CS 68

THE PL360 SYSTEM

Edited
By

NIKLAUS WIRTH

TECHNICAL REPORT NO. CS 68
JUNE 5, 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

THE PL360 SYSTEM

Edited
By

Niklaus Wirth

Computer Science Department
Stanford University

Stanford, California

RN

THE PL360 SYSTEM

Table of Contents

Page
Introduction and Survey . . e e e e e e e
Jobcontrol instructions « « + ¢« « « ¢ 4 v 4 e .
Table of available system programs
3. Description of system programs . . « .« « « ¢« & ¢ + . o . 5
3.1. The PL360 cOMPIiler « « « « o o « « o o o o o« o o « & 5
5.1.1. The form of input decks « 5
3.1.2. The language 5
5.1.2.1. Symbol representation 5
3.1.2.2. Standard identifiers 6
-~ 3.1.2.3. Restrictions 6
3.1.2.4. Supervisor functions . . « .« . . . 7
3.1.2.5. Examples of Programs 9
3.1.3. Instructions to the compiler. . . 13
3.1.4. Error messages of the compiler 14
3.1.5. The format of "binary" cards . 16
3.2. Program to duplicate card decks (DUPDECK) . . . 17
3.3. Program to list cards decks (LISTER) 17
3.4. Tape updating utility program (TUP) 17
3.5. System Tape updating program (SYSTUP) . . . + « « . . 20
3.6. Syntax processor (SYNPROC). . . . 26
3.7. Program to generate cross-reference tables of identifiers
L. Program execution (run-time) errors « « « v + ¢ 4« . . . bl
The PL360 system « . ¢ v v v e e e e e e e e e e e e e e e e 32
5.1. Initial loading and operafing the system 32
5.2. System organization« . .+ . . . v o v 4 o .« .. 34
6. The PL360/0S system « « « v v v v « 4 o v v v v v e v v LB
6.1. PL360 programming under OS « + « « « + « « & « « « . . . L8
6.2. 0S control statements for PL360 . . +. « « v « v v v « « . 52
6.3. System organization « « « « « « « v 4 ¢ 4 v v v e e . . . 58
Appendix:)
Conversion of 026-punched cards . « « « o + ¢« o v o « « « « . . 62

RETETENCES . + v v v v o v v 4 4 o o o« 4 e e e e e e e e e e e 63

1. Introduction and Survey

This report describes the use and the organization of the operating
system which serves as the environment of the PL360 language defined in

the . CS 53 [1].

jompanion Report C
The core of the system consists of a job sequencer which accepts
batches of jobs and receives instructions in the form of control cards.
These job control instructions are described in Chapter 2. A collection
of library programs is available to the system and can be accessed by
its program loader. Their use is described in Chapter 3. Among other
programs, the library contains the PL360 compiler. Paragraph 3.1.
defines the symbol representations, the restrictions imposed on the
language by this implementation, the various available system subroutines,
particularly those for input-output, and the usage of the compiler.
Chapteril indicates the error messages provided by the resident
supervisor routines upon the occurrence of program checks and other
unintended situations.

While chapters 2-4 are intended to serve as a user's reference

manual, chapters 5 and 6 outline the internal organization of the system
for the reader interested in further detail. The PL360 system was

first developed as a stand-alone, self-loading program, and its pro-
perties are therefore optimally adapted to the few requirements of the
language. This system is described in Chapter 5. A second version

was designed to operate as a subsystem under IBM's OS/560, and consists
of a set of linkage routines, as described in Chapter 6.

The minimal configuration requirements (for the stand-alone version)
are as follows:

1. Core memory, 64K bytes, with or without memory protection.

2. Printer (1403), card reader/punch (2540), 2 tape drives.

The entire system was designed with the aim of a convenient, effi-
cient, and easy-to-use tool for the development of compilers and
operating systems. The set of library routines reflects this fact
clearly. Apart from the lister and card duplication programs, there
exists a program to edit tape files, which the compiler is able to

accept as input in place of cards. Moreover, a system generation program

is provided to perform the rapid creation of new systems or the inclusion
of new or modified library programs. Listings of cross-references of
identifiers (in any language, and PL360 in particular) can be produced
by another library program to facilitate work with large scale source
programs. And finally, the Syntax Processor is used in the development
of compilers based on the principle of analysis of precedence grammars.

A further program to be available under the system is the Algol 66
compiler for whose development the PL360 project was undertaken. Since
at this time the Algol compiler is not yet generally available, the
description of its use is not incorporated in this report.

The implementation of the PL360 system and most of the library
programs was conducted by Mr. J. Wells. Mr. E. Satterthwaite developed
the linkage routines to 0S/360 described in Chapter 6, and Mrs. J. Keckler
wrote the cross-referencing library program (5.7).

This project was supported in part by the National Science Founda-
tion grant GP 68Lk.

2. Jobcontrol instructions

Jobs in the input batch are separated by control cards to be inter-
preted by the jobcontrol routine. They are characterized by a 0-2-8
punch in column 1, (denoted by #), and, if encountered by the READ
routine, give rise to an end-of-file indication. Information contained
in columns 2-9 (left adjusted) of control cards is inspected and

interpreted as follows:

LOAD The subsequent cards are supposed to be "binary" (punched
by a compiler). They are loaded, and execution of the

loaded program is initiated.

EOF This instruction merely causes an end-of-file indication
to be given. It is to be used at the end of a binary deck

or-of a compiler source deck.

PAUSE The operator is notified and the system waits for instructions
to be entered at the console (cf. 5.2).

An input deck wusing the LOAD instruction has the following composition:

=
I _
bihary cards | # EoF /
|
*LOAD hame ‘\

If any other text is contained in columns 2-9, it is interpreted as
the name of a program to be loaded from the system library. Infor-
mation in the remaining columns is ignored: The following programs are
presently available from that library, and they are described in the
following chapter:

PL360 The PL360 compiler
DUPDECK Program to duplicate card decks
LISTER Program to list card decks

3

SYNPROC
TUP
SYSTUP
XREF

Syntax processor program

Tape updating program

System tape updating program

Program to generate table of cross-references

of identifiers

5. Description of system programs

3.1. The PL360 compiler (PL360)
3.1.1. The form of input decks

©
?_LM&M>/ [*EoF

I

+PL260 hame. \

5.1.2. The language

The PL360 programming language is described in the companion
report CS 53 (revised):

"PL360, a programming language for the 360 computers".
The subsequent paragraphs specify the details pertinent to the present

implementation, such as symbol representation and specific limitations.

3.1.2.1. Symbol representation

Only capital letters are available. Basic symbols which consist
of underlined letter sequences in the Report, are denoted by the same
letter sequences without further distinction. As a consequence, they

cannot be used as identifiers. The basic symbols are:

+ - ¥ / () = < >
R ; . : @ # 1" 1

= <= =

DO IF OF OR

ABS AND END FOR NEG SYN XOR
BASE BYTE CASE ELSE GOTO LONG
NULL REAL SHLA SHLL SHRA SHRA
STEP THEN

ARRAY BEGIN SHORT UNTIL WHILE
COMMENT INTEGER LOGICAL SEGMENT
FUNCTION OVERFLOW REGISTER
PROCEDURE '

-5.1.2.2. Standard identifiers

The following identifiers are predeclared in the language, but may
be redeclared due to block structure. Their predefined meaning is

specified in Report CS53 or in paragraph 3.1.2.4,

MEM FPI
Bl B2 B3 B4 B5 BS6 B7 B3 B9
B10 Bll Bl2 Bl3

RO Rl R2 R3 R+ R5 R6 R7 RS
R9 R1O R1l R12 R13

FO F2 FL F6

FO1 F23 FL45 F67

LA MVI MVC CLI CLC IM STM

SIDL SRDL IC STC CVD UNPK

ED EX SET RESET

READ WRITE PUNCH PAGE

READTAPE WRITETAPE REWIND MARKTAPE
FSPTM FSPREC BSPTM BSPREC

DUMP FPIRESET

5.1.2.3. Restrictions

The implementation imposes the following restriction upon the
language:
a. Only the first 10 characters of identifiers are recognized
as significant.
b. No go to statement -may refer to a label defined in a segment

different from the one in which the go to statement occurs.

6

3.1.2.4.

Supervisor functions

A set of standard functions is defined for elementary input and

output operations. The referenced supervisor routines make use of

parameter registers as specified below. They set the condition code

to 0, wunless otherwise specified. Input-output devices are desig-

nated by logical unit numbers (cf. X.8.).

READ

_WRITE

PUNCH

READTAPE

WRITETAPE

PAGE

Read a card, assign the 80 character record to the
memory area designated by the address in register RO .
Set the condition code 1, if a control card is

encountered (cf. also chapters 2 and 4).

Write the record of 132 characters designated by the
address in register RO on the line printer. Set the
condition code to 1, if the next line to be printed

appears on the top of a new page.

Punch the record of 80 characters designated by the

address in register RO on the card punch.

Read a record from the tape unit specified by the logi-
cal unit number in register R2 (cf. 5.2.). The
length of the record in bytes is specified by register
Rl, and it is assigned to the memory area designated
by the address in register RO . Set the condition code

to 1, if a tape mark 1s encountered.

