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1. Introduction and Summary.

To minimze a snooth real-valued function f(x) of n real vari-
ables, the optimm s-gradient nmethod has been described by Birman [3],
Faddeev and Faddeeva [5], Khabaza [8], and others. W& here consider the
model function f(x) = %xTAx, where A is a positive definite matrix.
Then each iterate X, is equal to its error. The convergence of the

nethod was proved |ong ago-- see (2.14)--and the question now under study

is to find the asynptotic manner in which the iterates x,_ - 6, the null

k
vector.
For s =1 it was conjectured by Forsythe and Mtzkin [7] and

proved by Akaike [1]--see (4.12)--that the iterates x_ converge to 6

k
by asynptotically alternating between two directions--the "cage" of
Stiefel [10]. Thus the convergence of f(xk) to 0 for s =1 is
known to be linear, and no faster than linear, for any start X, t hat
is not an eigenvector. Moreover, if coordinates are chosen so that A
is a diagonal matrix, then the two asynptotic directions have only two
nonzero conponents. Finally, any direction with only two nonzero com-
ponents is invariant under two steps of the optimum |-gradient nethod.
In the present paper the author has extended nost of the known
results to arbitrary s >1 . - The main result (3.8)shows that the
directions of the even iterates oy have as a limt set a continuum

R (which mght be a single direction). Mreover, each direction of R

is invariant under two steps of the optinum s-gradient nethod. Let A

be a diagonal matrix. It is then shown in (3.10) that in the optimm
s-gradi ent process f(xk) converges to 0 no faster than linearly for
any initial vector X, with at least s + 1 nonzero conponents.

1
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Theorem (4.7) shows that all vectors of R have between s + 1 and 2s

nonzero coordinates, inclusive, Theorem (4.8)says that any direction

Wi th s + 1 nonzero components is invariant under two steps of the nethod,

for any s . Exanples are shown in Sec. 4 of directions with this invari-
ance and with as many as 2s nonzero conponents,

Experinental evidence from conputer runs for s = 2 suggests
strongly that R is always a single point, just it has been proved to
be for s = 1. The author conjectures wthout proof that Ris a
single point for all s, SO that. X =8 in an alternating nanner
conpl etely analogous to the case with s =1 .

The author is aware that for mnimzing quadratic functions f(x)
in practice, the conjugate-gradient nethod of Hestenes and Stiefel (see
[5]) may usually be expected to be superior to the optinum s-gradient
nethods, al though Khabaza [8] clainms superiority for the 3-gradient
method in sone cases. For nonquadratic functions f(x) the relative
nmerits of the methods are less clear, The purpose of the present inves-
tigation was the intellectual one of trying to understand the asynptotic
behavior of the various gradient nmethods for quadratic functions, The
author expects that this information may have sonme useful application

-to the mnimzation of general snooth functions f(x)
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2. The Qptinmum s-gradient Method for Quadratic Functions.

Let f(x) be real for all x in real euclidean n-space En. Let
f(x) assume a mininumvalue for a unique x, which can be taken as 9,
the origin of E without loss of generality in the analysis. The
advantage of using 6 is that the iterate X, is then also its own

error x,_-6as a mnimzing vector. W wish to analyze certain
asynptotic properties of a class of optimum gradient nmethods for finding
the mnimum of f(x)

The sinplest f to analyze is the quadratic function
(2.1) f(x) = #x"Ax,

where A is a symetric, positive definite, nonderogatory matrix of
order n . Mreover, (2.1) represents the local behavior at 6 of
f(x) - f(0) for most sufficiently smooth functions f . The author
conjectures that the theorens proved below for a quadratic function
apply essentially also to any sufficiently smoth function f which
is locally like (2.1). In this paper only quadratic functions will be
studied. See Daniel [4] for an investigation conparing gradi ent nethods
for quadratic and nonquadratic-functions in Hilbert space.,

In the various gradient methods one starts with an arbitrary

vector x and conputes a sequence {xk} converging to 6. W

O)
assune all arithmetic to be exact, and round-off error is not considered

in this paper.

Let 2, = grad f(xk) = Ax, denote the gradient of f at X -

In the optimum | -gradient method [5], is taken to be the unique

et1
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point on the line Ll:{xk+ank: - < g <® for which F(a) =

£(x, + aAx, ) is amnimm (The existence and uniqueness of Xyl
result fromthe easily proved fact that F(a) is a quadratic function
of awith F'(@) > 0 .) The line L, t hr ough X, is called the

line of steepest descent of f(x) at x

-
For x € Ls grad f(x) = A(xk + a Axk) = Ax, +a A2xkw Vi there-

fore consider the 2-dinensional plane through X, s

2
— + + ) ® .
L, {x, + ohx + oAx -2 < <, -2<0 < w),

and call it the 2-plane of steepest descent of f(x) at X, -

By extension, for any integer s (1 <s <n) let

S .
1 .
LS={xk+i‘élaiAxk:-°°<oci<w (all i )}

be the s-dimensional plane of steepest descent of f(x) at x, . Since

n . . .
-0y A7, are linearly independent, provided

A is not derogatory, Ax,,

X, is a vector whose mninum polynomal is of degree n . |n that case

L is the whol e space rI1E

In the optinmum s-gradient method [5] for mininizing the quadratic

function f of (2.1), the point x is defined to be the unique point

k+1
y in LS for which f(y) is a mninum(k =0, 1, ...). (Again
exi stence and uni queness follow fromthe positive definiteness of A.)
It is the optinum s-gradient nethods that we shall analyze in this paper.
We now give two representations of the mnimzing {ozi} whi ch are

useful in the analysis. Actual conputing algorithns for the optinmum



s-gradient nethod often proceed differently, and find

Xps1 by taking

s steps of the conjugate gradient method, starting from x, . See [5]

W concentrate on the gradients z, = Axk .

First representation

Let
X1 = Xy + 71Axk + .. .+ 7SASxk .
Then the gradient of f(x) at x1;+l is
(2.2) Zysl = % + 71./-\2k + . . .+ ysASZk .

Since x, ., mnimzes f(y) for y €L, the vector z . nust be

k+1

orthogonal to Ls. For this it is necessary and sufficient that 241

s-1
be orthogonal to A Zy - Then 7 7, are deter-
mned by the s conditions
S
(zk, Zk+l) = (Zk, zk) + 7l(zk, Azk) + ..+ 7s(zk, A Zk) =0

s-|

-1 s-1
A _ (48
( Z, Zk+l) - (& 25 Zk) + 7l(A 25 Azk) + .

