CS 62

VARYING LENGTH FLOATING POINT ARITHMETIC:
A NECESSARY TOOL FOR THE NUMER ICAL ANALYST

BY

MARTTI TIENARI

TECHNICAL REPORT NO. CS 62
APR IL 17, 1967

This work was supported by the
National Science Foundation and the
Office of Naval Research

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

Je

-

N

r—

—

-

r

-

r

VARYI NG LENGTH FLOATI NG PO NT ARI THVETI C. A NECESSARY
TOOL FOR THE NUMERI CAL ANALYST

by

Martti Tienari

Abstract:

The traditional floating point arithnetic of scientific conputers
s biased towards fast and easy production of numerical results wthout
enough provision to enable the programmer to control and solve problens
connected with nunerical accuracy and cunul ative round-off errors. The
aut hor suggests the varying length floating point arithmetic as a general
purpose solution for nost of these problems. Some general philosophies
are outlined for applications of this feature in nunerical analysis. The

idea is analyzed further discussing hardware and software inplenentations.

o

Varying Length Floating Point Arithnetic: A Necessary
Tool For The Numerical Analyst

1. Introduction.

The concept of floating point arithnetic was introduced to the
digital computer technology in the early 1950's and since then it has
proved to be one of the soundest standards within the scientific com
puting field. The extensive use of algebraic |anguages such as Fortran
and Algol is to a great deal based on the easy use of the floating point
nunber representation Its unquestionable success rests on the facts
that the floating point nunber representation is easy to understand and
that it has proved to be reasonably fool proof in practice.

Mbdern conputing machinery has shown a trend to be nore and nore
easily tailored to the needs of particular applications, This has been
made possible by advances in conputer technology: fast logical circuitry,
modul ar construction, microprogramming etc. At the sane tine the cost
of the central processing unit has dropped to be a small part of the
overal | system price, even when furnished with conbined scientific and
commercial capabilities. Wth these devel opnents in the background
one is tenpted to ask whether the specifications of the floating point
unit of a nmodern scientific conputer are devel oped as far as possible.
This question is of special interest to a nunerical analyst, who is
often severely restricted by the standard floating point representation

in his work to devise new, reliable conputer algorithms.

2. bj ectives of nunerical analysis,

Wien considering the practical work of a nunerical analyst we notice
that there are quite a few different goals he is aimng at. These goals

wla

are the yardsticks with which the value of his work and contributions
are measured. The principal quality measures of an algorithm are its
performance in terns of speed and core nenory usage. The traditionally
very inportant objective of sinplicity of an algorithm while very
important in manual conputations, has somewhat |ost its signficance.
This is true as far as the lack of sinplicity does not reflect unfa-
vorably in the programreliability.,

In recent years there has been much research devoted to the problens
of nunerical accuracy, which is not at all a rare troubl espot when nani p-
ul ating ever larger mathematical models. The demand for accurate al go-
rithms is closely related to the desire to create fool proof, automatic
conputer prograns capable of giving correct answers for wdely varying
input data. In all algorithns reliability is a very desirable property,
especially in the building 'blocks of an application program package.
There are many exanpl es where a research and devel opnent project has been
driven wildly out of schedule because the conputer prograns
have failed to produce rmeaningful results when receiving new data of
unexpect ed characteristics. The nost usual design flaws in application
programs, a bug left in the program or the Pack of generality in the
programm ng approach, can often be overcone nore easily and with |ess
time delay than problenms which are due to the negligence of round:off
errors.

Ve could summarize the practical objective of the present day nu-
merical analyst as being to devise algorithms with an optimal speed,
menory usage and programreliability trade-off in a given conputing

envircnment. The |ife of the numerical analyst has become nuch easier

O

inthe last ten years in nmnd of these goals The increase of the speed
and menory space available in nodern conputers has made the best contri-
bution to ease the situation in respect to the speed and space econony
The extensive research of nunerical nethods in the last decade has
resulted in a well organized body of algorithnms for nmany central prob-
lens in applied mathematics, optimzed in speed and nenory usage.

The conputing econony and the dependence of the real world on
conputing have in many applications now reached a |evel where the
quality standards for program fool proofness have been brought, to the
focus of attention" 1In many cases hi gher conputing cost nmight quite
advant ageously be paid if one could avoid with this payment the indirect
cost of d;Iays and manpower wastage which are unavoi dable when a conputer
program unexpectedly breaks down

The nost inportant contributicns of nodern nunerical analysis as a
sci ence have been nmade in inproving the quality of algorithns used.

Mich know edge has been gained fromthe accuracy characteristics of
central numerical methods through both theoretical and practical work.

The nmethods used to overcone disturbing round-off effects in numerica
algorithnms are to a great deal dependent on the facilities available in
conputer systens for this purpcse. Our objective in witing this report
is to consider the nethods which wculd be available for nunerical analysts
if the conputer representation of mathematical real nunbers could be

perforned in a nore flexible way.

3. General purpose developments for the accuracy problem.

In order to anticipate accuracy problens due to cumul ative round-

off errors there has been devel oped a successful theory of algebraic

f
t
‘
¥
-

r—

r— rr— r— r r—

e

SRS

round-of f errors [16] . One conceptual breakthrough in this theory is
to turn attention from the forward error bounds devel oped for result
accuracy estimation to backward error bounds. The inportance of the

| atter concept is based on the ‘possi bility of conparing the effect of
round-off errors on a conmon error scale with neasurenment or approxina-
tion errors. The backward nethod seens to be suitable especially for
the analysis of round-off errors in floating point conputations.

The automatic error tracking schemes have concentrated so far on
three interrelated devel opnents They are interval arithmetic [7],
tracing of error either on a determnistic or statistical basis [10],
[14] and qnnorrral i zed floating point arithnetic [1]. These schemes
are by no nmeans easy to use. Also with the exception of unnornalized
arithmetic they would use conputing tinme and menory space wastefully.
Unnormal i zed arithmetic has been the nost successful of these schenes;
the most significant recognition achieved by it has been its inclusion
in the 1 BM 7090 conputer system floating point instruction set [L].
The facilities to make it easy to use for significance tracking within
an al gebraic conpiler schene are still waiting to be devised.

Once realized, the dilemma of how to overcone the accuracy problem
has certainly received sone attention. Some scientific conputers
have been furnished with extra long word lengths. This approach,
however, causes wastage in conputing speed and menory space in nost
problens. The nost economical and practical solution devised so far
has been the inclusion of double-length floating point arithmetic in
scientific computers. This step has been strengthened by including

an equival ent new variable type in the Fortran |V al gebraic progranm ng

ko

r-

r—

| anguage. In some character oriented computers, e.g. | BM 1620, there
exists the possibility to use operands beyond the conventional double
|l ength accuracy. Unfortunately the speed and nemory space limtations
as well as the way this faci Iityh is supported 'by the Fortran conpiler
have nade the usage of this facility much nore uncommon than one woul d
expect fromits intrinsic val ue,

Conput er users have inplenented for some conputers an extension
of arithmetic in the formof a subroutine package allow ng practically
unlimted conputing accuracy. The author is aware of inplementations
for the 1BM 360, | BM 7090, CDC 1604 and Elliott 503 conputers [12].

