thus makes sense to store

the code string for a statement directly in M as, say,

an integer vector. Then, the regular garbage collector

can be used to reclaim abandoned text. This proposal

will complicate the garbage collector, as there would

be M entries, namely the branch vectors for the

function names, which point to other (moveable) M

(b >

entries; this problem is not very significant, however,

since the addition of lists of the language (see

Chapter V, A) requires an identical extension of the

garbage collector. It would still make sense to put

code strings for immediate execution statements into

high M to eliminate the necessity of reclaiming the

space thus used.

It was found by users of the TSM system that in long

work sessions, many constants were introduced in im-

mediate execution statements which were no longer

needed when these statements were com!pleted. The net

30

I-
L
L.
L
L
1
L
r
1
L
L
1.

result was that both S and M became filled with

unused entries which were not reclaimable because there

was no mechanism for marking them as garbage. A pos-
. .

sible solution is to put a constant directly into the

code string, preceded by a special syllable which marks

the next entry as a constant. This would slightly

complicate the problem of getting the next code sylla-

ble in the syntactic analysis, but would eliminate all

constant entries in S, as well as left-over constants

in M from immediate execution statements.
--.

(c) Most of the M space marked as garbage is from aban-

doned temporary storage. In an earlier version of the

interpreter, temp storage was stacked down from the

bottom of the code string, and abandoned by changing

MUM when a statement was finished. This was unsatis-

factory for two reasons: MLIM ha&d to be stacked on

SV whenever a function was entered; also, in a long

statement using many temps, if M became full, a spe-

cial garbage collector was needed to compact the temp

storage abandoned but not yet erased.

One possible solution is as follows: In the exe-

cution of almost all of the sops and most of the oops,

at least one of the operands is the same size as the

result, Further, the execution of these operators is

sequential. Thus, it should be possible to rewrite

the operator execution programs for sops (DOSOP) and the

appropriate oops (such as t, &,T, E, t) to put the

i

r
L

result directly into the space occupied by the longer

operand, if the latter is itself a temp.

3. The present method of syntactic analysis appears to be more
. .

powerful than necessary to treat this language. Even so,

it is extremely simple to implement and is relatively compact.

(The entire syntax analyzer is written in about one page of

FORTRAN, and the diagram tables take less than 200 words of

7090 storage.

factor of 3 by

still desire a
--_

candidates for

(a) Rewriting

This latter figure can be cut by at least a

judicious packing of the table.) One might

simpler analysis routine, and at least two

this position come to mind.

the syntax so that it is a precedence gram-

b >

mar allows an even simpler analysis routine [ll], [12].

However, a disadvantage is that in order to provide

for complete error detection and recovery, the whole

precedence matrix has to be kept in the program. In

addition, the table of productions necessary for syn-

tactic reduction would probably be at least as long

as the present tables. The interpretation rules would

probably be no more complex than those in the current

scheme.

Another scheme which requires very little table storage

and an extremely short analysis routine is as follows:

A current state (essentially an indication of what is

on top of the stack) is kept and compared to the syn-

tactic class of the incoming symbol. If this
I
i

32

state-class pair is allowable, then an appropriate

interpretation rule is invoked and state is altered;

if not, an error is signalled. The simplicity of the

scheme follows from the observation that a very small

number of states and classes is necessary to define

the syntax of the language. Thus, a short table of

bits is sufficient to contain all the requisite informa-

tion for the analyzer. A slight disadvantage is that

the interpretation rules will probably have to be a

little more complicated than at present in order to do

extended error checking and operator execution.

With these two proposals in mind, it still appears that the

transition diagram approach is most satisfactory for this

and future interpreters. The primary reason for this is that

using the diagram formulation, it is easier to alter the

syntax of the language than in either of the other two

skhemes; this is particularly important in an experimental

interpreter. Also, with the syntax represented in diagrams,

much of the recursion which would normally occur in parsing

can be replaced by iteration, which tends to conserve stack

space.

33

v. CRITIQUE OF THE LANGUJGE

h.
1
L
1
t

L
I
1
1
i.

i

i
i

I1,

While I am a strong supporter of the Iverson language, I believe
. .

there are a number of areas where it is weak and could bear improvement.

Almost all of these are points of omission rather than objections to

features already in the language. This chapter is devoted to an outline

of desirable new features, and should be considered as a set of sugges-

tions for future work rather than detailed proposals.

The problem of adding new features to this language is not a trivial

one. As it stands, the language is a powerful notation for describing

processes, and is rich in formal identities. Any changes to the language

should be consistent with the established body, both syntactically and in

spirit. The danger of making ad hoc additions is ever present, and much

thought will be necessary to work out the details of the suggestions that

follow to avoid destroying the language or cluttering it with questionable

kludgery.

