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For determning the eigenvalues of a symetric, tridiagonal matrix,
various techniques have proven to be satisfactory; in particular the
bi section method and &R-transformation with shifts determned by the |ast
di agonal elenment or by the last 2x2 principal mnor. Bisection, based
upon a Sturm sequence, allows one to concentrate on the determnation of
any prescribed set of roots, prescribed by intervals or by ordering
numbers. The &R-transformation is faster,; however, it gives the eigen-
values in a non-predictable ordering and is therefore nmainly advocated
for the determnation of all roots.

Theoretically, for symmetric matrices, a &R-step is equivalent to
two successive LR-steps, and the LR-transformation for a tridiagonal
matrix is, apart from organizational details, identical with the qd-nethod.
For non-positive definite matrices, however, the LR-transformation can-
not be guaranteed to be nunerically stable unless pivotal interchanges
are made. This has led to preference for the &R-transformation, which
is always nunerically stable.

I'f, however, sone of the smallest or sone of the |argest eigenvalues
are wanted, then the &R-transformation will not necessarily give only

-these, and bisection mght seemtoo slow with its fixed convergence rate
of /2. In this situation, Newton's nethod would be fine if the Newton
correction can be conputed sufficiently sinply, since it will always tend
monotonically to the nearest root starting from a point outside the
spectrum  Consequently, if one always worked with positive (or negative)
definite matrices, there would be no objection to using the now stable

gqd-algorithm In particular, for the determnation of some of the
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smal lest roots of a matrix known to be positive definite -- this problem

arises frequently in connection with finite difference or Rtz approxi-
mations to analytical eigenvalue problems -- the starting value zero
woul d be usually a quite good initial approximation.

W shall show that for a qd-algorithm the Newton correction can
very easily be calculated, and accordingly a shift which avoids under-
shooting, or a lower bound. Since the last diagonal elenent gives an

upper bound, the situation is quite satisfactory with respect to bounds.

Let ¢(A) = (A - >\I)'l be the resolvent of a matrix A . Then

B4 = (A-AD

Assune that A is of Hessenberg formof order n > 2, viz,

. &

with +1's in the [ower off-diagonal. Then since A - \I is again of
Hessenberg form the co-factor of the (1,n) elenent is +1 , and there-
fore the (n,1) -element of (A - u)‘l is -1/f(h) , where f(h) is
the characteristic polynomal of A. Fromthe result above we conclude
that the (n,1) el ement of (A - )\I)'2 is f'(}\)/fg()\) , and there-
fore 5(\) = ~£(\)/'(A) = el(A - AT) e /el (A - AT) e, s the Newton

correction, A+ 8(\) being the next approximation.



The cal cul ation of erTl(A - )\I)-lel and ei(A -)\I)‘Qel can be based
upon the solution of (A - AD)x = @e and ozEyT(A - A\I) = eg by back-

ward substitution starting with (x)n=l and (y)l=l. Then o = a,

(=), Ya=e(a-2AD)"Ye, , and y'x/a® = e2(a - AI)"%e, : or

n 1 n 1
f(h)y =a, f'(h) = yTx , 6(h) = oz/yTx . The final result holds even
when \ is an eigenvalue, @ then being zero and yTx £ 0 unless A
is defective. Wile for the approxi mation of eigenvectors this back-
substitution, known as Hyman's technique, cannot be generally advocat ed,
, . . T
it offers a sinple way to the calculation of f£'(A) = yx and of the
Newton correction. It can be used when Newton's nethod can safely be

used; e.g., when the roots of the Hessenberg matrix A are known to be

all real, in connection with sone deflation technique.

For tridiagonal matrices, however, the LR-transformation or the
qd-al gorithm gives the Newton correction as a by-product. In the qd
version of the LR-transformation we perform first for a certain value

of A the triangular deconposition of A - AI,

N v e e O
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q2 0 1 e2

1 q_5 1o,

Q ®n-1
1 q_n 1
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multiply the factors conversely and deconpose again

The transformed matrix A - AI has the same characteristic poly-
nom al and may serve as well to calculate the Newton correction. How-

ever, the solution of (A" -M)x _ oe, is imediately given by

11
+1 7
(-1)% g xa__; x .. 0, Xq,
(-1)"q x X ... X g n
x= q‘n qn,l 5] , °’l o qi (_l)n+l
i=1
Y
1 i
and |ikewi se for the solution of y*(a'- AI) = ctzef1 by
T n I
y =(l;'(1i;q]'_xq!2r-')('1)n+lf1i>((léx-@ ’ %%%D.® ) 0‘2 = Q'i '(’l)m-l :
i=1
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Not e t hat @ =, -det(AI -A) is the determinantal invariant of the

qd-al gorithm  Hence the relation

1 q2q5...qn +‘q5...qn 9 1

80 T ajaram gy T e A
or rather
_ 42 & o
5(\) —q_n/(. ”((qi+ 1) ”q; 1) . .. q%,_l + 1)

The quotients 4501/ in the nested product, however, are cal cul ated
as a matter of course in the LR-step with the quotient rule

e} = (ay,y/a))e;
The extra work amounts therefore to n-1 multiplications, n-I
additions of 1, and one division.

The shift by' () is now preferably nade after the next inter+
mediate matrix A- - AI is fornmed and is done, as usual, inplicitly
in the difference rule. Thus, a shift is made every second qd-step
As nentioned in the introduction, numerical stability requires A
in the beginning to be essentially symetric and positive definite

i.e., eph >0 and %Y >0 . This property will then be preserved

The quantities q,, and q;' can be calculated also by a continued
fraction recurrence directly from
al—x bl

t_ t
1 2 A b2 (::)

O r!l-l
1 a'-A
n

A - \I




i =a -~ o= al <2 o-p!? P = e
e, q =a -1, ¢ =3 -\ bi/,q_ijkl (i = n-1,...,1)
q]’_ = aé -\, q]'_ = a; - A - bi-l/q:i-E (i = 2,3,...,n) .

For an essentially symetric matrix; i.e., bu > 0, the conponents

of x and yl_| together with -« form a Sturm sequence. Correspond-
ingly, if all the qu/= 0 and q}l/é 0, the nunber of positive elenents
in the g-sequence counts the number of positive eigenwvalues. This use
of the continued fraction recurrence has sone nerits for the bisection
nmethod. The qd-transformation would not allow one to calculate the

Sturm sequence in a stable way, apart fromthe trivial case where all

qu>0.
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