This sol ut_i"on has been dictated by some inportant applications, in nost
cases by the solution of ill-conditioned polynonial equations. In these
applications the intermediate stage accuracy needed mght be 50-100
decimal digits.

The desire of conputer users to get rid of artificial accuracy
limts is reflected in the specifications of the new | BM progranm ng
language PL/I. This language allows the programrer to define the operand
lengthé. It remains to be seen, however, whether this feature wll
really be inplemented in its full generality and with respective support-

ing hardware nodifications.

L, Proposal for the generalization of floating point arithnetic,

The mai n di sadvantages of the usual normalized fixed [ength
arithmetics, which are known to the author, are:
1) inability to respond to an occasional need for higher accuracy,

2) lack of any provision for tracing round-off error,

-5-

L

— r— r— oo

r— r— r

3) no possibilities to gain nenory space and speed advantages when
just a few digits of significance are needed
Some further disadvantages, which are usually easily solved by the
programrer are:
4) the limts set by the fixed length floating point exponent,
5) no possibility to use the floating point overflow and under-
fl ow as an adj ustabl e warning nmechani smfor the needs of certain
appl i cations,

6) the floating point nunmber format does not |eave any bits free

for flagging certain nunbers.
W shall outline a solution for the three major problenms given above.
The minor problens are recorded here just for conpleteness; their nature
and solution is strictly bound with the econonies and conveni ences of
i npl ementing floating point nunber formats and circuits in conputer
syst ens.

An easy solution, which is not our actual proposal, for: all the
maj or problems woul d be to inplement in hardware, instruction sets
corresponding to several lengths of floating point nunber representation
say 16, 24, 3%2,48,64 and 9 bits. The programm ng | anguage, say
PL/I, woul d contain the possibility of defining the accuracy needed and

the | anguage conpiler woul d choose the proper instruction set. If

accuraci es beyond the hardware floating point formats were required, a
subroutine package would take care of that case. Significance trace
woul d be perforned either using unnormalized arithmetic or nore auto-
matically as proposed by N ckel [SO using with the main floating point
nunber a short floating point number to trace continuously the sig-
nificance. Wat would be the disadvantages of this solution?

-6-

|
-

r— —

— o r e

r—

One unpleasant thing from the nunerical analyst's point of view
woul d be that the junps between different accuracy levels mght be still
too large to enable the analyst the free use of the changing accuracy
as will be envisaged later in this article. The lack of elegance and
econony in inplementing instructions for many different floating point
formats would limt in practice the enlargenent of the present 32 and
6L bit standard to at nost 1 or 2 additional word lengths, say 16 hits
and 48 bits. The threshold value for the accuracy, at which the trans-
fer to the software inplenmentation is mde, would still be pretty |ow
The user would thus experience a significant conputer slowdown when
accuracy is required above this level. A so because of the basic need
to create prograns which could automatically adjust thenselves to a
certain required result accuracy, the |anguage conpiler should be able
to allow changing of the accuracy in a dynam c manner. This woul d
cause dynam ¢ recompilations of program bl ocks during run time or alter-
natively routing of all floating point conputations through an instruc-
tion selection subroutine.

The discussion above has served as an introduction t0 our act ual
proposal which is the use of the varying length floating point data form
for digital conputers. The basic feature we will propose would be to
make possible an increnental increase in the accuracy of the floating
point fraction over a W de accuracy range. A good step size for a
byte-oriented conputer would be 1 byte or 8 bits. This would require
a floating point instruction set capable of performing arithmetic on
nunbers with fraction parts of length, say 8,16,2k4,32, 40,48, ... ,

102k bits. The actual upper limt of the accuracy would, of course,

-7 =

T

r ru;‘"/‘-

r—

.

depend on the hardware inplementation. This facility combined with proper

programm ng |anguage facilities would be quite a tool for both control-
ling and solving round-off error problems |n the following we shall

di scuss the probable feasibility and inpact of this proposal from three
different points of view applications of the proposed device in numer-
ical analysis, inplenentation in conputer hardware, and fitting the
device into the algebraic progranmng |anguage techniques Wether

the varying length floating point facility should be augmented by
unnormalized operations or other neans for significance tracking is

not investigated in this article.

5. Applications in numerical analysis

In many wel | -known nunerical methods there exists practical and
theoretical evidence for the need of high conputing accuracy. The need
for high accuracy in the intermediate steps of an algorithm does not
necessarily have much to do with the fact that the accuracy of the phys-
ical neasurenments is well exceeded by the conputer word length. Some
nunerical problens happen to be so ill-conditioned with respect to the
algorithnms used to solve themthat the digital random noise due to the
cumulative round-off errors destroys the real physical significance of
the results.

One obvious type of numerical nethod which |eads to this ill-
conditioning is one in which rich information froma |arge physical
data aggregate has been packed into a conpact formof a few nunbers,
and subsequently delicate analyi i~ results are derived exploiting this

packed information The real physical dependence of the original data

r‘_.,.“ r,. I r e r.. - { S [.

r—

mght be a quite stable one, so that the results, if they can be extracted
in spite of the round-off noise, would be very valuable and neani ngful
indeed. On the other hand we meet also synthetic conputing approaches
where the results are derived by conbining large nunbers of data pieces
but where bal ancing of errors occurs and therefore no trouble with round-
of f phenonena is net.

W nention as exanpl es sone of the best known cases with problematic
round-of f error history: solution of polynomal equations, inverting
large or ill-conditioned matrices and solving the respective simltaneous
linear equation systens, solution of sonme eigenvalue and eigenvector
problens,\least squares fitting with accurate and intercorrel ated nodel s
In many of these problens even double precision conputing has proved to
set limtations. The best known practical application with surprisingly
high intermediate accuracy needs is the design of commnication filters
whi ch includes the solution of ill-conditioned pol ynom al equations
On the other hand, it is well known that in many sinulation and data
reduction applications the usual eight decimal digit floating point
nunber length is unnecessarily long and causes wastage of menory space
and conputing tine.

W will try to outline different possible philosophies for the
application of the proposed varying length floating point arithmetic.

The nmethods are quite intuitive and heuristic, but we feel that a proper
theory of varying precision conputations could be developed to give a
firmer foundation for the design of these nethods. It is worth nen-
tioning that the existing different error analysis nmethods could be

brought into useful practical work through the proposed approaches.