A. Lists

The language currently has no provision for list-like structures.

In his book [4], Iverson developed a subset of the notation to deal with

trees. While powerful, it was wholly analytic; in order to construct a

tree, one had to resort to building up a different representation of it,

such as a right- or left-list matrix. Rather than extend this tree nota-

tion, I suggest a more "conventional" approach, along the lines used in

EUIXR [ll], [12].

Define a list to be an ordered set of elements, each of which can

be a scalar, an array,- or a list. Notationally, a list will be

34

represented as

(El; c2;c
n3

L.

;I

I-

t

L.

t

L

i

L

Ic

i

I
i.

!

. .

where each of the & i is a list element and the curly brackets are called

list brackets. The use of the semicolon as a separator is consistent with

the existing notation, in which subscript elements are separated by semi-

colons. Thus with lists, it becomes apparent that the construction

A[&] where & is an slist, is really an abbreviation for A[(&)] .

In adding lists, the available data space is made richer because

lists extend it to include Cartesian products of arbitrary subspaces,

in the sense of McCarthy [83. It is not desirable, however, to eliminate

arrays as they exist in the language. A formulation of an array in list

terminology makes it a list of lists of...of lists of elements. For

example, a matrix becomes a list of rows (columns). The disadvantage of

this approach is that it distinguishes some coordinates of an array over

others, which for many purposes is undesirable. In different terms, con-

sidering arrays as lists of lists is to confuse the idea of an array, a

purely mathematical concept, with its representation. In making the

generalization to lists while retaining arrays it is tempting to consider

the possibility of arrays of lists, but this, I think, is carrying a good

thing a bit too far.

Given lists, it is necessary to define operations upon them. I

propose the following as a start:

1. Catenation (appending) -- For A and B both lists, A,B is

a list composed of catenating A and B at the top level.

For example,
(
i
i C a ; b ; c), (d ; e) E (a ; b ;c;d;e]

35

Lc
t

t

1
1
1
1
1

The symbol ';' cannot be used for the list catenation operator

because this would cause a conflict in the meaning of the symbol.

For example, it would then be difficult to explain how
. .

CEl3 ; cm represents a list of two elements, each of which is

a list, as opposed to being a list whose sole element is the

catenation of the lists (1') and 2 .c 3

2. Arithmetic operations -- Arithmetic operations can be extended

to compatible lists element-by-element, as is currently done

for arrays, Here the definition of compatibility would have

to require both identical structure and that the primitive ele-

ments at the lowest levels are numerical quantities which are

array compatible.

3. Indexing -- A list can be indexed in order to select individual

elements. If a subscript is a list of more than one element,

then it will be interpreted to mean level-by-level selection.

For example, this rule would give

(1. ; 12 ; 3 ; 4) ; 15 ; (6}})C2 ; 11 3 2

t
1

1.

Here, as in array subscripting, the use of square brackets a-

round a list is actually an elision of an inner pair of list

brackets. Using this convention for square brackets, there is

no reason not to allow a list-valued expression to appear as a

subscript within square brackets.

It would probably be desirable to allow vectors as subscripts

to lists. However, I can think of no definition which would

have the following property analogous to vector subscripting

36

of vectors:

L[t (length(L))] z L

I‘_

L
1
t
L
L
1
t
L
L
1
L
L
IL
L
L
i

L
Ii-

. .

I submit that for the sake of consistency, we would like that

property to hold, and that any definition should conform to it.

4, Structural operators -- In the absence of declarations, it should

be possible to determine whether a datum is a list, as well as

some information about its structure. Since lists as we have

defined them are in some sense isomorphic to a generalization

of Iverson's trees, one possibility for determining structure

would be to use his analytic tree operators for moment vector,

dispersion vector, number of leaves, and degree e, y,, h, 6,

respectively.

All that is really necessary to use lists is a list predicate

and a length function. The other functions mentioned above can

be defined in terms of functions in the language. The predicate

can be similar to the operator isli of EULER, and the unary p

operator of the language can be interpreted to mean the length

of the top level of a list when given a list as argument*

It should be possible to convert a vector to a list of its

elements by a primitive operator. A suggestive notation for

this is list t ; / vector, with the obvious definition. It

might also be possible to extend the definition of the binary

P operator to the construction of lists, but I have no clear

notion of how this could be done.

37

I
.’
I

L
L
1.
L
I
t
L
L
L
l-
t
L
L
L
IL

B. Program structure

One of the most important features of the language is its ability

to express,easily and naturally,operations on structured data. At the
. .

expression level, this is highly elegant. The structure of programs,

however, is still at the level of machine language. When arrows along

the side of the page are used to indicate branching (as in [4]), the

structure of a program is equivalent to a flow chart, and is easy to fol-

low. It is, however, inconvenient and often verbose to have to write all

this flow information with explicit branches, as is necessary when a pro-

gram is presented linearly to a computer.

