QD-METHOD WITH NEWTON SHIFT

BY
F. L. BAUER

TECHNICAL REPORT NO. 56
 MARCH 1, 1967

Supported in part by a grant from the National Science Foundation.

COMPUTER SC IENCE DEPARTMENT
 School of Humanities and Sciences STANFORD UNIVERS ITY

Abstract

QD-METHOD WITH NEWTON SHIFT

F. L. Bauer*

[^0]1.

For determining the eigenvalues of a symmetric, tridiagonal matrix, various techniques have proven to be satisfactory; in particular the bisection method and \&R-transformation with shifts determined by the last diagonal element or by the last 2×2 principal minor. Bisection, based upon a Sturm sequence, allows one to concentrate on the determination of any prescribed set of roots, prescribed by intervals or by ordering numbers. The \&R-transformation is faster,; however, it gives the eigenvalues in a non-predictable ordering and is therefore mainly advocated for the determination of all roots.

Theoretically, for symmetric matrices, a \&R-step is equivalent to two successive LR-steps, and the LR-transformation for a tridiagonal matrix is, apart from organizational details, identical with the qd-method. For non-positive definite matrices, however, the LR-transformation cannot be guaranteed to be numerically stable unless pivotal interchanges are made. This has led to preference for the \&R-transformation, which is always numerically stable.

If, however, some of the smallest or some of the largest eigenvalues are wanted, then the \&R-transformation will not necessarily give only -these, and bisection might seem too slow with its fixed convergence rate of $1 / 2$. In this situation, Newton's method would be fine if the Newton correction can be computed sufficiently simply, since it will always tend monotonically to the nearest root starting from a point outside the spectrum. Consequently, if one always worked with positive (or negative) definite matrices, there would be no objection to using the now stable qd-algorithm. In particular, for the determination of some of the
smallest roots of a matrix known to be positive definite -- this problem arises frequently in connection with finite difference or Ritz approximations to analytical eigenvalue problems -- the starting value zero would be usually a quite good initial approximation.

We shall show that for a qd-algorithm, the Newton correction can very easily be calculated, and accordingly a shift which avoids undershooting, or a lower bound. Since the last diagonal element gives an upper bound, the situation is quite satisfactory with respect to bounds.
2.

$$
\begin{aligned}
& \text { Let } \psi(\lambda)=(A-\lambda I)^{-I} \text { be the resolvent of a matrix } A \text {. Then } \\
& \frac{d}{d \lambda} \psi(\lambda)=(A-\lambda I)^{-2} \text {. }
\end{aligned}
$$

Assume that A is of Hessenberg form of order $n \geq 2$, viz,

with +1 's in the lower off-diagonal. Then since $A-\lambda I$ is again of Hessenberg form, the co-factor of the $(1, n)$ element is ± 1, and therefore the (n, l)-element of $(A-\lambda I)^{-1}$ is $-l / f(h)$, where $f(h)$ is the characteristic polynomial of A. From the result above we conclude that the (n, I) element of $(A-\lambda I)^{-2}$ is $f^{\prime}(\lambda) / f^{2}(\lambda)$, and therefore $\delta(\lambda)=-f(\lambda) / f^{\prime}(\lambda)=e_{n}^{T}(A-\lambda I)^{-1} e_{1} / e_{n}^{T}(A-\lambda I)^{-2} e_{1} \quad$ is the Newton correction, $\lambda+\delta(\lambda)$ being the next approximation.
3.

The calculation of $e_{n}^{T}(A-\lambda I)^{-1} e_{1}$ and $e_{n}^{T}(A-\lambda I)^{-2} e_{1}$ can be based upon the solution of $(A-\lambda I) x=\alpha_{1} e_{1}$ and $\alpha_{2} y^{T}(A-\lambda I)=e_{n}^{T}$ by backward substitution starting with $(\mathrm{x})_{\mathrm{n}}=1$ and $(\mathrm{y})_{1}=1$. Then $\alpha_{1}=\alpha_{2}$ $(=\alpha), I / \alpha=e_{n}^{T}(A-\lambda I)^{-1} e_{1}$, and $y^{T} x / \alpha^{2}=e_{n}^{T}(A-\lambda I)^{-2} e_{1}$; or $f(h)=\alpha, f^{\prime}(h)=y^{T} x, \sigma(h)=\alpha / y^{T} x$. The final result holds even when λ is an eigenvalue, α then being zero and $y^{T} x \neq 0$ unless A is defective. While for the approximation of eigenvectors this backsubstitution, known as Hyman's technique, cannot be generally advocated, it offers a simple way to the calculation of $f^{\prime}(\lambda)=y^{T} x$ and of the Newton correction. It can be used when Newton's method can safely be used; e.g., when the roots of the Hessenberg matrix A are known to be all real, in connection with some deflation technique.
4.

