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Preface

"...for all of it is contained in a long
poem which neither I, nor anyone else, has

ever succeeded in wading through."

The Devil
in Man and Superman,
George Bernard Shaw

This paper arose from a number of years of ambivalence towards
éfforts to produce automated translator writing systems. While
much had been accomplished, the research seemed marred by xenophobia
and loose scientific standards. The immediate impetus was an
unsuccessful working conference in April 1967, which indicated
that the situation was every bit as serious as we had imagined.

Many people have aided in the preparation of this report. The
original draft of Section II.B3 (COGENT) was done by Fred Hansen
and the draft of Section II.B4 (META systems) was done by Jeff
Rulifson. David Gries prepared Sections I.B, II.A and III.B2 and
made important contributions elsewhere. In spite of this help and
more, this is in many ways a personal paper. The selection and
arrangement of material and the tone of the entire paper are entirely
Feldman's responsibility. Any resemblance of this work to a care-
fully prepared paper is due to the efforts of the typist, Miss
Elaine Callahan.

This work was supported in part by the U. S. Atomic Energy

Commission.
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I.A. Introduction

Compiler writing has long been a glamour field within programming
and has a well developed folklore [Knu 62, Ros 6ib]. More recently,
the attention of researchers has been directed toward various schemes
for automating different parts of the compiler writer's task. This
paper contains neither a history of nor an introduction to these
developments; the references at the end of this section provide what
introductory material there is in the literature. Although we will
make comparisons between individual systems and between various
techniques, this is certainly not a consumer's guide to translator
writing systems. Our intended purpose is to carefully consider the
existing work in an attempt to form a unified scientific basis for
future research.

Compiler writing is a large programming task with many aspects
and it is not surprising that many different technigues have been
proposed as aids to compiler writers. In a very real sense, any
system feature (e.g. trace, edit) which helps one produce large pro-
grams is a compiler—writing tool. This remark will become relevant
as we examine various systems for their specificity to compiler
writing. Since there has been no general agreement on terminology,

we will define a term Translator Writing System (TWS) to denote the

programs and proposed programs considered here. A translator written
in a TWS might be an interpreter, a compiler, an incremental compiler,

or an assembler.
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Relatively few existing translators have been implemented with
the aid of a TWS; the most common technigues involve the use of
(macro-) assemblers or conventional algebraic or list-processing
languages. There have been claims that this proves that TWS research
is therefore a failure, but we find this argument unconvincing. For
one thing, there is little in the work of commercial compiler writers
which would lead one to believe in their infinite wisdom. Further,
commercial translators often involve the informal use of TWS con-
cepts and the division between conventional and TWS systems is not
always sharp.

It is even more difficult to classify the various TWS develop-
ments in s meaningful way. We have chosen to divide the work into
four categories: those efforts concerned only with syntax, syntax-
directed symbol manipulating systems, macro processors of various
kinds, and compiler-compilers. The emphasis throughout is on recent
work; a fairly complete (though abominably edited) survey of earlier
work may be found in Burkhardt [Burk 65].

Unfortunately, one cannot understand the development of TWS
research without some knowledge of ité sociology. - Thig is doubly
unfortunate because neither the intercommunication nor the public-
ation behavior has been inspiring. One might be able to attribute
this to the great financial potential of a successful (i.e. accepted)
TWS. In any event, one must use care in reading much of the lit-

erature on TWS proposals.
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One common way to begin a TWS paper is with a statement like

"Most of the existing TWS systems lack property X, which is
essential.” The author of such a statement rarely describes which

systems have property X, how they compare to his work, or even why
property X is essential. This kind of oversight occurs in other
contexts and may simply be the result of not reading the literature.
.In any event, there is a tremendous amount of rediscovery and very
little cross-referencing within the field.

Another statement often found runs something like "Our system
has been used to implement N compilers on M different computers.”
This rarely means that the TWS presented in that paper was used just
as presented and was completely adequate to the task. For example,
essentially no existing language can be adequately handled by any
of the syntax mechanisms mentioned in the TWS literature (cf. Section
III.B2, Floyd [Flo 62b]). One could make a much more significant
contribution by carefully describing both the strengths and weak-
nesses of one's work. To some extent this is due to referees and
reviewers who seem to judge a paper on what it claims to have done.

Another flaw has been the pfevalence of a more-mathematical-
than-thou attitude.. The worst form of this attitude seems to come
from confusing mathematical notation with mathematics. However,
even the serious work on mathematical models (Section III.B) seems
more concerned with applying known results than with developing
new ones. Many basic concepts in programming (e.g. the storage

location, transfer of cohtrol) have not been adequately formalized.
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These critiéisms should not be construed as a complete rejection
of the field of TWS research. It has been and cqntinues to be one
of the most active and fruitful areas of Computer Science. Many of
the outstanding workers in Computer Science have contributed to the
TWS development, and even the bad work seems well-intentioned. The
problem is that a lack of communication and a tendency towards over-
enthusiastic reporting has marred the record.

Before describing the particular systems in the next section,
we should say a few things about the general problem of translator
writing. We will concentrate on compilers, because these contain
all the essential problems found in assemblefs and interpreters.
Considering the amount of effort that has gone into compiler writing,
there has been relatively little published on the subject. The
history [Knu 62, Ros 64b] and syntax methodology [Flo €4b] have
been fairly well covered, but very little has been said about code
generation or interactions with the operating system. This lack
of literature has forced TWS designers to try to formalize systems
which were largely intuitive and had never been described carefully.
A further difficulty is that there are no accepted standards of
performance for translators, except such shibboleths as efficiency.
The efficiency of a compiler depends on its ability to conserve both
time and space, while translatiﬂg and during execution of the object
program. The error detection and recovery facilities, the editing
facilities and the speed of recompilétion have important effects on

efficiency. Since all these goals are not mutually compatible, one




can expect no absolute measure of efficiency for compilers. The
designers of the TWS considered here have varied considerably in
their preferred choice of compromises.

We have divided the review of TWS (Chapter II) into four major
parts. The first describes the efforts which are primarily aimed
at automatic syntax techniques. The second section deals with
systems where the syntax processing is augmented by a symbol manip-
ulation language for producing output. The third section treats
the related topics of extendible compilers and meta-assemblers. The
final section describes systems which attempt to provide specific
techniques for many of the post—syntactic.problemé of translator
writing.

The related topics discussed in Chapter III have been chosen
to complement the review sections and are treated in much less
detail. The treatments of the other uses of syntax-directed
techniques and related mathematical studies are aimed at elucid-
ating their relationships with TWS efforts. Finally, we sketch a
number of potentially fruitful research topics related to the future
development of translator writing systems. The bibliography is
arranged alphabetically with references pertinent to a particular

section listed at the end of that section.
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The ions of the ACM, and to a lesser extent

The Computer Journal of the British Computer Society are the major

journals for publications on translator writing.

