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ABSTRACT

If A=D+ E where Dis the matrix of diagonal
el ements of A, then when A has some multiple or very
close eigenvalues E has certain characteristic properties.
These properties are considered both for hermtian and non-
hermtian A . The properties are inmportant in connexion
wi th several algorithms for diagonalizing matrices by
simlarity transfornations.
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1. Introduction:

In a nunber of algorithms for finding eigenvalues of a matrix
Al,the latter is reduced by an iterative sequence of simlarity
transformations to al nost diagonal form Wen Al has a nultiple
eigenvalue this is true of all the transforns (assumng exact com
putation). W are interested then in the nature of alnost diagonal
matrices with nultiple eigenvalues. It turns out that such matrices
have special characteristics which are of considerable interest as
regards the convergence of iterative procedures for reducing a
matrix to diagonal form

2. The Hermtian Case:

W first consider hermtian matrices with nultiple eigenval ues.

NN N S

Let A be hermitian with eigenvalues M N ,.coshoh oM osee oy

t he root N being precisely of nmultiplicity r. (A may have other
mul tiple eigenvalues but this will not affect the argument). Let

% be defined by the relation

n
3 =nmin  |n A (2.1)
i = r+1 T 1
and | et
A=D+E (2.2)

where D is the diagonal of A . Suppose we have

|Ellp = € < 8 (where F denoteithe Frobenius
norm (ZZ|eiJJ2) (2.3)

so that when € is snmall A may be regarded as al nost diagonal.

By the Wel andt-Hof f man t heoremt he N and a,. may be ordered
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so that
2 ef
Z(}\.pi-aii) < (2.4)

Let us pernute the rows and colums of A simlarly so that

t he a.qq associated with the A, eigenvalues are the first r.

1
Wthout loss of generality we can assune this was true originally
and with appropriate nunbering of the renmmining n-r eigenval ues

inequality (2) becomes

n 2 2

F Gi] (2.6)
A= 2.
[GT H

where Fis an rxr matri x.

Ve wite

If the eigenvalues of H are N >N then since the
r+ n

170
of f-di agonal elements of H are a subset of those of E, we have

by the Wel andt-Hoffman theorem [4] with appropriate nunbering

of the A/
1 n
5 (M- )P <€ (2.7)
r+l A 11
Hence
NN || = | N -, +a, N, |
. 1 1 1 11 11 1
< €+E = 2€ < 26 (2.8)
and
/ /
N2 | = |xi-xl+xi_xi|
/
Z ‘)\i—)\ll - \%’i-xi‘
> 36 - 28
= 6 (2'9)
3



- The matrix H-N T is therefore non-singular, i.e. it is of rank
n-r . Now since A has » as ar-fold root it, too, is of
-
' rank n-r . W shall show that this means that F is especially
L related to G and H. W partition A_xlI in the form
; F—)x.lI G ( )
é A-N.I = 2.10
= L et HAI
1
L I'f we premultiply A-: T by
] -1
-G(H-N_I
L I G(H l)
(2.11)
L e I
its rank is unaltered and hence the derived matrix
! -
L F-KlI—G(H-KlI) 3T 6
T (2.12)
| G H-A T
|
is also of rank n-r . Since H-klI is already of rank n-r
L this can be true only if
( F-xlI-G(H-xlI)'lGT =0 (2.13)
L
i e. F= KlI+G(H->\-lI)-lGT = A T+ (say) (2.14)
L Now the elenents of G are a subset of those of E and hence
T
”GHE = HG HE <€ (2.15)
~ whi | e
i (#2,1)7" = Rdiag ({-»)7" & (2.16)
-

where Ris unitary. Hence fromthe unitary invariance of the

i Frobenius norm and from (2.9) and (2.15)



el < llelly maxl X -2 )7 6Tl

< €°/s (2.17)
W see then that the diagonal elenents of F differ from >\l
by quantities bounded by 62/6 and its off-diagonal elements
are bounded by €2/6 .

When € < < § this nmeans that the largest off-diagonal
element of A is never found in F, the matrix with the diagonal
el enments "associated” with the multiple root Mo This has
i mportant consequences in connection with the classical Jacobi
met hod [5,9, 14] for diagonalizing hermtian matrices. At
each stage in the reduction the |argest off-diagonal elenment
in the current matrix is annihilated but theorem shows that after
a certain stage such an off-diagonal element is never 'associated
with two elenments tending to the same nultiple root.