For tridiagonal matrices, however, the LR-transformation or the qd-algorithm gives the Newton correction as a by-product. In the qd version of the LR-transformation we perform first for a certain value of λ the triangular decomposition of $A-\lambda I$,
multiply the factors conversely and decompose again

The transformed matrix A^{\prime} - λI has the same characteristic polynomial and may serve as well to calculate the New-ton correction. However, the solution of $\left(A^{\prime}-\lambda I\right) x=\alpha_{1} e_{I}$ is immediately given by

$$
\left.x=\left\lvert\, \begin{array}{cccc}
(-1)^{n+1} q_{q_{n}} \times q_{n-1} & x & \ldots & x \\
q_{-3} & \times q_{2} \\
(-1)^{n} q_{n} \times q_{n-1} & x & \ldots & x \\
q_{3}
\end{array}\right.\right] \quad, \quad \alpha_{1}=\prod_{i=1}^{n} \quad q_{i} \cdot(-1)^{n+1}
$$

and likewise for the solution of ${ }^{m} y^{+}\left(A^{\prime}-\lambda I\right)=\alpha_{2} e_{n}^{T}$ by $y^{T}=\left(1,-q_{1}^{\prime}, q_{1}^{\prime} x q_{2}^{\prime}, \ldots,(-1)^{n+1} q_{1}^{\prime} x_{2}^{\prime} x\right.$, $10, \alpha_{2}=\prod_{i=1}^{n} q_{i}^{\prime} \cdot(-1)^{n+1}$

Note that $\alpha_{1}=\alpha_{2}^{-\operatorname{det}(\lambda I-A)}$ is the determinantal invariant of the qd-algorithm. Hence the relation

$$
\frac{1}{\delta(\lambda)}=\frac{q_{2} q_{3} \cdots q_{n}}{q_{1}^{1} q_{2}^{1} \cdots q^{\prime} n}+\frac{q_{3} \cdots q_{n}}{q_{2}^{1} \cdots q_{n}^{1}}+\frac{q_{n}}{q_{n-1}^{1} q_{n}^{1}}+\frac{1}{q_{n}^{1}}
$$

or rather

$$
\delta(\lambda)=q_{n}^{\prime} /\left(\ldots\left(\left(\frac{q_{2}}{q_{1}^{\prime}}+1\right) \frac{q_{2}}{q_{2}^{1}}+1\right) \cdot \cdot\left(\frac{q_{n}}{q_{n-1}^{\prime}}+1\right) .\right.
$$

The quotients q_{i+1} / q_{i}^{\prime} in the nested product, however, are calculated as a matter of course in the LR-step with the quotient rule

$$
\mathrm{e}_{1}^{\prime}:=\left(q_{i+1} / q_{i}^{\prime}\right) e_{i} .
$$

The extra work amounts therefore to n-l multiplications, n-l
additions of 1 , and one division.
The shift by' $\delta(\lambda)$ is now preferably made after the next inter+ mediate matrix A: - λI is formed and is done, as usual, implicitly in the difference rule. Thus, a shift is made every second qd-step. As mentioned in the introduction, numerical stability requires A in the beginning to be essentially symmetric and positive definite; i.e., $e_{\mu}>0$ and $q_{\mu}>0$. This property will then be preserved. 5.

The quantities q_{μ} and $q_{\mu}^{\prime \prime}$ can be calculated also by a continued fraction recurrence directly from

$$
A^{\prime}-\lambda I=\left\lvert\, \begin{array}{cccc}
a_{1}^{\prime}-\lambda & b_{1}^{\prime} & & \\
1 & a_{2}^{\prime}-\lambda & b_{2}^{\prime} \\
\ddots & \ddots & \ddots \\
& & & \\
& & & b_{n-1}^{\prime} \\
& & & a_{n}^{\prime}-\lambda
\end{array}\right.
$$

$$
\begin{aligned}
\text { i.e., } & q_{n} & =a_{n}^{\prime}-\lambda, \quad q_{i}=a_{1}!-\lambda--b_{i}^{\prime} / q_{i+1} & (i=n-1, \ldots, 1) \\
q_{1}^{\prime} & =a_{2}^{\prime}-\lambda, \quad q_{1}^{\prime}=a_{i}^{\prime}-\lambda-b_{i-1}^{\prime} / q_{i-2}^{\prime} & & (i=2,3, \ldots, n) .
\end{aligned}
$$

For an essentially symmetric matrix; i.e., $b_{\mu}>0$, the components of x and y^{H} together with $-\alpha$ form a Sturm sequence. Correspondingly, if all the $q_{\mu} \nLeftarrow 0$ and $q_{\mu}^{\prime} \nLeftarrow 0$, the number of positive elements in the q-sequence counts the number of positive eigenvalues. This use of the continued fraction recurrence has some merits for the bisection method. The qd-transformation would not allow one to calculate the Sturm sequence in a stable way, apart from the trivial case where all $q_{\mu}>0$.

Literature:

For the methods, concepts, and results used here, see
J.H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford, 1965.
A. J. Householder, The Theory of Matrices in Numerical Analysis, New York, 1964.

[^0]: *Mathematisches Institut der Technischen Hochschule, München and Computer Science Department, Stanford University.

 This work was in part supported by NSF.