Write a record on the tape unit specified by the logical
unit number in register R2 . The length of the written
record in bytes is specified by register RLl; the

record is designated by the address in register RO .

Skip to the next page on the line printer.

The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register R2 .

MARKTAPE:
REWIND:
BSPREC:

Write a tape mark.
Rewind the tape.

Backspace one record.

FSPREC:
BSPTM:
FSPTM:

Fowardspace one record.
Backspace past the previous tape mark.

Forwardspace past the next tape mark.

A program interruption (cf. [3]) due to arithmetic operations records

the interruption code in the byte cell FPI . This cell, being part

of the supervisor, is memory protected, and cannot be reset by the

user's program directly.

FPIRESET:

DUMP

WRITETIME

Reset the value of the cell FPI to O .

A specified area of memory is printed in hexadecimal
form. Register RO must specify the starting address
of the area and Rl must specify its length (in bytes).
The values of R2 and the condition code are altered

B} a call of the dump routine.

The time elapsed since the beginning of execution of
the present program is printed. The values of registers

RO-R2 and the condition code are altered.

3.1.2.5. Examples of programs

BEGIN CUMMENT MAGIL SQUARE GENERATUKS
ARKAY 132 BYTE LINE = W ¥
ARKAY 8 BYTE PATTERN = ¥ n
LUNG KEAL DEU;
ARRAY 256 INTEGER X;

-

PROCEDURE MAGICSQUARE (R6);
COMMENT THIS PROCEDURE ESTABLISHES A MAGIC SQUARE :m ORDER Ny
IF N IS ODD AND 1 < N € 164 X IS THE MATRIX IN LINEAR FORM.
REGISTERS KO ... R6 ARE USEDy AND RO CUNTAINS N AS PARAMETER.
ALGURITHM 118 (CUMMJ.ACHM, AUG.L1962)3%
BEGLIN SHORT INTEGER NSQR3
INTEGER REGISTER N SYN ROy I SYN RK1ly J SYN R2, Y SYN R3j
INTEGER REGISTER IJ SYN R4y K SYN R5;
NSO 3= N3 R1 2= N * NSQR; NSQR 2= R1j3
[2= N+#1 SHRL 13 J 3= N3
FUR K := 1 STEP 1 UNTIL NSQ
BEGIN Y- := I SHLL 65 1J :=
IF Y == 0 THEN
BEGIN I = I-1;3 J :
IF I < 1 THEN 1

IR DU
J SHLL 2 + Y53 Y = X(1J)3

J-2;
= [+N;

IF 0 < 1 THEN J 3= J+N;
Y 3= [SHLL 63 IJ = J SHLL 2 + Y3
END 3
X{I1J) == K3
[¢= I+1; IF I > N THEN I:= I-N;
J = J+l; IF J > N THEN J = J-Nj
END 3

PROCEDUKE GENERATE (R8)3
BEGIN INTEGER REGISTER 1 SYN Rly J SYN R2, IJ SYN R4, N SYN R6;
J 2= 03 FOR I 3= O STEP 4 UNTIL 1020 DO X(I) == J3
MAGICSQUARE; .
N := RO;
FUK I := 1 STEP 1 UNTIL N DO

BEGIN TIJ 2= 1 SHLL 6 +43 R5 := abLINEl4);
FOR J 2= 1 STEP 1 UNTIL N DO
BEGIN MVC{5, B5, PATTERN); R3 := X{I1J); CVDIR3, DEC);
ED(b, B5, DECI(5)); 1J 1= [J+43; R5 := RS5+T;
END
RO := aLINE; WRITE:
END 3
ED{L31e LINE, LINE); WRITES
END 3
tUl13ke LINEs, LINE); CUMMENT FILL LINE WITH BLANKS;
RU = 33; GENERATEL;:
RU = 53 GENERATL;
RO ¢= 97 GENECRATLS
END

N O

11
18
25

37
48
59
70
81

13
24
35

-~ W

10
12
19
21

36
38
49
60
71
13

14
25

O =~

13
20
22

28

23

14
16

lo
27
29
40
51
62
04
75

17
24

15

i7
19
30
41
52
63
65
716

10

17

18
20
31
42
53
55
66

- 67

78

10
21
32
43
54
56

57
68
79

11
22

.33

44
46

47
58
69
80

12
23
34
45

Stoliv Lot T TEST Ur PRUCEDURES TRKEAL AND CUTREAL;
ARRAY Lo oYTE LINE = » ng
PrulLEDURL Taxbab (RY) 5
ClMMewT RLADS A CARD AND SCANS FUR A CHARACTLR SEJUENCE REPRE SEN-
TIHG A REAL NUMBER S SESULT IN FOL. USED ARE KN.woeRS AND FOeeofF73
BeGIN INTLOER REGISIER CHAR SYN ROy ACCUM SYN Kly SCALE SYN R2;
INTEOGER REGESTER EXT SYN K33
LuNG KEAL REGISTER ANSwtER SYN FOls
BYTE SIGiny EXPUSIUNS
: LUNG REAL CUNVERTED = g4E00C0OGDGCO00000L 3
: IivTizoer CONVERT SYN CONVERTEU(4)
FUNCTIUN LTR (1+#1202)3
InTeGER INDEXS
ARKAY 80 3YTE CAROS

PRUCLUURE NEXTCLCHAR (R4);
Beolin K3 := INuUbEX + 13
Ir R3 > 71 THEN

BLOIN ®KO $= «CARU; READ; IF »= THEN GUTO ALLDORNE: R3 = 03
EiND
RU 1= RO=-KO; ICIKOSCARGIR3)) INUEX $= R3;

ENUD 3

w0 = T1ls INUEX = RU; NEXTCHAR;
WHILL RO < "C" DU
BEOGIN IF RO = "-" THeN SET (SIGN) ELSE RESET(SIGN)3 NEXTCHAR;
tiND
COMMENT ACCUMULATE THt INTEGRAL PART IN ACCUM;
ALLUM 2= CHAR AND #F; NEXTCHAR;
WHILE CHAK >= #0% DO
BeGIN CHAR := CHAR AND #F; ACCUM := ACCUM * 10S + CHAR; NEXTCHAR;
END 3
SCALE := 03
CUNVERT 3= ACCUMS ANSWER = CUNVERTED + 0L
IFf CHAR = M,." THEN
BEGIN CUOMMENT PROCESS FRACTIUN. ACCUMULATE NUMBER IN ANSWER;
NEXTCHAR;
WHILE CHAK >= %wQw Dy
SEGIN CHAK := (HAK AND #F; CUNVERT :=
: ANSWER := ANSWER * 10L + CUNVERTED;
SCALE := SCALE - 13 NEXTCHAR;
END ;
END
I+ CHAR = v THEN
- BEGIN CUMMENT KEAD SCALE FACTUOR AND ADD IT T SCALE
. NEXTCHAR; IF CHAR = "-® THEN
GEGIN SET(EXPUSIGN); NEXTCHAK;
END ELSE
IF CHAR = "+ THEN
AEGIN RESET(EXPUSIGN) 3 NEXTCHAR;
civd ELSE RESET(EXPUSIGN) ;
ACLUM = CHAR AND #F ;5 NEXTCLHAR;
” WHILE UHAR >= 1"gn
stolN CHAR := CHAR AND #F; ACCUM := ACCUM #* 10S; NEXTCHAR;S
END
IF EXPUSION THEN SCALE = SCALE - ACCUM
ELSE SCALE := SCALL + ACCUM;

CHAR

LNU 3
I+ SCALE ~= O THLEN
BEulN CUAMENT F45 -t = Ju %% SCALLE

It SCALtE < O THERN

GEGIN SCALE 3= A3S SCALE; SETTLXPUSIGN);

tivu ELSE KRESET(EXPOSIGN) ;

F23 = 10L; t4H = 1L Fol 1= Fa45;

WHILE SCALE -~= 0 uO

SEOGIN SKUL (SCALE.L 5 k23 2 3% ;7 F&7
LT (EXTyEXT); IF < THEN F4b := F45%F23

ENU 3

IF EXPOSIGN THEN ANSWER = ANSWER / F&b5

ELSE ANSWER = ANSHNEXK % F45;

END 3
IF 510N THEN ANSWER = NEG ANSHWER;
eND 3

KCLEDU (K45
BEGIN CUMME CUNVERT NUMstR IN FOL INTO CHARACTER STRING AT aRl;
FUNCTIUN LTR (Ly#1200); ‘
INTEGER REGISTER EXP SYN RO, SCALE SYN R2, EXT SYN R3;
LUNG REAL REGISTER X SYN FO1;
LUNG REAL-. CCNVLERT;S

i T ke

- < A\
DURE UUTKEAL
N T

INTEGER CUNVERTED SYN CUNVEKRTU4), EXPO SYN CONVERT(O};
BYTE SIGN;
IF X = OL THEN MVC (13,81," 0 ") ELSE

BEGIN IF X < OL THEN SET(SIGN) ELSE RESET{SIGN);
X 2= A3S X; CCNVERT := X3
COMMENT UBTAIN AN ESTIMATED UECIMAL SCALE FACTOR FROM