-9-

Fﬁﬁ

N
PO

r— r—

—

S

r— =

r—

As the first generalized application nodel we consider the case
where we have reasonably good a priori know edge of the required com
puting accuracy, either through former experience or theoretical insight.
The conputing accuracies woul d be determned either in the program
witing stage or dynamically based on the data before beginning a
conputation. As an exanple we mention a hypothetical sinultaneous
linear equation systens solver for general purpose use. [If we wish the
information contained in the 5 nost significant digits of the data to be
transmtted to the results wthout digital round-off noise, the follow ng
accuracy rule would be reasonably sure without being too conservative:

[internal conputing accuracy of the solution algorithni =1L =5 + elog2 n,

where n = nunber of sinultaneous equations. This accuracy formula

is devised using information on the Gaussian elimnation nethod

based on both theoretical and practical evidence; see as a reference

W ki nson [16], p. 108. Application nodel 1 is presented in a general
flowchart in fig. 1. This nethod mght be called, using the term nol ogy

of the control technology, "feed forward digital noise control."

Determne the conbuti ng accuracy, L ,
required to give protection against
round-of f errors.

Performthe conputation with L digit
internal floating point accuracy. \

Figure 1: Application nodel 1 for
varying length floating point arithnetic,
feed forward digital noise contreci.

-10-

L

r—

— r -

e

r——

r—

-

Qur second application model is a refinement of the first. It is
not generally true that the necessary internal conputing accuracy can be
determined fromthe problemdata. It is nuch more common that results
and some auxiliary calculations are needed to determne the proper inter~
nal accuracy. If the accuracy check after the conputation reveals round-
off defects in the solution, a new solution process should be initiated
with higher conputing accuracy. There is always the possibility of a
total failure in the first solution which mght ruin our decision rule
to determine the necessary accuracy increase AL at this stage. There-
fore the accuracy check shoul d be made once again after the second calcu-
lation. The formula used in nodel 2 for L and AL would nornally be
reliable, based on sone analysis of the effects of intermediate conputing
accuracy on the result accuracy. Normally just one solution process would
be needed, the nunerically ill-conditioned problenms going through twce
and in exceptional cases nore times. W would call-this application
nodel "feedback digital noise control." It is illustrated with a flow

chart in figure 2.

Determne with a liberal heuristics
the conmputing accuracy L .
\\\ ”D‘ g y
//\\ ///, Performthe conputations using L digits
|

Check using results of the conputation es Fxit
whet her L was |arge enough?

no

Determine AL to achi eve desired accuracy.

L= L +AL

Figure 2: Application nodel 2, feedback
digital noise control

-11-

L

r—

r r- - r r r — rrm— e

r—

-

As an exanple for application nodel 2 we consider once again the
programm ng of a general purpose linear equation system solver as dis-
cussed in connection with nodel 1. W might consider that the formla
L= 5+ 2logpn woul d give too high and uneconom cal conputing accuracies
in our particular application field. The formula gives for n = 100,
L=19. W wuld like to devise a better, nore |iberal estimate
which woul d work well in theimajority of cases. A heuristic fornula
satisfying our intuition mght be L =5 + log,n, which gives for
n =100, L =12 . However, since we no |onger have now a firm theo-
retical baqgground we shoul d make sure that we detect any illjbonditioned
equation systens which will not behave regularly. For any conputation
phil osophy desiring reliable results, a check afterwards is useful and
inthis case it costs just a small fraction of the: actual solution time.

The checking method in the linear equation solver mght be as follows:
given the equation systemAx = b and its solution X(L) using L
decimal digit conputing accuracy, we conpute with L + 3 working digits
the residual vector (L) =p . ax() This residual woul d subsequently
be eval uated, conponent by conponent, on a suitable reference scale to
decide whether the 5 digit significance in the orginal data has been
fully exploited. In this case the proper conparison base for the ;%R

conponent in the residual vector would be

a, = max {[o. |, |a (L)| s eee s (z) |

) o, x

i1%1 in"n

The decision for acceptance of the sol ution X(L) m ght be made on

condition that |r./a | <107 for all i =1, 2, ..., n.If

5

max Iri/dil > 1077, then we should initiate a new cal cul ati on using

~-12-

rr-r— -7 r rr r- rC - ro o rTo e

oy

greater accuracy L + AL, where AL = 1 + snallest integer greater than

1oglo(105max [ri/dil) . There exist methods which perform the new

conputation on less accuracy that L + AL but we do not consider them
here; they do not clarify nor counteract our main thene.

Qur third application nodel is designed for the case when we are
unabl e to devise any reasonable rules for the initial conputing accu-
racy or for the accuracy increase after the first conputation. The
accuracy behaviour of the problemmight be dependent on the actua
numerical values in the conputation in a way which does not allow us
any estimates for the result accuracy or any backward error analysis to
judge whether the actual information in the data has been utilized. Thjsg
phi | osophy woul d be al so suitable in any conputation where avail able
error theory or experience is not relied on or where just for manpower
econony, and the need to avoid delays due to the round-off error problens,
one is willing to pay for the resulting excessive usage of conputer time

The basic flow of control in this nodel would be: for an initia

accuracy L, = o we conpute a result which we can think of as a vector

1

X(H). Then we increase the accuracy by an increment g to L2 =

Ll + B and conpute a new result x(LZ) . |f the difference of subse-

quent results x(Ll) and x(LZ), measured with sone meaningful nethod,
.. using a vector norm, Hx(Ll) - x(LE)H, is not below our ained result
accuracy level, we continue the conputation with |_5 =L, + 8. \hen

we finally get Hx(Li) x4 l)H smal | enough, we exit from the

(Li + 1) . W shall call this application

algorithmwith the result x
model "digital noise filtering loop;" it is illustrated with a flow
chart in figure 3.

-13-

Sone people might object to the decision rule of nmodel 3, which
s based on a statistically behaving quantity x(Li)'- x(Li + 1).
In fact in many conputations the statistical expectation is theoretically
the zero vector for this quantity. W discuss the nature of this deci-
sion further in our forthcomng application nodel 4 In nodel 3 there
m ght be some advantage in using significance tracking methods for
estimating round-off effects, if available. The significance tracking
results might help us in the decision to exit the loop; they could even
hel p us to choose the next B nore sensibly so we would exit from the
noise filtering |oop sooner.

Our nodel 3 is not totally unknown in present day conputing practice.

t

It is used in a nodified form L = single length accuracy, L, =

doubl e I'ength accuracy and the decision rule for exit is replaced by
the statenent "double length results are as good as we can produce with

this conputing algorithm"

L=L +a ;1i=1

—>-—
//\\ ' Produce the first results x\-1/
J L4

Li g0, +8

L

. : . : (T \
Produce the results x‘i + 1'

: |
<:j' | W&) ()|l < desired result accuracy
)evel? R ‘

AN

w L

no yes

=1 +1 Bit with x5 +1)

< 1 L

Figure 3: Application nodel 3 for varying length
oating point arithnetic, digital noise filtering
loop..

