THE USE OF TRANSITION MATRICES IN COMPILING

BY
D. GR IES

Supported in part by the Atomic Energy Commission.

COMPUTER SCIENCE DEPARTMENT
 School of Humanities and Sciences STANFORD UNIVERSITY

D. Gries
The Use of Transition Matrices in Compiling
Contents

1. Introduction 1
2. Notation, terminology, basic definitions 3
3. Operator and augmented operator grammars and languages 5
4. Parsing a string using an AOG 14
5. Sufficient conditions for a unique canonical parse 16
6. The transition matrix and stack 18
7. An example of a parse 25
8. Representation of nonterminals in the stack 27
9. Other uses of transition matrices 28
10. Summary 39
References 41
Appendix A. An ALGOL-like grammar and associated matrix 42

The Use of a Transition Matrix in Compiling

1. Introduction,

The construction of efficient parsing algorithms for programming languages has been the subject of many papers in the last few years. Techniques for efficient parsing and algorithms which generate the parser from a grammar or phrase structure system have been derived. Some of the well-known methods are the precedence techniques of Floyd [4] and Wirth and Weber [10], and the production language of Feldman [3]. Perhaps the first such discussion was by Samelson and Bauer [9]. There the concept of the push-down stack was introduced, along with the idea of a transition matrix. A transition matrix is just a switching table which lets one determine from the top element of the stack (denoting a row of the table) and the next symbol of the program to be processed (represented by a column of the table) exactly what should be done. Either a reduction is made in the stack, or the incoming symbol is pushed onto the stack.

Considering its efficiency, the transition matrix technique does not seem to have achieved much attention, probably because it was not sufficiently well-defined. The purpose of this paper is to define the concept more formally, to illustrate that the technique is very efficient, and to describe an algorithm which generates a transition matrix from a suitable grammar. We will also describe other uses of transition matrices besides the usual ones of syntax checking and compiling.

We will require that the set of productions $\left\{U_{i}::=x_{i}\right\}$ form an operator grammar (Floyd [4]), which means that no production has
the form $U::=x V_{1} V_{2} y$ for strings x, y and nonterminal symbols V_{1} and V_{2}. This restriction is not necessary in order to use a transition matrix. One may also describe suitable conditions for the general phrase structure grammar $\left\{U_{i}::=x_{i}\right\}$ which allow the use of a transition matrix. The restriction to operator grammars is a rather natural way to reduce the size of storage necessary to implement the technique. The syntax of the usual ALGOL-like languages can easily be represented by such a grammar.

We emphasize that the use of a transition matrix is just another technique, though a very efficient one, for parsing sentences of a suitable (programming) language.

Section 2 introduces the notation and terminology. Sections 3 through 5 are devoted to discussing sufficient conditions for a unique canonical parse which enable us to use a transition matrix. These conditions are of course closely related to those derived by Floyd [4], Wirth and Weber [10], and Eickel et al [2]. Sections 6 and 7 explain the technique and go through an example in detail. In Sections 8 and 9 practical examples and applications are discussed. Appendix A gives Floyd's ALGOL-like grammar ([4]) and the associated matrix and subroutines. All examples were produced by an algorithm, written in Extended ALGOL [11], on the B5500 at Stanford.

The author is indebted to Jerome Feldman and Niklaus Wirth for their critical comments on this manuscript. This work was partially supported by the U.S. Atomic Energy Commission.
2. Notation, terminology, basic definitions.

Let V be a given set: the vocabulary. Elements of V are called symbols and are denoted here by capital Latin letters, S , T , U , etc. Finite sequences of symbols - including the empty sequence

- are called strings and are denoted by small Latin letters u , v y , z, etc. The set of all strings over V is denoted by V^{*}.

If $z=x y$ is a string, x is a head and y a tail of z.
A production or syntactic rule $\varphi: U::=x$, is an ordered pair consisting of a symbol U and a nonempty string x. U is called the left part and x the right part of φ. We assume that $U \neq x$.

Let be a finite set of productions $\varphi_{1}, \ldots, \varphi_{\mathrm{n}}$. y directly -produces $z(y \rightarrow z)$ and conversely z directly reduces into y, if and only if there exist strings u, v such that $y=u U v, z=u x v$, and the production $U::=x$ is an element of \notin
y produces z (y 3 z) and conversely z reduces into y, if and only if there exist strings x_{j}, \ldots 蚛 such that $y=x_{0}$, $x_{n}=z$ and

$$
x_{i-1} \rightarrow x_{i} \quad(i=1, \ldots, n ; \quad n \geq 1)
$$

z is also said to be a derivation of y.
Let \& be a set of productions $\varphi_{1}, \ldots, \varphi_{n}$. If V, the vocabulary, contains exactly one symbol A which occurs in no right part of a production, and a non empty set B of symbols which appear only in the right part of productions, then $\&$ is a phrase structure grammar. The symbols of β are called terminal or basic symbols and are denoted
by capital letters T, T_{1}, T_{2}. The letters U, V always denote symbols in $V-\beta$ and are called nonterminal symbols.
$x \in V^{*}$ is called a sentential form of \mathcal{H} if either $A=x$ or $A \Rightarrow x$. The set of sentences x - i.e., the set of sentential forms consisting only of terminal symbols - constitutes the phrase structure language L_{f}, that is:

$$
\begin{equation*}
L_{G}:=\left\{x \mid A \Rightarrow x \wedge x \in B^{*}\right\} \tag{2.1}
\end{equation*}
$$

Without restricting the set of phrase structure languages we shall assume that

$$
\begin{align*}
& U \nRightarrow U \text { for any } U \in V-B ; \tag{2.2}\\
& \text { if } U_{1} \Rightarrow U_{k} \text {, then the sequence } \\
& U_{1}::=U_{2}, U_{2}::=U_{3}, \text { ont } U_{n}::=U_{k}
\end{align*}
$$

is unique; and
(2.4) every symbol may be used in deriving some sentence: for each symbol $X \in V$ there exists strings x, z, t such that $A \Rightarrow x X z$. and either $X \in B$ or $X \Rightarrow t$ where $t \in \beta^{*}$.

A z_{0} rise of the string into the symbol U is a sequence of productions $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ such that $\varphi_{j}=\left(U_{j}::=x_{j}\right)$ directly reduces $z_{j-1}=u_{j} X_{\mathcal{J}} \cdot v_{j}$ into $z_{j}=u_{j} u_{j} v_{j} \quad(j=l, \ldots, n)$ and $z_{n}=U$. The canonical parse is the parse which proceeds strictly from left to right in a sentence, and reduces a leftmost part of a sentence as far as possible before proceeding further to the right. That is,
the parse $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ of z_{o} into U is canonical if and only if for $j=1, \ldots, n x_{k}$ is not contained in u_{j} for all k> j.

Every parse has a unique canonical form (simply rearrange the productions to form a canonical parse), but in an ambiguous grammar there exists more than one canonical parse for some sentence. An unambiguous grammar is a phrase structure grammar such that for every string $x \in L_{y}$ there exists exactly-one canonical parse of x into the symbol A.

It has been shown that there exists no algorithm which decides whether an arbitrary grammar is unambiguous. However, a sufficient condition for a grammar to be unambiguous is subsequently derived, and a method is explained which determines whether a given grammar satisfies this condition.
3. Operator and augmented operator grammars and languages.

If no production φ_{i} of the phrase structure grammar $\&$ takes the form $U::=X_{V} V_{2} y$ for some (possibly empty) strings x, y and nonterminal symbols V_{1} 'and V_{2}, then (Floyd [4]) \& is called an operator grammar ($O G$). The phrase structure language $L_{\&}$ generated by an $O G$ is then called an operator language.

Floyd proved that in an operator grammar no sentential form contains two adjacent non-terminal symbols - i.e., if $A \Rightarrow x$ then there exists no strings x_{1} and x_{2} and no nonterminals V_{1} and V_{2} such that $\mathrm{x}=\mathrm{x}_{1} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{x}_{2}$. The grammar in Figure 1 is not an operator grammar, since <IF CLAUSE> and <STATEMENT> are both nonterminal.

<PROG>	$::=$ <STATEMENT>
<PROG>	$::=$ <IF CLAUSE> <STATEMENT>
<IF CLAUSE>	$::=$ IF <EXPRESSION> THEN
<STATEMENT>	$::=$ <IF CLAUSE> <STATEMENT> ELSE <STATEMENT>
<STATEMENT>	$::=$ VARIABLE $:=$ <EXPRESSION>
<EXPRESSION>	$::=$ <EXPRESSION> OR VARIABLE
<EXPRESSION> $::=$ VARIABLE	

Figure-l

The grammar in Figure 2, which is equivalent to (generates the same language as) the grammar in Figure 1, is an operator grammar.

```
<PROG> : := <STATEMENT>
<PROG> :}:=IF<EXPRESSION> THEN <STATEMENT>
<STATEMENT> ::= IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
<STATEMENT> ::= VARIABLE := <EXPRESSION>
<EXPRESSION> ::= <EXPRESSION> OR VARIABLE
EXPRESSION> ::= VARIABLE ;
NONTERMINAL SYMBOLS: <PROG> , <STATEMENT> , <EXPRESSION> .
TERMINAL SYMBOLS: IF 9 THEN , ELSE , VARIABLE , := , OR
```

Figure 2

When parsing a sentence, at each step the leftmost right part x of a production $U::=x$ must be detected. Then x is replaced by U and the process is repeated. In order to reduce the number of symbols to be checked at each step, we introduce intermediate reductions. For

```
instance, although the string
IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
```

can be reduced directly to <STATEMENT> by the grammar of Figure 2, we want to parse it as is shown below:

