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ABSTRACT

Let an entire function F(z) of finite

genus have infinitely many zeros which are

all positive, and take real values for real

z B Then it is shown how to give two-sided

bounds for all the zeros of F in terms of

the coefficients of the power series of F,

and of coefficients obtained by Graeffe's

algorithm applied to F D A simple numerical

illustration is given for a Bessel function.
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Graeffe's Method for Eigenvalues

G. P&lya

. .

In several problems of mathematical physics the eigenvalues are

positive and they are the zeros of an entire function of finite genus,

It will be shown in what follows that in such a case a slight modification

of the Graeffe process is ideally efficient: For any eigenvalue, it

yields both a lower and an upper bound at each step, both bounds are

improved by the next step, and these bounds converge to the desired

eigenvalue with the rapidity well-known in the case of polynomials.

The remarks underlying this result are actually very simple, I

develop them first in their simplest form in Section 1 and postpone

the statement of the full result to Section 3e A simple numerical

example, for the inclusion of which I am obliged to Professor George

Forsythe, is given in Section 4.

1.3 Sums of Like Powers,

Let 71' 72' 73
,oee be a finite or infinite sequence of increasingly

ordered positive numbers, We set yl = 7 so that
I

o<y= 71 5 72 2 72 < 000 0 (14

We assume that there are at least two different terms in the sequence,

that is, that there exists an .4! such that 7 < yg O Thanks to this

assumption we avoid those (rather uninteresting) cases in which our

inequalities degenerate into equations,
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We define

S
n = c 7;;" (=a

. .

for n = 1, 2, 3, . . . . the sum is extended over the whole sequence

and is supposed to be convergent for n = 1 (and therefore also for

n>l) if the sequence of the yk is infinite,

Obviously

7 -n < sn 9

--.
'2n

= c yp 7;;" < 7-n s
no

By a well-known inequality

("en)
1/2n < An ;

n

see 2, pe 28, Theorem 19. (Underlined numbers like 2 refer to the

bibliography at the end of this paper.)

By HGlder's inequality (see g., p., 22, Theorem 11)

'2n
= c (7-“)2/3 (7-4”)u3  < s2/3 $3

k k n 4n

and so

From (L3), (1.4 1, 0.51, and (1.6) we conclude that

l/n
1

0S
n

2

(103)

(104)

(1.5)

(1.6)

(1-J)



and so

(ii
L< 1
s1 s2

It is obvious from (1.2) that

l/2
‘,

S< IL- .

s2
(1.8)

(1.9)

Let us summarize: If we are given the quantities sl, s2, s4, 589 000

and we wish to compute 7 , we form, at the m-th step, the interval
-v.

whose end points are

with n = 2m-l .

This interval contains 7 in its interior, it contains also the next

interval formed at the (m+l)-st step, and its end points converge

1)
to 7 as m tends to ~0 o

2. On entire functions of finite genus.

Let F(z) denote an entire functian of genus p subject to the

following restrictions:

(I) F(z) has infinitely many zeros which are all positive.

( 1I F(z) takes real values for real z .,

(III) F(0) = 1 o

Such a function is of the form
2) .

1) The symbols sn, 7, 7k are used in the same meaning in 2, p0 199-201,

but the process of computation given there is different from the

process offered here, and converges more slowly,

2) See e.g, 1, especially p0 18-23.
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F(z) = eQ(')jl(l - $)exp($ + --$ f . . . + -$ (2.1)

where U
exp(u) stands for e ,

(292)

-p-l
5

+ q-l + ";"-' + QQ o

is convergent, Q(z) is a polynomial with real coefficients of degree

iP9 and Q(0) = 0 o Finally, ao9 al9 a2' l .a are real, and a0 = 1 0

We consider the coefficients ak as given, the genus p as

known, and we want to compute the zeros ak . For this purpose we

consider the positive integer n 9 we define

,2rri/n =cu  9 (2.4)

and we put

f(z) f(uJz) f(LU2Z) 90. f(uYZ) = e(-l)h an h znh .
h=O 9

The coefficients an h can be computed in terms of the coefficients
9 ah

(are polynomials in ah )+, Th is computation is most convenient in the

well-known practical case when n is a power of 2 . Yet, for the

moment, we need not restrict the integer n to any particular form.