. .

(,,_«‘h ,.,,h

r—

Qur fourth application nodel is used for error estimation. W&
consider a situation where we have conputing results and we are inter-
ested to know the effect of round-off phenonenon on the results. W
mght be unwilling or unable to-'rely on usual mathematically derived
error bounds; these nmight be too conservative for us. To get the
round-of f error inpact on the result accuracy we shall propose one
met hod bel ow which should work in all cases where the order of magni-
tude of the cunulative round-off effects is directly proportional to
the internmediate conputing accuracy, Some successful conputational
experinents designed to prove this assertion have been reported by
Otega [1r] for an algorithmfor solving the matrix eigenval ue problem

W should first of all performthe calculation with L decinal
digits to obtain our actual results in a satisfactory way. Then we
shoul d increase the conputing accuracy with say 3 digits and conpute
the new results. Investigating the coincidence of the results in the
leading digits by subtraction would give us approxi mate erro; infor-

mation for our actual results in the form error = K« 10"-, wher e

K= K(L) - K(L * 5)1.0"'5; and K(L)lo’L and K(L +5)10'L -3 are

the stochastic errors for the results X(L) and X(L *+3) respectively'
In most conputations K(L) can be considered as a stochastic variable
obeying a Gaussian normal distribution with a nean value m= 0 and
standard deviation ¢ independent of the conputing accuracy used. W

assunme here that the actual distribution for our specific conputation

could be constructed allowing L to take on the subsequent val ues Ly

Ly+ 1, Ly +2,..c. with different round-off pattern for every value of
L . Can we give any upper bound for g, when we have just a single

observation to rely on?

r

-

Using the critical value for X2~ distribution for one degree of

freedom we get with 1% risk of misjudgement: -
2 2
o< VK /0. 000157 < 10°K .

This limt is achieved by applying the statistical principle that a

coi nci dence which is too good to be true is as abnormal as the inci-
dental ly large random deviation. The limt o < 100 Kis quite encour-
aging already but there are still additional effects which work in

favor of our nmethod. Usually there are several result quantities with
errors of roughly the sane nagnitude and which are not too highly correl ated.
In these cases if we use a vector normas the neasuring instrument, the
error information is domnated by the |argest deviation, which gives an
estimator for sup o of a nuch lower variability. CQur assunption of
m= 0 is also the worst case for our nethod. If m# O which nmeans
that there is sone bias in the round-off phenonenon, our method woul d
work even better. The round-off bias in X(L) shoul d be of the form

m. 10°F

so that we would in fact estimate |m| + o which is |arger
than o .

The discussion presented above is intended just to support the
feasibility of our idea. W do not carry it forward to any conpl et eness
here. The conclusion is that nultiplying the heuristic error observation
quantity derived by our application nodel 4 by a constant c, which can
in many cases be less than 200, we get quite reliable bounds for the
actual error.

In nost cases it would be advantageous to present as the fina

results the nore accurate ones based on the L + 3 digit conputations.

-16-

r-

r.\.','i';.‘

r— r—

rr r— r

I

r— rr

r—

Even the error bound cK 107k m ght be extrapolated for this case as
k 10072 . A proper name fromthe control technology for our nethod
woul d be "measurenment of the digital noise level." Application nodel L

is illustrated as a flowchart in figure k4.

The same error estimation procedure presented above m ght be of use
when applied to accurate investigations of the effects of physica
measurement errors to the results of an algorithmor a chain of algorithmns.
we shoul d just choose a conputing accuracy which is |arge enough to
renmove the digital noise to a level roughly 2-3 deci mal places |ower
than the 'effects of the physical nmeasurenent errors. The physical errors
to be introduced in the basic data should be simulated with the aid of
their assunmed external stochastic distributions. The same statistica
boundi ng phi | osophy whi ch was proposed above woul d be useful also for
this purpose. |If we can afford several simulation runs, we might with
say 3 calculations with sinmulated observation errors get a quite
realistic and reliable grasp on the real inpact of the neasurenent
errors to the results. | would imgine that sonebody has done already
this kind of investigations though the required error theory and error
nmodel s are not readily accessible in the literature. This nodified use
of our application nodel 4 might be called 'neasurenent of the physical
data noise level in the results.” It is not based on the use of a
varying length arithmetic although its systematical and rigorous use
woul d advocate this new concept because of the need to assure that the
disturbing digital noise level is a fewdigits below the physical data

noi se | evel

-17-

f
f
—

I A r— r r E""’f

r

Assess an adequate accuracy, L digits, for
the actual computation. [

|
Perform the conputations with L and L + 3

digits to produce the results x(L) and x(L *'B)ﬁ

]
L _ (D) _ (L +3)

K .10

Do the conputation goals allow extrapol ation of
the error bound to the higher accuracy?

ino lves
)) =1, L +
Exit with X(L) and error bound ¢K10 L. Exit with x(5) and
error bound cKlO_¥ -3

Fi gure 4:~ Application nodel 4, the measurement of digital noise |evel

There exist some new aspects in programming algorithns for the
different philosophies 1 - 4 for the use of varying length floating
point arithmetic. These aspects are due to the need to devise algorithns
whi ch woul d produce right results over a range of conputing accuracies.

In all cases we should, of course, establish sonme absol ute upper bound
for the conmputing accuracy which shoul d not be exceeded, the bound
dependi ng on our judgenent of the possible accuracy needs of a particular
conputer application, the problem size, and the aimed risk level in the
programreliability due to the round-off phenomenon. W shal |l discuss
briefly later in this article, in connection with programming |anguages,
probl ens due to the new role of the program constants and function sub-
routines which nust be considered nowin a different way than when using
fixed length floating point arithmetic. The diagnostic rules for the
problem singularities should be reinvestigated, too. The proposed appli-
cation philosophies would make it necessary to perform these decisions

-18-

more carefully than they have been done so far. In many cases where
the conputing approach constitutes several conputations with succes-
sivelyrising internal conputing accuracies, the first singularity

deci sions should be routed to céﬁse a reconputation with a higher accu-

racy on the initial data.

