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VARYING LENGTH FLOATING POINT ARITHMETIC: A NECESSARY

TOOL FOR THE NUMERICAL ANALYST

bY

Martti Tienari

Abstract:

The traditional floating point arithmetic of scientific computers

is biased towards fast and easy production of numerical results without

enough provision to enable the programmer to control and solve problems

connected with numerical accuracy and cumulative round-off errors. The

author suggests the varying length floating point arithmetic as a general

purpose solution for most of these problems. Some general philosophies

are outlined for applications of this feature in numerical analysis. The

idea is analyzed further discussing hardware and software implementations.
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Varying Length Floating Point Arithmetic: A Necessary

Tool For The Numerical Analyst

1. Introduction.

The concept of floating point arithmetic was introduced to the

digital computer technology in the early 1950"s and since then it has

proved to be one of the soundest standards within the scientific com-

puting field0 The extensive use of algebraic languages such as Fortran

’ ,
r

i

I
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and Algol is to a great deal based on the easy use of the floating point

number representation Its unquestionable success rests on the facts

that the floating point number representation is easy to understand and

that it has proved to be reasonably foolproof in practice0
-=.

Modern computing machinery has shown a trend to be more and more

I

i
easily tailored to the needs of particular applications0 This has been

made possible by advances in computer technology: fast logical circuitry,

/
L modular construction, microprogrammin& etcO At the same time the cost

of the central processing unit has dropped to be a small part of the

L
overall system price, even when furnished with combined scientific and

L

L

L

commercial capabilities. With these developments in the background,

one is tempted to ask whether the specifications of the floating point

unit of a modern scientific computer are developed as far as possible.

This question is of special interest to a numerical analyst9 who is

L
. often severely restricted by the standard floating point representation

L
in his work to devise new, reliable computer algorithms0

,

L
2. Objectives of numerical analysis0cp_____

When considering the practical work of a numerical analyst we notice

L

i

that there are quite a few different goals he is aiming ato These goals
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are the yardsticks with which the value of his work and contributions

are measured0 The principal quality measures of an algorithm are its

performance in terms of speed and core memory usage0 The traditionally

very important objective of simplicity of an algorithm, while very. .

important in manual computations, has somewhat lost its signficanceO

This is true as far as the lack of simplicity does not reflect unfa-

vorably in the program reliability.,

In recent years there has been much research devoted to the problems

of numerical accuracy 9 which is not at a11 a rare troublespot when manip-

ulating ever 1arge.r mathematical models0 The demand for accurate algo-

rithms is closely related to the desire to create foolproof, automatic
-=.

computer programs capable of giving correct answers for widely varying

input data0 In all algorithms reliability is a very desirable property,

especially in the building 'blocks of an application program package0

There are many examples where a research and development project has been

driven wildly out of schedule because the computer programs

have failed to produce meaningful results when receiving new data of

unexpected characteristics0 The most usual design flaws in application

programs3 a bug left in the program or the Pack of generality in the

programming approach, can often be overcome more easily and with less
-

time delay than problems which are due to the negligence of round-off

errors0

We could summarize the practical objective of the present day nu-

merical analyst as being to devise algorithms with an optimal speed9

memory usage and program reliability trade=off in a given computing

environment0 The life of the numerical analyst has become much easier

i



in the last ten years in mind of these goals The increase of the speed

and memory space available in modern computers has made the best contri-

bution to ease the situation in respect to the speed and space economy

The extensive research of numerical methods in the last decade has
. .

resulted in a well organized body of algorithms for many central prob-

lems in applied mathematics, optimized in speed and memory usage0

The computing economy and the dependence of the real world on

computing have in many applications now reached a level where the

quality standards for program foolproofness have been brought, to the

focus of attention" In many cases higher computing cost might quite

advantageously be paid if one could avoid with this payment the indirect
-=.

cost of delays and manpower wastage which are unavoidable when a computer

program unexpectedly breaks down

The most important contributicns  of modern numerical analysis as a

science have been made in improving the quality of algorithms used0

Much knowledge has been gained from the accuracy characteristics of

central numerical methods through both theoretical and practical work"

The methods used to overcome disturbing round-off effects in numerical

algorithms are to a great deal dependent on the facilities available in

computer systems for this purpcseo Qur objective in writing this report

is to consider the methods which wc)uld be available for numerical analysts

if the computer representation of mathematical real numbers could be

performed in a more flexible way0

In order to anticipat e accuracy problems due to cumulative round-

off errors there has been developed a successful theory of algebraic
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round-off errors [x63 . One conceptual breakthrough in this theory is

to turn attention from the forward error bounds developed for result

accuracy estimation to backward error bounds. The importance of the

latter concept is based on the possibility of comparing the effect of. .

round-off errors on a common error scale with measurement or approxima-

tion errors. The backward method seems to be suitable especially for

the analysis of round-off errors in floating point computations.

The automatic error tracking schemes have concentrated so far on

three interrelated developments They are interval arithmetic [T],

tracing of error either on a deterministic or statistical basis [lo],

[lb] and unnormalized floating point arithmetic [l] o These schemes
-=.

are by no means easy to use. Also with the exception of unnormalized

arithmetic they would use computing time and memory space wastefully0

Unnormalized aritbm&ic has been the most successful of these schemes;

the most significant recognition achieved by it has been its inclusion

in the IBM 7090 computer system floating point instruction set [4] .

