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ABSTRACT

If A =D+E where D is the matrix of diagonal
elements of A , then when A has some multiple or very
close eigenvalues E has certain characteristic properties.
These properties are considered both for hermitian and non-
hermitian A . The properties are important in connexion
with several algorithms for diagonalizing matrices by
similarity transformations.
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1. Introduction:

In a number of algorithms for finding eigenvalues of a matrix

Al, the latter is reduced by an iterative sequence of similarity

transformations to almost diagonal form. When Al has a multiple

eigenvalue this is true of all the transforms (assuming exact com-

putation). We are interested then in the nature of almost diagonal

matrices with multiple eigenvalues. It turns out that such matrices

have special characteristics which are of considerable interest as

regards the convergence of iterative procedures for reducing a

matrix to diagonal form.

2. The Hermitian Case:

We first consider hermitian matrices with multiple eigenvalues.

Let A be hermitian with eigenvalues hl,hl,...,xl,hr+l,hr+2,...,hn

the root hl being precisely of multiplicity r. (A may have other

multiple eigenvalues but this will not affect the argument). Let

6 be defined by the relation
n

3s = min
i = r+l

l'i-hll

and let

(2.1)

A = D + E

where D is the diagonal of A . Suppose we have

II IIEF= E < 6 (where F denotedhe fiobenius
norm <=I e. .12)'

=J'
(2.3)

so that when e is small A may be regarded as almost diagonal.

By the Wielandt-Hoffman theorem the hi and aii may be ordered
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so that

W >
2 < 62pi-“ii - (2.4)

Let us permute the rows and columns of A similarly so that

the a..11 associated with the hl eigenvalues are the first r.

Without loss of generality we can assume this was true originally

and with appropriate numbering of the remaining n-r eigenvalues

inequality (2) becomes

(2.5)

We write
F G

A =
c IGT H

where F is an rxr matrix.

P-6)

If the eigenvalues of H are hi+l,...,h/n then since the

off-diagonal elements of H are a subset of those of E , we have

by the Wielandt-Hoffman theorem [4] with appropriate numbering

of the ki

c” (Ci-aii)’  5 c2 .
r+l A

Hence

.I ii-hi I I= h/i-aii+aii-hi

and

k-7)
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The matrix H-h11 is therefore non-singular, i.e. it is of rank

n-r . Now since A has hl as a r-fold root it, too, is of

rank n-r . We shall show that this means that F is especially

related to G and H .

A-h11 =

We partition A-h11 in the form

(2.10)

If we premultiply A-hlI by

i
h

(2.11):
L

its rank is unaltered and hence the derived matrix

is also of rank n-r . Since H-h11

0

I
H-h11

i
i

(2.12)

of rank n-r

,
i

is already

i this can be true only if

F-XII-G(H-hlI)-lGT = 0 (2 *13>“i
L

i.e. F = hlI+G(H-hlI)-lGT  = hlI+M (say) (2.14)f
L Now the elements of G are a subset of those of E and hence

llG\l, = jlGTllE 5 E (2.15)

L while

(H-hlI)-l = R diag (x/i-hl)-1 RH (2.16)

where R is unitary. Hence from the unitary invariance of the

Frobenius norm and from (2.9) and (2.15)i

i
I
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(2.17)

We see then that the diagonal elements of F differ from hl

by quantities bounded by E2/6 and its off-diagonal elementsa-

are bounded by E2/6 .

When E < < 6 this means that the largest off-diagonal

element of A is never found in F , the matrix with the diagonal
L

elements "associated" with the multiple root h1'
This has

important consequences in connection with the classical JacobiL

method [5, 9, 141 for diagonalizing hermitian matrices. At
c

each stage in the reduction the largest off-diagonal element

in the current matrix is annihilated but theorem shows that after

a certain stage such an off-diagonal element is never 'associated'

with two elements tending to the same multiple root.

This simple observation removes a difficulty in demonstrating

that the classical Jacobi method is always ultimately quadratically

convergent [6, 9, 10, 141. A similar remark applies to the serial

Jacobi method if a-threshold strategy is used [8], If at any

L

stage the element which is annihilated is chosen to be one which

is not small compared with the current norm of off-diagonal

elements then this ensures that from a certain stage

the annihilated element will not be associated with two diagonal

elements tending to the same multiple root.
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In practice when a transformation is made on a matrix having

multiple roots, the transformed matrix merely has very close

roots because of rounding errors. In discussing the convergence

of the Jacobi method the quantity minlhi-hjI is of great

importance and the presence of very close roots would appear to

be serious. We now show that this is not so.