Provided that

n>P (2.G

4
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we have the simple expression

f(z) f(oz) .0. f(uPz) = J-J (1 - 2) .

k=l
an
k. .

By comparing (2.5) and (2.7) we obtain finally that, for h > 1 9

a
n,h =

where the sum is extended over all combinations of the subscripts

i.
l9 i29 000 ih for which

-v. il
<i2<i

3
<... <i

h o (209)

b7)

(W

In words, an h is the h-th elementary symmetric function of the
9

(-n)-th powers of the zeros we want to compute.

30 Computation of the zeros.

Let us now connect the considerations of the two foregoing sectionse

We form the products a. % 000 a0
il i2 ih

according to (2.93, and we call

them, increasingly ordered, 719 729 739 l a0 o Then

an h becomes sn9
9

a a
1 2"'" ah

becomes y1 = 7;

see (2,8) and (2.2), respectively., Hence (L7) yields
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provided that n > p 9 see (2.6). Thus, setting n = 2m-l 9 we have a

scheme to compute a a1 2"" ah 9 and a scheme to compute ah follows

immediately. In fact, (3.1) yields
. .

Then (3A) yields also an upper bound for al a2 .,.., ah 1 and so a

lower bound for ah in terms of the ak . An upper bound for
ah

tof

the same nature is found similarly, and these bounds come closer to a
h

when we pass from n to 2n.

The reader may convince himself that the foregoing applies

qfessentially'q  also to the case of polynomials although, strictly speaking,

this case was excluded from our reasoning by-the (otherwise convenient)

assumption that the series (2.3) is infinite,

The essential point in the foregoing is to observe the particular

advantages the Graeffe process offers when it is applied to the particular

class of entire functions here considered. Let me add that the zeros of

a function of this not uninteresting class can be computed by still

other techniques, Thus, in Section 1 we considered only those sn as

given for which n is a power of 2 O If we consider sn as given for

all n (or for all n from a certain one onward) we may base our

computations instead of on (1.7) on the inequalities

(qn<(.7’~n+~~<7<~<~  ;

see 2. Moreover, the Hankel determinants

(302)
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S S
n n+l '* * 'n+h-1

S
n+l 'n-l-2 * '* S

n+h
. .

0 0 . 0 0 .

S
n+h-1 'n+h 'O" 'n+2h-2

considered by Hadamard can be used for computing the first h different

zeros, see 4.

4. Example,

To try out the technique considered numerically, we use the Bessel
--.

function

F(z) = Jo@&) 9

also used in & Its smallest zero is 7 g 1.44576.  We use precisely
0

the same number of terms in the power series for F(z) as in 2;

3 4
F(z)=l-z+$-g*~$- bee .

Then

2 4
F(z)F(-z) = 1 - 0 0 0

and

F(z)F(iz)F(-z)F(-iz) = 1 - g z4 + 0.0 e

Hence

1 11
yl = 1 ; a2,1 = 5 ; a4,l = '48 .

7
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. .
= J2 A 1.41421.

"2,l
l/2

( )a4,l

Thus, using more decimals, we get the bounds

1.< 1.414213 < 1.445313 f 7 < 1.477098 < 2 .

For the first zero 27l/2 G 2.404826 of Jo 9 we get the corresponding.

bounds

2 < 2.37841 < 2.404424 < 27l/2 < 2.430719 < 2.82843 o

Thus our best bounds

2.404424 < 27l/2 < 2.430719

may be compared with the corresponding bounds

2.4006 < 27l/2 < 2.4121

from 2. We see that our present lower bound is much better, while

the upper bound is much worse. (The upper bound in 2 results from

7 < s3/s4 = 16/11 -- but here we have avoided using
s3 * >

8

24 l/2= 7( 1 G 1.47710 ;
.LI .

Then

1-= 1 “1,1=2

al,l a2,l
;
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