EXPUNENT PART;

EXP 1= EXPU SHRL 24 = 64 * 307S; IF < THEN EXP := EXP + 255$3;
EXP := EXP SHRA 8 - 1; SCALE := ABS EXP;
COMMENT CUMPUTE F45 3= 10 %% SCALE:

F23 = 10L; F45 := 1L F67 = F45;

WHILE SCALE ~= 0 DG ‘
BEGIN SRDL (SCALEs1); F23 3= F23%F67; F6T7 :

LTR (EXToEXT); IF < THEN F45 := F45%F23;
END 3
COMMENT NORMALIZE TU 1 <= X < 10 ;

IF EXP < O THEN
BEGIN X = X %* F45;

WHILE X < 1L 0O

BEGIN X 2= X % 10L; EXP := EXP-13}

END 3
END ELSE
BEGIN X ==

WHILE X

BEGIN X

END 3
END 3
X 3= X % L'7L ++ K4E00000000000005L;

CUNVERT := X; EXT := CUNVERTED;

CUMMENT EXT IS HERE USED TO HOLD RESULTING INTEGER;

IF EXT >= 100000000 THEN

BEGIN EXT 3= EXT / 1035 EXP = EXP +13

LNU 3

MVC (13.8B1l," - ' "),

CVU (EXTyCUNVERT); ED (94BL+CONVERT(3));

IF SIGN THEN MVI (w-v,81(1));

CVO (EXPyCUNVERT); ED (34BLULO)CONVERT(6));

IF EXP < O THEN MVI ("=9,81(11)) ELSE MVE ("ev,B81{11));
ENU 3

END 3 : . ,

MVEC (130, LINECL),y LINE(O))3 CUMMUENT FILL -LENE WETH BLANKS;
L: INREAL; R1 t= GLINE(6): GUTREAL; RO = ALINE; wWRITE: GOTO L;
ALLDOUNE:

END

H
.
H

'

= F23;

1
X % 0o1lL3 EXP = EXP+1;

12

3.1.3.

Instructions to the compiler

The compiler accepts instructions inserted anywhere in the sequence

of input records. A compiler instruction card is marked by a $ char-

acter in column 1, and an instruction in columns 2-20 . Columns

21-80

$NOGO
$LIST
$NOLIST
$PUNCH
$PAGE
$0

$1

82

$TAPEN

of such a record are ignored.

Compile, but do not attempt subsequent execution.

List subsequent source records on the printer.

Do not list subsequent source records.

Punch compiled program and data segments on cards.
Skip a page in the listing.

Print source text only.

Indicate the addresses of all variables and procedures
upon their declaration.

List addresses as after $1 . Also list the produced
machine code in hexadecimal notation.

Read the subsequent source records from the tape unit
with logical number n . If n is omitted, tape unit

7 is assumed.

15

3.1.4. Error messages of the compiler

Errors are indicated by the compiler with a message and a bar

below the character which was read last.

Error No. Message
00 SYNTAX
01 VAR ASS TYPES
02 FOR PARAMETER
03 REG ASS TYPES
ok BIN OP TYPES
05 SHIFT OP
06 COMPARE TYPES
o7 REG TYPE OR #
08 UNDEFINED ID
09 MULT ILAB DEF
10 EXC INI VALUE
11 NOT INDEXABLE
12 DATA OVERFLOW
13 NO OF ARGS

Meaning
The source program violates the PL360

syntax. Analysis continues with the

next statement.

The type of operands in a variable

assignment are incompatible.

A real register instead of an integer

register is specified in a for clause.

The types of operands in a register

assignment are incompatible.

The types of operands of an arithmetic

or logical operator are incompatible.

A real instead of an integer register

is specified in a shift operation.
The types of comparands are incompatible.
Incorrect register specification.
An undeclared identifier is encountered.

The same identifier is defined as a

label more than once in the same block.

The number of initializing values exceeds

the number of elements in the array.

The function argument does not allow

for an index register.

The address of the declared variable

in the data segment exceeds 4095 .

An incorrect number of arguments is

used for a function.

14

Error No. Message

14 ILLEGAL CHAR
15 MULTIPLE ID
16 PROGRAM OFLOW
17 INITIAL OFLOW
18 ADDRESS OFLOW
19 NUMBER OFLOW
20 MISSING .

21 STRING LENGTH
22 AND/OR MIX

23 FUNC DEF NO.
2k TILLEGAL PARAM

Meaning

An illegal character was encountered;

it is skipped.

The same identifier is declared more

than once in the same block.

The current program segment is too

large.

The area of initialized data in the
compiler is full. This can be circum-

vented by suitable segmentation.

The number used as index is such that
the resulting address cannot be

accommodated.
The number is too large in magnitude.

An end-of-file has been read before =2

o on
.

program terminating was encoun-

tered.

The length of a string is either O
or > 256 .

A compound condition must not contain
both ANDs and ORs .

The format number in a function decla-

ration 1s illegal.

A parameter incompatible with the

specifications of the function is used.

At the end of each program segment, undefined labels are listed with

an indication of where they occurred.

15

3.1.5. The format of "binary" cards

The compiler produces four types of "binary" cards if requested through

the $PUNCH option. The card formats are:

Col 1 This column identifies the type of object card

S = procedure segment header
D = data segment header
E = external procedure or data segment header
P = object program card
Col 2 Segment number in hexadecimal
Col 3-6 Length of segment if S, D, or E card.

Relative address of first byte of object program

~on the card)if P card.

Col 7-8 Count of object program bytes on card if
P card. Blank if S8, D, or E card

Col 9-72 Object program bytes if P card.
Date is in Col 40-47 if S, D, or E card

Col 73-Th Segment number in decimal
Col 75 Type of segment (E, D, or §)
Col 76-80 Sequence number in decimal. It starts with

1 for each segment.

Note: Columns 73-80 are ignored by‘the loader, and are punched for

identification purposes only.

16

3.2. Program to duplicate card decks (DUPDECK)

Jd. Wells

This program duplicates the cards following the DUPDECK card up
to the next control card. There are two option cards which are not

punched and can appear anywhere in the deck.

$SEQUENCE The following cards are sequenced in columns
76-80 starting with 00001 and in increments
of 1.

$NOSEQUENCE No sequencing numbers are provided. This is the

initial option.

3.3. Program to list card decks (LISTER)

This program lists the cards following the LISTER card up to the
next control card. There are four option cards which are not listed

and can appear anywhere in the deck.

$SEQUENCE The following cards are listed with a card count
starting with one and in increments of one.

Sequencing is the initial option.
$NOSEQUENCE No sequencing numbers are listed.

3.4. Tape Updating Utility Program (TUP)

The TUP starts out in the command mode. It reads and interprets

a sequence of commands, each of which is punched on a card beginning
in column one. If on any card "LISTER" is punched in columns 12-17,
the information processed during the interpretation of the command is

listed on the printer. The commands are:

$INPUTn Unit A is assigned the logical device number
n (in decimal). This can be used only before

a command that uses the input tape A .

$OUTPUTn Unit B is assigned the logical device number
n (in decimal). This can be used only before

a command that uses the output tape B .

17

$NEWTAPE

$LISTER
$PUNCH

$RESEQUENCE

$UPDATE -

$DELETE m n

$INSERT m

The subsequent card deck is read and put onto
tape on unit B . Every record is provided with
a sequence number. The increment is 10 . All
80 columns of the cards can be used. Note: No

other command may. follow $NEWTAPE .

The information on tape unit A 1is read and

listed, including the sequence numbers.

The information on tape unit A 1is read and

punched without sequence numbers.

The records on unit A are read, provided with
new sequence numbers (increment 10), and written

onto tape on unit B .

The TUP enters the update mode in which it updates
the information on unit A with information read
from cards. The updated information is written
onto unit B . The following instructions are

obeyed in the update mode:

Records with sequence numbers m through
n are detected. m and n are five
digit numbers punched in columns 12-16
and 20-24 respectively. (Leading
zeroes must be punched!) If n is

missing, only one card is deleted.

The subsequent card records are inserted
after the record with sequence number
m . All cards are treated as data to

be inserted, up to the command card.
$END

The inserted records are provided with
sequence numbers with increments of one.
All records on the input tape A having
a sequence number identical to one given
- to an inserted record are deleted. All

80 columns on data cards may be used.

18

$END The TUP returns to the update mode.

$LISTER m Listing starts (or resumes) with record
m. m 1is punched in columns 12-15

(cf. .$DELETE).

$NOLISTER m Listing stops at the record with sequence
number m . Note: all inserted and

replaced records are listed in any case.

Other cards: All other cards are treated as data
cards, and must be provided with a se-
quence number in columns 75-80 . If
its sequence number coincides with the
sequence number of a record on the input

= tape, then this record is replaced by the
one read from the card, otherwise the
card record is inserted at the appropriate

place.

Note: Cards in the update deck must be properly
sequenced, i.e. the numbers on "other
cards," and the parameter m on command
cards must be an increasing sequence.

If there are no cards in the update deck,
then tape A 1s simply copied onto
tape B .