Suppose the roots of A are

where

A
i
= A + Ei i = l,..or (3.2)

and the Ei are very small. The first r roots are therefore

pathologically close. Define D and E as in (2.2), but 6

by the relation

3s = m?n Jhi-hl
i=r+l

(3.3)

and assume that

Now A may be expressed in the form

A = R Dl RH , (3*5)

where D =
1 diag(L) and Dl can be separated into D2 and

D3
where

D2 = diag(h,h,...,h,hr+l,*~.,hn) (3.6)

D3 =
diag(El,c2,. . a,Er,O,o  l l ,o> . (3.7 1

6
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Hence

A = R(D2+D3)RH = R D2 RH + R D3 RH = B + C (say) (3.8)

The matrix B has h as an r-fold root and to apply the result

of the previous section we require

Frobenius norm of its off-diagonal

such a bound is given by

only a bound for the

elements. Since B = A-C

\\E\\, + \\Cll, = \\E\/F + (+ = E < 6 .

The Frobenius norm of the off-diagonal elements of B

'associated' with the multiple root is therefore bounded by

E2/6 and hence that of the corresponding elements of A is

bounded by E'/a + p++ .

Suppose for example a matrix A has the roots

l-lo-1o, 1, l+lo-lo, 2, 3, 4

and

II IIEF + 23 log10 < 10-5 .

The off-diagonal elements of A associated with the close

roots will then have a Frobenius norm bounded by

lf10 + 23 lo-lo

and therefore they will-all be far smaller than the largest

off-diagonal element of A . Hence at such a stage in the

classical Jacobi method or the threshold serial Jacobi method

with a matrix having the root distribution above, the curregnt

rotation will not be in a plane associated with the close roots.

In fact with the above example one sweep of the threshold

7
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serial Jacobi method will reduce the norm of off-diagonal

elements from 10 -5 to loo10 . Provided we do not wish to

reduce the norm below this level the presence of the close

roots has no adverse influence. (In fact it is beneficial

since it ensures that the main weight in the off-diagonal

positions is concentrated on fewer elements).

The above results were known to the author as early as

1.963 and were used in [lb, 15-I to establish the cubic convergence

of the symmetric Q,R algorithm for a matrix having multiple

roots Unfortunately I failed to observe the obvious

consequences of the theorem in connection with Jacobi's

method.

4. Non-hermitian matrices:

The above proofs may give the impression that the result

above is associated specifically with Hermitian matrices. In

fact a closely related result is true for any matrix having

an r-fold root corresponding to linear divisors, We restrict

ourselves to the case when the remaining eigenvalues are distinct

though a slightly weaker result can be proved if some of them

are multiple eigenvalues.

Again let A have the roots hl,..&l,hr+l,...,hn

the first r corresponding to linear divisors. Let

A = D + E (D diagonal)
n

min Jyj) = 3s
kr-l-L

II IIE oD=E < 6

8
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Then by Gerschgorin's  theorem all eigenvalues of A lie in

discs with centres a
ii and radii not greater than e. This

implies that there must be at least one
'jj

in each of the

discs centred on the h
i

and of radii E . Since these

discs are disjoint this means in particular that we can

associate an
&jj

with each of the hi(i = r+l,...,n). If

more than one a
33

is associated with any such h
i we take

the first one occuring on the diagonal. Now permute rows and

columns of A similarly so that these n-r diagonal elements

are in the southeast corner, We can assume that A was in

this form originally.

As in the symmetric case A-h11 is of

partitioning A-h I
1

in the form

G -

A-h11 =
H-h11

we have

rank n-r and

(4 04 >

F-II - G(H-AlI)-IK = 0 (4 05 >

_ provided H-h11 is non-singular. Now

H-Al1 = diag(a ii-hl)+L = Dl+L (say) (4.6)

where L is the matrix of off-diagonal elements of H.

(These elements are a subset of those of E ). Since

L

i

9
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!aii-hll = la. .-hi+Ai-hll11

2 Ihi'hll-\aii-Ail

>, 36 - E (i = r+l,...,n)

> 26 (4*7)

Dl
is non-singular and

H-h,1 = D, [I + D-$L] .
I I I

Now

and hence

ll+Ilm L IID;ltl, IILII,
5 rn"Bx Jaii-hll -l LII IIW

i=r+l

II 0-q) -ill 43 L llD;lllw /Cl - IlJqLIJ
W

>

<l
-x/ 3

=l
6

(4 4

(4*9)

(4 .lO)

Equation (4.5) therefore gives

where

F = AlI + G (H-~$-~K = hlI+M (say)

llMl1, 5 IIGII, II (H-g -l/(w IlKI\,

(4 Al)

This now shows that there was in fact only one a.. associated
53

with each of the hi (i= r+l,...,n) and the remaining r diagonal

elements are all in a disc of radius
2

E /6 centred on kl l

Again off-diagonal elements 'associated' with the multiple eigen-

10
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value are bounded by E2/6 and are therefore well below the

level of the largest off-diagonal elements when c < C 6 .