Here (u, v) = i viu denotes the inner product of two colum vectors.

s-1 S
+ 7S(A Z,s AZ

k

)

Si nce (Apz, qu) = (z, Ap+qz) = ZTAp+qZ, we may wite the above equations

as

0 -
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(T T
T s _
Zkzk+ 7lzkAzk+ +7SZkAzk =0
T T 2 T\ s+l
+ =
z, Az, 71 ZkAZk+ + 7 kA Z) 0
(2.3) {
T s-1 T s T, 2s-1
ZkA zk+7lzkAzk+ 7SzkA zk—O
8
s-1 , .
As long as z, Az, . . . . A z, are linearly independent, the
equations (2.3) determne the mninizing 719+ - - - 7 uniquely.
Second representation
Let q (t) = t5+p_ £ 4 ... +8_ denote any monic polynonial
s s-1 o 0 y pol'y

of degree s, with By # 0 . Then

qs(A)zk = A Z, + 5S_lA Z, + + Bz
and
q_(A)z B
s k 1 s s-1 ,s-1
== A + A +
(2.4) —ms 0 B Zy B Z t ot

Conparing (2.4) with (2.2), we see that we can wite

p, (A)
(2.5) Ziy] = W 2,5

where p (t) is the particular polynomi al
(2.6) p, (1) =t

Now p, (t) is a certain orthogonal polynomal. \Wthout |oss of

generality assume A to be the diagonal matrix
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(2. 1) A= diag(kl,. o Kn>: - s
O x
n
where 0 < >\1f N, <. < kn are its eigenvalues (distinct because A
s not derogatory).
(2.8) Definition. In the coordinate system corresponding to (2.7), et

t he nonzero vector z be (C,l, ceey Qn) .T Let orthogonality of two
polynomals p(t), q(t) (relative to z ) be defined by

e

2
(p(t), q(t)) = iglpui)q(xi)c-r. = 0.
(2.9) Definition. Let P (t;z) =+t + ... be the unique monic poly-
nom al of degree s that, relative to z, is orthogonal in tie sense
of (28)to all polynom als of degree < s-I

Not e t hat Ps(t; z) depends only on the direction of z, and not

its magnitude. |.e., .Ps(t; z) = Ps(t;ocz), for all real o #0 .

(2.10) Theorem The polynomal p,(t) of (2.5),(2.6)is the. ortho-

pamdly nomi al Ps(t;Zk) defined in (2.9).

W shall not prove (2.10). For a related proof see, for exanple,
p. 349 of [5]. The basic reason for (2.10) is the isonmorphism well

expounded by Stiefel [11], between orthogonality of the polynonials
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p(t), 4a(t) in the sense of (2.8) and geonetric orthogonality of the

vectors p(A)z, q(A)z in E . That is,

(p(t), a(t)) = (p(A)z, q(A)Z) -

Hence the conditions (2.3) asserting the orthogonality of the vector

. . 2 s-1
Zoyl = PS(A, Zk) Z, / PS(O, Zk) to z,, Az, A Zys v A" Tz, are
equival ently asserting the orthogonality of the polynonial Ps(t; Zk)
to the polynomals 1, t, te, . ¢!
In sunmary 2141 is uniquely determned from z, by the formul a
P (A52)
s k
(2.11) Zir] = > (03 2.) Zy -
s 7 Tk
Mor eover,
P (A; z,)
(2.12) X 8 LS
' k+l = PSZO; sz k

Relation (2.12) is the basis for a proof by Birman[3] that in the

converges to O linearly, or faster.
-1

optimum s-gradient method f (Xk)

To be precise, let o = O‘n + }‘1) (hn - A . Let Ts(t) denote the

1)
Chebyshev polynomial on [-1, 1], normalized so that mex ; < . < lI’.l?s(t) | _

1. Let

Kn + Kl - 2u
Qs(u) = Ts A=\ '
n 1

<t <A LIt s

Then QS(O) = TS(G) > 1, and IQS(t)I <1, for M
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known that

T (o) = (o_Vo"-1) > (o -Vo"-1) o,

Birman's proof goes as follows:

PS(A; zk)
£lxy,,) = T P (05 z,) Xy

IN

Q_(A)
f(Q_STa xk) , because P_(t;z) is the poly-
S . L
nomi al that mninizes f(xk+l)
1 T
=——= x q (a) AqQ (A)x
[QS(O)}Q k S S k

1 4 2 (k) {2
= — Al (W) 1T (8.0
[q (O) ]2 igl i-7"sV 1 i
(2.13) ®
1 n

1 (k) 42
[q,(0)1° &M

IN

Hence

(2.14) JE(x, ) < ——l—/fo ) ,

LRGP

proving the convergence of f(x, ) to O to be linear or faster.

)

(2.15) Definition. For o =0, +1 +2 ..., let the noments oy

of z=(t, ---, t)* be defined by
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(2.16) Theorem Fix s > 1 . Except for a constant factor, _.the ortho-

gonal pol ynom al PS(t; z) of (2.9) can be expressed by the deterninant

o By er Mgy L
My My o g t
(2.17) P (t; ) =
tS
M sl Hos-1

The proof is left to the reader.

In the next theorem we give an explicit representation for the ratio

f(xk+l)/(f (xk) interns of the nonents of i

(2.18) Theorem Fix s > 1 . Let_xk be any vector in the optimum

s-gradient nmethod, and let u, be the nmonents defined by (2.15) for

the gradient vector z, = Ax, . Then

Hop Mo Mg oo Hgg

Ué Hl “2 o HS

f(Xl{+l) _ Hoop Mo Hoi Hos-)
- J
f(xk) p._l M—l
where M, Ls the.m.nor deterninant of w, in the above determ nant:

10
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Mo lJ-5 rx Mg

Mg I'J's+l .. uEs-l

T T -1 : .
Proof. W have 2f(xk) =x Ax, =z A’z =p, . Tosi nplify
. T ' T
the notation, let z =(6,. . . . C) and 2z, - (675 SRR
Then
P (A,; z)
s' i k
j_, = P (05 2, Cj_) by (2.11)
P (A5 2
= NS, gi’
(-1) M,
where we use the representation (2.17) for Ps(t; Zk) . Then
T, -1 1 & . 2 1 .2
(2.19) 2f(x, 1) =278 T2y == L [P (05 2 )17 5= 85
M- i=l i
n P (A.5 z.)
1 . s i’ kS L2
=5 L P05 7)) = ¢
M i=1 i
-1
"Now Ps(t; zk) is orthogonal-in the sense of (28)to all polynomals
of degree < s -1. Hence the only term of Ps(xi; zk)/ki t hat con-

tributes anything nonzero to the sum(2.19) is the term (-J.)SM_l/xi :

Hence

s n
(-1) , 2
2L () = M, igl Pohys 2 85y

11
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Ho My ooy Si/My
2
- Wy Mo g i
s N
_(0” g
=== |
-1 im
| - Cg )\S‘l
us L'Ls+l . uES-l i 7i
.
Ho M o1 Mg
— Hy Ho Hs Mo
_(D°
M,
~ u‘_: lJ'_._."l . p‘h_ 1 |"l'~_ 1
IS} ST L cs=L S-=L

Di vi di ng 2f(xk+l) by 2f(xk) =y and rearranging the colums of the

-1
| ast determ nant proves theorem (2.18).