This sinple observation renoves a difficulty in denonstrating
that the classical Jacobi method is always ultimately quadratically
convergent [6,9, 10, 14]. A simlar remark applies to the serial
Jacobi nethod if a-threshold strategy is used [8]. If at any
stage the element which is annihilated is chosen to be one which
is not small conpared with the current norm of off-diagonal
elements then this ensures that froma certain stage

the annihilated element will not be associated with two diagonal

elements tending to the sane nultiple root.
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3. Pathologically close roots:

In practice when a transformation is nmade on a matrix having
nul tiple roots, the transformed matrix nmerely has very close
roots because of rounding errors. In discussing the convergence
of the Jacobi method the quantity min‘%.i-%.j\ is of great
i mportance and the presence of very close roots would appear to
be serious. W now show that this is not so.

Suppose the roots of A are

MoNgsee N5 N N (3.1)
wher e

NoEAHE 0=l (3.2)
and the € are very small. The first r roots are therefore

pathol ogically close. Define D and E as in (2.2), but

by the relation

n
36 = min |>\i~>\| (3.3)
i=r+l
and assune that
1
2 .
el + (z€))®=€<s . (3.1)

Now A may be expressed in the form

A=RD R, (3.5)
where D1 = diag(%.i) and D, can be separated into D, and
D_ Wwhere

3
DE = diag(%-,%-,...,X,Xr_'_l,...,?\n) (3.6)
D5 = diag(el,€2,. . °)€I.JOJ". , 0> (3.7)
6



Hence
H

A= R(D2+D5)RH =RD,R"+R D5 RI-B+C (say) (3.8)

The matrix B has M as an r-fold root and to apply the result
of the previous section we require only a bound for the
Frobenius norm of its off-diagonal elements. Since B = A-C
such a bound is given by

Il + lelly = el + (€)% = € <6
The Frobenius norm of the off-diagonal elements of B
"associated with the nultiple root is therefore bounded by
€2/6 and hence that of the corresponding elenents of A is
bounded by €°/s + (zef)% .

Suppose for exanple a matrix A has the roots

1-10'10, 1, 1+1o'lo, 2, 3,k4
and

Bl + 23 107° <107
The of f-diagonal elements of A associated with the close
roots will then have a Frobenius norm bounded by

10710 + 53 19710
and therefore they will-all be far smaller than the |argest
of f-di agonal element of A . Hence at such a stage in the
classical Jacobi method or the threshold serial Jacobi nethod
with a matrix having the root distribution above, the current

rotation will not be in a plane associated with the close roots.

In fact with the above exanple one sweep of the threshold
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serial Jacobi method will reduce the norm of off-diagonal

10 . Provided we do not wish to

el ements from 107 to 10°
reduce the norm below this level the presence of the close
roots has no adverse influence. (In fact it is beneficial
since it ensures that the main weight in the off-diagonal
positions is concentrated on fewer elenents).

The above results were known to the author as early as
1963 and were used in [14, 15] to establish the cubic convergence
of the symetric QR algorithm for a matrix having multiple
roots Unfortunately | failed to observe the obvious
consequences of the theorem in connection with Jacobi's

met hod.

4, Non-hermitian matrices:

The above proofs may give the inpression that the result
above is associated specifically with Hermtian matrices. In
fact a closely related result is true for any matrix having
an r-fold root corresponding to linear divisors, W restrict
ourselves to the case when the remaining eigenvalues are distinct
though a slightly weaker result can be proved if some of them
are multiple eigenval ues.

