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1. Introduction

When locating the zeros of a polynomial, it is usually difficult to

know just when to terminate the iteration process. It is desirable to

terminate the process when the zero is known to within roundoff accuracy.

Various ad hoc methods have been used as stopping criteria; however,

such methods do not take into account particular properties of the

polynomial being evaluated. Such properties might include the condition

of the polynomial, multiple zeros, or clusters of zeros. In this paper

a stopping criterion is presented which requires that the value of the

polynomial be less than a calculated bound for the roundoff error.

Bounds for the roundoff error can be obtained by using the methods

of range arithmetic [l] or interval arithmetic [4], but such methods

require a large amount of computation. The algorithm described here

produces similar bounds, and offers the advantage of being easily

calculated, Kahan and Farkas [3] have used this algorithm to bound the

roundoff error for a real polynomial evaluated at a real point, but

they offer no motivation as to why the algorithm works. In this paper

Kahan's bounds for a real polynomial evaluated at a real point are

summarized, and then the analysis is extended to a real polynomial

evaluated at a complex point. The use of this bound as a stopping

criterion is discussed.
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2. Summary of Results for a Real Polynomial
Evaluated at a Real Point

This section contains a brief summary of Kahan's' results on

bounding the roundoff  error for a real polynomial evaluated at a real

point. Consider the polynomial

p(z) = a02n + alZn-l + .Oe f ano

The Horner recurrence is given by

(1)

bo-= a0

bk = x*bkml + ak ; k = l,...n .

The last term of this recurrence, bn , is P(x) .

Associated with (1) we have a second recurrence, given by

(2)

e o = Jaolfl/(fi  + a)

ek = 1 1x,ekel + \bkl ; k = l,.,.n .,

In (21, bk represents the calculated quantity and II and 0 are the

maximum absolute rounding errors which take place in any single product

or sum, respectively. We have

where @ represents the base in which the machine floating point

arithmetic is performed and t represents the number of digits in the

mantissa. For the Burroughs B5500, an octal machine with a 39 bit

mantissa, we have B = 8 and t = 13 D

1. Lectures presented by Professor Kahan at Stanford University,
Spring 1966.
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Kahan shows that a bound for the roundoff error is given by

(3) Ied - bnl < (a + fl)en - \b,(fl .

He also shows that a suitable stopping criterion for having found a

zero of P to within the bounds given for the roundoff error is

lb,( < 2E ,, -

(4)
1 E = ( a  +  R)en - \b,lfl l

The reason for having the factor of 2 in (4) is to guarantee that there

is a computer representable number which satisfies (4). Note that the

above criterion does not tell us how close we are to a zero, but only

that we are in some interval about the zero where roundoff error may be

dominating our calculations.

3. Rounding Error Bounds for a Real Polynomial
Evaluated at a Complex Point

Now suppose that

P(Z) = aoZn + alZnW1 + . . . + an

is a polynomial with real coefficients ai , but that we wish to

evaluate the polynomial at a point Z = x + Ly , By taking a quadratic

factor out of the polynomial and then equating coefficients with the

original polynomial, we can obtain the well known recurrence for evaluating

this polynomial at a point in the complex plane which involves only real

arithmetic and a total of 2.n multiplications. Thus if we write

P(Z) = (z2 + pZ + q)(boZn-2 + blZn-3 + 9.o +bn 2) + R(Z - x) + S

3
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we obtain for the recurrence

b. = a0

(5)
bl = al - p.bo

bk = ak - P'bkel - q*bk-2 ; k 7 2,...n-1

bn = an + xeb, 1 - qeb
n-2

where

p=-2x,q=x2 2
+Y ,bn-l = R and bn = S .

Note that

Rl(P(x + iy)) = bn and Im(P(x + iy)) = y*bn-l .

The coefficients ai which appear in the machine may not be

identical to the coefficients of the original problem because of the

error in converting from decimal to binary. We shall not be concerned

with this error, but rather with the errors which accumulate in

attempting to evaluate the polynomial represented in the machine.

The elements of the recurrence (5), as represented within the

machine, are given by

b. = a0

bl= al -( &bo(l ? flll))/(l + all)

(6) bk = u ak - ~'bk-l(l + 'lk))/(' + Olk) - P"bk 2( 1 + f12k))/(  1 + a2k)

k = 2,...n-1

b = ((a + x"b
n n n-l (1 + fi&)/(l+ aln) - Q'bn-2(1 + fi2$/(1 + a2n) ,

We can bound each of the quantities CL. and 'IC.. on the basis of the
13 iJ

floating point arithmetic of the computer being used, that is,

la 1-t 1-t
ij I <$B 9 I III

ij f$B 0
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In (6), p and E represent the true values, but will actually

have rounding errors associated with their calculations. For the sake

of simplifying the analysis slightly, let us assume that < is calculated

in double precision and then rounded to single precision. Then we may

write

P = F/(1 + flp) and q = i/(1 + oq) = (x2 + y2)/(l + oq) ,

where

In practice this double precision calculation is not necessary,

Solving for the ai in (6) we find

a =b
0 0

al = b&l + yl) + pobo(l + fip)( 1 + yl)

ak = bk(1 + '&l- + a2k) + gabk-2
(7)

(1 + aq)(l + fi2k)(l + Olk)