See especially
Comm. ACM 4 (Jan. 61)
Comm. ACM 7 (Feb. 64)
Comm. ACM 9 (Mar. 66)

Other general references:
Che 6ha, Flo 64b, Hals 62, Knu 62, Ran 64, Ros 64b, Weg 62,

Wil 64b.

Formal descriptions of various programming languages:

Bac 59, Ber 62, Brook 61, Bro 63,
EvA 6k4, Gor 61, IBM 66, Naur 60, 63b,
Rab 62, Samm 61, Shaw 63, Tay 61,

Wir 66b, 66c.



I.B. Terminology

One of the minor irritants in the TWS literature is the lack of
uniform notation. In order to make this paper more readable, we have
taken the liberty to change the symbols and sometimes the syntax used
by various authors. For the discussions on syntax we have decided on
the notation used by Ginsburg ([Gin 66a], pages 8,9). However, as an
(non-conflicting) alternative, the notation of the ALGOL report [Naur
63b] and of the syntactic meta-language Backus-Naur Form (BNF) is used
where it is more readable. ’

Many terms will be used in both a formal and an informal sense;
the default sense is the informal except in Sections II.A and III.B.
The formal definitions of such terms as "syntax" and "semantics" are
not generally agreed upon and we will discuss them further in Section
ITI.B. Informally, we consider syntax to be the specification of well-
formed statements in a language and semantics to be essentially any-
thing else.

In general, a language, L , will be some subset of the set of all
strings of symbols from an alphabet (. The specification of which
strings are in the language L (syntax of L) will be described in a

syntactic meta-language. The syntactic meta-language will be pro-

cedural and will describe either an algorithm for generating strings
of L (synthetic syntax) or for recognizing if a string over & is in
L (analytic syntax). Any process utilizing a non-trivial analytic

syntax will be called syntax-directed.

An individual statement in a syntactic meta-language will be

called a production. We have found no way to overcome the unfortunate



"production'" in the TWS literature. The term was

use of the word
originally used in mathematical logic to describe string transformations
which are more general than any considered here and which can be con-
sidered both analytic and synthetic. In going through a series of
applications in Computer Science the term "productions" began to be
applied to a set of rules for recognizing (reducing) a program (cf.b
Section II.A5). This analytic meta-language is widely known as
"production language" even though its statements are reductions and
will be so described here.

A syntactic meta-language may include symbols not in Cl(non—

terminal symbols) which are used in defining a grammar. These will

~normally be enclosed in angular brackets '<' and '>' as in the Algol
report, and will appear informally in the text as well as in formal
syntax rules. In the sections dealing more formally with syntax (II.A
and III.Bl) we will bow to clarity and convention and omit the
brackets. These sections will also require a fairly extensive
technical vocabulary used less formally in the other sections.

For the formal discussions, chayacters or symbols are represented
by Latin capitals S,T,U,..., strings of symbols by lower case Latin
letters 1, v, w, x, ¥y, 25... . The set of all strings of finite
length (including the empty string €) over a set of symbols Vv is
denoted by “y*. If z = xy is a string, x is a head and y a tail of
z. A production U — u is an ordered pair consisting of a symbol U
and a nonempty string u. U 1is the left and u the right part of the

production. A set of productions is called a (synthetic) grammar .
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Given a grammar, we say that w=pv if there is a production U — u

and strings x and y (possibly empty - the empty string is represented
by €) such that w = xUy and v = xuy. "X" is the transitive closure

of "="; w=bv if w = W W D Wysee W, oW, (i> 1) and w, = v. If
w=é§v, v 1s called a deri?ative of w. A set of productions P is called
a phrase structure grammar if P contains exactly one symbol U which
appears only on the left of "' and a nonempty set 6{ (the alphabet)

of symbols which occur only to the right of "', called terminal
symbols and always denoted by T, Tl’ TE’ «es + The symbols which

occur on the left of "' are called nonterminal symbols and are

denoted by U, U, U, U The derivatives of U are called

Dy ee e

sentential forms and the sentential forms consisting only of terminal

symbols are called sentences of the language LP determined by P. If
the grammar represents a programming language, the sentences are Jjust
the programs of that language.

In order to be able to recognize.the beginning and end of a
sentence x, one usually puts a special marker -L at the beginning and
end of it. Formally we add the production <Program> — 1LTA to
the grammar.

Figure 1 contains, as an example, a grammar which will be used
throughout the rest of the paper. The sentences of this grammar are
the set of all arithmetic expressions (enclosed by L and_l ) con-
sisting of the operand I, the binary operations * and + (* takes

precedence over +), and parentheses.




<Program> - | E |
E-T
E-E+T
T->P
T->T*P
P - (E)
P>I
Nonterminal symbols: <Program? E T P.

Terminal symbols: I ( ) + * L
Fig. 1. Example'of a grammar

The sentential form LP + T ¥ PL has at least two derivations

(according to the grammar of Fig. 1):

(a) <Program>=»LE 1= 1E + TA=2AT + TL=>1P+ TL=>LP+ T *PL
(b) <Program>=L ELP LE+ TIDLE+ T * PL=1T+ T *P L=

lp+T*pP L
Both have the same syntax tree:

<Pr0f

/\
/I\

/ I\
T*P

g3~

Fig. 2. A syntax tree

10




A sentence which has two or more derivations with different syntax

trees is called ambiguous. A grammar (ap
language) is called ambiguocus 1f it contains an ambiguous sentence.

Let us suppose for the moment that a grammar is unambiguous (as
is the grammar of Fig. 1). One can generate sentences of a language by
deriving them from the symbol <Program>. When given a probable sentence,
though, one must work backwards and produce the opposite of a derivation.
A parse of a sentential form of a language is a sequence of productions

used to reduce the sentential form to <Program>. Two parses of

LP+ T * PL corresponding to the above two derivations are:

() T>T*P, TP, E»>T, E-E+ T , <Program> - L E L ;

() TP ,E>T,T>T*P, E>E+ T, <Program> - LE L.

When parsing a sentential form, reductions are made by replacing a
substring which is the right part of a production by‘the corresponding
left side. In other words, given the syntax tree, a reduction consists
of cutting off (pruning) a set of adjacent leaves forming a complete
branch. Thus, in Figure 2, we could "prune" the branches "P" and
"T % P" (make reductions T — P and T — T * P).

In order to avoid the unimportant differences between parses which
are the same except for the order in which the reductions are executed,

we designate one as the canonical parse. Given a sentential form and

its syntax tree, the canonical parse is the one which always prunes the

leftmost branch first. Such a leftmost branch we call the handle

([Knu 65]). Thus for the trees (a), (b), (c) in Figure 3, the handles

1%



are T, T * P and E + T respectively. (b) is the result of pruning the

handle "T" of (a), while (c) arises by pruning the handle "T * P" of (b).