The facilities to make it easy to use for significance tracking within

an algebraic compiler scheme are still waiting to be devised0

Once realized, the dilemma of how to overcome the accuracy problem

has certainly received some attention. Some scientific computers

have been furnished with extra long word lengths. This approach,

however, causes wastage in computing speed and memory space in most

problems. The most economical and practical solution devised so far

has been the inclusion of double-length floating point arithmetic in

scientific computers0 This step has been strengthened by including

an equivalent new variable type in the Fortran IV algebraic programming

-4-
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language. In some character oriented computers, e.g., IBM 1620, there

exists the possibility to use operands beyond the conventional double

length accuracy. Unfortunately the speed and memory space limitations
. .

as well as the way this facility is supported 'by the Fortran

have made the usage of this facility much more uncommon than

expect from its intrinsic value,

compiler

one would

Computer users have implemented for some computers an extension

of arithmetic in the form of a subroutine package allowing practically

unlimited computing accuracy. The author is aware of implementations

for the IBM 360, IBM 7090, CDC 1604 and Elliott 503 computers [12j0
--.

This solution has been dictated by some important applications, in most

cases by the solution of ill-conditioned polynomial equations. In these

applications the intermediate stage accuracy needed might be 50-100

decimal digits.

The desire of computer users to get rid of artificial accuracy

limits is reflected in the specifications of the new IBM programming

langua$e PL/I. This language allows the programmer to define the operand

length&, It remains to be seen, however, whether this feature will

really be implemented in its full generality and with respective support-

ing hardware modifications.

4. Proposal for the generalization of floating point arithmetic,

The main disadvantages of the usual normalized fixed length

arithmetics, which are known to the author, are:

1) inability to respond to an occasional need for higher accuracy,

2) lack of any provision for tracing round-off error9

L

L
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3) no possibilities to gain memory space and speed advantages when

just a few digits of significance are needed.

Some further disadvantages, which are usually easily solved by the

programmer are: . .

4) the limits set by the fixed length floating point exponent,

5) no possibility to use the floating point overflow and under-

flow as an adjustable warning mechanism for the needs of certain

applications,

6) the floating point number format does not leave any bits free

for flagging certain numbers.

We shall outline a solution for the three major problems given above.-v.

The minor problems are recorded here just for completeness; their nature

and solution is strictly bound with the economies and conveniences of

implementing floating point number formats and circuits in computer

systems.

An easy solution, which is not our actual proposal, for all the

major problems would be to implement in hardware, instruction sets

corresponding to several lengths of floating point number representation,

say 16, 24, 32, 48, 64 and $ bits. The programming language, say

PL/I, would contain the possibility of defining the accuracy needed and

the language compiler would choose the proper instruction set. If

accuracies beyond the hardware floating point formats were required, a

subroutine package would take care of that case. Significance trace

would be performed either using unnormalized arithmetic or more auto-

matically as proposed by Nickel [SO] using with the main floating point

number a short floating point number to trace continuously the sig-

nificance. What would be the disadvantages of this solution?

-6-
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One unpleasant thing from the numerical analyst's point of view

would be that the jumps between different accuracy levels might be still

too large to enable the analystthe  free use of the changing accuracy

as will be envisaged later in this article. The lack of elegance and

economy in implementing instructions for many different floating point

formats would limit in practice the enlargement of the present 32 and

64 bit standard to at most 1 or 2 additional word lengths, say 16 bits

and 48 bits. The threshold value for the accuracy3 at which the trans-

fer to the software implementation is made b would still be pretty low.

The user would thus experience a significant computer slowdown when

accuracy is required above this level. Also because of the basic need

to create programs which could automatica1l.y adjust themselves to a

certain required result accuracy, the language compiler should be able

to allow changing of the accuracy in a dynamic manner. This would

cause dynamic recompilations  of program blocks during run time or alter-

natively routing of all floating point computations through an instruc-

tion selection subroutine.

The discussion above has served as an introducti&-l to our actual

proposal which is the use of the varying length floating point data form

for digital computers. The basic feature we will propose would be to

make possible an incremental increase in the accuracy of the floating

point fraction over a wide accuracy range0 A good step size for a

byte-oriented computer would be 1 byte or 8 bits0 This would require

a floating point instruction set capable of performing arithmetic on

numbers with fraction parts of length, say 8, 16, 24, 32, 40, 48, ooo d

1024 bits. The actual upper limit of the accuracy would> of course,

-7-
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depend on the hardware implementation. This facility combined with proper

programming language facilities would be quite a tool for both control-

ling and solving round-off error problems In the following we shall. .

discuss the probable feasibility and impact of this proposal from three

different points of view: applications of the proposed device in numer-

ical analysis, implementation in computer hardware, and fitting the

device into the algebraic programming language techniques Whether

the varying length floating point facility should be augmented 'by

unnormalized operations or other means for significance tracking is

not investigated in this article0--.

5* Applications in numerical analysis

In many well-known numerical methods there exists practical and

theoretical evidence for the need of high computing accuracy. The need

for high accuracy in the intermediate steps of an algorithm does not

necessarily have much to do with the fact that the accuracy of the phys-

ical measurements is well exceeded by the computer word length0 Some

numerical problems happen to be so ill-conditioned with respect to the

algorithms used to solve them that the digital random noise due to the

cumulative round-off errors destroys the real physical significance of

the results.

One obvious type of numerical method which leads to this ill-

conditioning is one in which rich information from a large physical

data aggregate has been packed into a compact form ctf a few numbers,

and subsequently delicate analyj i -, results are derived exploiting this

packed information The real physical dependence of the original data

L ni &
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might be a quite stable one, so that the results, if they can be extracted

in spite of the round-off noise , would be very valuable and meaningful

indeed. On the other hand we meet also synthetic computing approaches

where the results are derived by combining large numbers of data pieces,

but where balancing of errors occurs and therefore no trouble with round-

off phenomena is met.

We mention as examples some of the best known cases with problematic

round-off error history: solution of polynomial equations, inverting

large or ill-conditioned matrices and solving the respective simultaneous

linear equation systems, solution of some eigenvalue and eigenvector
--.

problems, least squares fitting with accurate and intercorrelated models

In many of these problems even double precision computing has proved to

set limitations. The best known practical application with surprisingly

high intermediate accuracy needs is the design of communication filters,

which includes the solution of ill-conditioned polynomial equations

On the other hand, it is well known that in many simulation and data

reduction applications the usual eight decimal digit floating point

number length is unnecessarily long and causes wastage of memory space

and computing time.

