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ABSTRACT

Let an entire function F(z) of finite
genus have infinitely many zeros which are
all positive, and take real values for real
z . Then it is shown how to give two-sided
bounds for all the zeros of Fin terns of
the coefficients of the power series of F,
and of coefficients obtained by Graeffe's
algorithmapplied to F. A sinple nunerical
illustration is given for a Bessel function.
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Gaeffe's Method for Eigenval ues

G Pblya

In several problens of mathematical physics the eigenvalues are
positive and they are the zeros of an entire function of finite genus,
It will be shown in what follows that in such a case a slight nodification
of the Gaeffe process is ideally efficient: For any eigenvalue, it
yields both a lower and an upper bound at each step, both bounds are
i nproved by the next step, and these bounds converge to the desired
eigenvalue with the rapidity well-known in the case of polynom als.

The remarks underlying this result are actually very sinple, |
develop them first in their sinplest formin Section 1 and postpone
the statement of the full result to Section 3. A sinple numerica
example, for the inclusion of which I am obliged to Professor George

Forsythe, is given in Section k4,

1. Suns of Like Powers,

Let 715 7o) Tgreee be a finite or infinite sequence of increasingly

ordered positive nunmbers, W set 7, = 7 so that

O<7=T71 27 S7, S oo . (1.1)

W assume that there are at least two different ternms in the sequence

that is, that there exists an £ such that 7 < 7y Thanks to this
assunption we avoid those (rather uninteresting) cases in which our

inequal ities degenerate into equations,
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W define

_ -n
s, = L (1.2)

for n=1, 2, 3, . . . . the sumis extended over the whole sequence
and is supposed to be convergent for n = 1 (and therefore also for
n>1) if the sequence of the Ve is infinite,

Qovi ousl y

7 < s s (105)

- -n -n
: < ° o
Sop T T 7y 7S, (1.4)

By a well-known inequality

1/2n < Snl/n ; (1.5)

(s5,)

see 2, p.28, Theorem 19. (Underlined nunmbers like 2 refer to the
bi bl i ography at the end of this paper.)

By Holder's inequality (see 2, p. 22, Theorem 11)

S

-n\2/3 , -hn\1/3_ 2/3 1/3
on =z (71k ) (71k ) < Sn S‘4n

. 1/2n . 1/n
S
hn 2n .

From(1.3), (1.4), (1.5), and (1.6) we conclude that

1/n 1/2n . 1/2n . 1/n
<}_> < (-l-_> <7< (—%I-l-> < -—n—-> (1.7)
n Son Shin Son

and so
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1/n s 1/n
1im (1- = lim (-E—> =y . (1.9)
S S
n— o n n— o 2n
Let us summarize: |If we are given the quantities 815 Sy Sy Sgs oo

and we wish to compute 7, we form at the mth step, the interval

whose end hbi nts are

1/n < 1/n
<_l_> <_n_> wWith n = 2%%
s 4 s
n 2n

This interval contains 7 in its interior, it contains also the next
interval formed at the (m+1)-st Step, and its end points converge

1
to 7 as m tends to)w.

2. On entire functions of finite genus.

Let F(z) denote an entire function of genus p subject to the
followng restrictions:
(1) F(z) has infinitely many zeros which are all positive.
(It F(z) takes real values for real z .
(rrry ro) =1.

2
Such a function is of the form )

1) The synbol s S, 7, 7, are used in the sane neaning in 3, p. 199-201,
but the process of conputation given there is different from the
process offered here, and converges nore slowy,

2) See e.g. 1, especial ly p.18-23.

3
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e p
F(Z) - eQ(Z> H (l - az_>exp .(;_ + —.Z_. + . . . + -—% (2.1)
k=1 k k k pak
_ ()P o D
by (e
where exp(u) stands for €&,
o<a <0 <o <..., (2.2)

1 2

3

p-l 4 Pl 4 Pl
Ofl C62 015 o

is convergent, Qz) is a polynomal with real coefficients of degree

<p, and QO0) = 0. Finally, 85 815 8y -.2 ArE real, and 8y = 1.