-~ (2.20) Corollary. 1n the notation of theorem(2.18), for s = 1,

2
ﬂ (2.20) £xy,,) _ A B
. £lxy) M1
3 If n=2ands =1, then
2,2 2
; £lx,,) 65 0n - ) 2 2
(2.22) f(X) = 5 ) ) 5 =C =20 (Xk) .
K (860 (g Eygts)
Proof. The second expression cones fromthe first by using (2.15)
and (2.21), where Z, = (Ql, CE)T with sone algebraic manipulation.
(2.23) Corol lary. The expression (2.22) for f(xk+l)/f(xk) is unchanged,
if (6 CE)T is changed to (%, —Cl)T :
¢ —

: 12
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The inequality (2.13) yields an upper bound for the expression in
(2.18) . W may state this result in the formof the follow ng inequality,

valid for s=1 2 .. ..

oo My B M
-1 "0 1 «ew T g=1
L
Ho  Hy Mo or s B - 1
(2.24) G e e W_q X < NRIE
us u2s-~l T n 1
Mool Mg Pgrr.*x Mog.il s )\n-hl

This is essentially the inequality of Meinardus [8a], who derived it by
the same argument for a slightly different iteration in which ”XME i's
mnimzed instead of f(x) .

The special case for s = 1,

1 Mo

(2.25)

Ho Wy

Lo < 1 - Kn-hl 2
-1 "1 = N 2 )\nﬂl
T n 1
1

Kn—xl

is a well-known inequality of Kantorovich;, see (8)on p. %10 of [5].

It was stated by Birman [3] that the bound (2.14) is sharp, in the
sense that for each s and each given », A (s <n), one can find
A and x, SO that (2.14) is an equality for all k . This is done by
finding a set of N and §i(o) so that the shifted Chebyshev pol yno-
mal Q(t) is (up to a scalar factor) identical with Ps(t5zd) and
so that IQS(Xi)l = 1 for each eigenval ue >\i . This is known to be

possi bl e because the Chebyshev polynomals, |ike cosines, are orthogonal

with respect to summation over certain points.

13



{
—

r— r— r

r—

r—-

PO

However, Birman did not investigate the actual manner or rate of
conver gence of f‘(xk) to 0 in the optimum s-gradient nmethod for a

general given A and x He left open the question of whether the

o -
convergence of f (xk) to 0 might actually be faster than linear in

certain nontrivial cases.

0)

v (0
e 10

For s = 1 Forsythe and Mdtzkin [7] conjectured that if< o

£ 0, then (k?g',£=_g(||xkn), as k -»», for all i with1<i <n.
I n words, X, = 0 asynptotically in the 2-space T on spanned by the
ei genvectors belonging to M and I>1\ . The conjecture was proved by
Forsythe and Mot zkin (unpublished) only for n = 3. Akaike [1] proved
the conjecture for arbitrary n . In an unpublished manuscript Arns [2]
had found a simlar proof. W give a proof in (4.12) as a consequence
of our result (3.8)for the s-gradient method.

Suppose the optinmum |-gradient process is perforned entirely in the
t wo- di nensi onal space " on Then, if XOE“l,n and Xy is not an
ei genvector, it is easy to prove that:

(i) Xos Xpy Xyp +e. Al all collinear vectors, and that

s X . are also collinear in another direction. Furthernore,

5r v

¢ Xy and Aoy = C Hpy g

X)5 %5

> . .
Xppio = for all k . Here ¢” is given

by (2.22). The basic reason why these vectors are collinear is that

the gradients z and 2, Must al ways be perpendicular in any optinmm

k+1

gradi ent nethod.

= Pt(x,) . This

(ii) Mreover, for each k =0, 1, . . . . f(xk+l)
is an inmedi ate consequence of Corollary (2.23). Hence f(xk) ~0in
a strictly linear fashion, like the k-th term of a convergent geometric

series, even though the vectors Xy alternate between two fixed directions.

14
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It is a consequence of the Forsythe- Mt zkin-Arns-Akai ke result on

t he manner of convergence of x_to 6 in E for s =1 that the

k
iteration behaves asynptotically, as k — %, as though it were entirely

in the two-space = The vectors Xy behave ultimately as though

1,n

they had resulted froman iteration started with some x’s in LSRN
2

In particular, we find that £(x,) ~ 0 linearly, in the sense that

)

lim T0%1) o () .

k= ® fixkj

*
0 (Ol

Till now, the asynptotic nature of the optinum s-gradient nethod

However, the vector x, 1is an extrenely conplex function of =x

has not been described for s > 1. This problem posed on p.314 of

Forsythe [6], is studied in the next section

15



3. Asynptotic Behavior of the s-gradient Method.

W are still assumng A to have distinct positive eigenval ues

xl<k2<. . <>\n. Fix any s with 1 <s . Mtivated by (2.11)

and by Akaike's approach [1] for s = 1, we shall consider the trans-

formation
(3.1) w' =P (AW w.
= Here w # ¢ and Ps(t; w) =t%+ ... is the orthogonal polynonial
. defined in (2.9). Let
2 2
) el lle A W
— (3'2) CP(W = Hg = P ’
[, I
(-
where ||lu|| denotes the euclidean | ength of u .
g Simlarly, if w #6, let w' =2 (a;w)w, sothat
n 2
| _ 1wl
- CP(W') - 5 e
The followng theoremis of basic inportance to our analysis of the
asymptotic behavior of the s-gradient method.
¥
&h— (3.3) Theorem Let Vv be the angle between w and w" . For any w
? such that w" # 6, we_have
‘L.
2 " 2 " 2
; L o IUE_®
: cp w = = S ——-.—S_ : cp W' b4
- bl bt 1%~ a1

16



and there is equality_if and only if w" = cw for sone scalar ¢ >0 .

Proof. By the Cauchy-Schwarz inequality and the definition of YV,
" 2 2 1] 2
(3-4) (W' )2 = cosPulhl® | < [l T},

with equality if and only if w=cw", for c #0 .

Eﬂ)

(a5 W wl® - W' (a5 w') P_(As W) w

= WT[pS<A; W) 1% w - WP (As w') P (A3 W) w

I

wTPS(A; W) {PS(A; W - PS(A; w)l w
=WTPS(A; w D(A) w

- =0,

by (2.3), because D(t) is a polynomal of degree at nmost s - 1,

a since the leading terns t° cancel. Hence | ||2 :Wrw", whence
‘ : (3.5) et = ety 2

_ Combi ni ng (3.4) with(3.5), we have
- il = cos™vlll® I"I® < Ivl® 1M1,

with equality if and only if w*=cw. That ¢ >0 follows fromthe

l A
fact that wlw" = |w'|> 0 . This proves theorem (3.3).