This can be achieved by constructing an augmented operator grammar (AOG) \& corresponding to \& The augmented operator grammar is useful for describing theoretically the mechanism of the matrix technique to be introduced later. However, so as not to complicate the process too much, one can give mnemonic names-to the introduced symbols needed for the intermediate reductions. For instance, in the above diagram U_{1}^{*} may be named "<IF*>", U_{2}^{*} "<IF expr THEN*>", and $\mathrm{U}_{3}^{*} \quad$ "<IF expr THEN state ELSE*>" 。 That is, each new symbol is just a representation of the head of the right part of some production. \mathcal{H}_{A} is constructed from \& by repeating the following step 1 until no longer applicable, then step 2 until no longer applicable, and finally steps 3a
and 3b alternately until no longer applicable. New nonterminal symbols will be introduced into V and $V-\beta$ (but not β). Note that all newly introduced symbols are distinguished from the original nonterminals by an asterisk "*".
step 1: If there is a production $\mathrm{U}_{1}::=\mathrm{T}_{2} \mathrm{y}_{1}$ (y_{1} may be empty), and if k new symbols $U_{l}^{*}, \ldots, U_{k}^{*}$ have been created so far, create a new symbol U_{k+1}^{*}, replace each production $U_{1}::=T_{2} y_{i}$ (each production whose right part begins with T_{2}) by the production $U_{i}::=U_{k+1}^{*} y_{i}$, and insert the production $U_{k+1}^{*}::=T_{2}$ into the grammar,

After step 1 all productions have one of the forms

$$
\mathrm{U}_{1}::=\mathrm{U}_{2}, \mathrm{U}_{1}::=\mathrm{U}_{2} \mathrm{Ty}, \mathrm{U}_{1}::=\stackrel{*}{U}_{\mathrm{U}}^{\mathrm{y}},{ }^{*} \mathrm{U}::=\mathrm{T} .
$$

where y contains no introduced symbol U^{*}.
step 2: If there is a production $U_{1}::=U_{2} T_{2} y_{1}$ (note that U_{2} must be one of the original nonterminals of the $O G$, and if k new symbols have been created so far, create a new symbol $\mathrm{U}_{\mathrm{k}+1}^{\star}$, replace each production. $U_{i}::=U_{2} \mathbb{T}_{2} y_{i}$ (each production whose right part begins with $U_{2} T_{2}$) by $U_{1}::=U_{k+1}^{*} Y_{i}$, and insert the production $U_{k+1}^{*}::=U_{2} \mathrm{~T}_{2}$.

After step 2 all productions have one of the forms

$$
U_{1}::=U_{2}, U_{1}::=U \mathbf{y}^{*}, \mathbf{u}^{*}::=U T, U^{*}::=T
$$

where y contains no introduced symbol U^{*}.
step 3a: If there is a production $U_{1}::=U^{*} T_{2} y$, and if k new symbols have been created so far, create a new symbol U_{k+1}^{*}, replace each production $U_{1}::=U_{2}^{*} 2^{*} Y_{i}$ by $U_{i}::=U_{k+1}^{*} y_{i}$, and insert the new production $U_{k+1}^{*}::=U_{2}^{*} T_{2}$.
step 3 b : If there is a production $U_{1}::=U_{2}^{*} U_{2} T_{2} y$, and if k new symbols have been created so far, create a new symbol U_{k+1}^{*}, replace each production $U_{1}::=U_{2}^{*}{ }_{2} 2^{T} 2^{y}{ }_{i}$ by $U_{i}::=U_{k+1}^{*} y_{i}$, and insert the new production $U_{k+1}^{*}::=U_{2}^{*} U_{2} T_{2}$.

An AOG has, therefore, only productions of one of the following forms:

$$
\begin{aligned}
& U_{1}::=U_{2}, U_{1}::=U^{*}, U_{1}::=U_{U}^{*} U_{2} \\
& U^{*}::=T, U^{*}::=U T, U_{2}^{*}::=U_{1}^{*} T, U_{2}^{*}::=U_{1}^{*} U T
\end{aligned}
$$

Figure 3

Note that we differentiate between the original Unstarred NonTerminal Symbols (called UNTS) and the newly created Starred NonTerminal Symbols' (SNTS), which for reasons explained later are also called stack nonterminals.

Again, we have introduced augmented operator grammars and stack nonterminals in order to be able to make intermediate reductions. A stack non-terminal can also be thought of as a representation for the head $x T$ (ending in a terminal symbol T) of the right part of a production U : := xTy of the original $O G$. As another example, if $U_{1}::=T_{1} T_{2} U_{3} T_{4} T_{5}$ is a production of the $O G$, then the string $T_{1} T_{2} U_{3} T_{4} T_{5}$
will be parsed as a sentence of the $A O G$ as follows:

Consider the $O G$ in Figure 2. After step 1 it will have been changed to

```
<PROG> ::= <STATEMENT>
<IF*> ::= IF
<VARIABLE*> ::= VARIABLE
<PROG> ::= <IF*> <EXPRESSIOND THEN <STATEMENI>
<STATEMENT> ::= <IF*> <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
<STATEMENT> ::= <VARIABLE*> := <EXPRESSION>
<XPRESSION> : : = <EXPRESSION\ OR VARIABLE
<EXPRESSIOND ::= <VARIABLE*>
```

Step 2 changes it to

<PROG>
<EXPR-OR-VAR*> ::= <EXPR-OR*> VARIABLE VAR-:=* $::=\left\langle V A R I A B L E^{*}>:=\right.$
$::=$ <IF-THEN*> <STATEMENT>
$::=\langle$ IF-ELSE* \rangle <STATEMENT>
$::=$ <VAR-: $=*>$ <EXPRESSION>
$::=\langle$ LXPR-OR-VAR*>
$::=\langle$ VARIABLE* \rangle
 $:=$ <IF-THEN*> <STATEMENI> ELSE
$:=\langle$ VARIABIE*> $:=$
$::=\langle$ IF*> <EXPRESSION> THEN
$:=\langle$ EXPRESSION $>$ OR
:= VARIABLE
$::=I F$
$::=\langle S T A T E M E N T\rangle$
Finally, after step 3 we have the AOG of Figure 4:
<EXPRESSION> : := <VARIABLE*>
<EXPRESSION> : := <EXPR-OR*> VARIABLE
<STATEMENT> ::= <VARIABLE*> := <EXPRESSION>
<STATEMENT> : : = <IF*> <EXPRESSION $>$ THEN <STATEMENT> ELSE <STATEMENT>
<VARIABLE*>
<EXPR-OR*>
<PROG>
$::=$ VARIABLE
$::=\langle$ EXPRESS
$::=\langle$ IF* $\rangle\langle\mathrm{F}$
$::=$ <STATEMENT>
$::=$ IF
$::=$ VARIABLE

We will need the following definition: A string y is a phrase if
(3.1) y contains at least one terminal or SNTS; and
(3.2) there exists a production $U:=y_{1}$ or $U^{* *}:=y_{1}$ of the ACG where $y_{1}=y$ or $y_{1}=u U_{1} v, y=u U_{2} v$ and $U_{1} \Rightarrow U_{2}$, for some u , v.

Thus, y is a phrase if it is the right part of some production of the $A O G$ (except a production of the form $-U_{1}::=U_{2}$), or if it can be reduced to the right part of some production by a sequence of reductions $U_{1}::=U_{J}$. Given a sentential form $x=x_{1} y x_{2}, y$ is called a reducible phrase (of x), if
(3.3) y is a phrase; and
(3.4) for some U (or U^{*}) as defined in (3.2), the string resulting from replacing the string y by U (or U^{*}) is a sentential form.

The problem for the compiler, then, is to find the leftmost reducible phrase and to make the correct replacement (reduction). The following statements, which help to explain the relationship between an $O G$ and the corresponding $A O G$, follow directly from the construction of the $A O G$. For lack of a better name, we call them lemmas.

Lemma 1. Each SNTS U^{*} appears as the left part of only one production $U^{*}::=x$. The corresponding right part x appears as the right part of no other production.

Lemma 2. If the SNIS's U^{*} are numbered in the order in which they were introduced, $U_{1}^{*}, U_{2}^{*}, \ldots, U_{n}^{*}$, and if a production ${\underset{Y}{U}}_{*}^{*}::=U_{j}^{*} y$ exists in the $A O G$, then $i>j$.

Lemma 3. For each production $u::=y$ with $y \notin V-B$ of the $A O G$ there exists a unique set of productions $U_{1}^{*}::=y_{1}, U_{2}^{*}::=U_{1}^{*} y_{2}, \ldots$, $U_{n}^{*}::=U_{n-1}^{*} y_{n-1}, u::=U_{n}^{*} y_{n}$ of the $A O G$ such that $y=y_{1} y_{2} \cdots y_{n}$.

Lemma 3 follows directly from the construction and Lemmas 1 and 2. Lemma 4 follows directly from Lemma 3.
 to the OG, then we get a parse of x relative to the $A O G$ by substituting for each φ_{i} (which is not of the form $U_{1}::=U_{2}$) the unique set of productions defined in Lemma 3.

Since two different canonical parses $\left\{\varphi_{n}\right\}$ and $\left\{\lambda_{m}\right\}$ of a string must for some i have $\varphi_{i} \not \neq \lambda_{i}$, we have also

Lemma 5. Different canonical parses of a string x with respect to an $O G$, yield different canonical parses of x with respect to the $A O G$. Therefore we have finally

Lemma 6. If an $A O G$ is unambiguous, the corresponding $O G$ must also be unambiguous.

A sufficient condition for an $O G$ to be unambiguous is therefore the unambiguousness of the corresponding $A O G$.