We will try to outline different possible philosophies for the

application of the proposed varying length floating point arithmetic.

The methods are quite intuitive and heuristic, but we feel that a proper

theory of varying precision computations could be developed to give a

firmer foundation for the design of these methods. It is worth men-

tioning that the existing different error analysis methods could be

brought into useful practical work through the proposed approaches.

-9-
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As the first generalized application model we consider the case

where we have reasonably good a priori knowledge of the required com-

puting accuracy, either through former experience or theoretical insight.

The computing accuracies would be determined either in the program

writing stage or dynamically based on the data before beginning a

computation. As an example we mention a hypothetical simultaneous

linear equation systems solver for general purpose use. If we wish the

information contained in the 5 most significant digits of the data to be

transmitted to the results without digital round-off noise, the following

accuracy rule would be reasonably sure without being too conservative:

[internal computing accuracy of the solution algorithm] = L = 5 + 21og2 n,

where n = number of simultaneous equations. This accuracy formula

is devised using information on the Gaussian elimination method

based on both theoretical and practical evidence; see as a reference

Wilkinson [16], p. 108. Application model 1 is presented in a general

flowchart in fig. 1. This method might be called, using the terminology

of the control technology, "feed forward digital noise controlrss

Determine the computing accuracy, L ) ;
required to give protection against
round-off errors. i

I Perform the computation with L digit
internal floating point accuracy. I

I
Figure 1: Application model 1 for
varying length floating point arithmetic,
feed forward digital noise contrcl
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Our second application model is a refinement of the first. It is

not generally true that the necessary internal computing accuracy can be

determined from the problem data. It is much more common that results. .

and some auxiliary calculations are needed to determine the proper inter;

nal accuracy. If the accuracy check after the computation reveals round-

off defects in the solution, a new solution process should be initiated

with higher computing accuracy. There is always the possibility of a

total failure in the first solution which might ruin our decision rule

to determine the necessary accuracy increase AL at this stage. There-

fore the accuracy check should be made once again after the second calcu--v.

lation. The formula used in model 2 for L and AL would normally be

reliable, based on some analysis of the effects of intermediate computing

accuracy on the result accuracy. Normally just one solution process would

be needed, the numerically ill-conditioned problems going through twice

L

1
L

L

i

i

C-

L

and in exceptional cases more times. We would call-this application

model "feedback digital noise control." It is illustrated with a flow-

chart in figure 2.

Determine with a liberal heuristics
the computing accuracy L o

I
,

Perform the computations using L digits.
I

Check using results of the computation
whether L was large enough?

no

Determine AL to achieve desired accuracy.

L = L +AL

Figure 2: Application model 2, feedback
digital noise control.*
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As an example for application model 2 we consider once again the

programming of a general purpose linear equation system solver as dis-

cussed in connection with model 1.. . We might consider that the formula

L = 5 + 210g2n would give too high and uneconomical computing accuracies

in our particular application field. The formula gives for n = 100,

L=l9* We would like to devise a better, more liberal estimate,

which would work well in thelmajority of cases. A heuristic formula

satisfying our intuition might be L = 5 + log2n, which gives for

n = 100, L = 12 S However, since we no longer have now a firm theo-
-

retical background we should make sure that we detect any ill-conditioned--_

equation systems which will not behave regularly. For any computation

philosophy desiring reliable results, a check afterwards is useful and

in this case it costs just a small fraction of the: actual solution time0

The checking method in the linear equation solver might be as follows:

given the equation system Ax = b and its solution x OJ) using L

decimal digit computing accuracy, we compute with L + 3 working digits

the residual vector r OJ) = b - Ax 04 o This residual would subsequently

be evaluated, component by component, on a suitable reference scale to

decide whether the 5 digit significance in the orginal data has been

fully exploited. In this case the proper comparison base for the ith

component in the residual vector would be

di = max (lbil t lailxlCL)I  ) o.. J IainXn
OJ)

13 .

The decision for acceptance of the solution x CL) might be made on

condition that Iri/dil < loo5 for all i = 1, 2, eOI , n o If

max Iri/dil > 10m5, then we should initiate a new calculation using

L

-12.
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greater accuracy L -t-AL, where AL = 1 + smallest integer greater than

log10(105max  lri/dil)  l There exist methods which perform the new

computation on less accuracy that L + AL but we do not consider them

here; they do not clarify nor counteract our main theme. J

Our third application model is designed for the case when we are

unable to devise any reasonable rules for the initial computing accu-

racy or for the accuracy increase after the first computation. The

accuracy behaviour of the problermmight be dependent on the actual

numerical values in the computation in a way which does not allow us

any estimates for the result accuracy or any backward error analysis to

judge whether the actual information in the data has been utilized0 This

philosophy would be also suitable in any computation where available

error theory or experience is not relied on or where just for manpower

economy, and the need to avoid delays due to the round-off error problems,

one is willing to pay for the resulting excessive usage of computer time.

The basic flow of control in this model would be: for an initial

accuracy
Ll

= cy we compute a result which we can think of as a vector

(L 1x l . Then we increase the accuracy by an increment p to L =
2

Ll + /3 and compute a new result x OJ >2 0 If the difference of subse-

quent results x (L 11 and x OJ 12 ) measured with some meaningal  method,

e.g. using a vector norm) 11x CL 11 - xCL2,11, is not below our aimed result

accuracy level, we continue the computation with L
3
= L2 + @ 0 When

we finally get llX(Li) - x(Li + l)l\ small enough, we exit from the

algorithm with the result x (Li + 1 > . We shall call this application

model "digital noise filtering loop;" it is illustrated with a flow-

chart in figure 3 0

-14.