The standard tape assignments are:

Input Unit A: logical unit 6 (182)
Output Unit B: logical unit 7 (183)

The PL360 compiler uses logical unit 7 as its standard source tape
input unit when $TAPE is specified, however $TAPEn (in decimal) can

be used in the compiler to correspond to unit B of TUP .

19

%.5. System Tape Updating Program (SYSTUP)

The SYSTUP can be used to list, copy, update, or punch system
tapes. The program assumes the update mode unless a control card
changes the mode. All system control cards must occur before the first
program identification card or $INSERT card. The control cards can
occur in any order because all system control cards are read before any

action is taken.

3.5.1. Program Identification Card

The copy, punch, and update modes of the SYSTUP are controlled by a
program identification card. Columns 2-9 of this card are the pro-
gram name by which this program is recognized by job control as well
as by SYSTUP, columns 10-72 are simply a comment field to be used for
version identification, columns 73-80 are the version date field. If
the date field is blank then the current date is put into the date field.
The program identification card becomes the first record for the program

on the output tape. Column one is completely ignored on the card.

3.5.2. Mode Control Cards

$ INPUTn The input tape is assigned the logical device
number n (in decimal). Device 4 is the standard

input unit if $INPUT is not used.

$OUTPUTn The output tape is assigned the logical device
number n (in decimal). Device 9 is the standard

output unit if $OUTPUT is not used.

$PUNCH This indicates a punch run for the SYSTUP. All
the programs specified by program identification
cards following this card are punched. Each
program punched has the tape program identifica-
tion card fimnst followed by the object deck and
ending with an EOF control card so that the
deck is in the form that SYSTUP uses to load a
program. At each program identification card,
the input tape is rewound and searched for the
specified program. Therefore, there is no specific
order required for the cards. $COPY or $LIST

should not be used in a punch run.

20

$COPY This indicates a copy run for the SYSTUP. All
the programs specified by program identification
cards following this card are copied onto the new
system tape. These programs are found on the input
tape by rewinaing the input tape each time and
searching the tape for the program. A monitor is
put on the new tape from one of the three sources
described below. A copy run can be used to
reorder a system tape. $PUNCH or $LIST should

not be used in a copy run.

S e A s Mmoo mea AN 4+
%) 4+ LT plruUuglLalls Vil Llic

input tape is desired. The input tape is rewound

and the program identification headers are listed

should be the $LIST and possibly a $INPUT card
followed by an end-of-file card.

If a $PUNCH, $COPY, or $LIST card is not encountered in the
system control cards, then an update run 1s performed. Any update
run 1s a sequential merge between the changes specified by the card
deck and the input tape. The update function behaves in the following

three ways:
1. If the current card is $INSERT then one of the following occurs:

a. 1f columns 10-17 are blank, then the deck set following the
$INSERT card is immediately loaded onto the output tape with-

out refering to the input tape;

b. 1f columns 10-17 are not blank, then the input tape is copied
to the output tape up to and including the program whose name
is in columns 10-17 . Then the following deck set is loaded

as in case "a."

2. If the current card is a program identification card then one of

the following occurs:

a. If the end of the input tape has been read, the program is

simply loaded onto the output tape.

21

b. Otherwise, the input tape is copied to the output tape up to
the program name on the program identification card. If an
object deck indication follows the identification card then
the new version of the program is loaded on to the output tape;

otherwise the program is deleted from the output tape.

3. If the end of the card deck has been reached, then the rest of the
input tape is copied on to the output tape. Note that this means
that an update run with no update deck simply copies all the input
tape programs to the output tape.

- Therefore, the update mode has the following general features:

1. All programs on the input tape that are not specified in the update

deck are simply copied to the output tape in the same order.

2. Programs can be inserted, changed, or deleted.

3. The EOF card separates each and every update step in the program
and each EOF card signifies a return to the normal updating mode.
Each update step is dependent on previous steps only because of

order.

4. The end of both the card deck and the input tape must be reached
before the update is completed. If the end of the input tape is
reached whil; searching the input tape for a program name, then
the current update step is completed just as if the end of the
input tape had been read before starting that step.

5.5.3. Deck Indications

There are three ways to specify the location of the object program

for a given program identification card.

1. The card object deck immediately follows in the card reader.
It is loaded until the next end-of-file card (usually an
EOF card).

2. $TAPE with columns 10-17 blank indicates that the program
is unlabelled and can be found on the scratch tape. The

-scratch tape is rewound and loaded.

22

3. $TAPE with columns 10-17 not blank indicates that the pro-
gram is to be found labelled on another system tape mounted on
the scratch unit. The scratch tape is rewound and searched
for the program named in columns 10-17 . That program is then

loaded. Note that the program name on the $TAPE card need

+ PU
C

not be the same as the one on the progra

card. Therefore, this feature can be used to rename a program.
If the desired program is on a tape other than the scratch tape (log-
ical device 5) then $TAPEn can be used to specify the logical

device (in decimal). However, n can not be the same gs the input tape.

3.5.4, Monitor for New Tape

In order to make a self loading tape for either an update or copy
run, it is netessary to first put a copy of the monitor on the new tape.
Normally the monitor can Jjust be copied from the input tape. Therefore,
this was made the default option. However, the following two sources

for the new monitor are also allowed.

1. $LOAD signifies that the monitor is to be loaded from the
cards following in the card reader. The object deck is assumed
to be an absolute 360 assembly language object deck. The
transfer address on the END card must specify the initial
program status word. The length of the monitor is determined
from the ESD card and is aligned to a half segment address.
The first end-of-file card (usually a EOF card) signifies the
end of the monitor deck. After the monitor has been loaded,
the normal update of system programs is done unless the input
tape is logical unit O . In that case the decks following
are loaded without using an input tape. This allows SYSTUP

to be used toc make the first system tape also.

2. ¢$MONITOR signifies that the monitor is to be copied from low
core. The length of the monitor must be the same as the one
on the input tape (aligned to a half segment). The address

at which execution will start must be in the half word starting

25

at memory location 20 (decimal). The use of this feature is
intended mainly to facilitate the making of system tapes with

different device assignments.

The monitor is always loaded starting at the timer position whenever the
system tape is initial-program-loaded. Any information wanted in core
below the timer must be moved there by the monitor after it has been

loaded.

3.5.5. Examples of usage

1. Copy the system tape from device L to device 9 .

#SYSTUP
#EOF

2. List the~program headers on the system tape on device 6 .

#SYSTUP
$INPUTO
$LIST
#EOF

3. Punch object decks of PL360 and TUP from system tape on

device L4 .

#SYSTUP

$PUNCH
PL360
TUP

#EOF

4. Compile LISTER program and update the system tape from device
6 to device 8 with the new version of LISTER and insert

an object deck of PNAME immediately after LISTER.

#PL360
$NOGO

{:LISTER source deck:}

2L

#EOF
#SYSTUP
$INPUT6
$OUTPUT8
LISTER
$TAPE
#EOF

$ INSERT
PNAME

object deck :}

#EOF

Note: The SYSTUP deck is ended only by reading the next job card

or a pause card.

22

3.6. Syntax Processor (SYNPROC)

The syntax processor program can be used to process simple prece-
dence grammars in order to determine the precedence matrix and the
f-g functions as described in EULER by-Wirth and Weber [2 j. The
input to the processor consists of the productions of the language.
Each production is punched on one card. Columns 1-72 of the card
are used for the production divided into six 1l2-character symbol fields.
The left symbol of the production occurs in columns 1-12 . (If
columns 1-12 are blank, then the left part of the previous production
is used as the left part of the current production). The right part
consists of 1-5 symbols punched in columns 13-24, 25-36, 37-48,
49-60, 61-72 respectively. (Note that blank spaces are significant)!
As standard procedure, the syntax processor reads and lists all
of the productions, constructs a symbol table in two parts (nonterminal
and terminal), assigns each symbol a number, and finally determines the
precedence matrix if it exists or prints out the conflicts that make the

matrix not exist.
The following option cards are recognized by SYNPROC

$SYMBOLS The symbol table should be read in before reading
the productions. Each symbol must be on a separate
card in columns 1-12 . The nonterminal symbols
are read first. A "$8" card signifies the end
of the nonterminals and the start of the terminals.
A second "$$" card is used to separate the
terminal symbols from the productions. Every
symbol in the language must occur on a card. The
terminal and non-terminal symbol groups can be
reordered in any desired fashion. In this way

the user can specify his own symbol numbers.

$SYMPUNCH If the symbol table was calculated by the processor,
then this causes the symbol table to be punched in
the form used by SYNPROC (including the “$SYMBOLS"
and two "#8" cards).

26

$CHECK

$MATRIX

$LEFT

$RIGHT

$FUNCTIONS

$TAPE
$TAPEN

After the symbol table has been listed, a check
is made whether any productions have identical right
parts. All such occurrences are listed. No check

is made if the card is omitted.

If the precedence matrix exists then 1t is printed
out in blocks 100 symbols wide. If the grammar
has more than 99 symbols, then the matrix will
be printed in two parts or in three parts if more

than 199 symbols.