I believe that a good programming language should make it possible

to state an algorithm simply, in such a way that the complexity of the

program corresponds in some straightforward way with the complexity of

the algorithm it expresses. The current language has this property to a

large degree, and the suggestions in this section are directed towards

improving it in this area.

1. Iteration control -- The DO statement of FORTRAN and, even

more so, the for statement of ALGOL 60 have proved to be

very powerful and convenient mechanisms for iteration control.

With the inclusion of lists in the language, a generalization

of the for statement can be added quite easily.

Let us allow the following construction:

for X E L do S

where X is a variable, L is a list, and S is a state-

ment. This statement is executed by letting X take on as

38

1
I
t

c.
1
t

1
1
I

i

1

i

I-

!

L

value successive elements of L, with S being executed

for each such value. Also of value would be an optional

while clause, as in ALGOL, and the statement

while R do S ,- m

for R any logical valued expression. This statement would

evaluate R, execute S if the value of R is 1, and

repeat the cycle as long as the value of R remains 1 .

One problem that appears immediately is that the pro-

posed constructions allow only a single statement in the

scope of an iteration. At least three ways of indicating

scope come to mind: compound statements as in ALGOL; labeling

the last statement in the scope as in FORTRAN; and indicating

the number of statements in the scope. Of these three, I

prefer the first as being the cleanest and most straight-

forward. As a convenience in writing compound statements

and programs in general, it would be helpful to introduce

an (optional) statement termination symbol, analogous to

the ';I in ALGOL or PL/I, which allows several statements

to be written on a single line.

2. Case analysis -- Almost all but the most trivial programs

employ some form of case analysis; that is, execution of

different parts of a program depending on some condition.

In McCarthy's formalism [83, ALGOL 6O,EULER, PL/I, and a

proposed extension of ALGOL [131, among others, case state-

ments, conditional statements, and conditional expressions

have been provided to make this easily expressable.

39

I,:

I
L
I
L

t

t

1

t

i

t

i

L
L
1.
L
L
L
L

At the program level, the case statement corresponds

to indexing a pseudo-array of statements and as such, is a

generalization of the conditional statement. Such a construct
. .

in the language would considerably shorten programs in the

notation with no sacrifice in clarity. As an example of the

usefulness of a case-type statement, consider the machine

simulation example in Appendix C.

The need for a conditional expression or a generalization

thereof is just as great in that it allows conciseness in

expressions. It remains true that none of the constructions

in this section add "power" to the language, in the sense that

new things can be said which couldn't be said before; however,

the goal of ease of expression suggest-s their necessity.

A re-interpretation of an existing construction can

provide a generalization of the conditional expression anal-

gous to the case statement. Given the expression

11. 1 ; E2 ; ..e ; I,3 Gil

let this mean selection of the ith element of the list,

without evaluating the rest of the list.-----

For example, the factorial function can now be defined in a

single statement (compare the same function defined using

branching in Appendix C):

VX +-FACT N

x +(I ; N X FACT N - l)[l + N 1 O]

v -

40

i

Ii.
L
L
1
I
L

1

t

L
L
L
L
L
L
L
L
L
L
L
L

c. Functions

As currently formulated, functions (procedures) may have at most

two parameters. Further, there is no mechanism for local variables within
. .

a function, which makes recursive definitions difficult. A proposed solu-

tion has been put forth by the Iverson group and is described below.

Other questions to be considered are name parameters, functional arguments,

and block structure.

Let the function header line be of the following form:

vx+FPl;P ;...;P
2 n

In using the function, the right hand parameter can be a list. When the

function program is entered, the Pi are initialized to the corresponding

list elements. If n is greater than the length of the list used as a

parameter, the remaining P.1 are undefined until values are assigned to

them by the program. This scheme appears to solve both the problem of

.

number of parameters and that of local variables rather handily. By

introducing a function (operator) isdef such that isdef X is 1 iff X

is defined (has a value) and 0 otherwise, it becomes possible to deter-

mine which of the Pi
were initialized on a particular call of the func-

tion.

.
Some mechanism should be available to allow the use of name parame-

ters, in the ALGOL 60 sense. I have no good ideas on how this could be

fitted into the current notation. A similar situation holds for functional

arguments to functions. Here, perhaps something on the order of McCarthy's

use of h-expressions would be workable, possibly using part of the avail-

able notation for function definitions. Implementationally, functional

41

L
L

IL

i

I
l-

i
L
I
i

L
L
L
1L
L
i
L

arguments open a Pandora's box of problems associated with variable bind-

ings, so much thought will be required on this point.

The equivalent of block structure can easily be introduced given. .

the mechanism for local variables discussed above. It is only necessary

to allow function definitions to be nested to achieve this effect. This

eliminates the need for an explicit block syntax.