17



(3.6) Definition. Fix s with 1<gs<n-1. Fi x a euclidean
coordinate systemin En so A takes the form(2.7). Let Z be the
unit sphere in E, - Define ZF < 2 to consist of all unit vectors y

with at least s + 1 nonzero conponents. W define a transformation

T: =*- 3% as follows: For each y in 2, let y'= Ty = w/|ul,
where w = PS(A; y) y. (That w #£ 6 and y' € by are proved in

theorem (5.1).)

(3.7) Definition. By a continuum we mean a closed connected set in E

with the understanding that a single point is a continuum.

(
(3.8) Theorem Fix s wWth 1<s<n-1. Let Yo =(nio), cooy nr(l,o))T
be any vector in i g/a)tlzé (i =1 ..., n . For k=0 1,
- defi ne Vis] = Y, whereT was defined in (3.6). Then the set of

limt points_of the sequence {y2k :k =01, 2, . ..} of nornmalized

*
gradients .is_a_continuumR< Z . Moreover, for any point r in R,
9

we have r = T°r = T(Tr)
i Pr oof , Let WO = yo . For k =0, 1, c.eey let Wk+l = PS (A5 yk) Wk)

-wher e Ps(t; y) was defined in (2.9). It is easily shown that Ve =
= wk/HWkH’ for all k. Since n>s + 1 conponents of W, are nonzero,
/

it follows fromtheorem (5.1)that at least s + 1 conponents of W

are nonzero for k =1, 2, .... Hence no w, = 6.

{3
. Let w,_ = (wf), ceoy w(k))T . By theorem (3.3),
I
= cp(wo)gcp(wl)gmogq}(wk)f_“o .
-
18
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But for each k the s zeros of Ps(t; wk) lie in the interval

1

0‘1’ xn) . Hence IPS(t; wk)l < (kn - Kl)s, for »

<t <A, and so

. [ S A
k %~'£|2 Hﬁuz

[P (g5 w12 [{®)1?

‘M

'_'
1l
Ju

(k) 42

[w.i

™

)
]
[

IN

(- 2% forall k.
As a monotone bounded sequence, {®(w,)} has a limit L . Hence

But, by theorem (3.3),

[N A

Poe) TP T T Tl
(3.10) .
[

H2 [1 - cos2 ﬂlk],

- g1

where §, is the angle between w_ and w, . Then, by (3.9)

cosz\kk* 1, and §, ~0,as k == . (Since ¢c >0 in (3.3), Wklﬂ 00
Now consider the set Y of unit vectors {ygk k=0, 2 . ..}.

As an infinite subset of the conpact unit sphere %, {yyJ has limit

points; let R be the set of all limt points of Y. Since ¥, ~ 0,

19
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as k — e, we have - 0, as k == ., Then, as Ostrowski

[¥orap = Voul
shows on p. 203 of [9], the set R nust be a continuumin the sense of

(3.7).
Let r be any point of R . Then there is a subsequence (kal}

converging to r . Since - 0, we have also that

”y2k1+2 " Vg |
Vor +o = T Yok, - r . But Tis a continuous transformation. Hence
2 * 2 2 : 2
Ty ~Tr, and T'r=r. Since Tr =r, we see fromtheorem (5.1)
1 * * _
that r € £Z . Hence R Z . This conpletes the proof of theorem (3.8).
The author has programmed a nunber of test cases with s =2, to
investigate the nature of the set R. 1In every case, R appeared to

be a single point. The author conjectures that R is always a single

point in theorem (3.8). So far, this has been proved only for s = 1,

and we give the proof in (4.12).
The followi ng theorem shows one way in which one mght be able to

prove that R consists always of a single point.

(3.11) Theorem  Suppose in_the proof of theorem (3.8) t hat @(wk)

were to converge to L so rapidly that, for sone @ <1

©.12) 0<obn, ) -oln) <alo (w)-o(w )],  forall k.

Then R woul d consist of a single point.

Proof. If (3.12) held, then the following infinite series would be

conver gent :
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(5.13) ;“P(wlﬁl) - ow) 1% <
as is seen from(3.12), by the ratio test. |t is shown in (3.10) that
(5.14) [0 () - @) 18 ~ sin v, |, s ke,
wher e ¥ is the angle between the vectors Wy and Wisn Then, from
(3.13) and (3.14), we woul d have
(3.15) filq:k| <w
Now, let y, = Wk/”wku be the unit vector in the direction of w . It

woul d follow from (3.15) t hat

«©

k)-:o Waen = ol < =

whence

(5.16) k};O Tpperp = o)

woul d be an absolutely convergent series of vectors. Since

k- |

we see that the sequence {y2k} woul d then have one linmit point. This

proves the theorem (3.11).
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However, the author sees no way to prove (3.12) nor the conjecture.
The follow ng theorem proves that, whether R has one point or an

infinite nunber, £ (x,) - 0 no faster than linearly.

)
(3.17) Theorem Fix s with1<s <n-1. Guven any Ain the
orm (2.7). Let x_ = (§£O), ceey §r(lo))T be any vector in E W th

—_— 0
m nonzero conmponents. Then in the f(ka s-gradi ent net hod

converges t 0 in the follow ng ways:

(i) If m<s, then x. =6, f(x,) =0, and the iteration termi-

1

nates in one step.

(ii) If s+ 1<m then the _convergence of f(xk)Lo 0is

asymptotically linear, iin the sense that there exist constants c.,, c

1’ 2

dependi ng_on X0 W th

( )
T

(3.18) O<Clif—<§£7——§ce<l' _f___o_r__a_l_l_k

Proof. W may ignore any zero components of x as they remain

O’

zero throughout the iteration. W are thus nminimzing f(x) in E,
Proof of (i): If m< s, then the subspace L, defined in Sec. 2

is E . Hence x; = ¢ and f(xl) = 0, the minimumof f(x) in B
Proof of (ii): That

follows fromthe chain of inequalities (2.13). W have to prove the
inequalities involving cy -
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G ven X0 with at least s + 1 nonzero conponents. By theorem

(5.1) all other vectors X, have at least s + 1 nonzero conponents,

so that no =6 . By theorem (3.8), the normalized gradient vectors

Xk
Yor have as a limt set a continuumR . For each point rin R we
have T°r = r . Suppose a position vector x were such that r = Ax/||Ax|| € R .

That is, x would be in the direction of A'lr . Let x" be the result

of two steps of the optinmum s-gradient method applied to X .  Since
°r = r, Wwe see that x" would be in the sane direction as x . Hence
(3.19) x" =yx and so f(x") = 72f(x),

for some Yy With 0< 9y =1y(r) <1.

l.e., for each point r of Rthere is a positive real nunber
y(r) such that whenever the gradient of a vector x Jlies in the direction
of r, then (3.19) holds.