The result is at first sight surprising since the

condition of the eigenvalue problem of A seems not to be

involved. Indeed a result may be proved which is only marginally

weaker even when A is defective (though not as far as h1 is

concerned). In this respect it is the hypothesis \\~ll,  5 E

which is deceptive0 If B has an ill-conditioned eigenvalue

problem then in order to derive a similarity transformation

X"B X = A such that A is almost diagonal with I\E\\, less

than a prescribed quantity we shall, in general, have to work

to higher precision if B is ill-conditioned than if it is

well-conditioned. In the hermitian case the hy$othesis  does

not have this deceptive feature.

5s Pathologically close roots in non-hermitian case:

The deceptive nature of the result becomes apparent as soon

as we consider the effect of very close roots, Assume now

that A is non-defective and let X be a matrix having as

its columns n independent eigenvectors of A . Then we have

A = X diag(h$-' (5 J)

Using a similar notation to that in paragraph 3 we have in

the case of r very close roots

A = X D2X -1 + X D
3c

-1
= B + C (5 *a

where B now has an r-fold root, In the hermitian case X

is unitary and Ilc\\, = jj~~j\~ , but now all we can say is

11
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llcll <, llxll IIQJI  llx”lll (5.3)

and we see that the condition number K of X with respect to

inversion is inevitably involved. It is clear that it is the

minimum value of I\x\\ \\x-lll for all permissible X that is

relevant [ 11. It should be emphasized though, that the possession

of a multiple root or of a set of very

-Mat Ilxll llflll is necessarily large.

are well-conditioned the fact that the

ill-conditioned is irrelevant.

close roots does not imply

Provided the close roots

eigenvector problem is

6. Iterative refinement of an eigensystem:

The above results have important consequences in connection

with procedures for the refinement of a computed eigensystem of

a matrix [ll, 12, 143. In such procedures one starts with a

computed set of eigenvalues and eigenvectors pi and xi '

Let X be the matrix having columns xi and define R and

S by the relation

Ax- X diag(pi) = R (6.1)

.x-hx - diag(pi) = X-lR F S . (6.2)

If the system were exact both R and S would be null. In

practice neither R nor S can be computed exactly with the

given X because of rounding errors but with well-designed

procedures 8 is determined with a low relative error. Hence

we have

ii

X%X = diag(pi) + 5 + (S-g) (6.3)

12
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good procedures for calculating R and X% a bound is

obtained for \\S-311 which is small compared with l\Ell (note

g is computed explicitly but a bound for the norm only is

determined for S-s ). The matrix sum on the right of (6.3) is

therefore an almost dragonal matrix which is exactly similar

to A . Now when A has a multiple root corresponding to a

linear divisor our result shows that provided 3 is small

(and hence S-T is very small), the off-diagonal elements of

!! associated with the multiple roots will be far smaller than

the largest off-diagonal elements of z . When none of the

roots of A is ill-conditioned we shall find typically that

if II IIii = f. then the bound fora3 IIS-s II, will be approximately

2% (with a t-digit mantissa binary computer), The diagonal

elements of diag(p<) + 3 associated with the multiple roots
I

-

will differ by quantities of the order of E2 and the

associated off-diagonal elements will be of order E . Hence

after suitable permutations of rows and columns the right hand

side-of (6.3) will have the fom

Diagonal +
r( E2Lc 1EM + -

6-s
E N EP

(6 4.

and the bound for IF-S II will usually be of order at least as

small as E
2

. Premultiplication of the first r rows by k C

and the first r columns by l/k c then modifies the second

13



matrix to the form

I ’
/L

i ;

i

E2L

i

1N
It

k E2 M

fE P1 65)

and because of this Gerschgorin's  theorem gives just as fine

bounds for multiple roots as for well-separated roots.

Forgetting rounding errors for the moment it is

to consider what can be achieved with an approximate

of eigenvectors which can be expressed in the form

z = X (I + E E)

interesting

matrix X

(6~5)

where EII IIal = 1 and X is a matrix of exact normalized eigen-

vectors. We have

Xwl~ = (I+SE)-LX-~AX(I+EE)

3 ( I-El$+E2E2- - -) diag(hi)( 3it-EE)

diag&)+EF+ terms in E.
2x etc. (6.7)

where f
ij = -Xjeij+Le..

1 iJ
68)

We see that the elements f.. is zero whenever hi = h. .
13 3

Hence the off-diagonal elements associated with multiple eigen-

values are of order E2 .