D, Operators

As the notation is replete with powerful primitive operators, it is

difficult to think of new ones which need to be added. The only situations

in which this is justifiable are for functions which either are not de-

finable in the notation, such as catenation, or which are sufficiently

primitive and useful, yet complicated to program as defined functions.

I will list the few primitives I think should be considered and give a

few general remarks about each.

1. Ravel -- This would be a generalization or row- or column-

list expansion of an array [4], and would decompose a higher

dimensional array into a vector in an order specified by

other parameters to the operator.

2. Laminate -- A generalization of catenation which juxtaposes

two compatible arrays in a parametrically specified way.

For example, if A and B are matrices with the same number

of rows, then the lamination operation should be able to

adjoin A to B as illustrated schematically below:

42

3. Transpose -- It is desirable to be able to obtain only only

the regular transpose of a matrix, but to be able to permute

the elements of any array in a number of specified ways.
. .

The Iverson group at IBM is working on a generalization of

this operator.

4. Mask and mesh -- These two operators, part of the "classical"

notation, while very elegant, are not generally useful enough

to justify their being primitives in the language. A major

use of mask (as, for example in [2]) has been as a special

case of conditional expressions. With the adoption of the

suggestions in Section B, the mask is no longer necessary

in this context.

5* Set operators -- Using vectors to represent ordered sets,

Iversion introduced set operators in [4]. With lists in

the language, it seems more natural to let lists represent

sets and to redefine these operators. On the other hand,

if sets and set operations are sufficiently useful in a

programming language, it may be more reasonable to introduce

a new data type, the set. Such sets would be unordered and

the operators defined on them could be introduced in such a

way that they obey the laws of set theory for finite sets.

E. Independent programs

In machine descriptions (for example [2]) the use of independent

programs (system programs) is necessary. There are no syntactic problems

in allowing several independent programs, but many difficulties are im-

posed on an implementation. That is, as soon as system programs are

43

.-

t:
.‘,,,

L
L
1
1
L
t
1
1
1
1
Ic

allowed in an interpreter for the language, all of the problems associated

with simulation come to the fore, Ultimately, one would like to be able

to execute several programs simultaneously, but the implementation of a
. .

system to allow this will be a major project in itself.

44

ACKNOWLEDGMENTS

The interpreter described in this paper was written jointly with

Lawrence M. Breed of IBM Research. Without his effort and the countless

conversations and arguments we had together, this work would not have

been possible. I am especially grateful to Kenneth E. Iverson, who

developed the language in the first place, and Adin D. Falkoff, both of

IBM, for numerous discussions on the language and its philosophy. I

also wish to thank John Lawrence of SRA for his encouragement and sup-

port; Michael Montalbano of IBM and Stanford for his help and enthusiasm;

and my adviser, Professor Niklaus Wirth, for his many helpful criticisms

and suggestions.

Parts of this work have been supported by the Computer Science

Department of Stanford University, Science Research Associates, Inc.,

International Business Machines Corporation, and the National Science

Foundation (Grant GP-4053).

PSA

45

REFERENCES

L
t

L
L
L
L
1
1
I

I
1
1
L

1. Conway, Melvin E., "Design of a Separable Transition-Diagram Compiler,"
Comm. A.C.M., 6, 7 (1963) 396-408.

2. Falkoff, A.D., K.E. Iverson, and E.H. Sussenguth, "A Formal Description
of SYSTEM/~~O," IBM Systems J., 2, 3 (1964) 198-262.

Hellerman, H., "Experimental Personalized Array Translator System,"
Comm. A.&M., 7,, 7 (1964) 433-438.

4.

5.

Iverson, Kenneth E., A Programming Language, Wiley, New York (1962).

-------, Elementary Functions, Science Research Associates, Chicago
(1966) In Press.

6. ------- "Formalism in Programming Languages," Comm. A.C.M., 7,, 2
(1564) 80-88.

7.

8.

90

10.

11.

a

12.

- 13.

14.

15.

2,'2
"Programming Notation in Systems Design," IBM Systems J.,
(1963) 117-128.

McCarthy, John, "A Basis for a Mathematical.Theory of Computation,"
in Computer Programming and Formal Systems, North-Holland
Publishing Company, Amsterdam (1963) 33-70.

------et al., LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge
(1962) l

Naur, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60,"
Comm. A.C.M., 6, 1 (1-963) l-17.

Wirth, Niklaus and Helmut Weber, EULER: A Generalization of ALGOL,
and its Formal Definition, Computer Science Dept., Stanford Univ.,
Technical Report CS20 (April 27, 1965).

------ and ------, 9 "EULER: A Generalization of ALGOL, and its Formal
Definition" Comm. A.C.M., 4, l&2 (1966) 13-23 and 89-99.