Let C be the minimumof y(r) for r € R. Since Ris conpact,

the mnimumis assuned and C > 0 . Hence
(3.20) 0<C°< ,

for all x such that Ax/||ax|| € R .
Now the ratio f£(x")/f(x) is a continuous function of x . Let

N(R) € Z be such a nei ghborhood of R that

(3 .21) 1e2<
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for all x with Ax/||ax|| in N(R) . Consider the sequence {x,} .

Let z,, = Ax,,, and let y, = ZEk/“ZQKH . By theorem (3.8), the

{yEk} have R as a limt set. Hence there is a K such that for

k>K all ygkliein N(R) . By (3.21) then for k > K we have
a2 < Y
- fxgk_

e conpl etes the proof of the theorem

l:Cg—e, for any ¢ >0 .

Letting c, = 3C

Actually we could have taken c

(3.22) Corollary. Wth the hypotheses of theorem (3.17), there exist

constants dl’ d2 W th
fx . -)
k+1’
O<dliwid2< 1, for all k .

Proof. The corollary follows from theorem (3.17), the inequalities

(2.13), and the fact that f(xk) NO, as k ~ ®,

(3.23) Theorem . Fix s >_1 . Let_xO be any vector such that X,

-is_parallel _to Xg in the optinmum s-gradient nethod. 1n other words,

zo/llzpll _is_in the set F(A) of (k.5), where z, = Ax . Then

£x, )
(.24) i (k=0,1,2 . ),
k

wher e c2 depends on A and on x

o
Remark. The inport of this theoremis that, although the X,
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alternate between two fixed directions, as x -, the ratio (3.24)is

constant for all k, and does not alternate.

Proof of (3.23). W first note from Corollary (2.23) that the
theoremis true for s =1, and that (2.22) gives a fornula for c? in
terms of the two nonzero conponents Cl, C2 of Zg -

For any fixed s > 1, let = be the 2-space spanned by X, and

x Let fﬂ(x) be the restriction of f(x) = 3xTax to the subspace

1.
n . Then the vectors Xy X15 %5y +-. Can be shown by a geonetrical
argument to be the successive iterates of the optimum |-gradient nethod
for finding the mninumof f,(x) inx, starting with Xy - Then

(3.24) for s = 1 states that

fn (Xk+l) 2

=c,
fnixki
2 , , .
for some constant ¢~ depending on the eigenval ues of £ . Since

£ (x) = f(x) in x, this proves the theoremfor s .
Presumabl y theorem (3.23) could sonehow be proved from theorem
(2.18), just as the case s = 1 follows from (2.22).

Corollary (3.22) could also be proved from theorem (3.23).
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4. Nature of the Asvmototic Directions.

W should like to characterize as well as we can the possible limting
vectors r € R of the (normalized) gradient vectors Yoy of theorem

(3.8). Since oy = r, for rin R we have

(4.1) cr = PS(A; Tr) PS(A; r)

= QES (A) r,

where ¢ >0 is a constant and Q,(t) is the product of the two poly-

. . T
nomi al s Ps(t; Tr) and Ps(t; r) . Letting r = (pl, Co pn) , We
have
(4.2) cpy = Qg (M) 4 (i=1, ....0n.
Recall fromp. 4k of [12] that P_(t; Tr) = t5+ . . . and P_(t; 1)
=t°+. .. are polynom al s of degree s, each with s distinct real

2s .
+ IS a

zeros in the open interval ()‘1’ kn) . Hence st(t) =t
polynom al of degree 2s with 2s real zeros in the interval (kl, kn),
counting double zeros twice, if any. Nowc > 0 in (4.2), which inplies

that for each i
(4.3) Gy (hi) =c>0 or py =0 (1=1, ....0.

Since Q,(t) vanishes for some t in (kl, kn), t he equation st(t)
=c¢c>0can have 2'3 4 e wmm OF 2s distinct real roots, which we

cal u_-J(i =1, . . . . m, and nunber so that
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< .. .
Ml<“2 <“m

(Here we count a nultiple root of Q,(t) = c only once.) Thus
Qg (iy) = o (i=1....m.

By (4.3) each A, for which p, £ 0 is one of the Ty

(4.4) Definition. Gven x, . Let R be the set of limting points
of the normalized gradients {y2k ck =0 1 . ..} of the optinum
s-gradient method starting from Xy - For any vector r = (pl,. Do pn)

in R let S be the set of xifor whi ch pi,l—O. Any such set is

called an asynptotic spectrum of the optinum s-gradient method for the

given x Any r in Ris called an asynptotic gradient vector of

o -
the sanme iteration.

Note that R depends on A and x and we occasionally wite

O}
R (xo, A) to make the dependence explicit. Note that Sis a property

of r only, and only indirectly of Xy -

-(4.5) Definition. For a given A, we define the invariant set F(A)

of the optinum s-gradient method to be the set of unit vectors r such
t hat TQr =r .
W& have shown in theorem (3.8)that, for any Xy R(XO, A < F(A

It is never true that R(x., A) = F(A) . However, it is true that

O}
F(A) = U R(xo, A)
X, € En
27
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For, if r € F(A), then TEr:r, so that r = R(r, A

O elOWT itk gi(o);éO(i -1

n —

(4.6) Theorem G ven x, = (§£

.., n) . Assune s <n . Then both eigenval ues A, and M bel ong

to all asynptotic spectra S of the optinmum s-gradient method starting

with x

Proof. Assume that kq (g<n) is the largest eigenvalue in the
asynptotic spectrum S corresponding to an asynptotic vector r of
R(xo, A) . The zeros of each Ps(t; zk) (k=0,1, ... ) lieinthe
open interval (xl, )‘n) . Hence Ps(xn; zk) £ 0 for all k . Hence
nr(lzk) £0 for all k, where the ni(gk‘) are the conponents of
Tor = Zox/ 2
Let v be the largest zero of PS(t; Tr) Ps(t; r) . Since the
zeros of both Ps(t; Tr) and Ps(t; r) lie in the open interval (7\1, Xq),
we see that Ps(t; Tr) Ps(t; r)2,as tA, for t > 1 . Hence

2 X . . )
e = PS(?\.q, Tr) PS(Kq, r) < Ps(?\.n, Tr) PS(%.n, r) .

-But then, by continuity,

>\' . >\‘ . .
Py ( q’ Zoger1) P q Zo) S 0P (M 2q) By (M5 )

for some 0 <1 and all k >K . Since all Cﬁf)# 0, and since

négkj) - Py #£ 0, for a certain subsequence k.J, this nmeans that

lnr(fkj)l—*w, as j— <« . This is inpossible, since all y(gk> lie
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on the unit sphere. Hence q = n, and Xn is in the asynptotic spectrum
S .

The proof that A is in S is anal ogeus.