In general it i1s tedious to look up relations using
the precedence matrix. If the precedence matrix
exists, then $LEFT will cause each symbol to

be listed along with the relation and symbol of

all symbols that have a relation to the right of
the symbol. Five relations are printed per line

in order to condense the output.
This is entirely analagous to $LEFT.

If the precedence matrix exists then the f and
g precedence functions are calculated. If they
exist then they are listed; otherwise the prece-

dence chain that makes them not exist is printed.

The results of the syntax processor are put on the
system scratch tape (or tape n if n is speci-
fied). If the matrix does not exist then no

tape output is made. If the functions are asked
for then they are output on tape if they exist

or no tape output is made if they don't exist.

The output consists of an 80-character control
record followed in order by the symbol table,
production table, matrix, and functions (if

calculated), described as follows:

27

1. Control record

Cols 1-k4 number of nonterminal symbols

Cols 5-8 total number of symbols, M

Cols 9-12 total number of productions, N

Cols 13-16 length of symbol table in bytes, 12(M + 1)
Cols 17-20 length of production table in bytes, 12(N + 1)
Cols 21-24 length of matrix in bytes, 64(M + 1)

Cols 25-28 length of functions in bytes, 2(M + 1)

BV

Symbol table

The symbol table consists of twelve byte entries which are the
nonterminal and terminal alphabetic symbols in order of their number,
Symbol O 1is theablank symbol; thus the symbol table has M + 1 elements
and is a 12(M + 1) byte record.

3. Production table

Each production is represented by six short integers that contain
the symbol number for each part of the rule. All symbol numbers have
been doubled in the table in order to facilitate half word indexing
in function calculations. The symbol number (0 fills out all right
parts that were less than five symbols. Since each rule takes 12
bytes and the first entry is not used, there are 12(N + 1) bytes in

the record.

L. Matrix

The matrix is output in a completely packed form with 2 bits
u#ed for each relation (00 no relation, Ol < relation, 10 > relation,
11 = relation). The processor can handle a maximum of 256 symbols so
there are 64 bytes for each row. The first row signifies symbol O
so there are 64(M + 1) bytes in the record.

5. Functions

The f and g functions are respectively the last two records on
the tape. The function values are short integers so each record is

o(M + 1) bytes long including a functional value of O for symbol O .

28

The control cards can appear in any order and at any place in the
deck, except that $SYMBOLS and the symbol cards must obviously be

placed before the first production.

%.7. Program to generate cross-reference tables of identifiers (XREF)
J. Keckler

The crosg-reference routine will list alphabetically all identifiers
in a source program with the numbers of the lines on which they occurred.
An identifier is defined as a string of one or more letters and digits,
the first character being a letter. According to various input options,
one may request that certain identifiers not be references (e.g. reserved
words) or that only specified identifiers be cross-referenced. The

input program may be on cards or tape, and a listing of it may be sup-

7
pressed.
Control Cards
1. #XREF
2. $PL§6O to ignore all PL360 basic tokens, standard
identifiers and identifiers on card(s) 3,
cross-referencing all others
or
$IGNORE to ignore the identifiers on card(s) 3,
monitoring all others
or

$MONITOR to cross-reference only the identifiers on

card(s) 3, ignoring all others
($IGNORE is assumed if card 2 is omitted)

3. A list of identifiers in free field, taking

as many cards as necessary.

(If omitted, the list is assumed to be empty)

4. $NOLIST to supress the listing of the input program
or
$1.IST to list the input program

29

5. $CARD
or
$TAPEn
6.

(8LIST is assumed if 4 is omitted. These cards
may occur anywhere within the input card deck to
obtain appropriate listing action)

indicates the input program is on cards

indicates input program is on logical tape unit
n, where n 1is a one or two digit integer. If

n is omitted, logical unit 7 is assumed.
(Card 5 must not be omitted)

input source deck, if on cards, followed by
#EOF

Program Size Limitations

500 unique identifiers
35000 total characters of identifiers
8000 total references to the identifiers

200 unique special identifiers to be monitored or ignored

500 total characters of special identifiers

Sample Deck Setups

+XREF
$CARD
input deck
+EOF

+XREF
$PL360
$CARD
input deck
+EOF

+XREF
$P1,360

ALFA BETA GAMMA

$NOLIST
$TAPES

30

4. Program execution (run-time) errors

The following error conditions can occur at run time and are diagnosed
by the supervisor. They result in program termination, (unless other-

wise specified), and a dump of the data area of the interrupted program.

a. A "program-check" interruption occurred. This is indicated by the

message
PRG PSW XXXXXXXXXXXKXKKXX

where XX ... X denotes the program status word upon interruption
in hexadecimal notation. If interruption occurred due to an arith-
metic operation, the interruption code is stored in the byte cell
FPI (floating point interruption), and control is returned to the
interrupted programt Such interrupts are counted, and the counts

are listed (if # O) after the end of program execution.

b. An attempt is made to read beyond the present job card file.

The message
EOF PSW XXX
is printed.

c. An illegal logical unit number has been used for an input-output

operation. The message
DEV PSW XXX
is printed.

d. The operator intervenes by causing an external interrupt. The

message
EXT PSW XXX AXKX

appears on the line printer and the operator console, and the system

expects to receive instructions from the operator.

*Also, the condition code is set to 3 .

51

N

5. The PL360 system

5.1. Initial loading and operating the system

The process of initial loading consists of the following steps:

a. Reset system

b. Meount system tape on any 9-track unit
Stack jobs on the card reader

d. Make card reader, line printer, and tape 5 (used by the
compiler) ready

e. Select the unit carrying the system tape on the Load Unit
Switches

f. Press the Load Key

g. Enter the date (8 characters) from the typewriter

Execution of the job sequence stacked on the card reader is imme-

diately started. Control is returned to the operator when either

a. a PAUSE control card is encountered, or

b. the operator presses the External Interrupt key.

The computer then accepts instructions from the operator via
typewriter. Each message must be terminated with an EOB (end of

block) character. The following free-field instructions are accepted:

a. dump XXXXXX, NNNNNN EOB
dump XXXXXX EOB
dump EOB

The values of the registers and of the NNNNNN byte cells
starting at the initial address XXXXXX are listed in hexadecimal
form. If the initial address is omitted, it is taken as the end of
the user's program segment area, and if the count is omitted, the

dump extends over the entire data segment area (cf. 5.2).
b. device XX EOB

Devices are designated by logical numbers. The correspondence

between logical numbers and actual device addresses is established

by the device table. The above command causes the address AAA of

32

the device with logical unit number XX to be typed out. Subsequent
typing of the device address BBB causes that device to be assigned
the logical unit number XX, and the device with address AAA to

be given the logical unit number YY, which previously designated

. . - P .
device BBB (if any). As a result, every device in

always be designated by at most one logical unit number.

before after
XX : AAA XX : BBB
YY : BBB YY : AAA

The standard device assignment used on the SLAC computer is:

0 Typewriter 009
-1 Printer OOE
2 Cardreader 00C
3 Card Punch 00D
b System tape 282
5 Tape 181 (7-track)
6 Tape 182
7 Tape 183
8 Tape 184
9 Tape 283

c. EOB

Processing resumes with the next job in sequence.

The operator is informed about abnormal conditions encountered by
the error analysis routines of the elementary input - output programs

contained in the supervisor. The following messages are typed:

a. XX YYY NOT RDY

b. XX YYY NOT OP

c. XX YYY I/O ERROR CCCC DDDD
d. XX YYY DEV END CCCC DDDD

XX represents the logical number of the afflicted device, YYY its
Physical address, CCCC the encountered channel status, and DDDD

the device status.

33

Message a. 1s given when a device is not ready. Execution
resumes when the device is put into the ready state. Messages b.,
c., and d., are respectively given when a device is not operating,
when a malfunction is encountered,\pr when an error is discovered

"o
|9

)
Q

d interrupt caused by the reader, punch, or printer.

The operator must reply with one of the following messages:

ignore EOB
exit EOB (resume processing with next job)

c. EOB (retry the operation after I/O ERROR; ignore the
DEV END condition)

Note thét if a storage dump is desired before processing the next
job, then thqﬁinterrupt key must be pressed first. If the bperator
response is not recognized by the system, then "RETRY" 1is typed out.
In order to cancel a response, the CANCEL character must be typed
before typing EOB. In elther case a correct response should then

be typed by the operator.

5.2. System organization

The PL360 system is a resident monitor which is logically divided

into two parts:

1. The interrupt service routines, including the SVC routines

performing input-output.

2. The Jjobcontrol routine which acts as the main program.

3L

The storage layout during execution of a program is as follows:

0
Interrupt and
Input-Output
subroutines’

Card Loader

Tape ILoader

JOBCONTROL

OPERATOR CONTROL

DUMP ROUTINE

Program segments

Rk —

Data segments

Upon initial program loading, the core size and the availability
of memory protection are determined. Before a program is loaded,
memory is cleared. The program is then treated as a procedure and

called with the following information in the registers:

R2 = return address

R3 = address of first byte following the 'last" program
segment

R4k = address of first byte of the "first" data segment

AN
\Oa}

PL360 programs are compiled as if they were declared as segment proce-

dures. Additionally, the return address in R2 1is saved upon entry

and restored upon exit.