------ , and C.A.R. Hoare, A Contribution to the Development of ALGOL,
Computer Science Dept., Stanford Univ., Technical Report CS35
(February 12, 1966, revised).

Weizenbaum, J.,
524 -544.

"Symmetric List Processor," Comm. A.C.M., 6, 9 (1963)

Collins, G.E., REFCO III, A Reference Count List Processing System
~;~l~~; ;B&'7~~,l~;~)Research Division, Research Report

i
46

L
L
t.

L

IL.

--.

APPENDICES

47

APPENDIX A -- Transition Diagrams and their Internal Representation

exp Si'
I

basic

smurg

sexp,

48

L
. I

i-

t

I
L

--.

const

i.

i
i

slid B2
I

BlO

basic

smwg

.”

t

i

3

ii

sexp I

smurg

em

50

The transition diagrams of the preceding pages are stored in the

1
1

array DIAG. In SYNTAX, DIAG is indexed by D . Each node in a diagram

is represented internally by a sequence of triples of words, each of
. .

which corresponds to a path from that node. For a given node, if all

paths leading from it contain terminal or nonterminal symbols (that is,

no null paths from this node), a word containing the flag '1' follows

the set of triples for that node.

For each triple, the words have the following contents:

word 1 Class of the element to be scanned for this path, as
follows:

--. 0 default path (always satisfied)
1 no more paths from this node
5,6,..., 30 terminal symbol
> 30 index in DIAG of the diagram for a non-terminal

symbol to be scanned

word 2 Interpretation rule to be executed if this path is successful

word 3 Link to next node in diagram. If this word is 0, then the
diagram has been satisfied.

Example: Schematic of internal representation of the diagram for

an slist.

slist
I

sexp

51

‘I ‘;I~
E,’

L
1
L
L
I
1
L
L
L
1
L
1
t
t
i
1
1

APPENDIX B -- Subprograms in the Interpreter

Program

ADDSYM

ARTHTP

CODE

DOOOP

DOSOP

ERROR

EXC

EXPAND

FUZZY

GCOL

GETSPA

GETTEM

INCHAR

INDEX

MASTER

MATRIX

OUT

PUSH

PUTTEM

SELECT

REDUCE

STNEXT

Function

Used by TYPEIN to create a new S entry

Checks for type compatibility and finds common types for
operator execution

Emits one code syllable into high M

oop execution

sop execution

Error analysis and recovery

Execution of individual sops on 1 or 2 scalars
--.

Unpacks 6-bit bytes into 8-bit bytes (written in MAP)

Contains floor, ceiling and approximate comparisons
(in MAP)

Garbage collector

M storage allocation

Create temp S entry

Character-by-character input routine

Subscript execution

Main program -- alternates between TYPEIN and SYNTAX

Generalized matrix product execution

Output routine (used by 0 and diagnostics)

Stack entry on SV and check for overflow

Reclaim temp S entry and mark used M space as garbage

Compression and expansion execution

Reduction execution

Symbol table search

52

- -

L

IL-

IL

4i-

L

i

i

Program Function

SYNTAX See Chapter III

TYPE Contains fetch and‘btore routines and type conversion
(written in MAP)

TYPEIN See Chapter III

XRHO Computes X/pA for an M entry A

--.

53

L
L
L
t

L
t

L
L
t

L
t

t

1

APPENDIX C -- Examples of Programs Run Under the Interpreter

54

Ii-

i
!-

I
L

i

t

I

c

I

L
I
i

i

.

i

I

L

t
I
L

1

+ F A C T O R I A L F U N C T I O N , D E F I N E D R E C U R S I V E L Y
It
D E F I N E 2 = F A C T N
z 1
GCITO (N EQ 0)/O

(3) z = N l FACT N-l
(4) D E F I N E

l

BOX = F A C T 3
6

l

T=O.OOOl
l A IS THE NTH ROOT OF P
l

D E F I N E A = N R O O T P
1 1) A P
(21 Lo:. I = N
(3) Z=l
(41 L 6 . . G O T 0 (I EQ OI/L2
(5) --. z = A#2
(6) I = I - l
(7) GOTU Lb
1 8) L 2 . . G O T 0 I T G E A B S P-Z)/0

I 1x1
A = A + (P-Z) DIV N l Z DIV A
GOT0 LO

(11) D E F I N E ’

;Iox = 2 ROOT 5
2.236069

BOX = 3 R O O T 2 7
3.000000

I 1)
(2)
(2)
(21
(2)
4 3)
(4)