1

(4.7) Theorem _Gven x, with gﬁo) A0 (i =1, ..., n); assune that

s >n . Let mbe_the nunber of eigenvalues in any asynptotic spectrum

S of the optinmum s-gradi ent nethod. Then

Proof. Let r € R be an asynptotic gradient vector corresponding
to agiven S. As shown after (4.3), the asynptotic spectrumS is a
subset of the set of t for which Ps(t; Tr) Ps(t; r) = ¢, and the
number of such t is between 2 and 2s .

However, if m< s, one step of the optinmum gradient method woul d
carry r into 6, and so r could not belong to R. Hence

s+ 1<m<2?2s .

(4.8) Theorem Suppose s < n . Let x, = (gﬁo), Coe géo))T be any
-vector in E_ with exactly s + 1 nonzero conponents §§O) e Thep

X X

o0 Xor Xs are all collinear vectors. That is, the normalized

gradi ent_vect or yO:AxO/HAxO” is in the invariant set F(A) _of (4.5).

Proof. Let 25 = Axg . It will suffice to prove that Zy = CoZgo
for sonme positive constant cy - Wthout |oss of generality we may
assune that n = s + 1, since the conponents for which §(O> = 0 remain

i
Zero.
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By (2.2)
(4.9) Z, - zdl' 71AZO+. ..+ 7SASZO,

and 7,, o« om 7, are so chosen that z, is orthogonal to Z0)s Azo, —
As'lz Because s + 1 conponents of z. are nonzero, the s vectors

0 .
Zy» Az, ... As"lzO are linearly independent. Hence the set {zo, Az

o As'lzo} forns a basis for the subspace of E

0

O’

ol orthogonal to z,

Next 2, is formed as a linear conbination of 15 A2, .o,

Az, oo, A, since z. is

A%z which is orthogonal to 1 5

1 2y

orthogonal to Z1s it is expressible in ternms of the basis 23 o e
s-1 .
A Zy ¢
s-1
+
(4.10) Zp = CZg t oAyt c 1A Z,
W shal | prove that ¢, Te, =L :csl=0.

Take the inner product of (4.10) with Az,

(4.11) 2 Ae, _ cgz Aoy + ez A+ L 4o 2 Tasl,

T _ T _ .
But zy Az2 =z, Azl = 0 because z, 1S orthogonal to Azl . And
T T2 _ _  Tas- o .
| Az = lAzo—. o —zlA zO-O because z, Is orthogonal to

o - - Az, . And leASzO # 0, since otherwise by (4.11)

z. would be 6. It then follows from (4.11) that csl:O.
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Next, taking the inner product of (4.10) wth Aezl and using the
sane argunent and the fact that ciq = 0, we show t hat Cop = 0.
After taking the inner product of (4.10) with Az, Aezl,. Co As'lzl,
we will have proved that Cs-l R 0. Then, from (4.10),

5 . %% That c, > 0 follows fromthe proof of (3.3) . This com

pl etes the proof of theorem (4.8).

zZ

Theorem (4.8) inplies that any s + 1 eigenvalues of A can be in

the asynptotic spectrumfor some start x Moreover, any vector r

0
with exactly s + 1 nonzero conponents can be an asynptotic gradient

vector of an iteration. This extends to s > 2 the known fact for the
ordinary optimm |-gradient nmethod in 2 dinmensions that any initial
gradient direction is repeated at every other step of the iteration.
See the end of Sec. 2 above, or p. 214 of Ostrowski [9].

That for all s the period of the iteration in theorens (3.8)and
(4.8) is 2, and not higher than 2, was a surprising fact to the author.
However, the experiments of Khabaza [8] for s = 3suggest the period 2.

For s =1 we have s + 1 =2s =2, and then by theorem (4.7) all
the vectors invariant under two steps of the optimum |-gradient nethod
are of the type covered in theorem (4.8). Fromthis we can now show for
s =1 that the limting set R of theorem (3.8)is actually a single
point. The following is a nodification of Akaike's proof in [1] of the
For syt he- Mot zkin conjecture [7].

(0) n<o>)T

l s e ooy n

(4.12) Theorem (Akaike)._Let s = 1 . Let y, = (n

¥
be any vector in Z wth ni(o) #0 (i =1, ..., n) . Then the sequence
{yek k=0 1, . ..} of normalized gradients converges to a single point
r whose spectrum is {>\l, xn} . Moreover, Tgr =1 .
31



Proof. By theorem (3.8) the set of unit vectors {YEK .k =0, 1,
has a continuumR as a limt set. By theorem (4+.7), for any r € R the
corresponding spectrum S of r has only 2 eigenvalues init (for s + 1

=25 =2 ). Now by theorem(4.6) the two eigenval ues in S nust be N

and kn. Let r be any point of R et r:(pl, 0, . .. .0 pn)T,
2_ . _ _ 2 2
= 1. Then Pl(t, r) =t - u, Where p = ?\lpl + AP

T
Hence Pl(A5 r) r = ((Xl - P-)pl} 0y «v05 O, ()\'1’1 - P')pn) .

. 2
with pl+pn

By the proof of theorem (3.8),

L= M o0w) = o) = |2 (&5 o) o[, since | #%= 1
= O - W%l 0y -
or
(4.13) L=(r - >‘1)2 pﬁ pfl .

Now L is a nunber determned by the iteration, N and kn are
2 _ ) 2
. - 1. Hence the pair Py 0 are

gi ven eigenval ues, and pi + p
determned by (4.13), up to an interchange at nost. Hence the set R
can have at nost eight vectors init, if all pernutations of signs are

consi der ed. But then, since R is a continuum it nust consist of a

single point, which we call r. Then Yo " T» 8 k7. Thi s
proves theorem (4.12).

Actually, if r = (pl, ceoy pn)T, then Tr = (pn,. Co. -pl)T,
where all conponents p: = 0 for 1<i<n. Then r = |imygk and
Tr = Iimy2k+l, as k -~ = . So, the directions of the gradient vectors

Z, alternately approach the directions of r and Tr, as k - =,
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The reason we cannot extend our proof of theorem (4.12) to s >1
is that the equation anal ogous to (4.13) i nvol ves between s + 1 and
2s unknown conponents of r, and we do not see howto linmit r to a
finite nunber of vectors. Even for s = 2, theorem (4.8) shows that
all vectors r wth 3 nonzero conponents are invariant under T2
Prescribing the vector r to have unit length and prescribing the value
of L reduce the nunber of free parameters in r to 1 . But, so far
as the author can see, there remain . possible limting vectors r
in R.

Moreover, for an even nunber s > 1, there are asynptotic spectra
containing nore than s + 1 eigenvalues, as wll now be denonstrated.
W shal |l consider only spectra with symetry about a mdpoint. W do
not know whether there are asynptotic spectra with more than s + 1
ei genval ues without such a symmetry.