4. Parsing a string using an AOG.

In order to parse a sentence x we first enclose x in symbols Φ^{*} and Φ (where Φ^{*} is assumed to be a new SNTS and Φ a new terminal symbol), yielding $\Phi^{*} \mathrm{x} \Phi$. Formally, we add to the AOG the productions $<$ Program> $::=\Phi^{*} A \Phi$ and $\Phi^{*}::=\Phi$, where A is the symbol which appeared only in a left part. We show that after each reduction the string has one of the following two forms

$$
\text { (4.1) } \quad U_{1}^{*} U_{2}^{*} \cdot \cdot \cdot U_{l}^{*} U_{l}^{*} T_{1} T_{2} \cdots T_{m}
$$

or

$$
\begin{equation*}
U_{1}^{*} U_{2}^{*} \cdot \cdots U_{l 1}^{*} U_{l}^{*} U 1 T_{1} \cdot T_{m}, \tag{4.2}
\end{equation*}
$$

where the U_{i}^{*} are SNTS's, the T_{i} are terminals and U_{1} is an UNTS. Note that the original string $\Phi^{*} \times \Phi$ has form (4.1). We assume also that no reduction $U::=U_{i}^{*}, i<\ell$, can be made such that the resulting string is still a sentential form, since such reductions will have already been made. It will be seen later that the sufficient conditions for a unique canonical parse fulfill this requirement.

From the form of productions in an AOG (Figure 3), any reducible phrase containing $U_{i}, i<\ell$, must be U_{i} itself, and this by assumption is not the case. Now at some point of the parse a reducible phrase must contain Tl, and from the form of productions in an AOG, T_{1} must be the last character of any reducible phrase containing it. Therefore, at this step, the leftmost reducible phrase may not contain $T_{2}, T_{3}, \ldots, T_{m}$. We have therefore, using again the possible forms of productions in an AOG,

Lemma 7. A leftmost reducible phrase at step k, assuming the string is of form (4.1), must be either

$$
U_{l}^{*}, T_{I}, \text { or } U_{l}^{*} T_{I}
$$

Assuming a string of form (4.2) the leftmost reducible phrase is

$$
U_{\ell}^{*} U_{1}, U_{\ell}^{*} U_{1} T_{1} \quad, \quad \text { or } \quad U_{1} T_{1} \quad 1 /
$$

In the case (4.1), if we know which of the strings U_{ℓ}^{*}, T_{1} or $U_{l}^{*} T_{1}$ is the leftmost reducible phrase, we make a reduction $U::=U_{a}^{*}$, $U_{\ell}^{*}::=T_{1}$ resp. $U^{*}::=U_{\ell}^{*} T_{1}$, yielding again a string of the form (4.1) or (4.2).

In case (4.2) we first make a sequence of reductions $U_{2}::=U_{1}, \ldots, U_{j}::=U_{j-1}$ for some $j \geq 1$, and then execute a final reduction $U::=U_{\ell}^{*} U_{j}, U^{*}::={ }^{*} U_{\ell} U_{j} T_{l}$, or ${ }_{U}^{*}::=U_{j} T_{l}$, depending on which of the three possibilities is the leftmost reducible phrase.

Note that at each step not only the leftmost reducible phrase, but also the sequence of reductions to be made, should be unique. If this is the case, then of course there exists a unique canonical parse. The next section-gives sufficient conditions for the uniqueness of the canonical parse. The reason for calling the U^{*} "stack nonterminal symbols" is now clear. They are the only symbols which get pushed into the stack.
 result in a string which is not a sentential form, since the grammar is an $A O G$ (two original nonterminals of the $\mathcal{O G}$ would eventually appear adjacent).
5. Sufficient conditions for a unique canonical parse.

We will use the following set $L(S)$ where S is a symbol:

$$
\mathcal{L}(S)=\left\{S_{1} \mid x S_{1} S y \text { is a sentential form for some } x, y,\right.
$$

$\mathcal{L}(\mathbf{S})$ is just the set of symbols which are adjacent and to the left of S_{1} in some sentential form. The construction of \mathcal{L} or related sets has been discussed elsewhere (see for instance Firth and Weber [10]). We therefore do not wish to discuss at length the construction of $L(S)$. We just state that
where \doteq, < and • > are the precedence relations defined by Firth and Weber (page 18, [10]) .

Now consider case (4.1). We have a sentential form $U_{1}^{*} U_{2}^{*} \cdot U_{l}^{*} \quad T_{1} T_{2} \ldots T_{m}$. If U_{ℓ}^{*} is a leftmost reducible phrase, then obviously
(4.3) \exists a production $U::=U_{\ell}^{*}$ such that $U \in \mathcal{L}\left(\mathbb{T}_{I}\right)$.

Similarly, if $U_{\ell}^{*} T_{I}$ or T_{1} is a leftmost reducible phrase, we have respectively

HI 1
(4.5) 3 a production $U^{*}::=T_{1}$ such that $U_{\ell}^{*} \in \mathcal{L}\left(U^{*}\right)$.

Consider case (4.2). We have a sentential form $U_{l}^{*} \cdots U_{l} U_{1}^{*} T_{1} \cdot \cdots T_{m}$. Depending on whether $U_{l}^{*} U_{1}, U_{l}^{*} U_{1} T$, or $U_{1} T_{1}$ is a. leftmost reducible
phrase, we have respectively
(4.6) 3 a production $U::=\frac{U^{*}}{a} U_{2}$ where $U \in \mathcal{L}\left(T_{1}\right)$, and either

$$
\mathrm{U}_{2}=\mathrm{U}_{1} \text { or } \mathrm{U}_{2} \Rightarrow \mathrm{U}_{1} ;
$$

(4.7) 3 a production $U^{*}::=U_{\ell}^{*} U_{2} T_{1}$ where $U_{2}=U_{1}$ or $U_{2} \Rightarrow U_{1}$;
(4.8) 3 a production $U^{*}::=U_{2} T_{1}$ where $U_{\ell}^{*} \in \mathcal{L}\left(U^{*}\right)$, and either $\mathrm{U}_{2}=\mathrm{U}_{1}$ or $\mathrm{U}_{2} \Rightarrow \mathrm{U}_{1}$.

We may now state the main

Result. Let U_{ℓ}^{*} be a SNTS, U_{1} a UNTS and T_{1} a terminal symbol. Assume that for any $\operatorname{such}^{*} U_{\ell}, U_{1}$ and T_{1}
(a) At most one of the conditions (4.3), (4.4), (4.5) holds;
(b) At most one of the conditions (4.6),(4.7), (4.8) holds;
(c) If one of the conditions (4.3) - (4.8) holds, the production described therein is unique.

Then there exists a unique canonical parse for each sentence x of the language.

The result follows from the fact that at each step the leftmost reducible phrase is unique (from (a) and (b)), and the corresponding reduction or set of reductions is unique (remember the restriction on an OG that if $U_{j} \Rightarrow U_{i}$ then the reductions $U_{j}::=U_{j+1}, \ldots, U_{i-I}::=U_{i}$ are unique).

The algorithm which generates the "compiler is then straightforward.
We first check that if $U_{1} \rightarrow U_{j}$, the sequence of productions $\left.U_{1}::=U_{2}, . ..\right) U_{j-1}::=U_{j}$ is unique. Next the $A O G$ is constructed.
$\mathcal{L}(S)$ is then determined for all terminal and SNTS S. Then for each $\mathrm{U}_{\boldsymbol{\ell}}^{*}$ and T 1 the productions are searched to see whether conditions (4.3), (4.4), or (4.5) hold, and if so, the production number (or just the left part) together with the reducible phrase is recorded. If for some U_{ℓ}^{*} and T_{1} two different reductions are found to be possible, then some sentence may not be parsed unambiguously with the technique given in the next section. Note that this does not mean that the grammar is unambiguous ; it just has not satisfied our sufficiency conditions. Triples $\mathrm{U}_{\boldsymbol{\ell}}^{*}$, Ul and T_{l} are handled similarly.

6. The transition matrix and stack.

We have seen that, with sufficient restrictions on the grammar, at each step in the parsing of a sentence according to the augmented operator grammar AOG, the partially reduced string has the form

$$
\begin{equation*}
U_{1}^{*} U_{2} \cdots U_{l}^{*} T_{1} \cdots T_{m} \tag{6.1}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{1}^{*} U_{2}^{*} \cdot \cdot \cdot U_{\ell}^{*} U_{1} T_{1} \cdots T_{m} \tag{6.2}
\end{equation*}
$$

where U_{l} is a non-terminal symbol of the original $0 G, T_{i}$ are terminal symbols, and U_{j}^{*} are SNIs of the AOG, or can be thought of as
(6.3) a representation for the head $x T$ (ending in a terminal symbol T) of the right part of a production $U::=x T y$ of the original OG.

Furthermore, in the case (6.1) the leftmost reducible phrase, either
U_{l}^{*}, T_{1} or $U_{l}^{*} T_{1}$ is uniquely determined by U_{l}^{*} and T_{1}, In the case (6.2), the leftmost reducible phrase is uniquely determined by U_{ℓ}^{*}, T_{1} and U_{1} and is either ${ }_{U_{\ell}}^{*} U_{1}, U_{1} T_{1}$ or $U_{\ell}{ }_{\ell}^{*} T_{1}$.

In order to parse a sentence as quickly as possible, we construct a transition matrix $B-a$ rectangular matrix B whose elements $b_{i j}$ are numbers of subroutines. Each column j represents a terminal symbol T (or a class of terminal symbols - for instance, one column could represent the class <type> consisting of Bemllean, and integer). For each stack symbol U_{ℓ}^{*} we designate two rows of the matrix - a basic row and a secondary row. Their uses are as follows:

Suppose at a step of the parse, the string has the form (6.1). Then the basic row ${ }_{b} U_{\ell}^{*}=i$ corresponding to U_{ℓ}^{*} together with the column j representing T_{1} determine an element $b_{i j}$ of the matrix the number of a subroutine which, when executed, will effect the unique reduction to be made.