FRI

TOOAY IS MON

(1)
(2)
(3)
(41
(5)

l

*PERPETUAL CALENDAR

LF INE may = C A L E N D A R 0
NAMES=(7,4I R H O ‘ S U N M O N TUESWEDSTHURFRI S A T ’
S U B S C R I P T t 1 + 7 MOO (0,3,3,6,1,4,6,2,5,0,3,5I J(DS(lS) $1 H Y P H E N

+0$(2S) + (6 - 2 l 4 M O D F L O O R OS(3JI D I V 100) HYPHEN
+ (F L O O R 1 . 2 5 * 100 M O D DSI3$)1 - (DS(lL) L E 2) HYPHEN
A N D 0 EO 4 M O D 05(3$I

DAY = NAMESIISUBSCRIPT ., %I
D E F I N E

iox = C A L E N D A R 12.24.1943

B O X = ‘TODAY IS ' , C A L E N D A R 5,30,1966

:CALCULATE P A S C A L T R I A N G L E

~EF INE P A S C A L

P=L
BOX = P
P = (O,PI + P,O
G O T 0 (N G E PS(2$II/2
D E F I N E

:ENEX - 0
l

,

55

;j
I-

/i

1)
2)
3)

1)
2)
3)

1)
2)
3)
4)
5?

I-
GEN002GENOOl

b- C E N 0 0 4

r
I

1
1 1
1 2
1 3

1
1 -1
1 -2
1 -3

* A F U N C T I O N O F N O PARKMETERS (T H E G E N S Y M O F L I S P 1 . 5)
l

D E F I N E X = G E N S Y M
G E N E X = GENEX+l
x = ‘GEN’ , ‘0123456789’%(1 + (3 R H O 10) R E P GENEX$J
D E F I N E
l

D E F I N E P A S C A L 1 M
N--M
PASCAL
D E F I N E
l

* P O S I T I V E O R N E G A T I V E P A S C A L T R I A N G L E

&NE F8 PA~CAL~ N

P=l
80X = P
P = (P,O) + FB*O,P
G O T 0 (N G E A8S P%(2)) I/2
D E F I N E
l

io⌧ ‘3: G E N S Y M t G E N S Y M

A = G E N S Y M
80X = G E N S Y M

P A S C A L 1 3

1
3 1
l-1) P A S C A L 2 3

1
3 -1

+
F I N I S H

i

TOTAL T I M E U S E D 12.472 SECONDS 3 1 3 S T A T E M E N T S E X E C U T E D
0 E R R O R S 0 G A R B A G E C O L L E C T I O N S 5 8 9 C A L L S O N GETSPA

c

56

(6)
7)

4
(101
(11)
(12)
t 13)
4 141
(15)
(16)
(17)
4 18)
a 19)

(6)
(71
(8)
(9)

4 11

. :
21
3)

(41

(11
(2)

: 3) 4)
(5)

. .

* E X P R E S S I O N P R O C E S S O R -
l I N F I X T O R E V E R S E P O L I S H

R E V E R S E P O L I S H T O C O M P L E T E L Y P A R E N T H E S I Z E D
~EFTNE x = R E S T Y
X = (NOT (RHC Y) A L P H A 1)/Y
D E F I N E
l A R I T H M E T I C E X P R E S S I O N T O P O L I S H
D E F I N E S = P O L I S H I
P R I = 0.0?111,1~2,2
D P S = ‘St+-)*/’
S = 1 RHO ‘S’
Ll.. GOT0 (0 E Q R H O II/L6
T = IS(l$I
I = R E S T I
COT0 (A N D / T N E OPS)/LS
T P = (T EQ OPSb/PRI
L 2 . . G O T 0 ((T E Q ‘(‘3 O R T P GT (SS(lS) E Q OPS)/PRI)/dL3,L4)SIl+T EQ ‘I’S)
s = R O T L S
G O T 0 L 2

‘L3.. S = T,S
GOT0 Ll

s
k Ll

= R E S T S

L S . . S = S,T
GOT0 Ll
L6.. S = REST1 I(,‘$’ E Q S)/IOTA ‘ R H O S) -1) R O T C S
D E F I N E
@ P O L I S H T O F U L L Y P A R E N T H E S I Z E D
D E F I N E 0 = PARENS I
s = 0 R H O ‘ A ’
0 1 . . T = IStlS)
I = REST I
G O T 0 (A N D / T N E ‘+-*/‘l/O2
T = ‘(9 , NEX , T , NEX e ‘I’
02 . . s = T,‘J’,S
GOT0 (0 N E R H O I)/01
0 = (S N E @S’)/S
D E F I N E
+ N E C E S S A R Y T O S T A C K A N D U N S T A C K S T R I N G S
O E F I N E X = N E X
R = (tS E Q ‘$‘I/ I O T A R H O SIS(lS)

t
= ((RHO S) A L P H A R-1)/S
= (N O T (R H O S) A L P H A R)/S

D E F I N E
l D R I V E R P R O G R A M
D E F I N E P R O G I
BOX = ‘ I N P U T E X P R E S S I O N . . . ’ , I
I = P O L I S H I
80X = ‘ R E V E R S E P O L I S H . . . 0 9 I
BOX = ‘ F U L L Y P A R E N T H E S I Z E D . . . ’ , PARENS I
D E F I N E
l