<Progran> <Progran> <Program>

1 E L 1 B 1 1 E 1
AN PN Z4hN
E + T E + T E + T
| T\ /N
T T * P T ¥ P

(a) (®) (c)

Figure 3

A left-right recognizer, or parsing algorithm, always finds a

canonical parse. Of course, if a sentence is ambiguous, it has more

than one canonical parse -- one for each syntax tree. A left-right
recognizer will find only one of these. In Section II.A certain
recognizers will be discussed which can be constructed automatically
from the grammar if the grammar satisfies-certain restrictions. Part

of the duty of the construction algorithm will be to check fhe definition
of the programming language by verifying that the grammar is indeed
unambiguous.

When given just a stringit is sometimes difficult to detect a
handle. For instance, with the string LE+ T ¥ Pl , according to
the grammar of Figure 1, E + T is not the handle. Reducing E + T to E
yields LE * P1l, which is no longer a sentential form. The handle in

this case is T ¥ P. Most of the recognizers to be discussed will have

means for detecting the handle, so that wrong reductions will not occur.



Some conrusion has arisen over the terns "top-down" and "bottom-

up". These rcier to two different nethods of recognizing or parsing
a sentence of a language. Part of the confusion has arisen because
peopl e draw their syntax trees differently - for exanple, the tree for

the string LT+ T L can be witten as in (a) or (b) of Figure 4.

<Proyran> T
ARG N
Ii) + T 1 E L
T \I/
<Progran>
(n) (b)
Figure 4

VW will use (a) throughout the paper.

The other part of the confusion has arisen because the two con-
cepts have actually nerged as recognizers have becone nore sophisticated.
Ve will try to clear up this confusion here.

A pure top-down recognizer is entirely goal-oriented. The nain

goal is of course the distinguished nontermnal symbol <Program> -- a
prediction is made that the string to be recognized is actually a

program  The next step is to see whether the string can be reduced to

tne left part . s

n)lx)g. S

..Srl of some production <Program> — slsg... "
Taus, 1 f ch is a termnal synbol, the string nust begin with the sane
termnal synbol. If 8, is nontermnal, our first subgoal is to see

whet her some head of the string may be reduced to $,- AL any step, i f

13




some subgoal is not net, the failure is reported to the next higher
| evel, which must try another alternative

This type of recognizer gets its name from the way the syntax
tree is being constructed. At any point of the parse, certain
connections have been made (perhaps wongly) by constructing the tree

fromthe top node and reading down to the string (Fig. 5).

<Progrant>

Partial Top-Down Parse

Figure 5

If some of these connections are wong -- a subgoal cannot be net --
some of the connections must be erased and other alternatives tried

(backtracking or backup). A top-down recognizer nay of course be

programred in many different ways -- as recursive subroutines, as a
single routine working with a stack, etc. The significant feature is
that it is goal-oriented.

In contrast, a pure bottomup recognizer has essentially no goals
(except of course the inplicit goal <Program>). The string is searched
for substrings which are right parts of productions. These are then
replaced -- perhaps wongly if they are not really handles -- by the

corresponding left side. This may be illustrated by Fig. 6.

14




/\
Partial Bottom Up Parse

Figure 6

H——tg =—13

H—"0
H-—"rd

In order to reduce backup, nodified top-down recognizers have

been introduced. For instance, before starting out on a new subgoal,

a modified top-down recognizer may see whether some derivative of the
subgoal may actually start with the initial symbol of the substring in
question (|l ook ahead) or whether the subgoal could occur with the partia
tree (menory). Exanples of nodified top-down recognizers are those in
[Ir é1] and [War 6&:+]. Mst of the syntax directed synbol processors
(11.B) used nodified top-down recognizers.

Simlarly, as will be seen in Il.A bottomup recognizers can be
constructed (for suitable grammars) which elimnate backup entirely.
Such nodified bottomup recognizers generally look to the left and
right of a possible handle to see if it really is a handle or not.

It is these nodifications which have led to the (con)fusion of
the two concepts. It is sometines very difficult to tell whether a
particul ar recognizer is bottomup or top-down. For instance, a pro-
duction |anguage recogni zer as generated by Earley's al gorithm (cf.
Section II.A5) has sone of the properties of both. |f a recognizer

has any explicit goals and subgoals to neet, we tend to call it




(modified) top-down, Since it is essentially goal-oriented.

Most of the remaining termnology should be famliar to anyone
with general know edge of Conmputer Science. W will use a few data-

structure terms which require definition. The term/list structure will

be used generically to describe any programmng system naking signif-
icant use of pointers (links) and dynamc storage allocation. A |ist
structure which does not allow nore than one path between any two nodes
isatree. A list structure which explicitly allows general connect-
ivity is called a plex. The term plex also loosely inplies that each
element is a block of storage containing several (often two-way) |inks,
W will also use the terms LIFO (last-in-first-out) and FIFO (first-in-
first-out) as general rules for handling sequential information. For
those who worry about such things, the symbol TWs will be used as the
singular, plural, possessive and adjectival forms of "Translator

Witing Systens."”

.
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1. Review of Current Translator Witing Systens

II.A. Recognizers Which are constructed nechanically

In this section, several practical techniques for parsing
or recognizing, sentences of |anguages defined by grammars will
be described and evaluated. A "practical" technique is one that
has been or is being used to wite a conpiler. Each of these
recogni zers has a second inportant property -- there is an
algorithm for constructing, or generating, it froma suitable
grammar of the |anguage, either in the form of tables to be used
by a set of basic routines or in the formof a program W will
call such an algorithm a constructor.

This property of automatic generation is very inportant to
the compiler witer. Mst of the constructors check the grammar
for unanbiguity before actually constructing the recognizer -- a
decided advantage. Automatic construction of parts of a conpiler
al so neans |less work, leaving more time for considerations such
as code optimzation. Moreover, the automatic construction will
guarantee that the recognizer follows the formal syntax.

Unfortunately, these recognizers and their constructors do
not solve all problens.- First of all, nmuch of the syntax of a
| anguage can not be defined by existing grammars. Secondly,
semantics forma nuch larger and nore difficult part of a pro-
gramming |anguage -- often either the grammar or the generated
recogni zer nust be changed in order to fit in semantics properly
Thirdly, while a technique may be theoretically very nice, it

may not be practical. The usual programming |anguage granmar nay

7




for some reason not be accepted by the constructor of sone
technique. If not, the grammar nust be altered substantially or
anot her techni que used.