If the string has form (6.2), the secondary row corresponding to U_{ℓ}^{*} together with the column representing T_{1} determine an element of the matrix. When the corresponding subroutine is executed, U_{1} will be checked and the appropriate unique reductions will be made.

For practical purposes we assume that the secondary row always follows the basic row. That is, if the basic row for U_{ℓ}^{*} is row number $\mathrm{b}_{U_{\ell}}^{*}$, then the secondary row is number $\mathrm{b}_{\ell} U_{\ell}^{*}+1$.

The pushdown (last-in-first-out) stack ST consists of elements, each consisting of two parts. If p is the pointer to the current top stack element, the two parts of the top stack element are labeled $S T 1{ }_{P}$ and $S T 2_{\mathrm{p}}$. The contents of each stack element are best illustrated by
a diagram. If the string has the form (6.1) or (6.2), the stack configuration is as illustrated in Figure 5a or Figure 5b respectively, where again $b U_{i}^{*}$ is the index or row number of the basic row corresponding to U_{i}^{*}.

$$
\begin{array}{cll}
\left.\frac{(S T 1, S T 2)}{(}\right) & \frac{(S T 1, S T 2)}{\left(U_{l}^{*}, 0\right)} & \text { top of stack } \\
\left({ }_{b} U_{l}^{*}+1, U_{l}^{*}\right) \\
\left(U_{b} U_{l}^{*}+1,1,0\right) & \left(b U_{l-1}^{*}+1,0\right) \\
& \text { bottom of stack } & \left({ }_{b} U_{l}^{*}+1,0\right)
\end{array}
$$

$$
(a)
$$

Figure 5

Note that the first part ST1 of a stack element which is not the top stack element is always the index of a secondary row, since when it later becomes the top stack element, ST2 ${ }_{P}$ must contain a nonterminal symbol U . Later it will be shown how the second part of each element may be used systematically to hold semantic information.

To illustrate how efficient the technique is, we give an example of a typical implementation on the IBM 7090. Suppose that the stack element ST1 $_{P}$ actually contains the instruction

$$
\left.\operatorname{TRA*}\left\{\operatorname{ADDRESS} \text { OF } B\left[{ }_{b} \mathrm{U}_{\ell}^{*}, 0\right]\right\}, 4 \text { or TRA*(ADDRESS OF } B\left[{ }_{b} U_{\ell}^{*}+1,0\right]\right\}, 4
$$

that the matrix B is stored rowwise in memory, that each matrix element consists of a single location containing the address of the corresponding subroutine, that there exists a vector COLUMN to map a terminal symbol into the corresponding column number, and that the stack pointer p is
in index register 1. The following sequence then determines the subroutine to be executed:

IXA Tl,2	PUT THE INCOMING SYMBOL IN INDEX REGISTER 2.	
CLA COLUMN,2	COLUMN NUMBER FOR TI IN ACCUMULATOR.	
PAC 0,4	COMPLEMENT OF COLUMN NUMBER IN XR4.	
TRA STl,	JUMP TO TOP STACK ELEMENT, WHICH IN TURN	
		WILL JUMP TO THE SUBROUTINE

As an example of a matrix and subroutines, consider first the grammar in Figure 6, which is the same as the grammar in Figure 2 (Section 3) except for the introduction of the production

$<$ PROGRAM $>::=\Phi<$ PROG $>\Phi$.

Both the matrix in Figure 7 and the associated subroutines of Figure 8 were produced exactly as they appear from the grammar of Figure 6 by the algorithm programmed in Extended ALGOL [11] on the B5500 (except for the numbering of the rows of the matrix).

The SNTSs of the AOG do not appear in the matrix or subroutines; we have labeled the basicrows of the matrix with the head of the right part of the production which they represent. Correspondingly, for example, subroutine 400 of Figure 8 contains the instruction ST1 \leftarrow ROW (<EXPRESSION> OR), which means that $S T l_{p}$ is to have as its value the index of the basic row corresponding to the SNTS which represents <EXPRESSION> OR . This is row 13. As can be seen, the AOG is actually not necessary practically, but is a convenient theoretical tool.

The zero elements of the matrix represent incorrect pairs, while the other matrix elements are numbers of the subroutines listed in Figure 8.

The individual statements of the subroutines are separated by a slash "/", The statement "NEW TI" means "SCAN", or use the symbol T_{2} as the next incoming symbol T_{1}. If the statement "NEW TI" is not executed, the old T_{1} will be used again on the next cycle. After a'subroutine has been executed, the next cycle is performed.

Some of the subroutines test ST_{p} for the presence of a nonterminal symbol. If $S T 2_{P}$ is one of the nonterminals listed, a corresponding subroutine is executed. If not, a syntactic error has occurred - the original string is not a sentence of the grammar.

Note also that if a reduction to some non-terminal U is made $\left(S T 2{ }_{P} \leftarrow U\right)$, the original production of the operator grammar corresponding to this reduction is also listed for reference.

The following simplification has been made. Suppose that xT is the right part of only one production $U::=x T$ of the $O G$, and that there is no production $U_{1}::=x T y$ for some nonempty y. The AOG will contain among others two productions- $U^{*}::=x_{1} T$ and $U::=U^{*}$. Obviously this is not necessary. In order to save the intermediate step, the two productions are replaced by the single production $U::=x_{1} T$.

Figure 6

$$
\begin{array}{lllllll}
P & I & T & & E & V & \vdots \\
H & F & H & L & A & = & R \\
I & & E & S & R & \\
& & & N & E & I & \\
& & & & A & \\
& & & & B
\end{array}
$$

PHI	0	1	0	0	1	0	0
SECONDARY ROW	3	0	0	0	0	0	0
IF	0	0	0	0	2	0	0
SECONDARY ROW	0	0	4	0	0	0	5
IF SEXPRESSION>							
THEN	0	1	0	0	1	0	0
SECONDARY ROw	6	0	0	7	0	0	0
IF <EXPRESSION> THEN		1					
ELSE	0	0	0	0	1	0	0
SECONDARY ROW	8		0	8	0	0	0
VARIABLE	10	0	10	10	0	9	10
Secondary Row	0	0	0	0	0	0	0
VARIABLE $\quad \boldsymbol{z}=$	0		0	0	2	0	0
SECONDARY ROW	11	0	0	10	0	0	5
<EXPRESSION>OR	0	0	0	0	12	0	0
SECONDARY ROW	0		0		0	0	

```
MATFIX SUBROUTINES, THOSE SUBSWHICHARE ACTUALLYNATRIX ENTRIES HAVE NUMBERS LESS THAN 4OO
```

```
ST1P+STIP+1 / P&F+1 / STIP&ROW(T1 ) / NEWTI
```

ST1P+STIP+1 / P\&F+1 / STIP\&ROW(T1) / NEWTI
STIP+STIP+1 / ST2P+<EXPRESSION> FOR PROCUCTION *EXPRESSION>::= VARIABLE NEWT1
STIP+STIP+1 / ST2P+<EXPRESSION> FOR PROCUCTION *EXPRESSION>::= VARIABLE NEWT1
USESUB401IFST2PIS<PROG> <STATEMENT>
USESUB401IFST2PIS<PROG> <STATEMENT>
US E S U B402IFST2PIS <EXPRESSION>
US E S U B402IFST2PIS <EXPRESSION>
USESSUB4OOIFSTZFIS <EXFRESSION\
USESSUB4OOIFSTZFIS <EXFRESSION\
USE SUB 403I FST2PIS<STATENENT>
USE SUB 403I FST2PIS<STATENENT>
USE SUE 434 IFST2PIS <STATEMENT>
USE SUE 434 IFST2PIS <STATEMENT>
USE SUB 405I FST2PIS<STATEMENT>
USE SUB 405I FST2PIS<STATEMENT>
STID\&ROW(VARIABLE :=) / NEW T1
STID\&ROW(VARIABLE :=) / NEW T1
P\&P=1 / ST2P+<EXPRESSION> FORPRODUCTION<EXPRESSION> ::= VARIAFLE
P\&P=1 / ST2P+<EXPRESSION> FORPRODUCTION<EXPRESSION> ::= VARIAFLE
U S ESUE ? 40GIFST2PIS <EXPRESSION\ %
U S ESUE ? 40GIFST2PIS <EXPRESSION\ %
P+P-1/ ST2P+<EXPHESSICN> FORPRODUCTION<EXPRESSION>::= <EXPRESSION\OR VARIARLE. NEW TI
P+P-1/ ST2P+<EXPHESSICN> FORPRODUCTION<EXPRESSION>::= <EXPRESSION\OR VARIARLE. NEW TI
P+P+1/STIP\&ROWC <EXPRESSION>OR , NEW TI

```
P+P+1/STIP&ROWC <EXPRESSION>OR , NEW TI
```



```
STIP&ROWGI F <EXPRESSION>THEN , NEW Tl
```

STIP\&ROWGI F <EXPRESSION>THEN , NEW Tl
P+P=1 ST2F+\langlePRGA>> FORFRDDUCTION<PROG> ::= IF <EXPRESSION>THEN
P+P=1 ST2F+\langlePRGA>> FORFRDDUCTION<PROG> ::= IF <EXPRESSION>THEN
STIP\&RCWG IF <EXPRESSION>THEN <STATEMENT>ELSE , < NEW Tl
STIP\&RCWG IF <EXPRESSION>THEN <STATEMENT>ELSE , < NEW Tl
M\&P-1/ ST2P+<STATEMENT> FORPRODUCTION<STATEMENT> ::= If <STATEMENT> <EXPRESSION>THEN
M\&P-1/ ST2P+<STATEMENT> FORPRODUCTION<STATEMENT> ::= If <STATEMENT> <EXPRESSION>THEN
P+P=1 ST2P+\langleSTATEMENT> FOR PRODUCTION<STATEMENT> ::= VARIABLE
P+P=1 ST2P+\langleSTATEMENT> FOR PRODUCTION<STATEMENT> ::= VARIABLE
<EXPRESSION>

```
<EXPRESSION>
```

7. An example of a parse.

Let us parse the sentence

```
\Phi IF VARIABLE THEN VARIABLE := VARIABLE \Phi
```

of the $O G$ in Figure 6. We start with the following configuration:

```
Cycle P STACK
T
    1 l ([row] l [PHI], 0) IF VARIABLE THEN VARIABLE :=
```

VARIABLE PHI .