6. Sone inplications to nunerical analysis.

The possibility to feel free to use variable Iength floating point
operations would have many fruitful effects on numerical analysis. The
basi ¢ eval uations for different nunerical algorithns - speed, nunerica
accuracy and nenory usage - could be perhaps ultinmately reduced to consi-
deration of speed and nenory usage alone, nunerical accuracy being granted
This effect mght bring order and sinplification to the ever grow ng mass
of nunerical algorithnms for one and the sane problem with different nuner-
ical accuracy properties. Wthout any hesitation we claimalso that the
nunmerical analyst would feel hinself much better equipped for his goa
to create nore automatic general solution procedures

The theory of varying precision computing mght give rise to a new
branch of algebraic round-off error theory. |n application model 4 we
outlined a new error nodel for statistical error theory. A philoso-
phically satisfying property of this error nmodel is that it allows in
principle an unlimted nunber of independent observations of the error
variance estimation rule. Also it should be noted that without a varying
length arithmetic it is difficult to apply the results of error theories
in practice in an effective way.

Anot her promsing field for varying length floating point conputation
is the theory of singularity. In conputational handling of nearly singular

-19-

e

model s, very high conputing accuracies are desirable. The nunerica
decision rules for detecting singularity are today far from conplete
perhaps due to the lack of an arithmetic which is flexible enough for
rigorous singularity decisions.

Let us consider the econony of the varying precision floating
poi nt approach in conputer based problem solving. W assune in this
di scussion that no penalties would be paid because of the generality of
the proposed new arithmetic. In other words we assune that the new
more flexible arithmetic would perform when applied in the standard,
present-day fixed length way as fast as todays standard inplenmentations
The operation tines are assumed to be nondecreasing functions of the word
length L . These functions are probably approximated pretty well by a
function of the forma + bL + cL2 W th positive constants a, b, c .

In application nodel 1 we would save conputer tine assum ng that
the fixed word length is on an average too long for the problem require-
nents. In addition we could provide for the conputing client the extra
service of assuring a predetermned cumul ative round-off noise level.
In our nodel 2 we would also save simlarly, at least if we assume that
we are able to devise heuristic precision fornulas, which on the average
are better than L =8 and AL = 10 . The second conputation with a
hi gher accuracy would be also necessary in fewer cases in our schene
than in the present day fixed |ength approach. |f the second conputation
I's needed because of the round-off dangers, an extra benefit is gained
in that the conputer customer would save one communication cycle with
the conputing center. This results in significant savings in manpower,

conputer time and overall problem solution time.

-20-

frmr

rr roor

r-

r—— r— r

r—

Ceneral |y speaking it appears to us that the third and fourth of
our application nodels would result in increased conputer tinme usage.
The extra cost incurred should, of course, be notivated by the needs
of the application. This extra bost could be thought to be an insurance
premum paid for protection against the perils of the round-off phenone-
non. In fact the philosophies 3 and 4 are not available today. The
appl i cations where these approaches woul d be adequate are now run with
extensive man/ machi ne co-operation

In sonme cases the possibility to nove flexibly to our strategies
3 and L4, when necessary, would result in large savings in the overal
costs of b;oblen1solving. The author knows one technical devel opment
proj ect depending on conputing services where 6 nonths yere used mainly
to fight the accuracy troubles by careful progranmng using double
length arithmetic and when this was not successfiul another6 nonths were
required to avoid the trouble using new conputing nmethods. The |osses were
counted in man years of engineering and programming talent plus a delay
of one year in the product devel opment schedule. The conputer time
budget of the project was a negligible cost conpared to these indirect
losses. Al economical considerations indicated the desirability of
appl i cation philosophies 3 and 4; unfortunately they were not avail abl e

because of limtations in conputer technology.

7. Inplenentation in conputer hardware.

The author believes that flexible floating point arithmetic shoul d
not be too difficult and expensive to inplement within a conputer with a
mcroprogramred instruction set. The author of this paper has partici-
pated in the construction of a software inplenentation for the essentia

-21-

features of varying length floating point arithnetic [12]. Another
argunent supporting the feasibility of varying length floating point
arithmetic is the fact that it has been in effect inplenmented, although
inatoo restricted manner, on t he 1BV 360/44 computer. This conputer
[5] has a rotary switch on the systemcontrol panel where the user can
choose the conputing accuracy for the double-length floating point
instructions in the range 32, 40, 48 or 56 bits. This feature is
notivated in the machine manual [5] by hinting to the possibility of
gaining speed when the full double-length floating point accuracy is
not needed

The i n system problems in hardware inplenentation of our proposa
woul d be the wise selection of floating point instruction and nunber
formats, the way the problem of operands of different lengths is handled
the optinmal dimensioning of the floating point registers and the interna
decisions affecting the speed performance of the proposed feature.

A possible solution for the instruction format would be to attach
to the floating point unit a new register called the "result accuracy
register." The result accuracy of a forthcom ng operation would be
defined by loading the register using a special "accuracy |oad" instruc-
tion with the desired nunber of bits or bytes for the floating point
fraction. In the floating point nunber format it might be desirable
to use a smaller exponent accuracy than 8 bits when the fraction part
is exceptionally short, and more bits for the exponent in the high
precision calculations. W do not know how this can be conveniently
formated, however, w thout causing restriction for thec operations between

operands of different fraction |engths

22w

%
-

r—

—

o r r—

W sketch a varying length operand handling schene. This scheme
woul d lead to a quite satisfactory speed econony and woul d require no
flagging of the operand tails. The arithmetic instruction set would be
constructed to work only with nunbers loaded in the floating point
registers. The instruction set would assune that the result and operand
length are the same. It should, however, be possible to gain speed
advantages, potentially available, when the operands are shorter than
the result accuracy. The mcroprogram performng floating point arith-
metic could, for exanple, begin the operation by scanning the operands
from the Ipast significant end and recognize the zero bit string on the
tail of a short operand,

It is evident that the floating point registers for the operands
should be quite long to make the varying length floating point operations
fast also in higher precisions. Conpiler handling of the register over-
spill in cheaper storage, wthout denying this possibility, mght be a
problem. It would be ideal fromthe systens programm ng point of view
if the mcroprogram could control the necessary subroutine branching
process in that case. This could be achieved by the follow ng arrange-
men-t. Wien the accuracy register indicated too |arge a nunber for the
floating point operand register, the load instruction would be interpre-
ted as an operand address |oad instruction. The subsequent arithmetic
operations would initiate an interrupt to the supervisor program which
woul d perform the necessary subroutine entries, The space reservations
in the main core menmory shoul d be performed by the object tine block

entry mechanism if the floating point register overspill was anticipated.

-23 -

r.—

The length of the floating point registers would be a crucial
deci sion when planning the performance of a variable length floating
point arithnetic. The manufacturer should offer several different
floating point register sizes, é.g. 100 bits, 300 bits, 1000 bits,
with rising cost, preferably with a provision to add extra capacity
later if needed. Efficient coding of the subroutines handling the
operands exceeding the floating point register capacity would be inpor-
tant. For this purpose the hardware inplenmentation should include
some specially designed instructions operating on bit strings of length
up to the floating point register capacity. The generality of varying
| ength arithnetic mght be wasteful on short fraction lengths. This
performance defect could be cured by preparing special independent
sections in the floating point mcroprogram for standard short operand
lengths. The selection of the microprogram sector could be based on
the content of the accuracy register. This superspeed feature night
be subject to a special price in the books of the scientific comnputer

sal esmen!