V& note in passing that the "efficiency" of several recog-
ni zers have been conpared by Giffiths and Petrick [Gif 65].
Wiile theoretically interesting, this conmparison is of no
practical value, since it is based mainly on the efficiency of
Turing machines corresponding to each of the recognizers. W
are interested in the practical problenms of actual space used and
time consumed, as well as the problens of adequacy nentioned in
the |ast paragraph,

Sone of the recognizers discussed here have been used in many
conpi lers by many people; we cannot list references to all of
them For each recognizer we have given one reference to a
paper where not only the recognizer, but also its constructor, is
di scussed. Sone theoretically interesting recognizers which can
be mechanically constructed, as well as formal properties of
systenms described here, are discussed briefly in section III.BlL.

Top-down nethods will not be discussed here, although they
are used in some conpilers. They are in general |ess efficient
than the recognizers to be discussed, since some ampunt of back-
up is alnost always necessary. See [War 61] and [Ir6l] for
details of conpilers which use nodified top-down recognizers.

[Che 64c] is a good tutorial paper on the use of top-down

18



recognizers in conmpiling, while [Flo &b] also contains a good
description of the technique.

The granmar in Figure 1 (page 10) will be used throughout
this section as an exanple. At this point it may be advisable
to briefly review section I.B for definitions and notations.

1.  Qperator Precedence (Floyd [Flo 63])

The grammar is restricted to an operator grammar; no

production nmay be of the formU - xU, Uy for some strings x
and y and nontermnal s Ul‘ U, This neans that no sentential
form contains two adjacent nontermnal symbols. This is not a
serious restriction; many programming |anguage granmars are
already in this form Mst progranming |anguages grammars which
are not, can be made into operator granmars wthout essentially
di sturbing the structure of a sentence.

During the parse of a sentence 7T @ LI FO stack will

1

contain synbol s Sosl. .8, of the partially reduced string

Sosl'”siTjrgﬁj+l"Im' At any step, it is necessary to be able

to tell solely fromthe symbols 8, 158; and T.J whet her
1) 8, is the tail of a handle (the Ileftnost substring for

which a reduction may be made) in the stack; or whether

2) 8, is not the tail of a handle and Tj must be pushed into

t he stack.

In order to do this, the following three relations are defined

between terminal symbols T, and T, of an operator grammar.

19




1) Ty = T, if there is a production U~ xI,T,y or U -
leUngy wher e Ul 15 nontermnal.
2) T, > T, if there is a production U - XU, T,y and a
. . *
derivation U, = 2T, or UléleLbfor sone z and U
3) 'I‘l < T, if there is a production U - leUly and a
. . *.
deri vati on Ul%Tez or U} =»U.T,z for some z and U,.

If at nost one relation holds between any ordered pair
TyTOLOf termnal symbols, then the grammar is called an overator

precedence grammar and the |anguage an operator precedence

| anguage.
In an operator precedence |anguage, these unique relations
may be used quite sinply for detecting a handle (or any right
part of a production which may be reduced). Suppose T xT is a
substring of a sentential form and suppose that the follow ng
relations hold between To, the term nal synbols Tl’TQ”"’Tn(n > 1)

of x, and T:

To<'T1=T2=' .o =Tn->T.

(Note that nontermnals of x play no role here). Then x is what

Floyd calls a prime phrase; it is either the right part of a

production U -»x, or there is a production

U->x

where x'=>x and the only productions in the derivation X' =X

20



are of the formU, - Uj The substring x may therefore be

replaced by the nontermnal U, vyielding TOUT-

The parse of a sentence (or program is quite straightforward
Synmbol s are pushed into the stack until the relation Tn >T
hol ds between the top terminal stack symbol Tn and the next
incoming synbol T. If the programis indeed a sentence of the
| anguage, the top stack elements then hold a string Tox as
described above. One searches back in the stack, using the
rel stions, to find To and the beginning of x. x is then a handle
and can then be reduced to sone U, yielding TOU in the stack. The
process is then repeated by conparing TO with T.

The relations », = and < can be kept in an Ix£ matrix, where
£ is the nunber of terminal synbols of the grammar. (In [Flo 63],
the matrix for an ALGOL-like |anguage is about 35 x 35). The
conmparison is then just a test of the relation in the matrix
el ement defined by the row corresponding to the top stack
termnal synbol and the columm corresponding to the inconing
synbol .

The space needed for the relations may be reduced to two

vectors of length £ if two precedence functions f(T) and g(T)

can be found such t hat T, < Ty inplies f(Tl) < g(Tg) , T, 2T,

i mplies f(Tl) = g(T,) and T, > T, inplies f(Tl) > g(Tg). These
functions can usually be found. Floyd outlines the algorithm for
finding the matrix of precedence relations and the functions f and
g (if they exist). For the language of Figure 1 the follow ng

precedence matrix and functions are generated:
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( I * + L) T £(T) g(T)

) > > > > ) 5 1
| > > > > | p) 6
* < < > > > > * 5 L
+ < < < > > > + 3 2
( | < < < < = ( 1 6
1| < < < < = 1 1 1

Ficure7 gives the algorithmfor recognizing a sentence of an
operator precedence grammar. The precedence relations will have
been produced from the grammar by the constructor.

Semantic routines may only be called when a prine phrase,
or handle, is to be reduced. A separate routine is witten to
process each different handle. This nay nmean that the granmar
has to be altered to allow the correct semantic interpretation.

For instance, the production

<COND> — |F <BE> THEN <EXPR> ELSE <EXPR>

woul d have to be explicitly witten as

<IFCL> - |F <BE>
<IF-THEN> — <IFCL> THEN <EXPR>

<COND> —» <IF-THEN> ELSE <EXPR>

so that the tests and junps may be inserted at the proper places

by semantic routines.
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However, the revised granmar to the generator will not in
all likelihood be essentially different from the original ref-
erence grammar of the |anguage (see for exanple Floyd's
| anguage in [Flo 63]). Athough to our know edge no conpiler
contains a mechanically constructed recognizer of this type, the
precedence technique has been used in quite a few ALGOL, MAD and
FORTRAN conpilers and will be used in many nore. The technique
is easy to understand, flexible, and very efficient.