Some people might object to the decision rule of model 3, which

is based on a statistically behaving quantity x CL >i - x OJ >i + 1 .

In fact in many computations the statistical expectation is theoretically

the zero vector for this quantity. We discuss the nature of this deci-

sion further in our forthcoming application model 4. In model 3 there

might be some advantage in using significance tracking methods for

estimating round*off effects, if available. The significance tracking

results might help us in the decision to exit the loop; they could even

help us to choose the next @ more sensibly so we would exit from the

noise filtering loop sooner.

Qlclr model 3 is not totally
I

It is used in a modified form:

unknown in present day computing practice.

Ll
= single length accuracy, L2 =

double length accuracy and the decision rule for exit is replaced by

the statement "double length results are as good as we can produce with

this computing algorithm."

=lIL=Ll+a ;i=
1 I

,
Produce the first results x( L1'

Produce the results xiUi f 1'
I _(

II CL >x i -x (Li+l)I( < desired result accuracy

level?

Exit with x (I;i -t- 1 >

Figure 3: Application model 3 for varying length
floating point arithmetic, digital noise filtering
loop",
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Our fourth application model is used for error estimation0 We

consider a situation where we have computing results and we are inter-

ested to know the effect of round-off phenomenon on the results. We

might be unwilling or unable to-'rely on usual mathematically derived

error bounds; these might be too conservative for us. To get the

round-off error impact on the result accuracy we shall propose one

method below which should work in all cases where the order of magni-

tude of the cumulative round-off effects is directly proportional to

the intermediate computing accuracy0 Some successful computational

experiments designed to prove this assertion have been reported by

Ortega [If.] for an algorithm for solving the matrix eigenvalue problem.

We should first of all perform the calculation with L decimal

digits to obtain our actual results in a satisfactory way0 Then we

should increase the computing accuracy with say 3 digits and compute

the new results. Investigating the coincidence of the results in the

leading digits by subtraction would give us approximate error infor-
I

mation for our actual results in the form: error = K o 10-L, where

K = K03 - KcL ' 3),()-3, and K(L)lOmL and KcL + 3110-L  - 3 are

the stochastic errors for the results x (L) and xcL ' 3, respectively'.

In most computations K OJ) can be considered as a stochastic variable

obeying a Gaussian normal distribution with a mean value m = 0 and

standard deviation 0 independent of the computing accuracy used. We
L

L

assume here that the actual distribution for our specific computation

could be constructed allowing L to take on the subsequent values 'Lo,

Lo + 1, Lo + 2,*.0. with different round-off pattern for every value of

Lo Can we give any upper bound for Q, when we have just a single
*

observation to rely on?

-15-
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Using the critical value for X2- distribution for one degree of

freedom we get with 1% risk of misjudgement:'

CT < d K2/0. 000157 < 102K

This limit is achieved by applying the statistical principle that a

coincidence which is too good to be true is as abnormal as the inci-

dentally large random deviation. The limit o < 100 K is quite encour-

aging already but there are still additional effects which work in

favor of our method. Usually there are several result quantities with

errors of roughly the same magnitude and which are not loo highly correlated.

In these cases if we use a vector norm as the measuring instrument, the

error information is dominated by the largest deviation, which gives an

estimator for sup o of a much lower variability. Our assumption of

m = 0 is also the worst case for our method. If m # 0 which means

that there is some bias in the round-off phenomenon, our method would

work even better. The round-off bias in X (L) should be of the form

10
-L

m . so that we would in fact estimate Irnl + o which is larger

than 0 .

The discussion presented above is intended just to support the

feasibility of our idea. We do not carry it forward to any completeness

here. The conclusion is that multiplying the heuristic error observation

quantity derived by our application model 4 by a constant c, which can

in many cases be less than 200, we get quite reliable bounds for the

actual error.

In most cases it would be advantageous to present as the final

results the more accurate ones based on the L + 3 digit computations.

-16-



Even the error bound cK 1O-L might be extrapolated for this case as

,c

‘i

L

I

i
L

P
i
L

i

t

i

1
L

cK lO-L-3 . A proper name from the control technology for our method

would be "measurement of the digital noise level." Application model 4

is illustrated as B flowchart in figure 4 l

The same error estimation procedure presented above might be of use

when applied to accurate investigations of the effects of physical

measurement errors to the results of an algorithm or a chain of algorithms.

We should just choose a computing accuracy which is large enough to

remove the digital noise to a level roughly Z-3 decimal places lower

than the 'effects of the physical measurement errors. The physical errors

to be introduced in the basic data should be simulated with the aid of

their assumed external stochastic distributions. The same statistical

bounding philosophy which was proposed above would be useful also for

this purpose. If we can afford several simulation runs, we might with

say 3 calculations with simulated observation errors get a quite

realistic and reliable grasp on the real impact of the measurement

errors to the results. I would imagine that somebody has done already

this kind of investigations though the required error theory and error

models are not readily accessible in the literature. This modified use

of our application model 4 might be called 'measurement of the physical

data noise level in the results.' It is not based on the use of a

varying length arithmetic although its systematical and rigorous use

would advocate this new concept because of the need to assure that the

disturbing digital noise level is a few digits below the physical data

noise level.

L
-17-



I Assess an adequate accuracy, L digits, for
the actual commutation. I

i

.
4 I

Perform the computations with L and L + 3\
digits to produce the results x 03 and x(L + 3).f.

i

4 I ,

K l 10mL = x OJ) - x OJ + 3)

,ir

.i

i

i

ie

L

L

La-

Do the computation goals allow extrapolation of
the error bound to the higher accuracy?