8. Varying length operands within the A gol |anguage.

The concept of varying length arithmetic will not be feasible at
all if its use is not made possible within the major progranmng |anguages.
There should be no problems which cannot be readily overcome when this
new arithnetic is introduced to the progranm ng | anguages, Al gol and
PL/I. The conpilers should be, of course, redesigned but applying
simlar techniques as before. W consider the A gol |anguage first

because it is, so far, a better known and nore used |anguage than PL/I.

-2k

r‘;'_@u rw -

r

—

.

r—

e

The Al gol |anguage nust be considered from several aspects to see
the i npact and the probl ems caused by the proposed new conputer arith-
netic. W shall consider first its use as an algorithm publication and
program exchange standard. The new | anguage features enabling the pros
grammer to express his decision on the appropriate conputing precision
will be considered next,. as well as the prerequisites for their eco-
nom cal inplementation. Some indirect effects due to the existence of
the variable, unlinted length operands are then discussed. These dis-
cussions cover program constants, function and input/output procedures.

The operand precision problemin floating point arithnetic has been
investigated in order to inprove the Algol |anguage [8], which awaits a
mej or revision, being alnost unaltered since 1960. According to an
i dea nentioned in [3] this problemcould be solved by introducing new

variable types: long real, long long real, etc., into the |anguage.

This solution would have from the point of view of our application
model s | -4 two basic inflexibilities. Firs% it would no% all ow any
dynami cal precision changes, which would be essential for the applications
Also it would provide higher accuracies in unneccessarily large: incre-
ments and woul d give no provision for speed and nenory savings due to
the use of very short operands. This straightforward solution woul d
also contribute unfavorably, as noted in [3], to the el egance of the
Al gol | anguage.

The wel | known problem due to the dependence of Al gol inplenentations
on computer word length plagues to some degree the people making practica

use of the published Algol programs. The dependence on the word |ength

cones from program constants or through sone inplicit dependence. It

-25-

L

- o rT

o
[]

o 7T

P

I's possible to program mat hematical al gorithns as procedures in a way
which mnimzes the word-1ength dependence. This particular progranm ng
styl e has, however, the drawback that it makes the respective procedures
nmore conplicated for the user by pushing all the decisions associated
with the conputing accuracy to the procedure user. This nust happen
often in a way which no longer nmakes it possible to consider the pro-
cedure as a black box but requires the procedure user to go through

the working mechanism of the algorithm Wen conputer users exchange
whol e application packages this dependence on the word length is al nost

i mpossible to avoid and in practice it is a real trouble indeed.

However, oﬁe of the basic goals of the A gol |anguage has traditionally
been, and should continue to be, the independence of the particular
conputer inplementation as much as is feasible

It would be an ideal situation if the new revised A gol [anguage
could be designed on the assunption that the variable length floating
point arithmetic would be available on scientific conputer hardware.
This starting point could |ead to a successful solution of a principa
defect in Algol 60, the ignorance of the fundamental role which round-
of f phenonenon and conputing accuracy are playing in every algorithm
based on the use of floating point arithmetic.

1% woul d be possible to repair the accuracy problemsinply by
declaring in the Algol |anguage all real variables and arrays in a new
way: real(n) a, b, c; real(n) array da[1:10]; where n would be an
i nteger constant or expression specifying in decinal digits the m ninum
significance of the declared operands. It seems to us, however, that if

we want the new Al gol to be nore economcal for the user, sone information

-26-

L

— rr—

r':ibw

t— — — T

r—— r— [

r—

r—

of the maxi mum accuracy to be used would be necessary. This would be
furni shed to the conpiler if the declaration were given in the form

real(n,p) a, b, c; real(n,p) array d[1:10]; where n = accuracy of the

operand, p = greatest n to be allowed, n and p are integer constants
or expressions. The arithnetic statements should be evaluated using the
hi ghest accuracy occuring in the operands and the result finally rounded
to the length of the left part variable.

The author cannot accept the criticismpresented in [3] of the
deci mal representation of accuracy in the language. For algorithm publi-
cation and program exchange purposes a standard accuracy conmunicating
systen1mou?d be desirable. The decimal nunber systemis a standard which
is unrenovable from our mathenatical education. The conversion of the
accuracy specification to different machine representations should no%
be too difficult if we agree on the decimal system A formula for the
conversion rule for a pure binary machine could be the follow ng: nunber
of bits in the floating point fraction = 3.32 X deci nal accuracy + a
positive inplenentation convenience allowance. The maxi num al | owance for
the deviation of an inplenmentation from the decinmal equival ent should
be agreed upon. W propose 8 bits as the maxi numdeviation as this is
conpatible with the most popular information organization style of the
contenmporary third generation computers.

Let us now consider the operand declarations,\W can distinguish
five different nodes of accuracy specifications:

1) standard operand | ength,

2) nonstandard fixed |ength operand,

3) dynam c accuracy with fixed upper bound

_27-

i
-

t— o T

r—

L) dynamc accuracy with dynanic upper bound,

5) dynamic accuracy without any upper bound.

I think that case 1, where the programer woul d need no% specify
any accuracy a%all, could be 0Nm'tted in the Algol language. This
woul d be a recomendation consistent to the principle of explicitness
as pursued in [3]. Case 2 would be the normal node of accuracy dec-
laration in Algol. Al variables with the same precision should be
grouped together in a declaration of the form_real(8) a, b, c¢;. The
programmer could avoid accuracy pitfalls by using |onger operands and
gain speed and save menory space by using shorter operands. Case 3
woul d al I ow dynam c accuracy changing wthout dynamic nenory allo-
cation. Present day conpiler technology is probably not able to exploit
the slight difference between case 4 and 5. W differentiated between
themjus%to point out that we woul d propose both forms of declaration
real(n) a; as well as_real(n,p) @, to be permitted. This recommen-
dation comes from the desire to honor the principle of mninum exceptions
Case 4 exists I N ourproposal because of our desire to include case 3
which allows the conpiler to generate efficient code with dynam c accuracy
characteristics Case 4 might be al so useful when considering procedure
publication practices

The program constants present a problem when conputing with
dynam cal |y changi ng precisicn. 1In some cal culation, e.g. the trans-
cendental constant, m, mght play such a role that it would be neaningless
to perform cal cul ati ons beyond the accuracy given for the constant.

Because the constants perform fromthe conpiler point of view simlar

functions as the operand identifiers, the constants shoul d be divided

-28..