Again let A have the roots xl,..,,xl,xr+l,...',>\n

the first r corresponding to linear divisors. Let

A= D + E (D diagonal) (4.1)
n
min [N, A, | = 3 (4.2)
i=r+l ™ Jl
Bl =€ < ® (k.3)

8
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Then by Gerschgorin's theorem all eigenvalues of Alie in

discs with centres 2, and radii not greater than €, This

inmplies that there nmust be at least one 4. . in each of the
Jd

di scs centred on the xi and of radii €. Since these

discs are disjoint this nmeans in particular that we can

associate an 855 with each of the hi(i = r+l,...,n). If

nmore than one ajj Is associated with any such >\i we take

the first one occuring on the diagonal. Now pernute rows and

colums of A simlarly so that these n-r diagonal elene

are in the southeast corner, W can assune that A was in

this formoriginally.
As in the symretric case A-M T is of rank n-r and
partitioning A-hll in the form

F-?\.lI G

A-N T =

we have

AT - A T) Yk =
Fl G(H lI)K 0

_ provided H—?\lI i s non-singular. Now
H-A T = di ag(aii-xl)+L = D)+L (say)
where L is the matrix of off-diagonal elenents of H

(These elements are a subset of those of E ). gince

nts

(b.4)

(4.6)
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Iaii->\1| = Iazll-KiH\l-hll

b ‘Ki—)\l\“aii—xi\

>3 - € (i = r+l,...,n)
> 26 (4.7)
Dl I's non-singular and
_ -1
B-AI =D, [I +D7L]. (+.8)
Now
-1 -1
o, "zl < o3 W, Izl
n -1
< max a. .-\
e lag ;-2 177 T,
< €/25< % (+.9)
and hence

Il 2D 7, < IpTHI, /- Tl

< 1

=55/ 3

=1 (% .10)

)
Equation (4.5) therefore gives
F=MI+eG (H-xlI)'lK = A THM (say)
wher e e, <l 11 G- 1) 7 il
< 62/ 8 (& .11)

This now shows that there was in fact only one %U' associ at ed
with each of the xi(i= r+l,...,n) and the remaining r diagonal
elenents are all in a disc of radius €2/6 centred on A .

Again off-diagonal elenments 'associated wth the nultiple eigen-

10
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val ue are bounded by 62/6 and are therefore well below the
|l evel of the largest off-diagonal elenents when € < <& .

The result is at first sight surprising since the
condition of the eigenvalue problemof A seems not to be
involved. Indeed a result may be proved which is only marginally
weaker even when A is defective (though not as far as M is
concerned). In this respect it is the hypothesis ||| < €
whi ch i s deceptive. If B has an ill-conditioned eigenval ue
problem then in order to derive a simlarity transformation

x'B X = A such that A is alnost di agonal with HEHF | ess

than a prescribed quantity we shall, in general, have to work
to higher precision if Bis ill-conditioned than if it is
wel | -condi tioned. In the hermitian case the hypothesis does

not have this deceptive feature.

5. Pathologically close roots in non-hermtian case:

The deceptive nature of the result becones apparent as soon
as we consider the effect of very close roots, Assume now
that A is non-defective and let X be a matrix having as
its colums n independent eigenvectors of A . Then we have
A= X diag(xi)x'l (5 .1)
Using a simlar notation to that in paragraph 3 we have in

the case of r very close roots

_ -1 -1 _
A= X DX +XD3X =B+ C (5.2)
where B now has an r-fold root, In the hermtian case X
is unitary and HCHF = HD}“F , but now all we can say is
11
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and we see that the condition nunber k of X with respect to
inversion is inevitably involved. It is clear that it is the

mi ni num val ue of HXH\R’IH for all pernissible X that is

relevant [ 1]. It should be enphasized though, that the possession

of a multiple root or of a set of very close roots does not inply
that ||| HX-lH is necessarily large. Provided the close roots
are well-conditioned the fact that the eigenvector problemis
ill-conditioned is irrelevant.

6. 1terative refinement of an ei gensystem

The above results have inportant consequences in connection
with procedures for the refinenent of a conputed ei gensystem of
a matrix [11, 12, 143. In such procedures one starts with a
conputed set of eigenvalues and eigenvectors My and X;

Let X be the matrix having col ums X, and define R and

S by the relation

AX - X diag(n,) = R (6.1)
bd AX - diag(u.) = X 1‘R (6.2)
If the systemwere exact both R and S would be null. In

practice neither R nor S can be conputed exactly with the
given X because of rounding errors but with well-designed
procedures 8 is determned with a |ow relative error. Hence
we have

X tax = aieg(u,) + § + (S-g) (6.3)