+ T E S T C A S E S
l

PROG ‘A+f3*3/4-2’
I N P U T EXPRESSION...A+R*3/4-2
R E V E R S E POLISH...AB3*4/+2-
F U L L Y PARENTHESIZED...((A+(tB*3)/4)1-2)

--

PROG ‘(A+6)+3/(4-2)’
I N P U T EXPKESSICN...(‘i+R)+3/(4-2) . .
R E V E R S E POLISH...A6+3+42-/
F U L L Y PARENTHESILED...(((A+i3~*3~/(4-211

P R O G ‘l/(((((A))))-3+(7))’
I N P U T EXPRESSICN... l/(((((A))))-3*(7))
R E V E R S E POLISH...lA37+-/
F U L L Y PARENTHESIZED...(l/(A-(3*7)1)

F I N I S H

T O T A L T I M E USEC 2 1 . 8 0 4 S E C G N D S 6 3 9 S T A T E M E N T S E X E C U T E D
0 E R R O R S 2 G A R B A G E C O L L E C T I O N S 1 8 1 4 C A L L S O N GETSPA

--

l A SIMPLE COMPUTER -- BASED ON NOTES BY IVERSON AND FALKOFF

1

L
L
/

i

I

t

Ic

Ic

(LJ
1 2J

3J
i 4)
(4J

5)
t 6J
(6J
4 7J

BJ
t 9J
t 10)
(11)
1 11)
t 12)
1 13)
1 14)
(15)
l 16)
d 17)
I 1BJ
4 19)
(20)
1 20)
4 21)
t 22)
t 23)
I 24)
(25)
t 26)

= REGISTERS RHO FUNCTION
l A 16 ACCUMULATOR
l 16 INSTRUCTION REGISTER
l L PSW
l n 102::16 MEHORY
l

l INSTRUCTION FORMAT . . . XXXXAAAAAAAAAAAA
l WHERE XXXX * OP CODE
l A..A = ADDRESS
l

l UNEMONIC C O D E FUNCTIDN
l LO 0010 LOAD
l ST ’ 0001 STORE
l AD 0110 ADD
0 su 0101 SUBTRACT
l BU 1001 BRANCH UNCONDITIONAL
l BC 1000 BRANCH CONDITIONAL IIF OVERFLOWJ
0--. UR 1101 WRITE
l HLT 1111 HALT

;IEF INE M A CH I NE
FETCH.. I = M%IIBASE I16 OUEGA lZJ/PJ l) SJ
E A = B A S E I16 OMEGA 12)/f
P%I4+IDTA 12%) * I12 RHO 2) REP 1 l BASE I16 OMEGA 12)/P
l TRACE WHAT IS GOING ON INSIDE THE HACHINE
BOX = ‘P - ‘,‘Ol’sIl+PsJ,’ A - ‘,‘Ol’SIl+ASJ,’ I - ~r'Ol'S~l+I%J
GOT0 tLS,AS,BR,IOJS(l*BASE ISflr2SJ SJ
*LOAD AND STORE
LS.. GOT0 ISI3$J/LL
HSIEA r, $1 = A
GOT0 FETCH
L L . . A = H$(EA ., SJ
GOT0 FETCH
+ADD AND SUBTRACT
A S . . Kl = BASE A
K2 - BASE HSI EA ., SJ
GOT0 tSI4SJ/SS
K = Kl+K2
GOT0 SA
s s . . K = Kl-K2
SA.. A = TWOS REP K
P%Il%J = II17 RHO 2) REP KJ StlSJ
GOT0 FETCH
*BRANCH

GOT0 (NOT PSI1 + B A S E ISO.4SJ SJ
:“,i; + IOTA 12SJ

J/FETCH
- I16 OUEGA 12)/I

GOT0 FETCH
1 0 . . GOT0 ISI3%J/O
BOX = ‘ - - -OUTPUT--- 0 9 'Ol'S(1 + M$t EA .e %J $J
GOT0 FETCH
DEFINE

:HANDY CONSTANTS FOR W SETUP
B * 12 RHO 2
TWOS = 16 RHO 2
x0 - 12 RHO 0
Xl00 = B REP 100

/
i

I
,

i

59

Is.,
L
L
L
L
L
L
L
L
L
L
L
t .