During execution of a program, the monitor is memory protected

(if possible). The protected area includes the segment reference

table, which consists of 64 entries.

On the following pages, flowcharts are given of the main system

routines:

Table of Flowcharts

-
.
.
.
-

Initial program loading . . .
JOBCONTROL . . « « v v v e e e e v v

Tape load . . ¢« v v ¢« ¢ v« e e e e e e e e e e e .
Card load . v v v v ¢ o ¢ o e v e e e e e e e e e

LOADSYS (system program loader) . . .

EXECUTE (call for program execution) .

ERROR EXIT. « « o o o o o o o o o o o o o o
CONTROL (operator control routine). . « « « « « .

Supervisor call « « « o « o o 0 0 s e e e e

DO TO v ¢ o v v e v e e e e e e e e e e e e e e
TAPE TO « « v v o o o o o o v v o

TYPE TO v « o v o o o o o e o o e e e e
START TO '+ « « « o o o o o o 0 o o o o

CSW CHECK + « + o o o o v e o o o v e o v o v o

Interrupt service routine « « « « « ¢ « o« o o 0

36

bage

57
38
59
Lo

L1
41
41
b1

L2
b3
L
L5
L6
L6
b7

RESET INITIAL PROGRAM LOADING
MEMORY
PROTECTION

v

CLEAR CORE
AND DETER-
MINE SIZE
ENTER TIPL
DEVICE No, - " TYPE
IN TABLE No JoBseg"

—3» PROTECTION
LOAD IF AVAILABLE

~ !

REQUEST
DATE

)

To JOBCONTROL

A\m}mu SET MEMORY

8¢

dWL LM

E]
Sa3 svyg

Qv o 3y HINNZ “SLNOOD
IYID A03HD Wy
3dVY.L =039 3lidAm
(a”duuob) @
SAS
awOT
3a¥L SAS
aNIm3aN
Cadal
AUOUWAW e
_INIAA

ON=>303 *3300
INAD AIND
Sor LNA4

g N
<ANY) VoL
LxaN aNid

*qQad3aN 4|
a2 NV g

Honnd *SLNNGD
ADIHD WYaY
~0a4 ILlAM

N0YL NODFOL T

A 4

ST pw /_SEC.;\ /END\ READ ~ .
o cen 0. =4 pg S SEG.HEAD
il N ~_ FROoM TaPE
| | |
¥ » Y l
RETURN /ERR\ |
(N\D) |
\3&6 / Y :
— N ALLOCATE New
< D SEq p———» DATA SEGMENT ,
~. FeoM HIGH GrE |
T |
l |
| I
| |
il X
/V\ - - \ TN
LN ALLOCATE NEW e om o Ao [LorD\
N : <5 SE§ Pp——— PROG SEGMNENT———< SEGNO & MAX >—31 ppo)
TA?E LOAD \l/ FROM ;owcms N P
I | !
| | y
| | SET
1 | REF TABLE
N | ENTRY
< E SEq > | [
\T/ ¥
| /sRe\ " PROGRAMN_
Y (‘ere je—< o0
- _/ N\LAREE
{ LOAP \ \/
\ERR / |
N *
SET PReAMS READ SEG
To LOKS ~ | FROM TAPE

Ot

|

SET R4
To 5B 0

READ
A
CARD

e

RETURN

LOAP CARD
- INTD CURRENT

SEGMENT

ALLOCATE NEwW
| DATA SEQMENT]

FrRoM HiGH (oRE

ALLOCATE NEW

PROG SEGMENT

FroM Low CORE

LOAD
ERR

SET
REF TABLE
ENTRY

PROGRAM

TOO
LARGE

I8/

4

b
é

J
-~
)

4

[P PR U Y

// N\
| PROGRAM|

S]

CONTROL
|
|
} SET
R YN =
!\ LUIN T IWNVE
y MESS MGE
TYPE
MESSAGE
{
l
!
Y
READ
MESSAGE
]
|
Y
<\ PRINT

TN CHANGE
<'DEVILE' p—>1 DEVICE
N~ TABLE
¥
y
N DISPLAY

<MEMORTD—s] OR ALTER
\ / MEMORY

ERROR EXIT

[

{

I

l

1

y
PRINT ERROR
MEs$S. AND

SELECTED PsSwW

WRITE TIME

]

To _'l‘o,'B(.t,:ml‘,rz?o:=

oh

_

"EoF"
*IV

SET EQT AAG
SAVE J0B (ARD

Y

SUPERVISOR CALL
_ CC<0
BRANCH ON_SV¢ CODE ¥ |
READ WRITE PUNCH READTAPE WRITE | REWIND WRITE FPL PAGE
TAPE | WM TYPE RESET
/ FSPTM
¥ DEV & PRI PEV wn PUNCH mwwﬁnx \
ERROR P < PUNcHCow W < READ r
EXIT P& PRINTEW | | cer punePug = WK | | Bsere TR0
DEV ¢ READERR
P« READCW > y
PAGE FLAQ y <ET
TAPE I0 WeCw CoE PRINTFLAG
PePagE, DO 10 y REPOTYE |
W<« READ W& WRiTE
Coti=8 >—
TYPE IO
CC &« 1

RETURN

e

DO

SET

CAW

10

N

o y

.Y
—E2>
“_Mmy

4.\

SET
PAGE FLAgG Busy WAIT
5 FoR ANY
INT.
/ INT IMMED
cvﬂ?ﬂ CLEARED OFtR
g 6
7
\ ']
IRREC ERR_| NoTOP P« Notop
‘w P «'uNIT erK' f—
* | REcov ERR
2 TR) pe"NoT ROY

P <"t ek

RETRY

|GNORE

\Il . A N A
CONSTRUCT SET CAW SET CPW
CCW ERR CNT €0 th:zsPﬁcE
'ERR CNT €
ERR CNT<0 ERR CNT +1
TO i
ERROR EXIT
IGNORE WAIT
r OPERATR ERRCNT £ 19 R
ANY INT,
‘ N
= TAPE] [
10 P < "NoT rY" P<"UNITEHK!| o P<"UNIT CHK P ¢ "NoT op"
, c 21 & K} | T 5 K7 8
MM~ NOT RECOV IRREC. BUSY NeT INT
OP RUOY ERR ERR oP CLEARED
¥ \ 2 3 b 1 it
NoT REWV IRREC OK~N_EXC 1 Clet
RDY ERR ERR T —

RETURN ¥

4
N7
i
03¢ .
Av 2
512
G ~NL[E] =
A e — Qf
i .rv \ A m W m. /
=3 X ¥\ o > b < SN
=P s A0S Je] B 2
= > \. Ty \..0_“
3 A ~—" o ~
Ly
;
ey = >
§74 E Yo
LN S e _ Qw
\ ;.N _..H o an
_ 4 3 J
N aERE T
//o _ vo[eeEn
L Or
3 X, 0
- >0
=) y k 23k
[e 4Fl2—57., . W nw mw B

PE
e ——
—\
AIT \
FoR
'NYINT./
\T/
5
NOT RDY

o~
> =7z
i
a b
e onl®3 |
_ ¥ ~— - \ <N
m_, w" m \wu N 5 - o / 2 K/m
NN ENVCPANETAWANWE S
—AE 2 Vo) & H i_r.w m 2 mm VA 3L MV \J
¥ Q koS \ V4 / N \
Z O w N / ~
N wn D — .

SET
MESS CNT
¥ RETURN

234

. 1
SI0 —
¢cc=0f 3| 1
COoN UNIT END
CHANNEL END
\
STORE STATUS
IN
Dev ST. TABLE
/
m <« 1 me<7 me5s me € me6
N
[oK NOT | OP Jsusy INT | CLEARED MM, |oP
\
y RETURN

SENSE
DEVICE

! ¥ , W

IRREC | ERR oK

START
I0

¥ RETURN

S

Ln

10

-

CHANNEL
END
N

B!

FIND
LoaIcAL
DEVICE NO.

DEV STIDN]
.Al CSW

&YS MpEK <0
WAIT BIT <0

R ——
* RETURN

EXT

&

SAVE
REGISTERS

\

PROGRAM

HALT
TYPEWRITER

|

TO
ERROR EXIT

SAVE
T« INTWE REGISTERS
POHK [T] <« Fo
PeHk [1] +1 ERROR EXIT
|
(ce3
mm%xz

INTERRUPTS

6. The PL360/0S system

E. Satterthwaite

[
%)
©
%)
I_J
s

m
I._l
[0]

0S job step; it consists of a core-resident linkage routine originally
coded in OS Assembler Language and a set of PL360 system programs on

a (logical) system tape. Among the latter set of programs is a core-
resident Jjob sequencing routine, which controls the processing of a
batch of PL360 jobs as directed by the PL360 control cards described
in chapter 2. In addition, OS Job Control Language (JCL) statements
must precede the PL360 batch to control OS job sequencing and the
association of PL360 logical input/output devices with OS data sets.
Finally, thqmlinkage routine must be supplied as an object module if
it is not available in a system library.