I t
+ Ino

Exit with X (L) and error bound cKl0
2

Figure 4:= Application model 4, the measurement of digital noise level.

There exist some new aspects in programming algorithms for the

different philosophies 1 - 4 for the use of varying length floating

point arithmetic. These aspects are due to the need to devise algorithms

which would produce right results over a range of computing accuracies.

In all cases we should, of course, establish some absolute upper bound

for the computing accuracy which should not be exceeded, the bound

depending on our judgement of the possible accuracy needs of a particular

computer application, the problem size, and the aimed risk level in the

program reliability due to the round-off phenomenon. We shall discuss

briefly later in this article, in connection with programming languages,

problems due to the new role of the program constants and function sub-

routines which must be considered now in a different way than when using

fixed length floating point arithmetic. The diagnostic rules for the

problem singularities should be reinvestigated, too. The proposed appli-

cation philosophies would make it necessary to perform these decisions

-18-
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more carefully than they have been done so far. In many cases where

the computing approach constitutes several computations with succes-

sivelyrising  internal computing accuracies, the first singularity
-.

decisions should be routed to cause a recomputation with a higher accu-

racy on the initial data.

6. Some implications to numerical analysis.

The possibility to feel free to use variable length floating point

operations would have many fruitful effelks on numerical analysis. The

basic evaluations for different numerical algorithms - speed, numerical

accuracy and memory usage - could be perhaps ultimately reduced to consi-

deration of speed and memory usage alone, numerical accuracy being granted.

This effect might bring order and simplification to the ever growing mass

of numerical algorithms for one and the same problem with different numer-

ical accuracy properties. Without any hesitation we claim also that the

numerical analyst would feel himself much better equipped for his goal

to create more automatic general solution procedures.

The theory of varying precision computing might give rise to a new

branch of algebraic round-off error theory. In application model 4 we

outlined a new error model for statistical error theory. A philoso-

phically satisfying property of this error model is that it allows in

principle an unlimited number of independent observations of the error

variance estimation rule. Also it should be noted that without a varying

length arithmetic it is difficult to apply the results of error theories

in practice in an effective way.

Another promising field for varying length floating point computation

is the theory of singularity. In computational handling of nearly singular

-1-g-
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models, very high computing accuracies are desirable. The numerical

decision rules for detecting singularity are today far from complete,

perhaps due to the lack of an arithmetic which is flexible enough for

rigorous singularity decisions.

Let us consider the economy of the varying precision floating

point approach in computer based problem solving0 We assume in this

discussion that no penalties would be paid because of the generality of

the proposed new arithmetic. In other words we assume that the new

more flexible arithmetic would perform when applied in the standard,

present-day fixed length way as fast as todays standard implementations

The operation times are assumed to be nondecreasing functions of the word

length L 0 These functions are probably approximated pretty well by a

function of the form a + bL + cL2 with positive constants a, b, c a

In application model 1 we would save computer time assuming that

the fixed word length is on an average too long for the problem require-

ments. In addition we could provide for the computing client the extra

service of assuring a predetermined cumulative round-off noise level.

In our model 2 we would also save similarly, at least if we assume that

we are able to devise heuristic precision formulas, which on the average

are better than L = 8 and AL = 10 0 The second computation with a

higher accuracy would be also necessary in fewer cases in our scheme

than in the present day fixed length approach0 If the second computation

is needed because of the round-off dangers, an extra benefit is gained

in that the computer customer would save one communication cycle with

the computing center. This results in significant savings in manpower,

computer time and overall problem solution time0

-2o-
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our application models would result in increased computer time usage.

The extra cost incurred should, of course, be motivated by the needs
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of the application. This extra cost could be thought to be an insurance

premium paid for protection against the perils of the round-off phenome-

non. In fact the philosophies 3 and 4 are not available today. The

applications where these approaches would be adequate are now run with

extensive man/machine co-operation.

In some cases the possibility to move flexibly to our strategies

3 and 4, when necessary, would result in large savings in the overall
--.

costs of problem solving. The author knows one technical development

project depending on computing services where 6 months yere used mainly

to fight the accuracy troubles by careful programming using double

length arithmetic and when this was not successfuilanother 6 months were

required to avoid the trouble using new computing methods. The losses were

counted in man years of engineering and programming talent plus a delay

of one year in the product development schedule. The computer time

budget of the project was a negligible cost compared to these indirect

losses. All economical considerations indicated the desirability of

application philosophies 3 and 4; unfortunately they were not available

because of limitations in computer technology.

79 Implementation in computer hardware.

The author believes that flexible floating point arithmetic should

not be too difficult and expensive to implement within a computer with a

microprogrammed instruction set. The author of this paper has partici-

pated in the construction of a software implementation for the essential

-21-
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features of varying length floating point arithmetic [12]* Another

argument supporting the feasibility of varying length floating point

arithmetic is the fact that it has been in effect implemented, although
. .

in a too restricted manner, on the IBM 360/44  computer. This computer

[5] has a rotary switch on the system control panel where the user can

choose the computing accuracy for the double-length floating point

instructions in the range 32, 40, 48 or 56 bits0 This feature is

motivated in the machine manual [5] by hinting to the possibility of

gaining speed when the full double-length floating point accuracy is

not needed.
--.

The main system problems in hardware implementation of our proposal

would be the wise selection of floating point instruction and number

formats, the way the problem of operands of different lengths is handled,

the optimal dimensioning of the floating point registers and the internal

decisions affecting the speed performance of the proposed feature.