We consider the coefficients a_ as given, the genus p as

k

known, and we want to conpute the zeros @ For this purpose we

k
consider the positive integer n, we define

e2ﬂl/n = , (2.L|-)
and we put
2 1 = h h
f(z) floz) flw7z) ... £l z) = Z(-l) a4 2" . (2.5)
h=0 s
The coefficients a 4 can be conputed in terns of the coefficients a,
)
(are polynomals in ay ). This conputation is nost convenient in the
wel | -known practical case when n is a power of 2 . Yet, for the
noment, we need not restrict the integer n to any particular form
Provi ded that
n>p (2.6)



we have the sinple expression

- f(z) floz) ... ™) =] (1 - Ei) : (2.7)
L

By conparing (2.5) and (2.7) we obtain finally that, for h > 1,

n
1
an,h ‘}E: A (2.8)
1 T2 h

where the sumis extended over all conbinations of the subscripts

L5 gy oo iy for which

i <i <i; < <i

N 1 5 5 < eee hoo- (2,9)

[ n words, & 5 is the h-th elementary symetric function of the
J

(-n)-th powers of the zeros we want to compute.

3. Conput ation of the zeros.

Let us now connect the considerations of the two foregoing sections.

W formthe products @. @ ... @  according to (2.9), and we call
1ot *h

them increasingly ordered, 719705 739 . o . Then
an,h becones Sy
a a, (04 = B
L Bouin O becones 7 7,

see (2,8) and (2.2), respectively., Hence (1.7) yields

1/n 1/2n 1/2n 1/n
1 1 %on,h ®n,h
- < | <@ o, ... 0 < (=Rt < [ BB
n,h 2n,h %4n,h %on,h

(3.1)
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provided that n > p , see (2.6). Thus, setting n = , We have a

scheme to conpute g Qoun &, and a scheme to conpute @ follows

h h
imediately. In fact, (3.1) yields
l/n
och > 2 a. a - Q. ¢
®n,h 172 Tpa
Then (3.1) yields al so an upper bound for QO eee O and so a
| ower bound for % in terns of the a - An upper bound for @ of

the sane nature is found sinmlarly, and these bounds come closer to o
when we pass fromn to 2n.

The reader may convince hinself that the foregoing applies
"essentially" also to the case of polynom als although, strictly speaking,
this case was excluded from our reasoning by the (otherw se convenient)
assunption that the series (2.3) is infinite,

The essential point in the foregoing is to observe the particular
advantages the Gaeffe process offers when it is applied to the particular
class of entire functions here considered. Let ne add that the zeros of
a function of this not uninteresting class can be conputed by still
other techniques, Thus, in Section 1 we considered only those s as
given for which nis a power of 2. |f we consider s, as gi ven for

all n (or for all n froma certain one onward) we nay base our

conputations instead of on (1.7) on the inequalities

1/n 1/(n S S
(L)/ <<Sl >/ +l)<7<sn+l<—n ; (3.2)

S s E
n n+l n+2 n+l

see 3, Moreover, the Hankel determnants
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S S o8 o

N n+1 Sn+h-1

Sn+l Sl’l+2 o o Sn+h

*nth-1  Sn+n °°° Sn+on-2

consi dered by Hadamard can be used for conputing the first h different

zeros, see k.,

4. Exanpl e,
To try out the technique considered nunerically, we use the Bessel

function
F(z) = 7 (2/z) ,
also used in 3. Its smallest zero is 7 =1.44576. W use precisely

the same nunber of terms in the power series for F(z) as in 3:

2
Z

3 L
F(Z)=1_Z+T—%€+'§$€'—aao

Then
Z2 Zu

F(z)F(-z) = 1 - '—2-+§-6- -
and

F2)F(i2)F(-2)F(-i2) = 1 - {5 e
Hence

1 11
al’l 1 93-2,1 = 5 3 ah.’l = "m



Then
1 L1,
%1,1 82,1
%1 /2 oy 1/2
J2 £ 1.h1k21 == = (=) = 1.47710 ;
8 4 11 .
)
1/4
)4'8 [
( ) = (73) % Lhs3 .

Thus, using nore decimals, we get the bounds
1< 1.bh1k213 < 1.445313 <7 < 1.477098 < 2 .,

For the first zero 271/2 = 2.404826 of J_» We get the corresponding

bounds

2 < 2.37841 < 2.404424 < 271/2 < 2.430719 < 2.82843 .
Thus our best bounds

2.404424 < 22 < 2430719
may be conmpared with the corresponding bounds

2.4006 < 27%2 < 2.4121

from3. W see that our present |ower bound is nuch better, while
the upper bound is much worse. (The upper bound in 3 results from

7 < s5/su = 16/11 -- but here we have avoided using 55 )
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