Section 6.1 contains information about the use of the previously
described PL360 system programs under OS. Section 6.2 is an intro-
duction to the use of the Job Control Language as it pertains to the
PL360/0S system. The internal organization of the system is described
in section 6.3. Understanding of parts of these sections requires
some familiarity with OS concepts and terminology. Furthermore, only
the more elementary uses of OS job and data management facilities

can be described in detail. The publication IBM Operating System/360:

Concepts and Facilities (IBM Form C(28-6535) contains an introduction

to 0S8 and further references.

6.1. PL360 Programming Under OS

6.1.1. Input/Output Considerations

0S data management services allow the problem programmer to code
I/O requests in a manner which is relatively independent of physical
device characteristics. Some of the I/O requests in the linkage
routine have been so coded; details are provided in section 6.3.
Supervisor I/O function statements are written in PL360 as described

in section 3.1.2.4; however, the following restrictions are made:

L8

READ

Reading any card with a "/¥" in columns 1 and 2 will

cause termination of the PL360 system. The message

PL360/0S TERMINATED BY ©OS DELIMITER

will be printed at the top of the next printer page.

Tape Functions

(1) Since physical tape marks have special significance to
0S8, logical tape marks are written as special records.
Such records are 18 bytes long; the first 14 Dbytes
are E016 (corresponding to 0-2-8 punches). Since
such records are recognized as tape marks and since the
last four bytes are reserved for system pointers, such
records should not be written using the WRITETAPE
function.

(2) Whenever possible, use of the BSPREC and BSPTM
functions should be avoided. Certain design goals
require the use of the OS BSP instruction in performing
these functions; BSP 1is very inefficiently implemented
in current versions of 0S (through Release 10).

(3) A variety of physical devices may be used as logical tape
units. OS and/or these devices impose limits on the
maximum record length which can be processed. These
limits are:

Physical Device Maximum Record Length (bytes)
2400-2402 tape 32760
2311 disk 3625
2314 disk 7188
2302 disk LoB8lL
2301 drum 20483
2303 drum 4892
2321 data cell 2000

k9

Attempts to write records longer than those allowed for
the physical device will cause termination of the PL360
job with an I/O error indication. A record length para-
meter is passed to each program in register 6. 1In
addition to any userﬁdefined significance, this para-
meter is used by the PL360 compiler and system tape
update programs as described in section 6.1.2, The value
of the record length parameter may optionally be speci-
fied as a PL560/OS system parameter (see section 6.2.5.1);
the default value is 362k.

¢c. WRITETIME
The printed time is real time. With some OS options, only

part of that time was used by the PL360 system.

6.1.2. System Program Limitations

In addition to the input/output considerations above, certain

restrictions are made on the use of the system programs.

6.1.2.1. The PL360 Compiler

The language processed is PL360 with the restrictions and exten-
sions of section 3.1.2. Some programs which can be compiled by the
stand-alone system will cause segment overflow errors in the 0S
version, since the first 368 bytes of data segment O are unavail-
able for data and since supervisor function statements generate
twelve bytes of code instead of two. Compiled segments will be written
on the scratch tape as multiple records, if necessary, to limit maximum

record length to that specified by the record length parameter.

6.1.2.2. The System Tape Updating Program

Since the PL560/OS system linkage routine (monitor) is not
included on the system tape, section 3.5.4 is not relevant. $LOAD
and $MONITOR cards should not be used. Maximum record length on
any new system tape generated will not exceed that specified by the

record length parameter.

50

6.1.3. Program Execution Errors

Errors are processed as described in chapter 4 with the following

exceptions:

a. The external interrupt facilify is unavailable.

b. An end-of-job (EQJ) error is also caused by an attempt to
read beyond the end of a data set on any logical tape.

c. The PSW displayed for input/output and EQJ errors has the

form
0101010/60))1):0,0:0.9.9:0.0.¢

where NN is the logical device number and XXXXXXXX specifies
the location of the instruction following the one linking to
the I/0 routine.

Following the detection of errors, the system will attempt to proceed

to the next PL360 job. Certain serious I/O errors cannot be accepted
by 0S8 and will terminate the PL360 system. In addition, the linkage
routine, the job sequencing routine, and the problem program have
identical memory protection keys, and the program reference table both
shares this key and is addressed using register 14. Thus it is possible
for a problem program error to cause PL360 system failure. Under

0S options using memory protection, OS supervisory programs and user
programs initiated by other OS jobs in the system will be protected

from such modification.

51

6.2. 08 Control Statements for PL360

6.2.1. TIntroduction

In this section, the reader is assumed to be familiar with OS
concepts and facilities and to havé access to the publication IBM
System/360 Operating System: Job Control Language, (IBM Form C28-6539).

Use of the system with a card object module of the linkage routine and
a full set of JCL statements will be described. At some installations,
a catalogued procedure or load module may be available to reduce the

number of non-PL360 cards; documentation of the use of such facilities

is considered an installation responsibility.

6.2.2. PL360/0S Job Setup

A PI360/0S job consists of two or more job steps. In the first
step, the Osﬁiinkage editor is used to produce a load module of the
PL360 linkage routine. In each subsequent step, a batch of PL360 jobs
is processed. For each such job step, DD cards are used to assoclate
PL360 logical devices and OS data sets. Such associations are fixed
during each job step but may be altered between job steps. The card

deck organization required is shown schematically below:

repeat as
required

I(- delimiter card
/// l PI360 job batch

[- 0S job step control cards
T for PL360

delimiter card
4:; linkage routine obJject module

linkage editor Jjob step control cards

job card

52

The 08 JCL statements required are described below. Information con-
cerning the syntax and format of the cards containing these statements
may be found in the IBM JCL manual (IBM Form C28-6539); the notation
introduced in that manual is used in the following description. Theé
delimiter card contains a "/¥" in columms 1 and 2 . The PL360
job batch must contain the PL360 control cards as described in chapter
2; in particular, it should be noted that the 0S delimiter card is not
a substitute for a PL360 EOF card.

6.2.3. The Job Card

This card must be prepared according to individual installation

standards.

6.2.4. The Linkage Editor Job Step Control Cards

For most efficient resource utilization, the JCL statements for
this step should be copied from those of the linkage editor step of
the installation's standard catalogued procedure ASMFCLG, with the
data set SYSLIN equated to SYSIN. A typical set of statements

follows:

//LKED EXEC PGM=IEWL,PARM='NCAL'

//SYSLIN DD DDNAME=SYSIN

//SYSIMOD DD DSNAME=&GOSET (MAIN), UNIT=SYSDA, X
// SPACE=(TRK, (20,10,1)), VOLUME=REF=SYS1.SCRTCH3, X
// DISP=(,PASS),DCB=(RECFM=U, BLKSIZE=3625),

//SYSUTL DD SPACE=(TRK, (20,10,1)),VOLUME=REF=SYS1.SCRTCHL
//SYSPRINT DD DUMMY
//SYSIN DD ¥

6.2.5. The 08 Job Step Control Cards for PL360

6.2.5.1. The EXEC Statement

Execution of the load module produced by the link edit step (named
LKED) is specified by a statement of the form

23

//stepname EXEC PGM=*.LKED.SYSLMOD
or

//stepname EXEC PGM=*.LKED.SYSIMOD,PARM=blocksize .

An integer should be specified for-blocksize; this parameter is optional
(see section 6.1.1). The name of each job step within a job should be

unique.

6.2.5.2. The DD Statements

DD statement names for the PL360/0S system should be of the form
DEVICEn, where n 1is the number of the PL360 device to be associated

with the described data set. The devices and associated logical

- characteristics supported by the standard PL360/0S system are as

follows:

Device Number Logical Device Type

line printer
card reader
card punch
tape (system)
tape

tape

tape

tape

O 0o N O 1 & W P+

tape

Data sets associated with devices 1 through 3 should consist of

0S format F records with the following attributes:

Device Number Logical Record Length Blocksize
(bytes) (bytes)
1 133 (1) (2)
80 80
80 (2)

S5k

(1) includes an ASCII carriage control character supplied by

the linkage routine

(2) specified by DD statement.

Data sets associated with devices U4 fhrough 9 should consist of OS

e marks to be processed must have

been written by the PL360/0S system. DD statements for devices 1

through 4 are required; those for devices 5 through 9 are optional.

If a device in the latter set is referenced and the corresponding DD

statement is missing, the PL360 job will be terminated with an I/O error

message.

Section 2 of the IBM JCL manual (Form (28-6539) contains model

DD statements for most common applications. The following notes

should be considered a supplement to that section.

a.

For DEVICElL and DEVICE3, the DCB parameter
is required. Appropriate values for the subparameters
BIKSIZE and BUFNO must be specified. ZFor all the

other data sets, no DCB information is required.

If deferred mounting of magnetic tape volumes is
requested, tapes need not be mounted until (and unless)
referenced. With this option, the unit parameter has
the form

UNIT=(address, ,DEFER) .

Appropriate serial numbers should be supplied for
unlabeled tapes, since they are used in mounting instru-

tions directed to the operator.