It is rather difficult to figure out a good error recovery
schene if the functions f and g are used, since an error can be
detected only when a probable handle turns out not to be one.
Wth the full matrix, an error is detected whenever no relation
exists between the top termnal stack synbol and the inconing
synmbol . Therefore the functions should be used only if a
previous pass has provided a conplete syntax check

One objection to this technique is that the |anguage nay
still contain anbiguous sentences. The structure of the parse
tree is unanbiguous if the grammar is a precedence grammar, but
the nanes of the nodes may not be. For a prime phrase x there
may exist nore than one nonternminal to which it may be reduced.
This objection is partly answered by the fact that the non-
termnals are usually nmanipulated by semantic routines anyway,
and not so nuch by the syntax. The syntax defines the structure;
whether a node is named (say) "integer expression" or "rea

expression" is a semantic matter
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2. Precedence Languages (Wrth and Weber [Wr 66c])

Wrth and Wber nodified Floyd s precedence concept. The
grammar is not restricted to an operator grammar and the relations

© , © and ® may hold between all pairs 81,8, of synbol s:

1) 5, © s, if there is a production U ~ x5, 8,y

2) 8, ) S, if there is a production U - xU, S,y (or U —>xUlU2y)
and a derivation Ul—l%’zsl (and Ugésgw) for sone z.

3) Sy © s, if there is a production U - xS Uy

and a derivation Ulészz for sone z.

If at nost one relation holds between any pair s,,8, of
synbols, and if each right part is the right part of only one

production, then the grammar is called a precedence grammar and

the language a precedence |anguage. Any sentence of a precedence

| anguage has a uni que canonical parse. As long as either the
relation @ or @ holds between the top stack symbol 85 and
the incomng synbol T, T is pushed into the stack. \Wen

8; ® T, then the stack-is searched downward for the configuration
S5 © 5, @ ... @5, , @8y

The handl e SJ. SEECH is then replaced by the left part U of the
uni que production U ::= S»ﬁ...si (if the programis a sentence).
The main difference between this technique and Floyd' s is that
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the relations may hold between any two symbols, and not just
terminal symbols. Algorithms for generating the matrix of
precedences and functions f and g similar to Floyd's are given
in [Wir 66c].

For the grammar of Figure 1 relations + & T, + & T;
1® E, LOE; and ( ® E, ( © E hold. These conflicts may
be disposed of by changing the grammar to the following equivalent

one:

<Progran> —» L E'Ll

E' -5 E
E - T
E - E+ T
T'' - T
T - P
T - T*P
P - (E")
P - I

The precedence matrix and functions are then
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El

EE ET T P ( I % + )y | s f(s) &ls)
@ @ E 1 1
@ © © E 2 2
S O O T 3 2
®@ @ @ © T 3 3
@ & & ¢ P L 3
e @ e o ) b 1
@ & © © | b b
e & © * 3 3
- © © © © ©® | o2 2
5 €& © © © © © ( 1 L
> © @ © © © © 4 1 1

As with Floyd' s recognizer, one may use either the prec-
edence matrix or the functions f and g. The matrix is nmuch
| arger than Floyd's (over 70 x 70 for ALGOL), since the relations
may hold between any two synbols. As with Floyd' s recognizer,
semantic routines may-only be -called when a handle is detected.

Theoretically, the technique is very sound and efficient.
Since the relations may hold between any two symbols, it is in
a sense nore reliable than Floyd's; if the precedence relations
are unique, one knows that a unique canonical parse exists for
each sentence. In practice, however, one nust manipulate a
grammar for an average programmng |anguage considerably before

it is a precedence grammar. The reason is that not enough
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context is used in determning the precedence relations; very
often nmore than one relation holds between two synmbols. It
may be necessary to insert internediate productions (as in the
above exanple) or even to use a different synbol for (say) a
comma depending on its context. A prescanner nust then be
changed to look at the context and decide which internal symbo
to use for each comma. The final grammar could not be presented
to a programmer as a reference to the |anguage.

This recogni zer and itsconstrusar have been used to wite
a sophisticated assenbler, PL 360, ([Wr 66a]) and a conpiler
for a proposed successor to ALGOL [Wir6é6b]) on the | BM 360.

3. Extended Precedence (McKeeman [ McKee 66])

MKeeman extended Wirth's concept by first of all separating
the precedence matrix into two tables - one for looking for the
tail, the other for the head of a handle - and secondly by
having the recognizer ook at nore context so that fewer
precedence conflicts arise. The constructor will therefore accept
a much wider class of gramars.

a) The top two synbols Si_l,si of the stack and T, the
i ncom ng symbol, are used to decide whether T should be put
into the stack, or whether CH is the tail of a handle and a
reduction should take place

b) Simlarly, in order to go back in the stack to find the

initial synbol of the handle, three synbols instead of two are used.
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This technique should be conpared with the one proposed by
Eickel et al. [E 63]. See Section III.Bl. In practice, the nunber
of different triples is too large (over 10,000). Also, in nost cases
two synbols suffice to determine uniquely what is to be done.
McKeeman's recognizer conprom ses by using Wrth's two-argument
precedences whenever possible and switching to triples only when
necessary. Wen looking to the right to see if the stack contains a
handle, a matrix MATRIXI with entries & ( @ or @) , @,
and @ ( © and either @or € ) is used. If ® holds between
the top stack synbol 8, and the incomng synbol T then a list of
triples is searched to find the value of the follow ng three-argunment

function P1;

F’RUE S.OT (S, is tail of a handle) in the
1 1
= context S, .S.T
i-174

Pl(si l,Si,T)
\LFALSE T.&S holds in the context S, .S.T
1 1

171

O course this function nust be single valued for all triples, and
the constructor checks this. A simlar matrix MATRIX2 with entries

® >, @ and ®( © and either @ or &) and a function P2 are

used when looking in the stack for the initial synmbol of the handl e:

TRUE Sj—l @sj (s‘j is head of a handle)

in the context S. |S.S.
Pe(sj’l,sj,sj+l) = j-1" 5+

FALSE Sj-l ®@ sj hol ds in the context

Sj-ls;]s,j+1
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For the grammar in Figure 1 the following matrices and functions Pl and

P2 are generated:

E T P ( 1 * + ) 1
E Q © © Function P1 not necessary,
T © © 6 O since the conflict @
does not arise.
P © © © 0 ‘
) @ © 6 ©
I ©@ © 6 ©
* ©@ © ©
+ © © © ©
(1 © © @ © ©
LI &0 & O
MATRIX?2
E T P ( I * + ) L Function P2 (only nec-
E eSO O essary triples which also
form valid substrings of
T @ 6 @ Q@ some sentential form
F @ & 6 @ listed)
) @ @ @ @ PQ(.L,E,'f') = TRUE
I @ @ @ © P2(y1,E,1) = FAISE
* @ @ @ P2((,E,+) = TRUE
, P2((,E,)) = FALSE
+ ® © @ ® | P2(+,T,*) = TRUE
(1 ® ©@ © ©@ © P2(+,T,+) = FALSE
L|® © 0 09 Fe(+,T,)) = FALSE
P2(+,T,L) = FALSE

2
)

-
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(Pl(si—l’si’R)? ) FALSE STOP

ol |®
(Pe(s._l,s.,sjﬂ)?)'— '
oo J FALSE
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Fig. 8 Recognizer using Wirth precedences plus McKeeman triples
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The recogni zer which uses the matrices and triples is given in
Figure 8. O course functions f and g may be used as in Floyd's or
Wrth's case, if they can be found

The use of triples helps avoid nost of the unpleasantries one
encounters wth precedence grammars. But, again, semantic routines
may only be called when a handle is detected, so that it nay be
necessary to alter the grammar for this reason. McKeeman is witing
a conpiler for a subset of PLL (in itself) on the IBM 360 using this
technique. He expects to use the final grammar as a standard reference

for the PL1 subset.