A possible solution for the instruction format would be to attach

to the floating point unit a new register called the "result accuracy

register." The result accuracy of a forthcoming operation would be

defined by loading the register using a special "accuracy load" instruc-

tion with the desired number of bits or bytes for the floating point

fraction. In the floating point number format it might be desirable

to use a smaller exponent accuracy than 8 bits when the fraction part

is exceptionally short, and more bits for the exponent in the high

precision calculations. We do not know how this can be conveniently

formated, however, without causing restriction for thee operations between

operands of different fraction lengths.
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We sketch a varying length operand handling scheme. This scheme

would lead to a quite satisfactory speed economy and would require no

flagging of the operand tails. The arithmetic instruction set would be
. .

constructed to work only with numbers loaded in the floating point

registers. The instruction set would assume that the result and operand

length are the same. It should, however, be possible to gain speed

advantages, potentially available, when the operands are shorter than

the result accuracy. The microprogram performing floating point arith-

metic could, for example, begin the operation by scanning the operands

from the least significant end and recognize the zero bit string on the
-v.

tail of a short operand,

It is evident that the floating point registers for the operands

should be quite long to make the varying length floating point operations

fast also in higher precisions. Compiler handling of the register over-

spill in cheaper storage, without denying this possibility, might be a

problem0 It would be ideal from the systems programming point of view

if the microprogram could control the necessary subroutine branching

process in that case. This could be achieved by the following arrange-

men-t. When the accuracy register indicated too large a number for the

floating point operand register, the load instruction would be interpre-

ted as an operand address load instruction. The subsequent arithmetic

operations would initiate an interrupt 'co the supervisor program which

would perform the necessary subroutine entries, The space reservations

in the main core memory should “be performed by the object time block

entry mechanism, if the floating point register overspill was anticipated0
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The length of the floating point registers would be a crucial

decision when planning the performance of a variable length floating

point arithmetic. The manufacturer should offer several dtifferent
. .

floating point register sizes, e.g. 100 bits, 300 bits, 1000 bits,

with rising cost, preferably with a provision to add extra capacity

later if needed. Efficient coding of the subroutines handling the

operands exceeding the floating point register capacity..would be impor-

tant. For this purpose the hardware implementation should include

some specially designed instructions operating on bit strings of length

up to the floating point register capacity. The generality of varying
--_

length arithmetic might be wasteful on short fraction lengths. This

performance defect could be cured by preparing special independent

sections in the floating point microprogram for standard short operand

lengths. The selection of the microprogram sector could be based on

the content of the accuracy register. This superspeed feature might

be subject to a special price in the books of the scien%ific computer

salesmen!

80 Varying length operands within the Algol language.

c The concept of varying length arithmetic will not be feasible at

L all if its use is not made possible within the major programming languages.

There should be no problems which cannot be readily overcome when this

new arithmetic is introduced to the programming languages, Algol and

PL/I. The compilers should be, of course, redesigned but applying

similar techniques as before. We consider the Algol language first

2, because it is, so far, a better known and more used language than PL/I.

L -24-
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The Algol language must be considered from several aspects to see

the impact and the problems caused by the proposed new computer arith-

metic. We shall consider first its use as an algorithm publication and

program exchange standard. The new language features enabling the prop

grammer to express his decision on the appropriate computing precision

will be considered next,. as well as the prerequisites for their eco-

nomical implementation. Some indirect effects due to the existence of

the variable, unlimited length operands are then discussed. These dis-

cussions cover program constants, function and input/output procedures.

The operand precision problem in floating point arithmetic has been

investigated in order to improve the Algol language [8], which awaits a

major revision, being almost unaltered since 1960. According to an

idea mentioned in [3] this problem could be solved by introducing new

variable types: long real, long long real, etc., into the language.

This solution would have from the point of view of our application

models l-4 two basic inflexibilities. Firs%, it would no% allow any

dynamical precision changes , which would be essential for the applications.

Also it would provide higher accuracies in unneccessarily  largerincre-

ments and would give no provision for speed and memory savings due to

the use of very short operands. This straightforward solution would

also contribute unfavorably, as noted in [3], to the elegance of the

Algol language.

The well known problem due to the dependence of Algol implementations

on computer word length plagues to some degree the people making practical

use of the published Algol programs. The dependence on the word length

comes from program constants or through some implicit dependence. It
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is possible to program mathematical algorithms as procedures in a way

which minimizes the word-length dependence. This particular programming

style has, however, the drawback that it makes the respective procedures

more complicated for the user by pushing all the decisions associated

with the computing accuracy to the procedure user. This must happen

often in a way which no longer makes it possible to consider the pro-

cedure as a black box but requires the procedure user to go through

the working mechanism of the algorithm. When computer users exchange

whole application packages this dependence on the word length is almost

impossible to avoid and in practice it is a real trouble indeed.
--.

However, one of the basic goals of the Algol language has traditionally

been, and should continue to be, the independence of the particular

computer implementation as much as is feasible.

It would be an ideal situation if the new revised Algol language

could be designed on the assumption that the variable length floating

point arithmetic would be available on scientific computer hardware.

This starting point could lead to a successful solution of a principal

defect in Algol 60, the ignorance of the fundamental role which round-

off phenomenon and computing accuracy are playing in every algorithm

based on the use of floating point arithmetic4

1% would be possible to repair the accuracy problem simply by

declaring in the Algol language all real variables and arrays in a new

way: real(n) a, b, c; real(n) array d[l:lO]; where n would be an

integer constant or expression specifying in decimal digits the minimum

significance of the declared operands. It seems to us, however, that if

we want the new Algol to be more economical for the user, some information
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of the maximum accuracy to be used would be necessary. This would be

furnished to the compiler if the declaration were given in the form:

real(n,p) a, b, c; real(n,p) array d[l:lO]; where n = accuracy of the

operand, p = greatest n to be allowed, n and p are integer constants

or expressions. The arithmetic statements should be evaluated using the

highest accuracy occuring in the operands and the result finally rounded

to the length of the left part variable.