W shall first exam ne possible asynptotic spectra with an even

nunber 2q of eigenvalues. Let the eigenvalues in S be a - b

a - P'q_l’ o e & = Hq,y 8 +|-"1)1- ceooat p'q-l’ a + p'q: where 0 < a - IJ‘q
and 0 < by <. < “q' Let us consider unit vectors r with synmetric
components Oy = v *2P2 Py o s Py corresponding to the respective

-points of the spectrum
Because of the symmetry about the point t = a, the orthogonal
: . : 2
pol ynoni al s PEk(t’ r), P2k+l(t, r) associated with S and the {pi}

satisfy the conditions

(1.14) p, (t; 7) = g ((t - &),
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where 8, IS a monic polynom al of degree k;
(4.15) Py (83 1) = (6 = &) b ((¢ - a)9),

where h, IS a monic polynomal of degree k .
By symmetry, the even and odd pol ynom al s Pk(t; r) are automatically
orthogonal . By (4.14) orthogonality of the P2k(t; r) anong thensel ves

can be expressed in the form
2 2y 2 . _ oo
(+.16) Letdadd-0  Goxsrr ekl d

Thus the g, (t) are thenselves orthogonal polynomals over the set

2 2 . . 2 2 n
Bis s By with the weight factors oo Py Mor eover, gk(t) =
(-1)k gk(82 - t) are monic orthogonal polynomals over the transformed
set § = {a2 - ui, ceey a - ui} with the same wei ghtszpl, ey pi .

~ A 2 L’)
Note that ng(o) | = lPek(O; r) | and that lg, (= - us) | = lPQk(a by l
for i =1, ..., q. Hence !é;k(t)/“gk(O)I has the sane constant val ue

over the set § that |P2k(t; r) /P, (03 r) | has over the set S.

By (4.15) the orthogonality of the P anong t hensel ves can be

2k+1
-expressed as

2 2 2 2 . .
(4.17) ny D) b (W5) wy ey = 0 (j, k=01, ... .]#K.
i=1

Thus the Bk(t) = (-1)khk(a2 - t) are monic orthogonal polynonials over

the set § = {a° - “2’ coey 82 - WSl vith the different weights ul o, .

2 2 A 2 - .
be By - Note that \hk(o)l = lhk(a I =| Py (05 T) | /a, and that
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Thus constancy of |P (t; r)| over S does not inply constancy of

2k+1
fflk(t)l over 5 . The even and odd polynomals transform differently.
By means of these orthogonal polynomals “gk we can reduce the
probl em of the invariance of the r under two steps of the optinum
2s-gradient nethod over S to the problem of the invariance of an
opti mum s-gradi ent nethod over § in a space of half the dinension.

To be precise, the above relations inply the followng result,

which we do not prove.

(4.18) Theorem |f s is even and s + 1< 2q < 2s, then the vector
T . . . .
r = (pq, von Py Py wum pq) (Wth no Py = 0) is ingthe invariant

set (4.5) for the optinum s-gradient nethod for the diagonal matrix of

2q nonzero_ el enents

diag(a - by UL IR S PRRTRPRE I uq)

o e

if and only Kf the vector %=(pl,. A (wWithno oo =0) is

q —_—

inthe invariant set for the optimum (s/2)-gradient nethod for the

di agonal matrix of ¢ nonzero el enents

. 2 2 2 2
diag(a® + Wi eeep @+ uq).

Mor eover, when iterations exist wi.th thesge invariance properties, if

= /Il and 3, = /I3, then Jlz,]l = [3,) for k=0 1 2

20
wher e Z, armal %k are the gradient vectors of the respective iterations.
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W do not know a conparable theorem for odd integers s .

As an application of theorem(4.18), we can show that for any s
of the foorm s =2 (p=0, 1, 2, ...), there exist vectors with 2s
nonzero conponents that are in the invariant set of some optinum s-gradi-
ent nmethod. For p =0 this is theorem(4.12), and is true for any
. . L 2 2 2
di agonal matrix of two positive el ements diag(a® * Wy, & + ) and
any vector r = (pl, pg)T - Application of the first sentence of (4.18)
2 .2 2
1’ 2’

b+v5,
b+v2)V\,here b2+v2=a-p. b2+v2=a—p.. b2+v.2:a+p.,
2 L 1 2> 1 3 1

. . 2 2
leads to s = 2 with any matrix of formdiag(b +v2, b+ v
2
B>+ Vo = a + and corresponding vector c(p,; 015 P75 P )T . Anot her
b T8 THy ponding 22 P12 P1s P
application of (4.18) leads to s =4 with the matrix
diag(b-vu,, .. . b-v

b +v b+v4)

1

_ T
and corresponding vector ¢’ (pps Pys Prs Pps Pps Pyy 015 A5) o It

is clear that the process may be continued to s = oP for any p .

Note from theorem (4.7) that 2s is the maximal nunber of nonzero
conponents in any vector in the invariant set for an optinum s-gradient
method. Qur above exanple illustrates the naxi mal case.

V¢ next consider ‘symmetric asynptotic spectra with an odd number
29 + 1 of eigenvalues a - bgr tee 8 - Wy & @ty ..., 8t by and

a corresponding synmetric vector

T
(Pq, o 0w pl’ po’ Dl: ceoy Pq) v

invariant under T° . Then again the orthogonal polynomals take the
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forms (4.14) and (4.15). The odd polynomials are still defined by the

‘ ;r;:u

condition (4.17), but the condition (4.16) nust be replaced by

(+.19) 2 L 856D g, (D) o] + g () 5 (0) 5 = 0

(j, k=0, 1, ... .]#k .
The analog of theorem (4.18) is now stated, but not proved:
(4.20) Theorem If s is even and s + 1 <2q + 1 < 2s, then the

_ T B .
vector r = (pq, oy Py Pgs s e pq) (with no p; =0 ) is in

= the invariant set (4.5) for the optimms-gradient nethod for the diag-

onal matrix of 2q + 1 nonzero el enents

diag(a-p,q, cees @ = Wy B 8 F By .. a+p,q)

- — if and only .if the vector r = (po/@, Pys #2a pq)T (with no p, = 0)
: is in the invariant set for the optinum (s/2)-gradient nethod for the
diagonal matrix of g + 1 elenents
_
j . 2 2 2 2 2
\F‘ dlag(a > @ = By e s a + l-"q) .
Moreover, when iterations exist with these invariance properties, if
| 2 = o/l and 2, = #/I3l, then Jlz, |l = 2]l for k =0, 1, 2,
L where z, &l %k sre the gradient vectors of the respective iterations.
If s is odd, then the set of 2q + 1 eigenvalues (a - bg? too
e 8 - s 8 8t Hyy 0 = o8t p.q} can never be the asynptotic spectrum
of an optimum s-gradient iteration.
S
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The first two sentences are strict analogs of theorem (4.18). The
third is true because P2k+l(a; r) =0 for all k .