4. Transition Matrices (Sanmelson and Bauer [Sam 60], Giies [Gie 67a])

This technique for parsing sentences was first introduced by
Sanel son and Bauer. It has been used by the Europeans for witing a
nunber of ALGOL conpilers. NELIAC conpilers use it under the name CO-
NO tables [Hals 62]. In [Gie 67d a constructor was witten for the
recognizer. The grammar is restricted to an operator grammar. Essen-
tially one gets a transition matrix by replacing the precedence relations
in a Floyd precedence matrix by addresses, or nunbers, of subroutines
whi ch perform the necessary stack reductions or push the incomng synbo
onto the stack.

The constructor uses the following schene to reduce the nunber of
elements in the stack which nmust be tested in order to find the beginning
of the handle. Suvpvose that

(4.1) <COND> — IF <BE> THEN <EXPR> ELSE <EXPR>
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is aproduction of the grammar. At one point in parsinga sentence the

stack shoul d ook Iike (say)

« BOTTOM STACK TOP

Ct | F <BE> THEN

Instead, a representation for "IF <BE> THEN', say "IBT", is put in

the stack -- the stack would | ook |ike
« BOTTOM STACK TOP « BOTTOM STACK TOP
. "| F 1" "
s <BE> or Cot IBT
THEN'

This is equivalent to changing production (4.1) to

"IF - |F

" IBT" - "I'F" <BE> THEN

"| BTEE" - "IBT" <EXPR> ELSE
<COND> - "| BTEE" <EXPR>

The productions are then all of length one, two, or three. One row of
the matrix is allotted to each new synbol in quotes. One colum is
allotted to each possible incomng terninal symbol. A stack el ement S;
consists of two parts S1, and 821. The first is one of the quoted
synmbol s introduced by the generator (a kind of operator), the other is
enpty or contains a nontermnal synbol (an operand). The basic

recognizer is

A
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.@ 5, « ("L", empty) S.»---S; I'S A STACK HOLDI NG A
i co PORTION OF THE SENTENTI AL FORM
v
READ ONE CHARACTER UNDER ANALYSI S. §, CONSI STS

AN

STORE IN R (Si=(Sli’Sei))
<
JUWP TO SUBROUTI NE DEFI NED

BY MATRI X ELEMENT CORRESPONDI NG

TO ROWOF S1, and COL OF R

The matrix and subroutines produced by the generator for the grammar of

Fig. 1 are
1 + * ( ) |
"ol I 5 6 8
"E+"([2 2 5 6 2 8
T3 3 3 6 , 8
n(n l; 5 6 7 8
1. IF 32, =E (RS2, =T ORS2, =P
— i — i — i

THEN SUCCESS EXIT ELSE ERROR

P

I

2: IF 82, =T OR S2,
=i ="

THEN BEG N i « i 1; SQi « E; GOTO_GOIN END ELSE ERROR

3: ESQi = P

THEN BEGN i « i -1; 82, « T, GOTO GOIN END ELSE ERRCR,
b: IFS2, =EORS2, =T ORS2, =P
- 1 - 1 _— 1
THEN BEGN i «i + 1; S, « ("E+", enpty); GOTO SCAN END ELSE
l —

ERRCR



5: IF'S2, = P OR S82, = T
—_— i — 1
JHEN BEGN i « i + 1; 8, « ("T*", enpty); GOTO SCAN END ELSE
l — ——— ————
ERROR;
6: IF 82i = enpty
THEN BEGN i « i+ 1; 8, « ("(", enpty); GOTO SCAN END ELSE
ERROR;
7: IFS82, =EORS2, =T QR S2, = P
— 1 -_— 1 — 1

THEN BEBIN i « i - 1; S2i « P; GOTO SCAN END ELSE ERROR;

©

I F sei = enpty
THEN BEG N SEi « P, GOTO SCAN END ELSE ERROR;

A matrix for ALGOL is about 60x 40. The checks for STi = enpty
may be deleted by doubling the nunber of rows of the matrix (see [Gie
67al). Some alterations are usually necessary once the recognizer is
generated, but since semamtics: may be inserted at any step of the
parse ( in any of the subroutines 1-8 above), and not only when a
right part is recognized, the systemis perhaps more flexible than the
previous three. The grammar does not have to be changed nuch, although
it nust be an operator grammar. The constructor itself has not been
used to generate a conpiler yet, but the generated recognizers resenble
to a large degree recognizers built by hand using the same technique
(see [Gie 65]).

This is perhaps the fastest technique. Switching tables are
al ways used when speed is essential. Its drawbacks are the space used

and the large number of subroutines needed to inplenent the technique.
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5. Production Language (Floyd [Flo 61], Evans [Ev 64], Earley [Ear 65))

The production |anguage introduced by Floyd and nodified by Evans

consists of a set of productions of the form

AR

A rmore natural name for this would be a reduction, since it is used to
i ndicate how to reduce, or parse a string

W start parsing a sentence by putting the first symbol L of the
sentence on the stack. Then we sequence through the productions
comparing the top of the stack with the synbols Sl,Sg,. - directly
to the left of the first bar | . Wen a match is found, the matched
synbol s Sl-SE"" in the stack are replaced by the symbol s Si’sé'
(I'f no replacenent is to be made the arrow -=' and synbol s Si,Sé do not
appear.) The synbol ¢ appearing as sone Si mat ches any synbol on the
stack. Then, if "*" appears follow ng the second | the next input
synbol is scanned and pushed onto the stack. Finally we start conparing
synbols of the stack again, beginning with the production |abeled by
the name appearing at the right of the production (GL in this case).
Any production may be |abeled. Earley has witten a generator which
produces from a suitable grammar a recognizer witten in production
| anguage.

The production |anguage program generated from the grammar in

Fig. 1is givenin Fig. 9.




PROGRAND! 4] | ¥EO

| |ERROR EXIT
EQ: TO PO q |*EO
I|- P|*p1
o | |ERROR EXI T
B LEY | SUCCESS EXIT
((®)|- P|*P1
E+| | ¥ro
o |[ERROR EXIT
T1: T*| | *PO
E+Ta|- E¢|EL
To'l—> Eo'|El
| |ERROR EXI T
P1: T*Pa|- Te|T1
Pal- To|T1
|- |[ERROR EXI T

Fig. 9 Production |anguage recognizer

Semantics are introduced onee the productions have been gener-
ated by inserting "actions" of the form EXEC i , where i is the
nunber of some semantic subroutine, directly after the second bar |

in any line of a production.