The row labeled PHI in Figure 7 and $T_{1}=$ "IF" determine subroutine 1 of Figure 8. Execution of the first statement "STP ${ }_{\mathrm{P}} \mathrm{STI}_{\mathrm{p}}+\mathrm{l}$ " of subroutine 1 changes STl_{1} to [row]2. The stack pointer is then increased by 1 and the index of the row corresponding to "IF" (since $\left.T_{1}=" I F "\right)$, which is 3 , is put in $S T I_{2}$. "VARIABLE" is then scanned, yielding

Cycle	\underline{P} STACK	$\underline{\mathrm{T}}_{1}$	$\frac{\text { Rest of string }}{2} 2([$ row $] 3,0)$
	VARIABLE	THEN VARIABLE $:=$	
			VARIABLE PHI

([row]2, 0)

Row 3 and "VARIABLE" now determine subroutine number 2. Here we change STl_{2} to [row]4, put "<EXPRESSION>" in ST2 2 , and indicate that the next symbol, "THEN", is to be scanned. This yields

Cycle \underline{P} STACK
32 (4, <EXPRESSIOND) $(2,0)$
T_{1} Rest of string
THEN VARIABLE := VARIABLE PHI

Row 4 and "THEN" lead to subroutine number 4. There, ST_{2} is checked for "<EXPRESSION>" . Since it is correct, subroutine 402 is executed yielding

8. Representation of non-terminals in the stack.

Strictly speaking, one should insert the nonterminal symbol U itself into $S T Z_{q}$. This is however neither practical nor necessary. In practice, nonterminals fall into classes whose elements are the same semantically. For instance, in ALGOL the nonterminals <primary>, <factor> , <term>, <simple arith expr> are introduced only to help define the precedence of operations. In a compiler, they would all be represented by an address specifying a location which gives the type, location of the value during execution time (accumulate, register, storage location), etc. The determination of which U is actually in $\operatorname{ST2}{ }_{\mathrm{P}}$ turns out to be almost always a semantic evaluation, which would have to be done anyway. There is therefore very rarely any list searching to determine which U is in $\operatorname{ST2} P^{\prime}$ but just a semantic evaluation of $S T 2_{P}$. Accordingly, a reduction $U::=x$ is accomplished by inserting into $S T 2$ the semantic meaning of the symbol U and not U itself. Notice that we assume in the discussion of the method that productions $U_{i}::=U_{j}$ have no "interpretation rule" associated with them, which is usually the case.

Note also that the part $S T 2{ }_{p}$ of the elements $p=1$, $n-1$ may also be used systematically to store semantic information. If we formally parse the ALGOL statement BEGIN $A:=(B+E)+C * D$ END there will be in the stack at some time the elements

$$
\begin{gathered}
\left({ }_{b}<\text { term*> }+1, \text { identifier }\right) \\
\left({ }_{b}<\operatorname{expr}+>+1,0\right) \\
\left({ }_{b}<\text { var }:=>+1,0\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(\begin{array}{c}
\mathrm{b}
\end{array} \mathrm{BEGIN}+1,0\left({ }_{\mathrm{b}}<\Phi>+1,0\right)\right.
\end{gathered}
$$

We can, though, use the second part of each stack element to contain semantic information:

$$
\begin{gathered}
\left({ }_{b}<\operatorname{term}^{*}>+1, \quad(\text { semantics of } D)\right) \\
\left({ }_{b}<\operatorname{expr}+>+1, \quad(\text { semantics of } C)\right) \\
\left({ }_{b}<\operatorname{VAR}:=>+1, \quad(\text { semantics of } B+E)\right) \\
\left({ }_{b}<\text { BEGIR }>+1, \quad(\text { semantics of } A)\right) \\
l_{b}<\Phi>+1, \quad(\text { any necessary information)) }
\end{gathered}
$$

9. Other uses of transition matrices.

Two other uses will be introduced here, both concerned with optimizing the calculation of addresses of subscripted variables within $\underline{F O R}$ loops ([6],[9],[5]).

Provided that a FOR-loop meets certain conditions, calculation of the address of a subscripted variable $A\left[E_{1}\right.$, E_{n}] occurring in the statement of the FOR-loop may be optimized if the E_{i} satisfy certain restrictions, some of which we list here:

1. E_{i} is linear in the loop variable of the FOR-loop, $i=1$, . *, n .

That is, E_{i} may be put in the form $C_{1} * I+C_{2}$, where C_{1} and
C_{2} are expressions not containing the loop variable I.
2. E_{i} contains only simple integer variables, integer constants,
parentheses (and), and the operators + , - , and *.
3. The variables appearing in the E_{i} do not change within the FOR-loop statement.

Restrictions 1 and 2 may be checked systematically using the (operator) grammar in Figure 9. If $A\left[E_{1}, \ldots\right.$ En] is the subscripted variable and <CONST EL> $\Rightarrow\left[\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right]$, then $\mathrm{A}\left[\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right]$ satisfies restrictions 1 and 2 and moreover no E. 1 contains the loop variable. If $\langle L I N E L\rangle \Rightarrow\left[E_{1}, E n\right]$, then similarly $A\left[E_{1}, E_{n}\right]$ satisfies restrictions 1 and 2 but at least one- E_{i} contains the loop variable.

From the grammar we generate the optimizable subscript checker the transition matrix and subroutines in Figure 10 . Note that column 1 of the matrix contains only zeroes. We may map all terminal symbols except for the ones listed in restriction 2 into column 1. If, when parsing a subscripted variable according to the grammar in Figure 9, an error occurs, then this subscripted variable is handled in the usual way. Otherwise, it may be possible to optimize here and the variables occurring in the E_{i} should be stored in some list for further checking.

As a second example we look at the FOR-loop itself. We want it to have the form

$$
\underline{F O R} I \leftarrow E_{1} \text { STEP } E_{2} \underline{\text { UNTIL }} E_{3} \text { DO } S \text {; }
$$

where the variables in E_{2} do not change within the statement $\mathrm{S}, \mathrm{E}_{2}$ does not contain the loop variable I, and the E_{i} are integer expressions. The further restriction is again made, that the E. 1 consist only of integer simple variables, integer constants, (,), + , , and * . Note that E_{1} and E_{3} may contain the loop variable I, but E_{2} may not. The variables in E_{2} should be listed for further checking.

```
PRODUCTIONS
    <CONST ELEM>::= { < <CONST SUBS>]
            i:= <CONST SUBS>, <CONST EXPR>
    <LIN SUBS> i:z <LINEXPR>
<LINS UBS>, <LIN EXPR>
<LINSUBS>. <CONST EXPR>
<CONST SUBS>, <LIN EXPR>
<CONSTEXPR><+O Rm> <CONST TERM>
<+OR|> <CONST TERM>
<CONST TERM>
<CONSTTERM>* <CONST FACT>
<CONST FACT,>
(<CONST EXPR>)
INTEGER
INTEGER VAR
<LIN EXPR> <+O R => <LIN TERM>
<CONSTEXPR><+O R <> <LINTERM>
<LINEXPR> <+O R -> <CONST TERM>
<+ OR C> <LIN TERM>
<LIN TERM>
<CONST TERM>* <LIN FACT>
<LIN TERM> <CONSTFACT,
<LINFACT>
(<LIN EXPR> )
i:= LOOP VAR
NONTERMINAL SYMBJLS
    <CONST ELEM>
    <CONST EXPR>
    <LIN TERM>
        <LIN ELEM>
        <CONST TERM>
7 <CONST SUBS>
<LINFACT>
TERMINAL SYMBOLS
\begin{tabular}{lll}
11 & l & 12 \\
15 & * & 16 \\
19 & INTEGER VAF & 20
\end{tabular}

1
LOOP VAR
<CONST EXPR> <LIN EXPR> <CONST TERM> <CONST FACT> >)
<CONST EXPR>)
\(18=\)
1: \(=\)
\(>1:=\)
1: \(=\)
18=
\(1:=\)
1:=
```

NONTERMINAL SYMBJLS
<CONST ELEM>
<CONSTEXPマ

```

\section*{<CONST TERM> \\ <LINFACT>}
```

7 <CONST FACT>

$$
1
$$

6

```

```

 SECONDARY ROW
 <CONST SUBS>,
SECONDARY ROW
<LIN SUBS>,
SECONDARY ROW
<CONST EXPR><+ OR m>
SECONDARY ROW
<+ OR ->
SECONDARY ROW
<CONST TERM>*
SECONDARY ROW
l
SECONDARY ROW
<LIN EXPR> <+ OR ->
SECONDARY ROW
<LIN TERM> *