The author cannot accept the criticism presented in [3] of the

decimal representation of accuracy in the language0 For algorithm publi-

cation and program exchange purposes a standard accuracy communicating
-...

system would be desirable. The decimal number system is a standard which

is unremovable from our mathematical education. The conversion of the

accuracy specification to different machine representations should no%

be too difficult if we agree on the decimal system. A formula for the

conversion rule for a pure binary machine could be the following: number

of bits in the floating point fraction = 3032 X decimal accuracy + a

positive implementation convenience allowance. The maximum allowance for

the deviation of an implementation from the decimal equivalent should

be agreed upon. We propose 8 bits as the maximum deviation as this is

compatible with the most popular information organization style of the

contemporary third generation computers0

Let us now consider the operand declarations0 We can distinguish

five different modes of accuracy specifications:

1) standard operand length,

2) nonstandard fixed length operand,

3) dynamic accuracy with fixed upper bound,
I
i -27-
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4) dynamic accuracy with dynamic upper bound,

5) dynamic accuracy without any upper bound0

1 think that case 1, where the programmer would need no% specify
-.

any accuracy a% all, could be omitted in the Algol languagen This

would be a recommendation consistent to the principle of explicitness

as pursued in [3j0 Case 2 would be the normal mode of accuracy dec'-

laration in AlgoL All variables with the same precision should be

grouped together in a declaration of the form: ,real(8) a, b, c;,, The

programmer could avoid accuracy pitfalls by using longer operands and

gain speed and save memory space by using shorter operandsLI Case 3
--.

would allow dynamic accuracy changing without dynamic memory allo-

cation0 Present day compiler technology is probably not able to exploit

the slight difference be%ween case 4 and 5L, We differentiated between

them jus% to point out %hat we would propose both forms of declaration

real(n) a; as well as real(n,p) a; to be permitted<)cP___I This recommen-

dation comes from the desire to honor the principle of minimum exceptions

Case 4 exists in ow proposal  because of our desire to include case 3

which allows the compiler to generate efficient code with dynamic accuracy

characteristics Case 4 might be also useful when considering procedure

publication practices

The program constants present a problem when computing with

dynamically changing precisiontJ ?Cn some calculation, eg the trans-

cendental constant, TT~ might play such a role that it would be meaningless

to perform calculations beyond the accuracy given for the cons%anto

Because the con&a&s perform from the compiler point of view similar

functions as the operand identifiers, the co.ns%ants should be divided
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into two classes: 1) constants containing digits up to the equivalent

amount of the operand identifier maximum length, 2) constants exc,eeding

these limits. One possible and natural solution would be to introduce

to the language a constant declaration statement,'the  use of which would

be obligatory for constants exceeding the operand name length. The

functions of a declaration:real(n) constant Pi(3S+l39265);  would be

to assign a storage space equivalent to a 9 decimal digit floating point

representation for the value of the real identifier Pi, to define the

length of the operand Pi in an equivalent way as real(n,g) Pi;, to give

the variable Pi the value 3.141 . . . in n de&ma1 digits and to block

access oZ? the program to the location Pi by forbidding the appearance of

Pi in the left side of an assignment statement.

Another new'problem would be the implementation of the elementary

functions which are usually evaluated with optimized truncated power

series. New methods should be devised for these routines working,in  a

large range of accuracies. A basic problem would be to devise methods

which would be fast enough for short operands and accurate enough and

not too slow for long operands. As an example, we sketch a possible

method for the exponential function. Write ex = ey ' 2a
where

0 < y < B < 1 . Compute ey = i yv ; ex = ( . . (eY)2)2 )
2

- . . . . The- -
v=o v!

computation should use intermediate precision of (n + y) digits. We

should further reason out an optimal decision rule to choose a, B,

and y based on some assumption concerning the demand distributions of

the argument x and the result precision n .

c
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The input/output procedures in the Algol implementations would in

principle need no amendments because of the varying length arithmetic.

The whole idea of this device focuses on the possibility of controlling
-.

the effect of round-off errors. The user's data, as well as his accuracy

needs in the results, do no% exceed the accuracy range available today.

However, for storing the intermediate results, to ease program debugging,

and for research in numerical methods it would be convenient to also have

variable length input/output routines. This would result in the redesign

of the existing routines.

90 Considerations for the programming language PL/I.

After a superficial glance a% [6] it appears that PL/I would allow

.

all the features that we want. There is a provision to declare the

precision at will if the programmer wants to avoid the standard default

accuracy. This standard is implementation dependent, e-g* for an IBM

360 PL/I implementation [15], it is equivalent to at leas% 6 decimal

digits. The programmer specifices the operand accuracy when declaring

a real floating point variable including, among the other possible

attributes, a precision attribute. For example DECLARE A FLOAT(12)

specifies the variable A as a 12 digit floating point variable.

The programmer must, however, notice that the compiler of a parti-

cular PL/I implementation is free to perform the space reservations and

%he actual computations using any suitable floating point format exceeding

the programmer's accuracy specification. Neither is the precision

attribute included in PL/I in the features which are allowed to be

exploited in a dynamic manner in program block entries at object time.
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The concept of dynamic data length exists within PL/I; it applies to the

string data. Let us consider whether the varying length string data

control concepts would be suitable for generalization to the flexible
-.

length floating point numbers.

The basic difference between the floating point fraction length

control and the PL/I string data length handling philosophy is that

the former must be program controlled, whereas the latter is designed to

__ be data controlled. One goal in the design of the VARYING feature for

the string data seems to be parallel to the ideas featured in the block

entry mode 3 of our Algol operand declaration proposal. Both approaches
--.

enable the flexible size fluctuating of varying length data without losing

the possibility of static storage allocation. The string data length

control philosophy would be suitable for varying length integer and

rational arithmetic (infinite precision arithmetic)--which would be

useful concepts for discrete numerical analysis--but we cannot conceive

any easy method to assign automatically a natural accuracy for varying

length floating point results. Therefore the other feature reserved

. for string data length control, the possibility to se% the maximum

length of a string at object time, seems to be the only one which we

can make use of. A slight variation to the floating point precision

attribute would be desirable, if we want to minimize the speed wastage

due to dynamic precision fluctuations.