PN

into two classes: 1) constants containing digits up to the equivalent
amount of the operand identifier maxi numlength, 2) constants exceeding
these limts. One possible and natural solution would be to introduce
to the language a constant declaration statement, the use of which woul d
be obligatory for constants exceeding the operand nane length. The

functions of a declaratirgal (n) constant Pi(3.14159265); would be

to assign a storage space equivalent to a 9 decinmal digit floating point
representation for the value of the real identifier Pi, to define the
length of the operand Pi in an equivalent way as_real(n,9) Pi;, to give
the variable Pi the value 3.141 . . . in n decimal digits and to block
access of the programto the location Pi by forbidding the appearance of
Pi in the left side of an assignnent statenent.

Anot her new probl em woul d be the inplenentation of the el ementary
functions which are usually evaluated with optimzed truncated power
series. New methods should be devised for these routines working in a
|l arge range of accuracies. A basic problemwould be to devise methods
whi ch woul d be fast enough for short operands and accurate enough and
not too slow for long operands. As an exanple, we sketch a possible
method for the exponential function. Wite & = & * 2* wher e
0O<y<p<1. Oon’puteey= ;y__f; el = (. . (ey)e)2)2. The

v=o V!
conputation should use internediate precision of (n + 7) digits. W
shoul d further reason out an optimel decision rule to choose ¢, g,

and y based on sone assunption concerning the demand distributions of

the argument x and the result precision n .

-29-

?
-

r—

The input/output procedures in the Algol inplenentations would in
principle need no amendnents because of the varying length arithnetic.
The whol e idea of this device focuses on the possibility of controlling
the effect of round-off errors. The user's data, as well as his accuracy
needs in the results, do no% exceed the accuracy range available today.
However, for storing the internediate results, to ease program debuggi ng
and for research in nunerical nethods it would be convenient to also have
variable length input/output routines. This would result in the redesign

of the existing routines.

9. Considerations for the programmng |anguage PL/I.

After a superficial glance a% (6] it appears that PL/I would allow
all the features that we want. There is a provision to declare the
precision at will if the programmer wants to avoid the standard default
accuracy. This standard is inplementation dependent, e.g. for an |BM
360 PL/I inplenentation [15], it is equivalent to at |eas%6 deci nal
digits. The programmer specifices the operand accuracy when declaring
a real floating point variable including, among the other possible
attributes, a precision attribute. For exanple DECLARE A FLOAT(12)
specifies the variable A as a 12 digit floating point variable.

The programmer nust, however, notice that the compiler of a parti-
cular PL/I inplementation is free to performthe space reservations and
e actual conputations using any suitable floating point format exceeding
the programer's accuracy specification. Neither is the precision
attribute included in PL/TI in the features which are allowed to be

exploited in a dynamc manner in program block entries at object tine.

-30-

]
L
i
]
L
L
]
L
L
I
L
L
L
L
]
L

r—

The concept of dynanic data length exists within PL/I; it applies to the
string data. Let us consider whether the varying length string data
control concepts would be suitab]e for generalization to the flexible
length floating point nunbers.

The basic difference between the floating point fraction length
control and the PL/I string data |ength handling philosophy is that
the former nust be program controlled, whereas the latter is designed to
be data controlled. One goal in the design of the VARYING feature for
the string data seens to be parallel to the ideas featured in the block
entry node 3 of our Algol operand declaration proposal. Both approaches
enabl e thelflexible size fluctuating of varying length data without |osing
the possibility of static storage allocation. The string data |ength
control philosophy would be suitable for varying length integer and
rational arithmetic (infinite precision arithmetic)--which would be
useful concepts for discrete nunerical anal ysis--but we cannot conceive
any easy nethod to assign automatically a natural accuracy for varying
length floating point results. Therefore the other feature reserved
for string data length control, the possibility to se%the maxi num
length of a string at object tinme, seens to be the only one which we
can make use of. A slight variation to the floating point precision
attribute would be desirable, if we want to mnimze the speed wastage
due to dynanic precision fluctuations.

Consi derations presented above lead to the reconmendation that the
parameter N would be allowed to be defined in the precision attribute
(N a%the object time. In order to achieve object time economes this

feature should be supplenented by a possibility to specify the upper

-31-

L

r— r— r—

rrr - r- r0r— — r—r-oe

r—

=

limt for the accuracy. W cone so to the follow ng | anguage convention
"The precision attribute (w,d) of the floating scale is interpreted as
follows: w specifies the precision of the floating point nunber during
the object time, d gives the upper limt of the precision, w and

d may be constants or expressions. If d is no% given, it is assuned
that w=d ."

A change to the PL/I | anguage inplenentation philosophy would be
needed, too, if we really want to benefit from the proposed application
models | -4 presented earlier in this article. The inplementation should
follow the progranmmer's accuracy specification. To be explicit, some
convention like the followng wuld be needed. "The accuracies used by
PL/I inplementation in storing and computing floating point nunbers should
follow each other by increments of not nore than an equivalent of 8
bits. For a particular accuracy of a programit should be assigned the
nearest larger precision to the equivalent of the accuracy in the pro-
grammer's specification.' This convention would still allow a binary
i mpl ementation to follow abyte structure. The programmer could al so
be sure that if he increases the accuracy in his conputation by 3
decimal digits the round-off pattern is changed

I's it feasible to inplement our ideas in the present generation of
conputer hardware wi thout supporting special hardware facilities? In
a PL/I inplementation for a conputer without hardware floating point
facilities the ideas would be useful to consider inmediately. The

speed econom es achi evabl e might be worth earnest considerations. In

a conputer with floating point hardware and byte organized menory, like the

1em 360, the accuracies 8, 16, 24, 40, 48 and 56 for the fractional part

~22-

r

r r— r r—

woul d be available for fast conputing. For the accuracies above 56
bits there shoul d be a set of subroutines available in the |anguage for
| ong precision arithnetic and el ementary functions.

The extension of PL/I to the generality we are aimng at could be
acconpl i shed honoring the upwards conpatibility principle. The existing
PL/I programs could be run with the sane speed efficiency using the
extended |anguage conpiler. To achieve this aimthe new conpiler shoul d
be abl e to choose between two nodes of code generation. For every block
entry in the source programa decision would be made whet her or no% any
non-standard accuracy features are used. The arithnetic on the
nonstandara or dynam c precision variables would be conpiled using a
floating point arithnetic selection subroutine. This subroutine would
performarithnetic on the fraction accuracies 8, 16 and 24 bits using
single length floating instructions and rounding the result to the right
result precision. The conmputations with the fraction Iengths of 32,

40, 48 and 56 bits would be perforned using the double |ength instruc-
tions, and fraction lengths 64, 72, . . . should be handled with the aid
of special software subroutines. The user should be informed of the
standard constant accuracies and of the full efficiency of the code %e
conpiler woul d generate when he uses one of them He cannot benefit
from other accuracies at the present tine anyway, because in nost

conpi lers all fraction accuracies below 24 bits are handl ed equivalent
to 24 bits internally and all accuracies between 25 and 56 bits are
equivalent to 56 bits fraction accuracy.

