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1. Introduction

When locating the zeros of a polynomial, it is usually difficult to
know just when to termnate the iteration process. It is desirable to
termnate the process when the zero is known to within roundoff accuracy.
Various ad hoc nethods have been used as stopping criteria, however,
such nethods do not take into account particular properties of the
pol ynom al being evaluated. Such properties mght include the condition
of the polynomial, multiple zeros, or clusters of zeros. |n this paper
a stopping criterion is presented which requires that the value of the
pol ynom al be less than a cal cul ated bound for the roundoff error

Bounds for the roundoff error can be obtained by using the methods
of range arithnetic [1] or interval arithmetic [4], but such nethods
require a large amount of conputation. The algorithm described here
produces simlar bounds, and offers the advantage of being easily
calculated, Kahan and Farkas [3] have used this algorithmto bound the
roundoff error for a real polynom al evaluated at a real point, but
they offer no motivation as to why the algorithmworks. |n this paper
Kahan's bounds for a real polynonial evaluated at a real point are
sunmari zed, and then the analysis is extended to a real polynom al
evaluated at a conplex point. The use of this bound as a stopping

criterion is discussed.
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2. Summary of Results for a Real Polynom al
Evaluated at a Real Point
This section contains a brief sumary of Kahan's® results on
boundi ng the roundoff error for a real polynomal evaluated at a real

point.  Consider the polynom al

n n-1 +
= +
P(Z) a 2 a,2 e ta .
The Horner recurrence is given by
b ==&
(o] o
(1)
bk = x.bk-l +oa k =1,...n .

The last term of this recurrence, b is P(x)
Associated with (1) we have a second recurrence, given by

e, = \aoln/(n + a)

(2)

e, - |X|-ek-l + |bk| s k = 1,...n .

In (2), b, represents the calculated quantity and = and ¢ are t he
maxi mum absol ute rounding errors which take place in any single product

or sum respectively. W have
<380, o<kpTt

where B represents the base in which the machine floating point
arithnetic is performed and t represents the number of digits in the
mantissa. For the Burroughs B5500, an octal machine with a 39bit

manti ssa, we have B = 8and t = 13 .

1 Lectures presented by Professor Kahan at Stanford University,
Spring 1966.



L

—

r—

r—

— ¢~ oo

r—--,:;

r—

Kahan shows that a bound for the roundoff error is given by
(3) |P(x) - o ! < (a + n)e - o |x.
He also shows that a suitable stopping criterion for having found a
zero of Pto within the bounds given for the roundoff error is

b | < 2E,
bt S
(4)

E= .. n’)en-!bn\n

The reason for having the factor of 2 in (4) is to guarantee that there
Is a conputer representable nunber which satisfies (4). Note that the
above criterion does not tell us how close we are to a zero, but only
that we are in sone interval about the zero where roundoff error nmay be

dom nating our calcul ations.

3. Rounding Error Bounds for a Real Polynom al
Evaluated at a Conpl ex Point

Now suppose t hat

— n n-1
P(Z)_aoZ +alZ oo tay

is a polynomal with real coefficients a but that we wish to
evaluate the polynomal at a point Z = X + i.y , By taking a quadratic
factor out of the polynomal and then equating coefficients with the
original polynomal, we can obtain the well known recurrence for evaluating
this polynomal at a point in the conplex plane which involves only real
arithmetic and a total of 2.n nultiplications. Thus if we wite

P(2) = (2° + p2 + q)(bozn'2 + blzn’5 + ... +b )+ RZ-x) +S

n2)



we obtain for the recurrence

o o
bl = a - p.b
(5) ! °
bk = ak - p.bk—l q bk—2 y k - 2,:-.1’1"1
bn = a + xb 1" q'bn_2
wher e
P="2X;C1=X+y ,bn_lzRandbn=S
Not e that

RU(P(x + iy)) = b and In(P(x +iy)) = yeb, 1

The coefficients 8, whi ch appear in the machine may not be
identical to the coefficients of the original problem because of the
error in converting fromdecimal to binary. W shall not be concerned
with this error, but rather with the errors which accunulate in
attenpting to evaluate the polynomal represented in the machine.

The elenents of the recurrence (5), as represented within the
machine, are given by

b = a
o o)

o’
i

@ - peb (1 + 7))/ (1 + 0py)
b, = ((ak - E'bk-l(l + ﬂlk))/(l + Ulk) - E'bk2(1+rr2k))/(l+cgk)

k = 2,...n-1

b= ((ay + x| (14 =) ))/(1+ 0y ) - @b (1 + 7, ))/(1 + %n) -

We can bound each of the quantities 1%" and rr.l.Jon the basis of the

floating point arithnetic of the conputer being used, that is,

1-t

|a” l <3 51_t s | <%8 .

1]
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In (6), p and q represent the true values, but will actually
have rounding errors associated with their calculations. For the sake
of sinplifying the analysis slightly, let us assume that q is calcul ated
in double precision and then rounded to single precision. Then we may
wite

p = 57(14-np)andqf=5/(l+-0q)=(x2+ /1 + o)

q
wher e
1-t 1-t
lnpl <%8B s \aq| <38 .
In practice this double precision calculation is not necessary,

Solving for the 8, in (6) we find

a, =b,
a; = (1 + 0p) + ped (1 + np)( 1+ 7))
a = b (1 4+ 0 )1+ 0p ) + 2By (1 4 oq)(l oy )L+ o)
" + oy (T ) (L ) ; k = 2,...n-1
a, = b (1 + oln)(l + cen) +a-b, (1 + oq)(l + o, (1 + o))
- x.bn_l(l + “ln) .