This production language is the basis for a working ALGOL compiler
[EVA 64] and fornms a significant part of FSL, a language for writing
conpi lers (see section II.D1). A variation of the production |anguage
is also used in TGS (cf. section II.D2). Once one has sone practice,
it is quite a natural, flexible language to programin. A programmer
can learn to wite conpilers with it relatively easily. No conpilers
have yet been witten using a nechanically constructed recognizer,
but the MEC actions may be inserted in any production, so that in
general few alterations will have to be made in the grammar. Mre
context can be used by the recognizer, so that a granmmar is nore
likely to be accepted by this constructor than the other four.

It is perhaps the least efficient of the recognizers discussed,
‘since at each step, the stack nust be conpared with successive pro-
ductions until a match is found. The productions, however, take up
| ess space than the other recognizers.and the efficiency can be im
proved by good progranming when they are constructed by hand.

W would venture to say that this branch of Translator Witing
Systens is fairly conplete. One can devise only a finite nunber of
really different-left-right recognizers for parsing sentences using
limted context. Even the first four recognizers listed here differ
only in the progranm ng techniques used -- theoretically they are all
[1,1] bounded context in the termnology of section III.Bl.

The operator precedence technique is nost well-known. It often
is used to recognize portions of a |anguage, nost frequently arithmetic

and Bool ean expressions, as is done in the |BM %0 FORTRAN conpiler.
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See [Ar 66, Gie 65] for documentation of other conpilers using this
technique. [Gall 67] also mentions it. The transition matrix
t echni que has been used to wite several ALGOL conpilers [Gie 65,
Sam 60] as wel |l as NELIAC conpilers, under the nanme CO-NO table
[Hal s 62, Mas 60]. Both of the above techniques have undoubtedly been
used in many other conpilers. The production |anguage is used in an
ALGOL conpiler [EVA 64], but is also a significant part of two
conpi l er-conpilers [Feld 66, Mnd é7] in which a number of other
conpi l ers have been witten [Rov 67, It 66]. Two ot her compiler-
conpi ler projects use this language [Fie 67, Gie 67b], while inde-
pendent variations of it have been used by ‘[Che 65] and others. The
precedence and extended precedence techniques have been used mainly
by their authors, Wrth [Wir 66a, Wir 66b] and McKeeman [ McKee 66].
There are further discussions of syntax techniques in several other
sections

For the theoretically inclined reader, section III.B1 contains
di scussions on nore general, powerful and conplicated |eft-right
recognizers, as well as some basic references on the theory of fornal

| anguages.
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II.B. Syntax Directed Synbol Processors

The programs discussed in this section are not properly called
conpi | er-conpi l ers, although each has been used to wite conpilers.
Their common treatment of conpiler-witing as a synbol manipul ation
task makes each of these programs both nore than and less than a TWS.
Since such systens are so general, they have been used heavily in the
various non-translator tasks described in Section III.A. In fact, the
di scussion of AED [Ross 66] will be deferred to that section, because

its goals have been nore general from the outset.

1. TMG (McClure [McCl65])

The TM5 system was devel oped at Texas Instruments as a tool for
witing sinple one-pass conpilers. The syntax technique is a sinple
top-down scan with backup. However, the enbedding of semantic rules
enables one to wite a nore efficient recognizer than would be
possible with pure syntax.

The basic TMG statement formis:

<l abel > : <actions> / <identifier> *¥/ <identifier> .
The first <identifier? names the statement to be executed if the
<actiong> fail and the second <identifier> names the statement to be
executed on success. The <action& can be: internediate goals for
the syntax recognizer, string conputations on the input, or built-in
statements. These <actions> are all to be performed by the translator;
output of code is treated by a different construct to be discussed

below. There is a character-based symbol table which is built from

Lo




input strings using the primtives MARKS and INSTALL. Consider the

fol l owi ng exanple.
INTEGER  ZERO* MARKS DIG T DI G T* | NSTALL

The action ZERO* scans all leading zeros, then MARKS notes the
current value of the input-string pointer. The actions DDAT DIAT*
scan all characters in the class <digit>. The execution of |NSTALL
causes the string starting at the pointer of MARKS to be entered into
the synbol table and a reference to it entered in the internediate tree.
The only other information allowed in the table is a set of declared
FLAGS (Bool ean variabl es).

The built-in routines include conditional arithnetic expressions,
nunber conversions and a few input-output functions. There are also
some systemcells such as J, the input pointer, and SYM\RM the |ength
of the last string entered. CQutput is also character-oriented, as the

following exanple will show
LABELFI ELD: LABEL = ¢(P2/ BSS /0 // $)

This statement would be used to detect the label in some |anguage.
The "=" signals an output routine which is bounded by "$(" and "$)".

The body ofthe output statement will formone |ine of assenbly code

| abel BSS 0

The synmbol "P1" is a command to evaluate the first construct to the

left of the "=", presumably the synbolic name of the label. The "/ "
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says insert a tab and "Bss" and "O" represent themselves. Finally, the
“//" places a carriage return in the output.

The TMG effort was a pilot project and its clunmsy syntax woul d be
easy to fix. It has been used to wite a nunber of conpilers and a
rel ated system TROL has been used by Knuth for teaching compiler-
witing. The EPL (Early PL/I) used in MILTICS was witten as a two-
pass system using two sets of TMG definitions, to get better code.
The TMG system does not seemto be as coherent as some to be considered

bel ow and woul d benefit from another iteration.

2. CGARQOYLE (Garwick [Gar 64])

The GARGOYLE system was devel oped by a Norseman and is not very
well known in Vinland. It is also quite simlar to TMG and so it wll
not be covered in as much detail.

The syntax processor is, once again, basically a top-dow
recognizer With the ability to direct the search. The descriptive

| anguage formis a five-field line, essentially
<l abel> : <action> ; <next> ; <link> ; <else>

The sequencing rule is nore conplicated than TMG with ERROR and EXIT
bei ng special cases and three successor fields to consider.

The <action& conbine tests and output statements in an ALGOL-
like syntax nore pleasant than that of TMG For exanple, a line in

the routine COWPILE is:

if U= "+ then f « 'FAD ; INSERT




where INSERT (in the <next> field) is an output routine with 'f' as a
parameter. In this case, 'U'is a tenporary variable previously
filled in by character tests on the input string.