The signs of the p, are of no inportance in theorens (4.18) and
(4.20), and any p; could be left alone or replaced by -p; independent!y

at any place it is nentioned.
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5. Singular and Derogatory Quadratic Forms; Zero Conponents.

Two restrictions placed on A above are really irrelevant--that A

be regular and nonderogatory. If Ais singular, then for some p > 1,
we have A = ... =>\P =0< }\p+l< <A« Then it follows from
(2.12) that

§§k+l) = ggk), for 1<i <p;, kK=0, 1, 2, ...,

while all conponents gi(k)—'o, as k »», for p+1<i<n. On
ol Il
the other hand f(x) = #x'Ax = ) A &5 = 3 A £ . Thus f(x) is

i=1 i=p+l

mnimzed for all vectors in the subspace N where = =t =0,

SRR
and the gradient nethods proceed from X, to the closest point x,
of N with allx, -=x, andall gradients Z, | ocated in the ortho-
gonal conplement of N .

If A is derogatory, it has nmultiple eigenvalues but a conplete

set of eigenvectors (because A is symmetric). Suppose, for exanple,

that 0 <A EM=L LS >\r < kr+1< e < Xn, and suppose that
0 0] 0 0)\T
Xy < (EJ(_ ): ceey EI(, ), gfq_%_: seey gr(l )) .

Now t he orthogonal basis of eigenvectors belonging to My >‘r IS

not uniquely defined. Qur preceding analysis required at various places
(e.g., in the proof of (4.8)that the A be distinct for each nonzero
conponent g_(lo), but zero conponents gi(o)
(0) (0)

E5 775 o s &) are nonzero, make an orthogonal transformation of the

were ignored. If any of

ei genvector basis so that X takes the form
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0) 2% (Q)
Xy = ((550)2 o, + gIE ) )%, 0, «.v, O, 1%’1, ceey géo))T .
Then drop the new zero conponents S entirely, and effectively

reduce A to a nonderogatory matrix A of order n-r + 1.

Thus, in effect, only the set and number of distinct nonzero eigen-
values of A have a real relevance to the gradient nethods for quadratic
functions %xTAx .

Moreover, zero components of any Xy shoul d be ignored, and the

(%)

order of A reduced by unity for each zero conponent & that occurs

at any stage of the iteration.
If fewer than s + 1 conponents of any x, are nonzero, t hen

X4 -8 and the iteration termnates at once. Hence we have always

insisted that at least s + 1 conponents of X, be nonzero. Even so,

one may ask, m ght not enough Ps(xi; z be "accidental ly" zero, so

"

that for some later X, fewer than s + 1 conponents are nonzero?

The answer is negative, as the follow ng theorem shows:

(5.1) Theorem Assunme s + 1 < n . Assune _eigk) £ 0 for i =1,
(k+1) 10

i

n. Then at |east s + 1 conponents &

(k1) _ . (k) i eat
Proof. By (2.12), &; = Ps(hi, zk) e;"’, uptoa nul tiplicative
constant that does not mmtter, where Ps(t; zk) is the orthogonal poly-
2
nom al of degree s over the set {kl, oo kn} with weights [t;ik)] .

VW shall prove that there exist s + 1 eigenvalues out of the ki :

I / /
(5.2) xi<>\2<...<>\s+l,
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such that PS(M; zk) Ps(%.;_*_l; zk) <0 for i

1, ..., s . A fortiori,

PS(>\1; zk);éofor i=12, . . . . s+1, and the theoremwll have

been proved.

If the above sign-alternation property is false, then let q <s

be the largest integer such that we can find D\é} with

(5.3) P (A5 2 ) PN 152,) <O

for i=1,. . . . g-Il.

(Cearly some q > 2 exists, or else Ps(xi; z_ ) woul d al ways be of

k

one sign and hence PS could not be orthogonal to P, =1 . Then

pick Wys wees p'q-l Wt h

/ / /
}\l<p.l<>\.2<p,2<,,_<)\ I<p,

0

so that, if Qt) =(t - u)..0 (t - p.q_l), then P (A5 z)a(x) >0

for all i=1,. . . . n. (W onit details of the construction.) Then

i

e 2
=1

1

-S0 that g and Q are not orthogonal. But,
q-1<s -1, PS must be orthogonal to Q .

conpl etes the proof of theorem (5.1).

41

e

since Qis of degree

This contradiction



Ref er ences

(1] Akai ke, Hirotugu: On a successive transformation of probability
distribution and its application to the analysis of the optimm

gradient nethod. Ann. Inst. Statist. Mith. Tokyo 11, [-16 (1959).

[2] Arms, R J.: On the asynptotic behavior of the nethod of steepest
descent.  Unpublished manuscript, 5March 1957. Presented to

Associ ation for Conputing Machinery, Houston, Texas, June 1957.

[3] Birman, M S.: Nekot orye ocenki dlja netoda naiskoreisego spuska,

Uspehi Matem. Nauk (N. S.) 5, 152-155 (1950).

(4] Daniel, James W: The conjugate gradient nethod for |inear and
nonlinear operator equations. Dissertation, Mathematics Departnent,

Stanford University, Stanford, Calif., August 1965, 87 p.

[5] Faddeev, D. K and Faddeeva, V. |.: Conputational nethods of |inear
algebra. Translated by Robert C. WIliams. San Francisco: W H

Freeman and Co. 1963.

[6] Forsythe, CGeorge E.: Solving linear algebraic equations can be

interesting. Bull. Amer. Mth. Soc.59,299-329 (1953).

-[7) Forsythe, G E and Mtzkin, T. S.: Asynptotic properties of the

opti mum gradi ent nmethod (abstract). Bull. Amer. Math. Soc.57,

183 (1951).

[ 8] Khabaza, |. M: An iterative |east-square nethod suitable for

solving large sparse matrices. Conp. J. 6,202-206 (1963).

[8a] Mei nardus, Gunther: Uber eine Verallgenei nerung einer Ungleichung

von L. V. Kantorowitsch. Num Math. 5,14-23(1963).

L2



i

o o o

r—

[9] Cstrowski, A. M: Solution of equations and systems of equations.

Second edition. New York and London: Academ c Press 1966.

[10] Stiefel, Eduard: Uber einige Methoden der Relaxationsrechnung.

Z. Angew. Math. Physik 3,1-33(1952).

[11] Stiefel, Eduard L.: Kernel polynomals in linear algebra and their
numerical applications. Pp. |-22 of Further Contributions to the
Solution of Sinultaneous Linear Equations and the Deternmination of
Ei genval ues, National Bureau of Standards Applied Mathematics

Series 49, Washington, D. ¢c.: U S. Govt. Printing Ofice 1958.

[12] Szego, Gabor: Orthogonal Polynomials. Revised edition. New York:

Armerican Mathematical Society 1959.

43