6.2.5.3. Examples

The following examples illustrate appropriate JCL statements for
the PL360 job step in the situations described.

.

PL360 programs are to be compiled and executed. The
system is on unlabeled tape (reel identification
GSG140); the scratch area is to be on disk; standard

unit record options are desired.

25

//Go

//DEVICEL
//DEVICE2
//DEVICE3
//DEVICEL
//
//DEVICES
//SYSIN

//GOL

//DEVICEL
/ /DEVICE2
//DEVICE?
/ /DEVICEL
//

//DEVICES
//DEVICET

//

//DEVICEQ

//

//SYSIN

//Go2

//DEVICEL
/ /DEVICE2
//DEVICE?

EXEC
DD
DD
DD
DD

D
DD

PGM=*%. LKED. SYSLMOD
SYSOUT=A, DCB=(BLKSIZE=133,BUFNO=2)

DDNAME=SYSIN

UNIT=SYSCP,DCB=(BLKSIZE=80, BUFNO=4)

UNIT= (183, DEFER) , LABEL=(,NL), X
VOLUME=SER=GS G140, DISP= (OLD,KEEP)

SPACE=(TRK, (20,10)), VOLUME=REF=SYS1. SCRTCHL

*

b. In the first job step, named GOl, a system program on
unlabeled tape (reel identification SC1278) is to be

compiled; the compiled program is to be used in a system

update to a new tape reel. 1In the next job step, named

= GOo2,

the new system tape is to be used, and logical

card punch output is to be blocked and written on

magnetic tape.

EXEC
DD
DD
DD
DD

DD
DD

DD

PGM=% . LKED . SYSLMOD , PARM=32760
SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=2)

DDNAME=SYSIN

UNIT=SYSCP,DCB=(BLKSIZE=80, BUFNO=2)

UNIT=(183, ,DEFER),LABLE=(,NL), X
VOLUME=SER=GSG140,DISP=(0LD,KEEP)

UNIT= (2400, ,DEFER), LABEL=(,NL)

UNIT=(184, ,DEFER),LABEL=(,NL), X
VOLUME=SER=SC1278, DISP=(OLD,KEEP)
UNIT=(283, ,DEFER),LABEL=(,NL), X

VOLUME=SER=GSG141,DISP= (NEW,PASS)
*

PGM=%. LKED. SYSLMOD
SYSOUT=A,DCB=(BLKSIZE=133, BUFNO=2)

DDNAME=SYSIN

UNIT= (282, ,DEFER), LABEL=(,NL), X

56

/!
//

//DEVICEL
//DEVICES

VOLUME=SER=GSG201,DCB=(BLKSIZE=240,BUFNO=1),
DISP=(NEW,KEEP)

DSNAME=% . GO1.DEVICE9,DISP=(OLD,KEEP)
SPACE=(TRK, (40,10)),VOLUME=REF=SYS1.SCRTCH1

RS
™

o7

6.3. System Organization

6.3.1. Storage Organization

The PL§60/OS system consists of a linkage routine, coded in 0S

Assembler Language, and a set of'system programs, coded in PL360.

Among the latter is a job sequencing routine.

linkage routine are permanently core-resident; other PL360 system and

user programs are loaded as directed by control cards.

tion of a PL360 job, storage is organized as indicated schematically

in the following diagram:

During execu-

\\
0

W\
W

Linkage Routine

(Linkage Area I)

\\
\

)

Job Control

Program and Data

- Segments

A

Program

Segments

\\
A\

A\
\

(Linkage Area IT)

Data

Segments

58

That routine and the

S9SSoJppY JUISBaIOUT

<

The linkage routine occupies about 500010 bytes of storage. The Jjob
sequencing, program and data segments, and the free storage area occupy
a block of storage obtained by a GETMAIN instruction. The length

(in bytes) of the block lies between the values of COREMIN and
COREMAX defined i

1 the linkage routine source code. In the standard

system, these have values of 0553 and 131072 respectively.

The two linkage areas contain save areas and identical copies of
the program reference table, which contains the segment base addresses.
Area I 1is used by the job sequencing routines and is filled by the
loader programs. Area II 1is used by problem programs; the reference
table of Area ‘I is copied into Area II at the completion of loading.
The contents of register 14 always address the base of the linkage
area 1n use; the contents of register 15 normally address the base

of the program segment being executed.

The linkage é}eas consist of 92 full words each, used as follows:

Displacement (Bytes) USE
+ 0 user program segment base addresses
+ 252} (segments O through 63)
+ 256:} | Job sequencing segment base addresses
+ 316 (segments 64 through 79)
+ 320 : linkage routine entry vector address
+ 324 linkage routine register save area
+ 352}
+ 356 reserved
+ 360 reserved
+ 36k return address (to job sequencing)

6.3.2. The Linkage Routine

6.3.2.1. Linkage Conventions

Supervisor function statements in PL360 generate machine code

of the following form (refer to section 6.3.1):

L 15,320(1k) load entry vector address
BAL 15,12%n(15) link to n'th entry point
L 15,4%m(1k) " reestablish addressing

29

where 1t is assumed that the statement occurs in segment m . FElements

of the entry vector have the following form:

STM 12,3,32L4(14) save registers
L 12,320(1k) establish linkage routine addressability
B routine branch to service routine.

The return sequence has the form:

CLI *+1,0 set condition code to O
IM 12,3,3%24(14) restore registers
BR 15. return

For certain services specified in section 3.1.2.4, instructions to set
- the condition code appropriately replace the first instruction. 1In
addition, most routines require a separate save and restore of register

14 in a location addressable through register 12 .

6.3.2.2. Unit Record Input/Output

I/O to the logical printer, card reader, and card punch is per-
formed using the O0S queued sequential access method with move-mode
GET and PUT logic. Automatic buffering is supplied by 0S. The card
reader uses a block size of 80 bytes and two buffers; blocking and
buffering information for the other logical devices is provided on the
corresponding DD cards. The logical record length for the card punch
is 80 bytes; for the printer, it is 133 bytes and an ASCII carriage
control code is prefixed to each record by the linkage routine.
Following a skip to channel 1, the next skip code is supplied after
LINESMAX lines have been printed or a PAGE statement is executed.
LINESMAX 1is defined in the linkage routine source code; the standard

value is 60 .

6.3.2.3. -Tape Input/Output

I/O to the logical tape units is performed using the 0S basic
sequential access method with READ, WRITE, and BSP logic. Records
are considered to have the 08 undefined format; those shorter than
18 bytes are automatically padded to that length. No buffering is

provided, and by issuing a CHECK instruction, the linkage routine

60

assures that all I/O requests are completed before returning. Tape
marks are written as special 18 byte records, the first fourteen
bytes of which contain EOl6 (corresponding to an 0-2-8 punch). For
each logical device, a count (NBLOCKS) is maintained of the number

of records written or read following éither the load point or the
inter-record gap which precedes the last tape mark record. When a

tape mark record is written, the current count value is recorded in

the last four bytes of that record, and the count is reset.

6.3.2.4. Other Linkage Routine Services

A portion of the linkage routine is used for system initializa-
tion. Storage is obtained by a GETMAIN instruction, linkage to
capture program interruptions is established by a SPIE instruction,
and logical devices 1 through 4 are opened by an OPEN instruction.
Other devices are automatically opened the first time they are refer-
enced. Upon system termination, storage is freed and logical devices
1 through 5 are closed. Other devices will automatically be closed
by the system if necessary. The card and tape loaders are also
included in the linkage routine; they are coded to be used as PL360

procedures.

6.3.3. The Job Sequencing Routine

The job sequencing routine is a minor adaptation of the correspon-
ding routine for the stand-alone system. Status switching and access
to the device table have been deleted. The Program logic is described

in section 5.2.

61

Appendix: Conversion of 026-punched cards

The system accepts the following two control cards anywhere in

the input deck:
$026 and £029

These control cards do not give rise to end-of-file indications, but
cause the READ routine tec perform a character translation on subse-
quently read cards, or to omit the translation respectively.

The translation, caused by #026, permits the use of cards punched
on Stanford's extended 026 keypunch equipment. The translation is
specified by the following table. ©Note that letters and digits do not

undergo translation.

holes 026 029 hex.

12-3-

e
NERN

1
1

no

1
Qo GO 0o OO o (@] o OO Co o
N+ —m~A-

| S R I |
[1

1
1

HH e
OVES D 2 D O

o
ROONNTOOUVNIWHH OO WO O\ & O

v N X v Lo XK Ep
e Ui _j ve s KPR e o~~~ AN -
\U1
Q

~

1
!

Qo Co o

1

(o)

|w)

=

l_l
P’\N\TOI\D\‘J'II—'OHOO

1
|
o

- ® k- VI
]
o

I
i
-3
=

I

62

References
[1] N. Wirth, "A programming language for the 360 computers",
Technical Report CS 53, Stanford University, June 1967.

[2] N. Wirth and H. Weber, "EVIER; A generalization of Algol, and
its formal definition", Part 1, Comm ACM 9/1, pp. 13-23.

[3] IBM System/360 principles of operation, IBM Sys. Ref. Lib.
A22-6821-2.

63