Note that in (7), and for the rest of this analysis, the letters &, ,

b, 5P, and g shall represent the nunbers within the machine, and

any deviation fromthe true values is represented by the error bounds,

By substituting the a, of (7)into P and sinplifying we find

n
. n-k
P = + o Yo - .
(z) bn iey bn 1% bn-lﬂn + g;% ckka

2
e
Py bylm /2 v ey, 2/2)7

& K
=0

wher e



=

1+o0)=(1+ ) : !oll < % pt-t
L+m o= (14w ) ; lnnlf_%ﬁl-t
Ltog=(1+oy)1+o,) ;5 logl|<pl®
Lam = (14, )(L + np) ; | | < pt-t
Lo = (14 9 ) (1 + 1y )(1 4 o)) ; |o, |

Recal ling that the cal cul ated value of the polynom a

"the recurrence is

bn + i'y-bn 1
we have
|P(x + ivy) - (b + iyo, )l
< n|x|-!bn_l! + c(\bn| + lbn l|-|Z|)
t (=|pl/|2] + lZ|/1z] ) o |- |27
t (o + xlpl/|z| + olZ|/|2)) > _ b, 2"
k=1
wher e
o= miax Ioil , T o= miax EF B imax lo, |
Now choose
e = !bo|(2n + w)/(2n + @ + a>
(8)
e, - || e 1 * lbkl ; k = 1,...n .
Hence

Ibo! = (2 + o + g)°eo/(27f + w)

‘bk! =€ - !Zl-ek 1

-kl

3 ol-t
526 )

as given by
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and upon substituting into the above and sinplifying we obtain

|P(x + iy) - (bn + iy-bn_l)l < (o + o + olep

(9)

- (2 + 0)(lo | + o, 12Z1) + = lx\\bn

wher e

The formula given in (9)is a generalization of the formula given
in (3). To conplete the parallelism between the real and the conplex
cases, we give the stopping criterion for having found a conplex zero.

A zero has been found to wthin roundoff accuracy when

|< e,

(10)
E= (2 + o + oJe, - (2 + w)(|bn| + lbn_1||Zl) + rr\x||bn_ll .
The follow ng section contains a discussion of the acceptability of

this criterion.

4, Use of Error Bound as Stopping Criterion

VW may think of the E as given in (10) as defining a region about
a zero in the conplex plane, such that for the set of all machine
representable points in this region the stopping criterion in (10)
is satisfied. For each zero j of P let Q3 denote the region
defined by E . If indeed our error bound is a good one, then we will
not be able to distinguish any of the points in Qj fromthe true
zero Zj on the basis of calculated function values, for any non-zero
quantities will only represent "noise". In general, Ewll define a

| arger region than the ideal one just described. W have made rat her
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extensive tests to see how the bound given in (10) conpares with the
actual roundoff errors. Included in our tests have been the pol ynom als
given in Table 1 and Table 2 of Henrici [2].

The zeros of these polynomials were determned using the nethod
suggested by Traub [5],[6]. The iteration process was terninated
when (10) was satisfied, After all of the zeros of each pol ynoni al
had been located, they were then reevaluated in the original polynom al
in both single and double precision, and any zeros which did not satisfy
(10) were purified. The roundoff error is then the difference between
the evaluations in single and double precision.

Figure 1 shows a distribution of the ratios of roundoff error to
t he roundoff error bound when (10) was first satisfied for each zero,
These cal culations were perforned on a Burroughs B5500, an octal machine,
and hence the error bound contains an additional factor of 4 over that of
a binary machine to account for the worst case where a rounding operation
can cause a change in the exponent. FromFigure 1 we see that in nearly
85% of our exanples the roundoff error is bigger than 0,01 times the
error bound, and this we feel is a reasonable bound for the error.

The distribution shown in Figure 1 tells us how the roundoff error
conpares with the error bound, but not how close we are to a zero of P .
Wien (10) is satisfied we only know that we are within the region 2j.
However, our analysis of the data shows that in the mgjority of the
exanpl es we have tested, we are sufficiently close to the zero when the
stopping criterion is satisfied, that even one nore iteration is
unwarrented. In performng the extra iteration either no change occurs,

there is a perturbation in the roundoff error but the answer is not



i mproved, or the answer is inproved by 2 or 3units in the last decinal

In referring to the region Qj about each zero, we have not dealt
with the case where €j may be enpty, If there is no machine
representabl e nunber which satisfies the error bound, then the algorithm
woul d search endlessly for such a value unless termnated after a certain
nunber of steps, W have not been able to prove that there always exists
a nmachine number which satisfies (10). On the other hand, we have not
found an exanple where there is no such nunmber, For the real case
Kahan has shown that by doubling the error bound, it is always satisfiable,
For the conplex case it can probably be shown that for sonme small multiple
of the error bound, there is always a machine representable nunber which

satisfies the bound, However, we have not shown this

5. Concl usi ons

The stopping criterion given in (10) serves as a very adequate
means of determning when a conplex zero of a real polynonial has been
obtained to within roundoff accuracy, The bound for the roundoff
error used in (10) is easily calculated as the polynomal is evaluated
by using the recurrence given in (8). Little is to be achieved by
iterating beyond the stopping criterion, An open question at present
Is whether or not there always exists a machine representable number

whi ch satisfies (10),
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Fig. 1 Distribution of the ratio of roundoff
error to error bound.
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