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1.

For determining the eigenvalues of a symmetric, tridiagonal matrix,

various techniques have proven to be satisfactory; in particular the

bisection method and &R-transformation with shifts determined by the last

diagonal element or by the last 2X2 principal minor. Bisection, based

upon a Sturm sequence, allows one to concentrate on the determination of

any prescribed set of roots, prescribed by intervals or by ordering

numbers. The &R-transformation is faster,; however, it gives the eigen-

values in a non-predictable ordering and is therefore mainly advocated

for the determination of all roots.

Theoretically, for symmetric matrices, a &R-step is equivalent to

two successive LR-steps, and the LR-transformation for a tridiagonal

matrix is, apart from organizational details, identical with the qd-method.

For non-positive definite matrices, however, the LR-transformation can-

not be guaranteed to be numerically stable unless pivotal interchanges

are made. This has led to preference for the &R-transformation, which

is always numerically stable.

If, however, some of the smallest or some of the largest eigenvalues

are wanted, then the &R-transformation will not necessarily give only

-these, and bisection might seem too slow with its fixed convergence rate

of l/2 . In this situation, Newton's method would be fine if the Newton

correction can be computed sufficiently simply, since it will always tend

monotonically to the nearest root starting from a point outside the

spectrum. Consequently, if one always worked with positive (or negative)

definite matrices, there would be no objection to using the now stable

qd-algorithm. In particular, for the determination of some of the

1



1

smallest roots of a matrix known to be positive definite -- this problem

arises frequently in connection with finite difference or Ritz approxi-

mations to analytical eigenvalue problems -- the starting value zero

would be usually a quite good initial approximation.

We shall show that for a qd-algorithm, the Newton correction can

very easily be calculated, and accordingly a shift which avoids under-

shooting, or a lower bound. Since the last diagonal element gives an

upper bound, the situation is quite satisfactory with respect to bounds.

L

2.

Let q(h) = (A - AI)-' be the resolvent of a matrix A . Then

-$ g(h) = (A - hI)02 .

Assume that A is of Hessenberg form of order n 2 2 J viz,

i
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A=

with +l 's in the lower off-diagonal. Then since A - h1 is again of

Hessenberg form, the co-factor of the (1,n) element is +l 9 and there-

fore the (n,l) -element of (A - TLI)-~ is -l/f(h) , where f(h) is

the characteristic polynomial of A . From the result above we conclude

that the (n,l) element of (A - XI)-' is f'(h)/f2(h) , and there-

fore 6(X) = -f.(h)/f'(h)  = eE(A - hT)-'el/ez(A  - XI)-"el is the Newton

correction, X + 6(h) being the next approximation.
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The calculation of eE(A - lI)-'el and eE(A -II)-~~~ can be based

upon the solution of (A - xI)x = ale1 and cy2yT(A - XI) = ez by back-

ward substitution starting with (x)
n
=l and (y),=l. Then cwl=cu2

(= a) , l/a = ez(A - hI)-'el , and yTx/a2 = eT(A - hI)m2e
n 1

; or

f(h) = cy , f'(h) = yTx , 6(h) = cY/y'x . The final result holds even

when h is an eigenvalue, a then being zero and yTx k 0 unless A

is defective. While for the approximation of eigenvectors this back-

substitution, known as Hyman's technique, cannot be generally advocated,

it offers a simple way to the calculation of f' (h) = y'x and of the

Newton correction. It can be used when Newton's method can safely be

used; e.g., when the roots of the Hessenberg matrix A are known to be

all real, in connection with some deflation technique.

4.

For tridiagonal matrices, however, the LR-transformation or the

qd-algorithm gives the Newton correction as a by-product. In the qd

version of the LR-transformation we perform first for a certain value

of h the triangular decomposition of A - XI ,

A - h1 =
G-
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multiply the factors conversely and decompose again

. .
0

L

.
.

. .

IL en-l

1

%

1 9; 0
1 cl’

. 3

.

1
92

0
1 q3

. .
. .

. .

:l e*l

1 et2 0. .. . .
0 e’

n-l

1

= A’ - h1 =

The transformed matrix A' - h1 has the same characteristic poly-

nomial and may serve as well to

ever, the solution of (A' - h1

calculate the New-ton correction. How-

> X
= Ye1

is immediately given by

G~r+lqL&l  x . . . x q xq,
3 L

n
9 a1

=l-Ii 1 'i '=

and likewise for the solution of yl(A' - AI) = cY2eE by

( >-1 n+l

YT =  (l,  -qijqi⌧q;,  � l �)  (-l)n+ls;⌧s;⌧  l . l XCfol) 9 cY2 = n� q� ( 1) n+li'-
.

i=l
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Note that QI1 = cy 2 -det(hI -A) is the determinantal invariant of the

qd-algorithm. Hence the relation

or rather

6(X) = '
%I(

% q3 T-l. ..q+ 1) (f 1) . . . 7
q2 %l

+1) .
-1

The quotients qi+l/qi in the nested product, however, are calculated

as a matter of course in the LR-step with the quotient rule

e !
1 ‘= (qi+l/q~)ei  ’

The extra work amounts therefore to n-l multiplications, n-l

additions of 1 , and one division.

The shift by' s(h) is now preferably made after the next inter+

mediate matrix A: - h1 is formed and is done, as usual, implicitly

in the difference rule. Thus, a shift is made every second qd-step.

As mentioned in the introduction, numerical stability requires A

in the beginning to be essentially symmetric and positive definite;

i.e., e >O and
%
>o.

P
This property will then be preserved.

The quantities gl~l and q” can be calculated also by a continued
CL

fraction recurrence directly from

A' - AI =

m
ai-h bi

1
a; -A b; 0

. . .

0-
.

b'n-l

1 an-A
I-
!
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i.e.,
92

= a' - 1 ,
n

qi = a! - A:--b!/q
1 1 ii4 ( i = n-l,...,l)

qi = a; - X , q; = ai - h - biol qfw2I (i = 2,3,...,n) .

For an essentially symmetric matrix; i.e., bCI > 0 , the components

of x
H

and y together with -Q! form a Sturm sequence. Correspond-

ingly, if all the
%

1 0 and '
411 k

0, the number of positive elements

in the q-sequence counts the number of positive eigenbalues. This use

of the continued fraction recurrence has some merits for the bisection

method. The qd-transformation would not allow one to calculate the

Sturm sequence in a stable way,- apart from the trivial case where all

9L
>o.
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