12
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and if the conputed systemis accurate § is small, and with
good procedures for calculating R and xr a bound is
obtained for ||s-§|| which is small conpared with ||| (note
S is conputed explicitly but a bound for the normonly is
deternmined for S-S ). The matrix sumon the right of (6.3) is
therefore an al nost diagonal matrix which is exactly simlar
to A. Now when A has a multiple root corresponding to a
linear divisor our result shows that provided S is snall

(and hence $-S is very small), the off-diagonal elenents of
S associated with the nultiple roots will be far smaller than

the largest off-diagonal elenments of S . Wen none of the

roots of Ais ill-conditioned we shall find typically that
it |Bll, =€ then the bound for s-5 || will be approxinately
2% (wth a t-digit mantissa binary conmputer), The diagonal

el ements of diag(u,) + S associated with the nultiple roots

will differ by quantities of the order of e and the
associ ated off-diagonal elements will be of order €? . Hence
after suitable pernutations of rows and colums the right hand

side-of (6.3) will have the form

r{[2

Di agonal + €L e‘i\{ * (s-8) (6.4
EN € l:

and the bound for |S-s|| will usually be of order at least as

smll as € Premultiplication of the first r rows by k €

and the first r colums by |/k € then nodifies the second

13
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matrix to the form

€L k €€y
(6.5)
N € p

o b

and because of this Gerschgorin's theorem gives just as fine
bounds for multiple roots as for well-separated roots.
Forgetting rounding errors for the monent it is interesting
to consider what can be achieved with an approximate matrix X
of eigenvectors which can be expressed in the form
X=X (l +€EF (6.6)
where [F||l, =1 and X is a matrix of exact normalized eigen-

vectors. W have

'}’('lAg(_ = (I+6E)'1X'1AX(I+€E)
= (T-€BE- - ) aiag(h,)( T+€E)
= di_ag(hi)+€F+ terns in e etc. (6.7)
wher e fij = “)‘jeij”“ieij (6.8)

W see that the elenments {j. i's zero whenever Ki = >5 .
Hence the off-diagonal elements associated with nultiple eigen-
val ues are of order €

Notice that when A has eigenval ues which, while not being
truly coincident, have separations which are appreciably smaller
than € , (6.8)shows that the associated off-diagonal elenents
are again appreciably smaller than € and a sinple application of
Gerschgorin's theorem using diagonal simlarity transformations

gives bounds for the relevant eigenvalues which are of the order

14
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of € or of the separations, whichever is the larger, The weakest
bounds arise when the separations are thenselves of order € . The
bounds are then of order € and cannot be inproved nerely by

diagonal sinmilarity transformations.

Wien the procedure for refining an eigensystemis used
iteratively then provided the systemis not too ill-conditioned the
final eigensystemis "correct to working accuracy." Generally we
can assume that the final conputed system of vectors satisfies a
relation of the form

X = X+E where |E|_< n.27 [k|ly  (6.8)
Hence we have
TUE = (T E ) () (6.9)

= diag(xi)-x'l

E diag(xi) + diag(xi)x'1E+.“
Equation (6.9) shows the real linitation on the attainable accuracy
with conputation of a prescribed precision. The off-diagona

elements of X 'aX are certainly bounded by 2n Z'tnxnwnx'lnmmaxlxil
ignoring the quadratic and higher order terns in E. Witing

2n 27° [jx]|_Jix ™| mex|n, | = 8 (6.10)

- the bounds attainable for the eigenval ues using Gerschgorin's

theorem and diagonal transformations can be expressed in the follow
ing form Let the eigenvalues be divided into three groups. The
first group consists of nultiple eigenvalues;, the second group
consists of eigenvalues with a mninmum separation which is less
than g and the third group consists of the remainder. For an

eigenvalue in the first group having a m ninum separation of 51

15
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fromall other eigenvalues the bound is of the order of B%@l :
For a menber of the second group having operations of up to s
with its close neighbours and a mninum separation of order 5,
fromall others the bound is of the order of S+5?/52 " For a
menber of the third group having a mninum separation fron1§LL
ot her eigenval ues of 65 the bound is of the order of 52/55 .
In general unless HXHWHX'le is quite large the bounds are al
appreci ably better than 2"tmax[xi] except when 6§ is of the
order of magnitude of B .

This result has been anply confirmed in practise, multiple

ei genval ues being found, in general, to the same high precision

as wel | -separated eigenval ues,

16
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