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 5 & 6 & 7 & 8 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 9 & 9 & 7 & 8 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 10 & 10 & 7 & 8 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 11 & 11 & 11 & 8 & 0 & 11 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & - & 4 \\
\hline 0 & 12 & 12 & 12 & 8 & 0 & 12 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 13 & 13 & 13 & 13 & 0 & 13 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 0 & 0 & 7 & 8 & 0 & 14 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 4 \\
\hline 0 & 15 & 15 & 15 & 8 & 0 & 15 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 3 & 0 \\
\hline 0 & 16 & 16 & 16 & 16 & 0 & 16. & 0 & 0 & 0 \\
\hline
\end{tabular}
mATRIX SUBROUTINES, THOSE SUBS WHICH ARE ACTUALLY mATRIX ENTRIES HAVE NUMBERS LESS THAN 000
```

1 STIP+STIP+1 / P\&P+1 / STIP\&ROW(TI) / NEW TI
2 STIP+STIP+1/ ST2P+<CONST FACT> FOR PROOUCTION<CONSTFACT>::= INTEGER NNW TI
3 STIP+STIP+1/ ST2P+<CONSTFACT, FOR PRODUCTION<CONST FACT> :I= INTEGER VAR / NEW TI
4 STIP+STIP+I/ ST2P+<LIN FACT> FOR PRODUCTION<LINFACT> : :=LOOPVAR NEW TI
5 EITHER
USE SUB 406 IFST2P IS O CONST SUBS><CONSTEXPR><CONSTTERM\<CONSTFACT>
USE SUB407IFSTOPIS <LINSUBS><LINEXPR><LINTERM\ <LINFACT>
6 EITHER
USE SUB 400IF ST2PIS <CONSTSUBS><CONST EXPR><CONSTTERM><CONST F A CT \
USE SUB 403 IF ST2PIS <LINSUBS> <LINEXPR> <LIN TERM> <LINFACT>
7 EITHER
USE SUB 40IIF ST2PIS <CONSTEXPR><CONSTTERM><CONST FACT>
USE SUB 434 IF ST2PIS <LINEXPR> <LINTERM> <LIN FACT>
8 EITHER
US E S U B 402 I F ST2PIS <CDNSTTERM><CONSTFACT>
uSE SUB 405 IF ST2PIS <lINTERM> <LINFACT>
9 EITHER
USE SUB 408IF ST2P IS <CONSTEXPR><CONSTTERM><CONST FACT >
USE SUB 439IFST2PIS <LINEXPR> <LIN TERM> <LIN FACT>
10 EITHER
U S E S UB 4 1 1 IF ST2PIS <CONST EXPR><CONSTTERM><CONSTFACT>
USE SUB 4IOIF STOPIS <LINEXPR> <LINTERM < <LINFACT>
11 EITHER
USESUB412 I f ST2PI S <CONST TERM><CONSTFACT>
USE SUB 413 IF ST2PIS <LINTERM> <LIN FACT>
12 EITHER
USE SUB 414 IF ST2P IS <CONST TERM><CONST FACT>
USE SUB4I5IF ST2PIS QLINTERM> <LINFACT>
13 EITHER
USE SUB 416 IF ST2P IS ECONSTFACTD
USE SUB 416 IF ST2PIS ECONSTFACTD
14 EITHER
US E S U B 418IFST2P IS <CONSTEXPR><CONST TERM\<CONSTFACT>
USE SUB 419IFST2PIS<LINEXPR> <LINTERM* <LINFACT>
15 EITHER
USE SUB 421 IF ST2P IS <CONSTTERM><CONST FACT,
USE S UB 42OIFST2PIS <LINTERM> <LIN FACT>

```


The grammar of Figure 11 is then constructed. The terminal "INT CONS, VAR" represents the class of integer constants and simple integer variables (except the loop variable of this loop). The corresponding transition matrix and subroutines are in Figure 12. We call this the loop checker. Since we are not interested in the precedence of the operators + , - * , we have simplified the productions for arithmetic expressions. Note also in Figure 11 that " *" is used as a unary operator. Since we assume that the subscripts have been or are being checked for syntactical errors by another part of the compiler, this will never happen. Grammars should always be constructed according to what they will be used for, and should be as simple as possible.

One can incorporate the loop checker and optimizable subscript checker into an existing syntax checker as follows. All three are put in memory together. The main syntax checker executes as it normally does, performing the usual "cycles" described already.