The introduction of varying length arithmetic w thout hardware

support causes an extra burden, especially an extra allowance of core

=33~

nenory space for the PL/I conpiler. The object time econonies achievable
today are due to the storage space savings and application flexibility
gains without any speed savings if the hardware floating point unit is
available. It is therefore doubtful whether these recomrendations are
acceptabl e today when the PL/I conpiler witing is difficult anyway.

The practical wutility of our application philosophies would need nore
concrete case exanples to act as a driving force towards these goals.

The problemis that notivating application cases wll not becone
available until sonmebody constructs a conpiler to make the progranm ng

of these applications feasible.

The Bést way to get these ideas properly investigated would be to
get sone university conpiler group interested in our application nodels.
This should happen in a place where nunerical analysis research is
pursued, W believe that the application potential available through
this kind of compiler is worth exploring for the benefit of numerical

anal ysi s.

10. Concl usi ons.

VW claimthat round-off error differs in a fundamental manner from
other uncertainties involved in conputing. |t can be effectively fought
using conputer based means. This conclusion is nore optimstic than
many earlier assertions [2], [13] concerning the nature of the error
problem To pronote this conviction we propose the return to the use of
the term "digital noise" (or "processing noise" or "conputing noise")
as a synonymfor the termcumulative round-off error as proposed in [9].

This woul d distinguish round-off error from approxi mation errors and

-3l

r— r—

r—

woul d al so underline the responsibility of the conputer system designer
for this error category.

W hope that the conputer nnnufacturers woul d consi der seriously
the inclusion of varying length floating point arithmetic in their
scientific hardware and software. This feature when powerfully inple-
mented m ght prove to be an excellent sales argument for a new conputer
intended for the scientific conputing nmarket. The econom es from which
the users would benefit with this feature are:

1) Better matching of conputing precision to the actual needs
resulting‘in speed inprovements and core space savings

2) Running time savings when the fastest available algorithms could
be used also for occasionally nunerically ill-conditioned problens.

3) Savings in the overall problem solving costs when nunerica
accuracy problens can be handled with straightforward philosophies.

4) The possibility to use brute force in solving round-off error
probl ens when delays in the conputing service appear to cause unreason-
able indirect costs.

5) A better overall quality in the scientific conputing services
from the numerical precision point of view

It seems not to be generally known that varying precision floating
point arithmetic would provide a nore elegant and practical scheme to
control the round-off errors than the earlier error tracking schenes.

It has the overriding practical advantage that it does not only warn
the user of the round-off error problem but it also helps himsolve it.
In order to exploit this philosophy sone new research on the nunerica

methods would be desirable. This research would be performed with the

-35-

aid of a software sinmulated variable length floating point arithnetic,
preferably augnented by an automatic error tracking scheme. Wth this
kind of work in the background it would be nuch easier to decide whether
the proposed new features are worth the extra hardware cost. In any
case this research would catal yze new insignts on the effects of round-

off errors in conputing.

Acknowl edgenent s

| would like to sincerely thank Professor Gene Golub for awaking
my interest in the problems handled in this paper and for encouraging
and hel pi ngmma to undertake the publication of this report, Professor
N klaus Wrth contributed to the text with his valuable coments.
M. Mchael Jenkins, MS., has helped ne to inprove the |anguage form as
well as the content of this report.
| want also to thank Stanford University for permtting me to use
the facilities of the Conputer Science Departnent for ny research work.
M/ residence at Stanford was nmade possible by grants of the Finnish
Cul tural Foundation, the Em | Aaltonen Foundation, and the U S. Educational

Foundation in Finland. The publication of this report is supported by the

Nat i onal Sci ence Foundation

-36-

r

REFERENCES

[1] R L. Aschenhurst, "Techniques for Automatic Error Mnitoring and

Control", Error in Digital Conputations, Vol. I, L. B.Rall (Ed.)
New York: John Wley and Sons (Cct. 1965), p. 4%-59.

[2] S. Gorn, "The Automatic Analysis and Control of Computing Errors",
J. Soc. Industr. Appl. Math 2 (Dec. 1954), p. 69-81.

[3] C. A R Hoare and N. Wirth, 'Contribution to the Devel opnent of
Algol 60", Comm ACM 9 (June 1966), p. 413-L32.

(41 1.B.M Reference Manual, "7090 Data Processing Systenf, Form
~22- 6§28-2 (Feb. 1961).

[51 1.B.M Systems Reference Library, |.B.M Systenf360 Mdel 44,
"Functional Characteristics", Form A22-6875-3 (Jan. 1966).

[6] 1.B.M System Reference Library, 1.8.m System 360 Qperating System
"PL/I Language Specifications", Form C28-6571-3, New York:
I nternational Business Machines Corporation (July 1966).

(7] R E Moore, "The Automatic Analysis and Control of Error in
Digital Conputation Based On the Use of Interval Nunbers",
Error in Digital Conputation, VoL I, L. B. Rall (Ed.) New York:

John Wley and Sons (Qct. 1965), p.61-130.

[81 P. Naur, (Ed.), "Report on the A gorithnic Language Algol60",
Conm ACM 3 (May 1960), p. 299-31k.

[9] J. von Neumann and H H Golds-tine, "Numerical Inverting of
Matrices of H gh Odeul). Arer. Math Sge. 53 (1947),
p. 1021 -1099.

[10] K. N ckel, "Uver Die Notwendigkeit einer Fehlerschranken-Arithmetik

fir Rechenautomaten. Num Math. 9 (1966), p.69-79.

-37=

[11] J. M Otega, "An Error Analysis of Householder's Method for the
Symmetric Eigenvalue Problent, Technical Report No. 18, Appl.
Math. and Statistics Laboratory, Stanford University, California
(Feb. 1962).

[12] M Tienari and V. Suokonautio, "A Set of Procedures Mking Real
Arithrmetic of Unlimted Accuracy Possible Wthin Algol 60",
Bit 6 (1966), p. 332-338.

[13] J. Todd, "The Problemof Error in Digital Conputation", Error

in Digital Conputation, Vol. I, L. B. Rall (Ed.) New York:

John Wley and Sons (1965), p. 3-k1.
[14] W C. Wadey, "Floating Point Arithnetic", J. AcM 7 (1960),
p. 129-139.
[15] EE. A Wiss, The PL/T Converter, New York: MGaw H Il (1966).

[16] J. H WIkinson, Rounding Errors in Al gebraic Processes, New Jersey:

Prentice-Hall (Jan. 1963).