+ P'bk,l (1 + Jrp)(l + fllk) ; k = 2,.,.n-1

a = b,(l + yn)(l + 0n 2n) + cOno2(1 + oqKl + f12n)(l + alJ

- x*b
n-l(1+rc )

In
0

Note that in (7), and for the rest of this analysis, the letters ai )

bi .,P 9 and q shall represent the numbers within the machine, and

any deviation from the true values is represented by the error bounds,,

By substituting the ai of (7) into P and simplifying we find

p(z) bn
+ iey"bn 1 - xebn-153

+
n

ix
k=l "kbkz

n-k

+ z; bkhk+lep/Z  + L”k+2 z/z)ezn-k
where
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l+ol=(l+o )11
; $1 5 * P

ltnn=(l+rr ) ; 1-t
In 'Jr,\ f $ B

’ + ak = (1 + 02k )(l + 0lk
) ;

1+7tk=(l+fl
lk)(l + flp)

l"+uJk= (' + 'q)(' + '2& + ulk) ; !akl 5 $ ,+Ot .

Recalling that the calculated value of the polynomial as given by

' the recurrence is

bn + i*yOb, 1

we have

IP(x + i*y)

L ‘JIIX

+

+

where

bn + iey*b
n-l

)\

l.Ibnoll + a(lb,l + \bn ,l.lZl)

(‘-hl/!zl + d~l/lZl)(b
0

\e lZ”l

n-2
b + fllPl/lZJ + (+l/(zl > > IbkZ"-kl ,

k=l

u = max loil , 3-C = max I3I.J , 0 = max 'cui\  l

i i i

Now choose

e
0 = !bo(b + u-9/(271 + w + a>

ek = I IZ ekol + lbki ; k = l,,.,n O

Hence

lb01 = (2rc + 0 + a)oeo/(2fl  + cu)

lb,\ = ek - ji+ek 1 ,

6
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IP(X + id - (bn + iy*bn-l)l 5 (2~ + w + a)e n
(9)

- (2fl + (-")(lbnl + bn lllZ\) + II \x\lb, & ,

where

The formula given in (9) is a generalization of the formula given

, in (3). To complete the parallelism between the real and the complex

cases, we give the stopping criterion for having found a complex zero.

A zero has been found to within roundoff accuracy when

(bn + i'y*b, ,I < E ,
(10)

E = (2fi + UJ + de, - (2s + o,(lb,l + lbn-lllZl)  + ?rlxlIbn~~l  l

The following section contains a discussion of the acceptability of

this criterion.

4. Use of Error Bound as Stopping Criterion

We may think of the E as given in (10) as defining a region about

a zero in the complex plane, such that for the set of all machine

representable points in this region the stopping criterion in (10)

is satisfied. For each zero j of P let fij denote the region

defined by E . If indeed our error bound is a good one, then we will

not be able to distinguish any of the points in fij from the true
i

zero Zj on the basis of calculated function values, for any non-zero

quantities will only represent "noise". In general, E will define a

larger region than the ideal one just described. We have made rather

7
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extensive tests to see how the bound given in (10) compares with the

actual roundoff  errors. Included in our tests have been the polynomials

given in Table 1 and Table 2 of Henrici [2].

The zeros of these polynomials were determined using the method

suggested by Traub [51, C61. The iteration process was terminated

when (10) was satisfied, After all of the zeros of each polynomial

had been located, they were then reevaluated in the original polynomial

, in both single and double precision, and any zeros which did not satisfy

(10) were purified. The roundoff error is then the difference between

the evaluations in single and double precision.

Figure 1 shows a distribution of the ratios of roundoff error to

the roundoff error bound when (10) was first satisfied for each zero,

These calculations were performed on a Burroughs B5500, an octal machine,

and hence the error bound contains an additional factor of 4 over that of

a binary machine to account for the worst case where a rounding operation

can cause a change in the exponent. From Figure 1 we see that in nearly

85% of our examples the roundoff  error is bigger than 0,Ol times the

error bound, and this we feel is a reasonable bound for the error.

The distribution shown in Figure 1 tells us how the roundoff error

compares with the error bound, but not how close we are to a zero of P d

When (10) is satisfied we only know that we are within the region nj o

However, our analysis of the data shows that in the majority of the

examples we have tested, we are sufficiently close to the zero when the

stopping criterion is satisfied, that even one more iteration is

unwarrented. In performing the extra iteration either no change occurs,

there is a perturbation in the roundoff error but the answer is not

8
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improved, or the answer is improved by 2 or 3 units in the last decimal.

In referring to the region nj about each zero, we have not dealt

with the case where flj may be empty, If there is no machine

representable number which satisfies the error bound, then the algorithm

would search endlessly for such a value unless terminated after a certain

number of steps, We have not been able to prove that there always exists

a machine number which satisfies (10). On the other hand, we have not

found an example where there is no such number, For the real case,

Kahan has shown that by doubling the error bound, it is always satisfiable,

For the complex case it can probably be shown that for some small multiple

of the error bound, there is always a machine representable number which

satisfies the bound, However, we have not shown this.

50 Conclusions

The stopping criterion given in (10) serves as a very adequate

means of determining when a complex zero of a real polynomial has been

obtained to within roundoff accuracy, The bound for the roundoff

error used in (10) is easily calculated as the polynomial is evaluated

by using the recurrence.given in (8), Little is to be achieved by

iterating beyond the stopping criterion, An open question at present

is whether or not there always exists a machine representable number

which satisfies (lo),
E

t
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