Considerations presented above lead to the recommendation that the

parameter N would be allowed to be defined in the precision attribute

(N) a% the object time. In order to achieve object time economies this

feature should be supplemented by a possibility to specify the upper<
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limit for the accuracy. We come so to the following language convention

"The precision attribute (w,d) of the floating scale is interpreted as

follows: w specifies the precision of the floating point number during

the object time, d gives the upper limit of the precision, w and

d may be constants or expressions. If d is no% given, it is assumed

that w = d ."

A change to the PL/I language implementation philosophy would be

needed, too, if we really want to benefit from the proposed application

models l-4 presented earlier in this article0 The implementation should

follow the programmer's accuracy specification. To be explicit, some

convention like the following would be needed. "The accuracies used by

PL/I implementation in storing and compu%ing floating point numbers should

follow each other by increments of not more than an equivalent of 8

bits. For a particular accuracy of a program it should be assigned the

nearest larger precision to the equivalent of the accuracy in the pro-

grammer's specification.' This convention would still allow a binary

implementation to follow a byte structure. The programmer could also

be sure that if he increases the accuracy in his computation by 3

decimal digits the round-off pattern is changed.

Is i% feasible to implement our ideas in the present generation of

computer hardware without supporting special hardware facilities? In

a PL/I implementation for a computer without hardware floating point

facilities the ideas would be useful to consider immediately. The

speed economies achievable might be worth earnest considerations. In

a computer with floating point hardware and byte organized memory, like the

IBM 360, the accuracies 8, 16, 24, 40, 48 and 56 for the fractional part
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would be available for fast computing. For the accuracies above 56

bits there should be a set of subroutines available in the language for

long precision arithmetic and elementary functions.

The extension of PL/I to the generality we are aiming at could be

accomplished honoring the upwards compatibility principle. The existing

PL/I programs could be run with the same speed efficiency using the

extended language compiler. To achieve this aim the new compiler should

be able to choose between two modes of code generation. For every block

entry in the source program a decision would be made whether or no% any

non-standard accuracy features are used. The arithmetic on the
x_

nonstandard or dynamic precision variables would be compiled using a

floating point arithmetic selection subroutine. This subroutine would

perform arithmetic on the fraction accuracies 8, 16 and 24 bits using

single length floating instructions and rounding the result to the right

result precision. The computations with the fraction lengths of 32,

40, 48 and 56 bits would be performed using the double length instruc-

tions, and fraction lengths 64, 72, . . . should be handled with the aid

L .

I
I

of special software subroutines. The user should be informed of the

standard constant accuracies and of the full efficiency of the code %he

compiler would generate when he uses one of them. He cannot benefit

from other accuracies at the present time anyway, because in most

compilers all fraction accuracies below 24 bits are handled equivalent

to 24 bits internally and all accuracies between 25 and 56 bits are

equivalent to 56 bits fraction accuracy.

The introduction of varying length arithmetic without hardware

support causes an extra burden, especially an extra allowance of core
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memory space for the PL/I compiler. The object time economies achievable

today are due to the storage space savings and application flexibility

gains without any speed savings if the hardware floating point unit is

available. It is therefore doubtful whether these recommendations are

acceptable today when the PL/I compiler writing is difficult anyway.

The practical utility of our application philosophies would need more

concrete case examples to act as a driving force towards these goals.

The problem is that motivating application cases will not become

available until somebody constructs a compiler to make the programming

of these applications feasible.

The best way to get these ideas properly investigated would be to

get some university compiler group interested in our application models.

This should happen in a place where numerical analysis research is

pursued, We believe that the application potential available through

this kind of compiler is worth exploring for the benefit of numerical.

analysis.

10. Conclusions.

We claim that round-off error differs in a fundamental manner from

other uncertainties involved in computing. It can be effectively fought

using computer based means This conclusion is more optimistic than

many earlier assertions [2], [13] concerning the nature of the error

problem. To promote this conviction we propose the return to the use of

the term "digital noise" (or "processing noise" or "computing noise")

as a synonym for the term cumulative round-off error as proposed in [g].

This would distinguish round-off error from approximation errors and
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would also underline the responsibility of the computer system designer

for this error category.

We hope that the computer manufacturers would consider seriously. .

the inclusion of varying length floating point arithmetic in their

scientific hardware and software. This feature when powerfully imple-

mented might prove to be an excellent sales argument for a new computer

intended for the scientific computing market. The economies from which

the users would benefit with this feature are:

1) Better matching of computing precision to the actual needs

resulting in speed improvements and core space savings
--.

2) Running time savings when the fastest available algorithms could

be used also for occasionally numerically ill-conditioned problems.

3) Savings in the overall problem solving costs when numerical

accuracy problems can be handled with straightforward philosophies.

4) The possibility to use brute force in solving round-off error

problems when delays in the computing service appear to cause unreason-

able indirect costs.

5) A better overall quality in the scientific computing services

from the numerical precision point of view.

It seems not to be generally known that varying precision floating

point arithmetic would provide a more elegant and practical scheme to

control the round-off errors than the earlier error tracking schemes.

It has the overriding practical advantage that it does not only warn

the user of the round-off error problem, but it also helps him solve it.

In order to exploit this philosophy some new research on the numerical

methods would be desirable. This research would be performed with the<
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aid of a software simulated variable length floating point arithmetic,

preferably augmented by an automatic error tracking scheme. With this

kind of work in the background it would be much easier to decide whether

the proposed new features are worth the extra hardware cost. In any

case this research would catalyze new insignts on the effects of round-

off errors in computing.
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