Notice that when A has eigenvalues which, while not being

truly coincident, have separations which are appreciably smaller

than e , (6.8) hs ows that the associated off-diagonal elements

are again appreciably smaller than C and a simple application of

Gerschgorin's theorem using diagonal similarity transformations

gives bounds for the relevant eigenvalues which are of the order

14
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of E2 or of the separations, whichever is the larger, The weakest

bounds arise when the separations are themselves of order E: . The

bounds are then of order '5 and cannot be improved merely by

diagonal similarity transformations.

When the procedure for refining an eigensystem is used

iteratively then provided the system is not too ill-conditioned the

final eigensystem is "correct to working accuracy." Generally we

can assume that the final computed system of vectors satisfies a

relation of the form.

Y = X+E where EII II,I n.2 -lY xII IIw (6.8)

Hence we have

x-b- -= (X-1-x-1Ef1-1  - - ) &(( 1+X-$ (6, g)

= diag(hi)-X-'E  diag(hi) + diag&)X -1E+.+.

Equation (6*9) shows the real limitation on the attainable accuracy

with computation of a prescribed precision. The off-diagonal

elements of
l -

x- AX are certainly bounded by 2n 2 -t
I\x\\ /IX-$_max\hil

W

ignoring the quadratic and higher order terms in E. Writing

2n 2-t /(XJjwJjX-l\JwmaxlhiI  = P (6.10)

- the bounds attainable for the eigenvalues using Gerschgorin's

theorem and diagonal transformations can be expressed in the follow-

ing form. Let the eigenvalues be divided into three groups. The

first group consists of multiple eigenvalues; the second group

consists of eigenvalues with a minimum separation which is less

than p and the third group consists of the remainder. For an

eigenvalue  in the first group having a minimum separation of 6
1I

L
15
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from all other eigenvalues the bound is of the order of p2/cl .

For a member of the second group having operations of up to s

with its close neighbours and a minimum separation of order 6 2

from all others the bound is of the order of . For a

member of the third group having a minimum separation from all

other eigenvalues of 6
3

the bound is of the order of p2/6
3 l

In general unless /lx/lwllx-lllw is quite large the bounds are all

appreciably better than 2%mx( Ai! except when 6 is of the

order of magnitude of /3 .

This result has been amply confirmed in practise, multiple

eigenvalues being found, in general, to the same high precision

as well-separated eigenvalues,

16

i



I
i

i

t

i
L

i

i
L

r

L

I
c -

ic

i
i

I

REFERENCES

1. Bauer, F. L. , (lg63), "Optimally scaled matrices",
Numer. Math. 5, 73-87.

2. Gerschgorin, S., (1931), "her die Abgrenzung der
Eigenwerte einer Matrix", Izv. Akad. Nauk. SSSR,
Ser. fiz-mat. 6, 749-754.

30 Henrici, P., (1958), 'On the speed of convergence of
cyclic and quasi-cyclic Jacobi methods for computing
eigenvalues of Hermitian matrices", J. Sot. Industr.
Appl. Math., 6, 144-162.

4. Hoffman, A. J. and Wielandt, H. W., (1953), "The
variation of the spectrum of a normal matrix", Duke
Math. J. 20, 37-39.

5. Jacobi, C. G. J., (1846), "Uber ein leichtes Verfahren
die in der Theorie der S&cul&rst8rungen vorkommenden
Gleichungen numerische aufzul&en". Crelle's J.
30, 51-94  l

6. van Kempken, H. P. M., (1966), 'On the convergence of
the classical Jacobi method for real symmetric
matrices with non-distinct eigenvalues", Numer.
Math. 9, 11-18.

7* van Kempen, H. P. M., (1966), "On the quadradic con-
vergence of the special cyclic Jacobi method",
Numer. Math. 9, 19-22.

8. Pope, D. A., and Tompkins, C., (1957), "Maximizing
functions of-rotations", J. Ass. Comp. Mach. 4,
459-466.

99 Schunhage, A., (1961), "Zur Konvergenz des Jacobi-
Verfahrens", Numer. Math. 3, r(4-380.

10. Schbnhage, A., (1964), "Zur quadratischen Konvergenz
des Jacobi-Verfahrens", Numer. Math. 6, 410-412.

11. Varah, J., (1967),  Ph.D. Thesis, Stanford.

i

i
t
L

iL



I
. ‘,‘_

L
L
ic

L
L
L
L
L

12. Wilkinson, J. H., (1961), "Rigorous error bounds
for computed eigensystems", Computer J. 4, 230-241.

130 Wilkinson, J. H., (1962), "Note on the quadratic con-
vergence of the cyclic Jacobi process", Numer..
Math. 4, 296-300.

14. Wilkinson, J. H., (1965), "The Algebraic Eigenvalue
Problem", Oxford University Press.

15. Wilkinson, J. H., (1965), "The Q R algorithm for real
symmetric matrices with multiple eigenvalues",
Computer J. 8, 85-e.

L

t