When a FOR is scanned, the syntax checker activates the loop checker. Thereafter both process in parallel. The syntax checker processes one symbol and then passes it on to the loop checker, which when finished returns to the syntax checker to process the next symbol:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & F & L & \(\leftarrow\) & s & u & 0 & \(<\) & C & ) & 1 \\
\hline & & & 0 & 0 & & T & \(N\) & 0 & + & & & N \\
\hline & & & R & 0 & & \(E\) & \(T\) & & , & & & T \\
\hline & & & & P & & P & I & & - & & & \\
\hline & & & & & & & L & & , & & & C \\
\hline & & & & \(V\) & & & & & \(\times\) & & & 0 \\
\hline & & & & A & & & & & \(>\) & & & N \\
\hline & & & & R & & & & & & & & S \\
\hline & & & & & & & & & & & & v \\
\hline & & & & & & & & & & & & A \\
\hline FUR & & & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline SECTNDARY & ROW & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline FOR & LOOP & \(V \backslash K\) & 0 & 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline SECOND^RY & ROW & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline FOR & LOOF & VAR & & & & & & & & & & \\
\hline \(\leftarrow\) & & & 0 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 \\
\hline SECONDARY & ROn & & 0 & 0 & 0 & 6 & 0 & 0 & 7 & 0 & 0 & 0 \\
\hline FOR & LOOP & VAF & & & & & & & & & & \\
\hline \(\bullet\) & <EXF & & & & & & & & & & & \\
\hline STEF & & & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 \\
\hline SECONDARY & ROW & & 0 & 0 & 0 & 0 & 8 & 0 & 9 & 0 & 0 & 0 \\
\hline FOR & LOOP & \(V A R\) & & & & & & & & & & \\
\hline + & <EXF & & & & & & & & & & & \\
\hline STEF & <EXP & & & & & & & & & & & \\
\hline UNTIL & & & 0 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 \\
\hline SECONDARY & ROW & & 0 & 0 & 0 & 0 & 0 & 10 & 7 & 0 & 0 & 0 \\
\hline <EXFI> & <+, - & \(x>\) & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 \\
\hline SECONDARY & ROw & & 0 & 0 & 0 & 11 & 12 & 11 & 13 & 0 & 13 & 0 \\
\hline \(\langle+,=, x\rangle\) & & & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 \\
\hline SECONDARY & ROW & & 0 & 0 & 0 & 14 & 15 & 14 & 16 & 0 & 16 & 0 \\
\hline \((\) & & & 0 & 3 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 \\
\hline SECONDARY & ROW & & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 17 & 0 \\
\hline \[
\langle E X F 2\rangle
\] & \(<+s=\) & \(x>\) & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 \\
\hline SECONDARY & ROn & & 0 & 0 & 0 & 18 & 0 & 18 & 18 & 0 & 18 & 0 \\
\hline
\end{tabular}
matrix subroutines. those Subswhichare actual ly natrixentrieshave num ber s les sthan 400
```

 STIP+STIP+1/ ST2P+<EXPIFACT> FORPROCUCTION<EXPIFACT>:I= INT CONSPVAR// NEWTI
 3 STIP+STIP+1/ ST2P+\langleEXPZ FACT> F O RPROCUCTION<EXP2FACT>::= LOOP VAR NEW T1
 4 STIP&ROW(FOR LOOPVAR) / NEW TI
 5 STIP&ROWC FOR LOOP VAR &) NEW TI
 6 USE SUB402IFST2PIS <EXP2> <EXP2 FACT>
EITHER
USE SUB400IFSTEP IS <EXPI>
U S E SUB4JIIFST2PIS<EXP2>
0 USE SUE 403I FST2PI S <EXP1>
USESUE 400 IFST2PIS <EXP1>
USE SUB 434 IFST2PIS <EXP2>
USE SUB 436IFST2PIS <EXP2FACT>
U USESUB 435 If ST2PIS <EXPIFACT>
3 EITHER
USE SUB 435IfST2PI S <EXPIFACT>
US ESUE406IFSTEP IS<EXPZFACT\rangle
14 USE SUB408IFST2PIS <EXP2FACT>
15 USE SUB 407IFST2PI S <EXPIFACT>
16 EITHER
USE S U B 407IFST2PI S <EXPIFACT>
USE SUB408 IF ST2PI S <EXP2FACT>
17 EITHER
USE SUB 40GIFST2PIS <EXP1> <EXP1FACT>
USESUB SUSOIFST2PIS <EXP2> <EXPIFACT>
18 EITHER
USE SUB411I F ST2PIS<EXPIFACT>
USESUB 412IFFST2PIS<EXP2FACT>

400	$P+P+1$	1	ST1P4ROW	<EXP1>		$\langle+,-, x\rangle$)	f	NEW T1			
401	$P+P+1$	1	STIPGROWC	<EXP2>		$\langle+,-, x\rangle$)	1	NEW P1			
402	STIP+ROW		FOR	LOOP	VAR	*	<EXP2>		STEP)	1	NEW T1

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 403 & \multicolumn{2}{|l|}{STIP＋ROWC} & FOR LOOP VAR & － & ＜EXP2＞ & StEP & \multicolumn{2}{|r|}{＜EXPI＞UNTIL} & & 1 & NEW Tl \\
\hline & 404 & \[
\begin{aligned}
& P+P=1 \\
& \text { STEP }
\end{aligned}
\] & & \begin{tabular}{l}
ST2P＋＜FOR LOOP＞ \\
＜EXP1＞ \\
UNTIL
\end{tabular} & \[
\begin{array}{lll}
F O & R \\
&
\end{array}
\] & \[
\begin{aligned}
& \text { RPRODUCTION <FORLDOP> } \\
& \text { <EXP2> DO }
\end{aligned}
\] & \[
::=
\] & \begin{tabular}{l}
FOR \\
NEWTI
\end{tabular} & LOOP VAR & － & \multicolumn{2}{|l|}{＜EXP2＞} \\
\hline & 405 & \(p+P=1\) & 1 & ST2P＋〈EXP1＞ & F O R & PRODUCTIOA＜EXPI＞ & ：：＝ & ＜EXP1＞ & ＜＋，＝，\(x\)＞ & ＜EXPIFACT＞ & & \\
\hline & 406 & \(p+P=1\) & 1 & ST2p＋＜EXP2＞ & F 0 & R PRODUCTION＜EXP2＞ & ：：\(=\) & ＜EXP1＞ & ＜＋，－，x＞ & ＜EXP2 FACT＞ & & \\
\hline & 407 & \(p+p=1\) & 1 & ST2P＋〈EXP1＞ & F O R & PRODUCTION＜EXPI＞ & 1：\(=\) & ＜t， 0 ，\(x\)＞ & ＜EXP1FACT＞ & & & \\
\hline & 408 & \(P+P=1\) & 1 & ST2P＋《EXP2＞ & F O R & PRODUCTION＜EXP2＞ & ：\(:=\) & ＜t，－\({ }^{\text {a }}\)＞ & ＜EXP2FACT＞ & & & \\
\hline & 409 & \(P+P=1\) & 1 & ST2P＋＜EXP1 FACT＞ & FOR P & PRODUCTIOh＜EXPIFACT & ：：＝ & \((\) & ＜EXP1＞ & ， & 1 & NEW TI \\
\hline & 410 & \(P+P=1\) & & ST2P＋〈EXP2 FACT＞ & FOR & PRODUCTION＜EXP2FACT＊ & ：：\(=\) & & ＜EXP2＞ & & 1 & NEW T1 \\
\hline \[
\underset{\infty}{w_{0}}
\] & 411 & \(p+p=1\) & 1 & ST2p＋〈EXP2＞ & FOR P & PRODUCTIOh＜EXPZ＞ & 1：\(=\) & ＜EXP2＞ & ＜＋，\(\times\) ，\(x\)＞ & ＜EXP1FACT＞ & & \\
\hline & 412 & \(P+P=1\) & 1 & ST2P＋〈EXP2＞ & F O R & PRODUCTION＜EXP2＞ & ：\(:=\) & ＜EXP2＞ &  & ＜EXP2 FACT & & \\
\hline
\end{tabular}

Figure 12 （continued）


\section*{optimizable variable checker}

The loop checker disconnects itself as soon as it determines that the loop is not of the right form, or when it is finished. Similarly, the optimizable subscript checker is connected when the [ of the subscript variable \(A\left[E_{1}\right.\), . . . \(\left.E_{n}\right]\) is first scanned, The optimizable variable checker disconnects itself when finished or when it is determined that this subscripted variable does not satisfy one of the restrictions. cycle


The loop checker and optimizable subscript checker are not concerned with errors and error recovery, If any error occurs, they simply disconnect themselves, or will be disconnected by the syntax checker itself.
10. Summary.

The ideas in this paper have been used intuitively in the ALCORILLINOIS 7090 Compiler ([5], [1]). The second pass actually contains the three matrices illustrated in Section 9. The matrix technique has its most important use, in my opinion, in a student system, where a very fast compiler resides in core and must also produce excellent error messages. Because the syntax checker matrix for ALGOL is so large (on
the \(7090(100 \times 45)\) and because over sixty percent of the array elements represent illegal symbol pairs, a much wider variety of error messages is efficiently possible. An algorithm is being developed for producing, from the grammar, an error recovery subroutine for each "error" element of the matrix. Another advantage of the matrix technique is the simplicity of the overall design.

The only disadvantage is the space used. A partial solution to this problem might be to parse those constructions of the grammar which are most used (for instance, expressions) using the matrix technique and to use some other slower but less space-consuming technique for the rest of the grammar. Note also that the size of the matrix may be cut in half by allowing only one row for each stack nonterminal symbol. Each subroutine must then check whether a nonterminal exists in \(S T_{P}\) or not ( ST2 \({ }_{p}\) nonzero or not).
[1] Bayer, R., Murphree Jr., E., Gries, D. User's Manual for the ALCORILLINOIS 7090 ALGoL-60 Translator, 2 nd ed., U. of Illinois, Sept. 1964.
[2] Eickel, J., Paul, M., Bauer, F. L. and Samelson, K. "A Syntax Controlled Generator of Formal Language Processors,' Comm. ACM 6 (Aug. 1963), 451 - 455.
[3] Feldman, J.A., 'A Formal Semantics for Computer Languages and its Application in a Compiler-compiler," Comm. ACM 9 (Jan. 1966), 3-9.
[4] Floyd, R. W., "Syntactic Analysis and Operator Precedence," J. ACM 10 (July 1963) 316 - 333.
[5] Gries, D., Paul, M. and Wiehle, H. R., 'Some Techniques Used in the ALCOR-ILLINOIS 7090," Comm. A с м 8 (Aug. 1965), 496-500.
[6] Hill, V., Langmaack, H., Schwarz, H. R., and Seegmüller, G. "Efficient handling of subscripted variables in ALGOL 60 compilers,' Proc. 1962 Rome Symposium on Symbolic Languages in Data Processing, Gordon and Breach, New York, 1962,311-340.
[7] Nauer, P. (Ed.), "Report on the Algorithmic Language ALGOL 60, "Num. Math. 2 (1960), 106-136; Comm. ACM 3 (May 1960), 299-314.
[8] 'Revised Report on the Algorithmic Language ALGOL 60," Comm. ACM 6 (Jan. 1963), 1-17.
[9] Samelson, K. and Bauer, F. L., "Sequential Formula Translation," Comm. ACM 3 (Feb. 1960), 76-83.
[10] Wirth, N. and Weber, H., "EULER: A Generalization of ALGOL, and its Formal Definition: Part I," Comm. ACM 9 (Jan. 1966),13-25.
[11] Burroughs B5500 Information Processing Systems Extended ALGOL Language - Manual.

Appendix A.
Below is the grammar of an ALGOL-like language defined by Floyd ([4]) in his article on operator precedence. Note that in the subroutines the phrase "ambiguity in sub" appears 6 times. This means that in this subroutine the reduction to make is not uniquely determined from \(U_{\ell}^{*}\), \(U_{1}\) and \(T_{1}\), and not that the grammar is ambiguous. The difficulties can be circumvented by either changing the grammar or using semantic information to determine which reduction to be made.

The matrix and subroutines were constructed using the grammar as input.
```