t
1
1
1
Il-

Xl01 = B REP 101 . .
x102 - B REP 102
x103 - B REP 103
Xl04 = B REP 104
LO = 0'0'1,0
ST - 0'0'0'1
AD - 0,lrl'O
su - 0~1'0'1
WR = 1*1,0,1
HLT = 1'1'1'1
BU - 1'0'0'1
BC - 1'0'0'0
II - (1024,161 RHO 0
A = 16 RHO 0
I=A
P - ROTL 16 ALPHA 5
l ‘LOAD’ PROGRAM INTO R
l THIS PROGRAM HULTIPLIES US~lOl.,Sl BY tU(lOO.rSl AND PRINTS THE RESULT
HSi 1 l ’ SJ - LD,X103
Hst 2 ., S) - ST,XlOZ
nsc 3 rt SJ - LD’XlOO

--.nst 4 ., SJ - SU’X104
nsc 5 0’ SJ = BC.8 REP 1 1
Mtl 6 ., $1 * STrXlOO
HSt 7 r, SJ - LD,XlOZ
MS4 B ., SJ = AD,XlOl
nsc 9 0’ $1 = ST,XlOL
nsc10 0' SJ - .BU,B R E P 3
MS111 ., S J - WR,XlOZ
HS(12 r, SJ - HLT’XO
MI104 ., %J - 16 OMEGA 1
l

l WLTIPLY 1000 TIMES 4

Lt100 ., SJ - x0,0,1,0,0
HS(101 ., $1 - 116 RHO 2) REP 1000

MACHINE
P = 1111000000000010 A * 0000000000000000 I - 0010000001100111
P = 1111000000000011 A = 0000000000000000 I = 0001000001100110
P = 1111000000000100 A = 0000000000000000 I = 0010000001100100
P = 1111000000000101 A * 0000000000000100 I - 0101000001101000
P = 0111000000000110 A = 0000000000000011 I - 1000000000001011
P = 0111000000000111 = 0000000000000011 I * 0001000001100100
P = 0111000000001000 : - 0000000000000011 I - 0010000001100110
P = 0111000000001001 A - 0000000000000000 I - 0110000001100101
P = 0111000000001010 A - 0000001111101000 I - 0001000001100110
P = 0111000000001011 = 0000001111101000

0111000000000100 : - 0000001111101000
I - 1001000000000011

P * I - 0010000001100100~
P - 0111000000000101 A - 0000000000000011 I - 0101000001101000
P - 0111000000000110 A - 0000000000000010 I - 1000000000001011
P - 0111000000000111 A = 0000000000000010 I = 0001000001100100
P - 0111000000001000 A - 0000000000000010 I - 0010000001100110
P = 0111000000001001 A * 0000001111101000 I - 0110000001100101
P - 0111000000001010 A - 0000011111010000 I - 0001000001100110
P - 0111000000001011 A = 0000011111010000 I - 1001000000000011
P - 0111000000000100 A - 0000011111010000 I = 0010000001100100
P - 0111000000000101 A * 0000000000000010 I = 0101000001101000
P = 0111000000000110 A * 0000000000000001 I - 1000000000001011
P = 0111000000000111 A * 000000000000000~ I = 0001000001100100

60

: *1
L
L
Ie
1.

r:L
L
I-
L
t

P = 0111000000001000 A = 0000000000000001
P - 0111000000001001 A = 0000011111010000
P= 0111000000001010 A = 0000101110111000
P - 0111000000001011 A = OOOOlOlllQlllOOO
P - 0111000000000100 A = 0000101110111000
P - 0111000000000101 A - 0000000000000001
P = 0111000000000110 A = 0000000000000000
P = 0111000000000111 A - 0000000000000000
P - 0111000000001000 A - 0000000000000000
P - 0111000000001001 A = 0000101110111000
P= 0111000000001010 A = 0000111110100000
P - 0111000000001011 A = 0000111110100000
P- 0111000000000100 A = 0000111110100000
P - 0111000000000101 A = 0000000000000000
P - 1111000000000110 A- 1111111111111111
P= 1111000000001100 A = 1111111111111111
- - - O U T P U T - - - 0000111110100000
P - 1111000000001101 A - 1111111111111111

F I N I S H

T O T A L T I M E U S E D 3 4 . 6 2 2 S E C O N D S
0 ERRORS, 4 G A R B A G E C O L L E C T I O N S

I - 0010000001100110
I - 0110000001100101
I = 0001000001100110
: - - 1001000000000011

0010000001100100
I = 0101000001101000
: = - 1000000000001011

0001000001100100
I = 0010000001100110
I = 0110000001100101
I = 0001000001100110
: '31 - 1001000000000011

0010000001100100
I - 0101000001101000
I - 1000000000001011
I - 11p1000001100110

I - 1111000000000000

3 7 8 S T A T E M E N T S E X E C U T E D
1 7 3 0 C A L L S O N GETSPA

61