PRODUCTIONS

1	10	$1:=$	LETTER					
2	<ID LIST>	$1:=$	1 D					
3		$1:=$	<ID LIST>	,	ID			
4	<LITCON>	$1:=$	DIGITSTR					
5		1:	DIGITSTR	-				
6		1:8	-	DIGITSTR				
7		1:8	DIGITSPR	-	DIGITSTR			
8	<SUB VAR>	1: $=$	10	[<AEXPLIST>	3		
9	<VARIABLE>	18=	10					
10		1: $=$	<SUB VARP					
11	<FUNC D E S >	18=	ID	$($	<EXP LIST>)		
12	<PRIMARY>	1: $=$	<FUNC OES>					
14		1: $=$	<VARIABLE>					
15		1: $=$	<LITCON>					
		1: =		<ARITH EXP>)			
16	<FACTOR>	1: $=$	<PRIMARY>					
17		1: =	<PRIMARY>		<FACTOR>			
18		1: $=$	e	<FACTOR>				
19		$11=$	<+ 0 R - >	<FACTOR>				
20	<TERM>	18=	<FACTOR>					
21		1: $=$	<TERM>	<* 0 R />	<FACTOR>			
22	<SIMP AEXP>	$1:=$	<TERM>					
23		$1: 1=$	<SIMP AEXP>	<+ 0 R $=$ >	<TERM>			
24	<ARITHEXP>	1:8	<SIMP AEXP>					
25		$1:=$	IF	<8OOL EXP>	THEN	<ARITHEXP>ELSE	<ARITH	
26	<AEXPLIST> I	: =	<ARITH EXP>					
27		1: $=$	<AEXP LIST>		<ARITH EXP>			
28	<RELATION>	$18=$	<ARITH EXP>	<REL OP>	<ARITH EXP			
29		1t	<RELATION>	<REL OP>	<ARITH EXP>			
30	<BOOL PRIM ${ }^{\text {P }}$	$1:=$	<TORF)					
31		$1:=$	<VARIABLE>					
32		1: $=$	<FUNC DES>					
34		1: $=$	<RELATION>					
35		1: $=$		<BOOL EXP>	,			
	<BOOL SEC>	1:8	<BOOL PRIM>					
36		$18=$	NOT	<BOOL PRIM>				
37	<CONJ>	1:	<BOOL SEC>					
38		11:	<CONJ>	AND	<BOOL SEC>			
39	<DISJ>	112	<CONJ>					
40		$18=$	<DISJ>	OR	<CONJ>			
41	<IMPL>	1: $=$	<DISJ>					
42		1: $=$	<IMPL>	ImPlies	<0ISJ>			
43	<BOOL EXP>	1:	<IMPL>					
44		1is	<BOOL EXP>	EQUIV	<IMPL>			
45	<EXPR>	$18=$	<ARITH EXP)					
46		1: $=$	<BOOL EXP>					
47	<EXP LIST>	$1:=$	<EXPR>					
48		1: $=$	<EXP LIST>	*	<EXPR>			
49	<LIM PAIR>	1: $=$	<ARITH EXP>	$:$	<ARITH EXP>			
50	<LIM P LIST>	1:	<LIMPAIR>					
51		1: =	<LIM P LIST	,	<LIM PAIR>			
52	<NAME PART>	1: =	ID	C	<ID LIST>			
53	<SPECIFIER>	1: =	<TYPE>	<ID LIST>				

```

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 37 & <STATEMENT> & 38 & <STLIST> & 39 & <PROGRAM> & & \\
\hline \multicolumn{8}{|l|}{TERMINAL SYMBOLS} \\
\hline 40 & LETTER & 41 & , & 42 & DIGITSTR & 43 & - \\
\hline 44 & [ & 45 & ] & 46 & 1 & 47 & , \\
\hline 48 & ** & 49 & e & 50 & <+OR-> & 51 & <* 0 R / > \\
\hline 52 & IF & 53 & T Hen & 54 & ELSE & 55 & <REL OP> \\
\hline 56 & <TO RF> & 57 & NOT & 58 & ANC & 59 & OR \\
\hline 60 & IMPLIES & 61 & EQUPV & 62 & 1 & 63 & <TYPE> \\
\hline 64 & VALUE & 65 & ARRAY & 66 & ; & 67 & CONSTANT \\
\hline 68 & \(1:\) & 69 & SWITCH & 70 & PROCEDURE & 71 & END \\
\hline \multirow[t]{2}{*}{31} & FUNCTION & 73 & STEP & 74 & UNTIL & 75 & WHILE \\
\hline & GO TO & 77 & BEGIN & 78 & COMMENT & 79 & FOR \\
\hline 80 & 00 & 81 & PHI & & & & \\
\hline
\end{tabular}

                                - ( J e , * è
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\leq\) & ¢ & \(\frac{1}{5}\) & \(\stackrel{T}{T}\) & 5 & & \(\stackrel{\text { k }}{\text { k }}\) \\
\hline 0 & 0 & & N & E & & L \\
\hline R & R & & & & & \\
\hline - & , & & & & & P \\
\hline
\end{tabular}






\begin{tabular}{|c|c|c|}
\hline 00000000000 & 000000 & 00000000000000000000 \\
\hline 00000000000 & 000000 & 00000000000000000 \\
\hline 0000000000 & \[
00000
\] & 0000000000000000000 \\
\hline Fo B800w & +0 000000 & NoNoNoo00000000000uc \\
\hline 00000000000 & 000000 & 00000000000000 \\
\hline 00000000000 & No 0000 & 000000000000000000 \\
\hline 00000000000 & 00000 & 0000000000000000 \\
\hline 0000000000 & 00000 & 00000000000000000 \\
\hline  & \(\boldsymbol{\omega} 0000{ }_{0}\) & N0, N000000000000000 \\
\hline 00000000000 & 0000000 & 000000000000 \\
\hline \[
000000000^{\mathbf{\omega}}
\] & 00000000 & NoN0N000000000000000 \\
\hline \[
00000000 \underset{0}{1}
\] & 0000000 Óc & NoN0N000000000000000 \\
\hline 0000000000 & 00000000 & NoN0N000000000000000 \\
\hline 0000000000 & 10000 & 0000000000000000 \\
\hline 00000000000 & OrOOOO & 000000000000000 \\
\hline 00000000000 & 00000 & 000000000000 \\
\hline 0000000000 & On00000 & 000000000000000 \\
\hline EOOOOONOOOOL & 000 ¢0 & 0000000000000 \\
\hline EO & +0 OOOON & N000000000000000 \\
\hline
\end{tabular}


matrix subroutines，those subs which are actually matrix entries have numbers less than aoo



AMBIGUITY IN SUB 18
19 EITHER
USE SUB427IFST2PIS＜IDLIST＞ 10
USESUB426IFST2PIS《EXPLIST＞
＜FUNC DES＞
＜DISJ＞
＜EXPR＞
 ＜CONJ〉＜BOOLSEC＞＜BOOLPRIM＞＊RELATION＞
USE SUB 428 IFST2PIS＜EXPLIST〉＜EXPR〉 ＜BOOL SEC＞＜BOOL PRIM＞＊RELATIO
＜ARITH EXP＞＜SIMP AEXP＞＜TERM＞


AMBIGUITY IN SUB 19






\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 422 & P＋P＋ & 11 & Stiphrowil d & & & ： & 1 & new \({ }^{\text {T }}\) & & & & & \\
\hline & 423 & \(p+P+\) & 11 & STIP＋ROWS＜ST & LIST＊ & ＊ & ； & ， 1 N & NEW T1 & & & & & \\
\hline & 424 & P\＆P－1 & 1 & ST2P＋くID LIST＊ & & FOR P & production & ＜ID LIST＞ & ：：\(=\) & ＜1D & LIST＞ & & ID & \\
\hline & 425 & PatPl & NEW T & ST2P+<SUB VAR> & & FOR P & Productioh & ＜SUBVAR＞ & ：：\(=\) & 1 D & & I & ＜AEXP LIST＞ & \\
\hline & 426 & \(p+p=1\) & NEW T & SY2P＋＜FUNC DES＞ & & FOR P & Productioh & cfunc des \({ }^{\text {d }}\) & ：：\(=\) & 10 & & & ＜EXPLIS T， & \\
\hline & 427 & P＋P－1 & NEW T & ST2P＋＜NAME PART＞ & & & Productioh C & CNAME PART＞ & ：： & 10 & & 1 － & ＜ID LIST＞ & ， \\
\hline & 428 & P＋P－1 & NEW ' &  & & FOR & PRODUCTION & ＜Proccall \({ }^{\text {c }}\) & 1：＝ & 10 & & & ＜EXP LIST＞ & ） \\
\hline & 429 & P＋P－1 & 1 & ST2P＊－PRIMARY＞ & & FOR & Productioh & ＜PRIMARY＞ & ：：\(=\) & ＇ & & ＜ARITH EXP＞ & ， & ／NEW T1 \\
\hline & 430 & \(p+p-1\) & ， & ST2P＋＜BOOL PRIM & & & Production & N＜BOOLPRIM＞ & ：\(:=\) & & & ＜EOOL EXP＞ & ， & ／NEW T1 \\
\hline & 431 & \(p+p-1\) & 1 & ST2PC＜FACTOR＞ & & FOR & r production & ＜FACTOR＞ & ：：＝ & ＜PR & PRIMARY＞ & ＊ & ＜FACTOR＞ & \\
\hline \(\infty\) & 432 & \(p+p-1\) & 1 & ST2P＋くFACTOR＞ & & FOR & PRODUCTION & ＜FACTOR＊ & 1：＝ & － & & ＜FACTOR＞ & & \\
\hline & 433 & \(p+P-1\) & ， & SY 2P＋くFACTOR＞ & & FOR & Productiok & ＜FACTOR＞ & \(: 3:_{1}=\) & ＜＋ & ＋ 0 R－＞ & ＜FACTOR＞ & & \\
\hline & 434 & P\＆P． 1 & ， & S¢2P＋くTERM＞ & & FOR & PRODUCTIOh & ＜TERM＞ & & ＜TE & TERM＞ & ＜＊OR 1＞ & ＜FACTOR＞ & \\
\hline & 435 & \(p \subset p=1\) & 1 & ST2P＋＜SIMP AEXP＞ & & & R PRODUCTION & A＜SIMPAEXP＞ & & ＜SI & SIMP \(A E X P><\) & ＜＋ 0 R－＞ & ＜TERM＞ & \\
\hline & 436 & Stiparow & 1 & F＜800L & EXP＞ & ＞Th & then & \() 1\) & NEW T & & & & & \\
\hline & & 7 STIP＊ & Row & If＜800L & EXP＞ & \(>\) Th & then & ＜ARITHEXP＞E & ELSE & & ， & 1 NEW TI & & \\
\hline & 43 & 8 Stipar & Ows 1 & F＜BOOL & EXP＞ & ＞Th & then & ＜CL STATE＊ & ELSE & & ， & ／NEW Ti & & \\
\hline & 439 & Pap－ & & ST2P＋＜DP STATE＞ & & FOR & Production＜ & ＜op state＞ & 1：＝ & IF & F & ＜800L EXP＞ & Then & ＜Statement＞ \\
\hline & 440 & \[
\begin{aligned}
& P+P=1 \\
& E L S E
\end{aligned}
\] & 1 & \begin{tabular}{l}
ST2P＊＜ARITH EXP＞ \\
＜ARITHEXP＞
\end{tabular} & & FOR & PRODUCTION & （＜ARITHEXP＞ & 1：\(=\) & IF & F & ＜BOOL EXP＞ & THEN & ＜ARITH EXP＞ \\
\hline & 441 & \(p+p-1\) & 1 & SPPP＊＜AEXPLIST＞ & & FOR & r production＜ & ＜AEXPLIST＞ & \(1:=\) & ＜A & AEXPLIST＞ & & ＜ARITH EXP＞ & \\
\hline & 442 & \(p+p-1\) & & ST2P＋＜RELATION＞ & & FOR & Production & ＜RELATION＞ & ：：\(=\) & ＜AR & ARITH EXPP & ＜REL OP＞ & ＜ARITHEXP＞ & \\
\hline & 443 & \(\mathrm{P}+\mathrm{P}-1\) & & SP2P＋＜RELATION＞ & & FOR P & Production＜ & ＜relation＞ & ：：\(=\) & ＜R & Relations & ＜REL OP＞ & ＜ARITH EXP＞ & \\
\hline & 444 & P\＆P－1 & 1 & ST2P＋＜BOOL SEC＞ & & FOR & R PRODUCTION＜ & ＜BOOLSEC＞ & & NOT & & ＜800L PRIM＞ & & \\
\hline & 445 & P＋P－1 & & SP2P＊＜CONJ＞ & & FOR & Production & ＜CONJ？ & i：\(=\) & ＜CO & CONJ＞ & and & ＜BOOL SECS & \\
\hline
\end{tabular}

```