There are a nunber of auxiliary features nentioned, but it is
not always clear which ones are built in. The whole paper is somewhat
tentative, suggesting that Garwick's intent was to present a schenma
for a TWs rather than a particular system W have no information on

i mpl ement ations, uses or extensions of GARGOYLE.

5. COGENT (Reynolds [Rey 651)

The COGENT system was designed at Argonne National Laboratory by
John Reynol ds and inplemented on a CDC 3600. A programwitten in
COGENT has two parts: the syntax and a set of processing routines
called generators.

The syntax is given by a synthetic granmar. Syntactic analysis
proceeds by producing list structure to represent the syntax tree.

For exanple, use of the production
<TERW> ::= <TERW> + <FACTOR>

woul d produce a list elenment <TERM> with pointers to the subexpressions
<TERW> and <FACTOR>. Alternatively, one can preceed a production by
action |abels - names of generators which are capable of conditional
analysis of list structures and of (recursively) calling other

generators:

PROCESSTERM / <TERM> ::= <TERM> + <FACTOR>.
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Instead of a list elenent <TERM> being created, the generator
PROCESSTERM is called with the sublists <TERM> and <FACTOR> as
arguments.  The output of PROCESSTERM is then placed in the parse
tree.

Certain kinds of local ambiguity are allowed in COGENT. The
obj ect syntax processor goes into anbiguity nmode, swtching back and
forth between possible parses each time a parse requires a new
character. No generator calls are made until the anbiguity is
resol ved

The generator |anguage is based on |ist-processing operations
and the mechanism of failure. List elements may have varying numbers
of pointers to other elenments. The types of list elements include
nunbers (fixed or floating), generator entry pointers, dumy elenents
(corresponding to LISP's NIL), identifier elements, and parameter
el ements.  Fixed point nunmbers may be of any magnitude and take up
sufficient words to represent that magnitude. This feature facilitates
synbol i ¢ mathematics applications of COGENT.

In addition to the conventional assignment statements, generators

may use synthetic and anal ytic assignment statements to describe the

synthesis and analysis of list structures. A synthetic assignnent

statement has the form
<identifier> / = <tenplate , <expression list>

where a <tenplate is essentially a production in parentheses. For

exanpl e, the execution of the synthetic assignnent statenent
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z / = (TERw/ FACTOR * FACTOR) , X, Y

where X had the value (FACTOR/ABE) and Y the value (FACTOR/ BED),
woul d assign to Z a copy of (TERM / ABE * BED).

Simlarly, analytic assignnent statenents of the form
<test expressiom> = / <tenplate , <identifier list>

are used to deconpose an expression. The <test expression> iS

mat ched against the tenplate. |f they match, the value corresponding
to the i*" parameter (nonterminal) of the tenplate is assigned to the
1% <identifier> of the <identifier lists. Thus, if Z has the value

(TERM / ABE * BED) , then the statenent
Z =/ (TERM / FACTOR * FACTOR) , X, Y

will give x the value (FACTOR / ABE) and Y the val ue (FACTOR / BED).
If <test expression> and <tenplate do not match, the anal ytic
assignnent statenent fails. Failure is the nethod of branching in
COGENT. If no conditional statenent includes the action that fails,
the entire'generator fails. Thus failure proceeds up the chain of
generator calls until a conditional statenent is encountered.
In addition to the above, the following features of COGENT
require nention: IDtables, scanners.and internal wariables..:
The action |abel $IDENT, n/ specifies that the result of that pro-
duction (which nust be a character string), should be placed in

identifier table n. If it is already there, a pointer to the old
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copy will be returned, i.e. all identifiers in any given table have
uni que character strings.

Generator entry pointers can be passed as arguments to generators
This is useful, for exanple, for producing output for cards, printing
etc. One generator, called a scanner, could reduce a list structure to
a character string and pass the characters one at a tinme to an output
routine through a formal paraneter. There are also several interna
variables which nmay be set or tested by prinmtive generators and used
by various built-in routines. For exanple STANDSCN, the standard
scanner, calls on the routine indicated by an internal variable to
convert negative or floating point numbers.

COGENT is admttedly experimental and has several shortcom ngs
the structure of the |anguage for generators is not as neat as Algol
has shown |anguages can be, one syntax error in the input is fatal,
and list processing should be generalized to include arbitrary plex-
creation, rather than just plexes based on the syntax. COGENT has been
applied to a nunmber of problens in synbolic mathematics. Reynolds has
suspended work on COGENT pending the devel opment of a better theory of

data structures which he, among others, is working to devel op.

4. The META Systens (Schorre [Schor 64] et al.)

The early history of Meta conpilers is closely tied to the history
of SIGPLAN Working Goup 1 on syntax-directed conpilers. The |atest
inventory listed twenty-five different Meta conpiler systens on ten

different conmputers. The proliferation of these conpilers is due in
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part to the fact that they are not only able to conpile a netal anguage
but can be expressed in their own |anguage and thus conpile thenselves.
Almost all of the systens have been used to inplement translators for
other |anguages as well.

Al'though the original work was diversified, the current systens
are generally based on a nodel known as Meta-11, devel oped by Schorre.
Wthin this nodel, the parsing and translation processes for a |anguage
are all stated in a set of BNF-like rules. These rules become recursive
recognizers with enbedded code gemerators when the |anguage specifications
are inplenented.

The rules do not allow left recursion; but use instead the
(prefix) iteration operator "$". Alternation (the bar in BNF) is
indicated by a slash, and parentheses are used for grouping in a nornal

fashion. The following is a typical rule in Schorre's Meta-II |anguage:

SUM = TERM $( '+' TERM .0oUT('ADD' )/

"' TERM ,OUT('SUB!) );

The rule defines a procedure for recognizing a sumin an algebraic

| anguage. The word "SUM -followed-by "=" defines the name of the rule,
while the right part of the rule is both an algorithmfor testing an

i nput strealn for the occurrence of a sumas well as a code generator
in case the sum is found. The above rule contains exanples of the
three basic entities used in nost Mete conpilers. The nention of the
neme of another rule, in this case "TERM," causes a recursive call on

that'recognizer to be invoked. The occurrence of a literal string '+'
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signifies that a test is to be made against the input streamfor a plus
sign; nost Meta systens have built-in recognizers for identifiers and
nunbers as well as literals. In the ".0UT" construct, we see the
enbeddi ng of code generation.

The recursive nature of the rules and the method of handling

generated |abels may be seen in the follow ng exanple:

~UNION = INTER (' OR .OUT('BT' *1) UNI ON .LABEL *1 / . EMPTY);
INTER = PRIMARY ('AND' .OUT('BF' ¥1) | NTER .LABEL *1 / .EMPTY);

PRIMARY= . ID .ouT('tD' *) / '(" UNTON ')"';

For the input stream"(A OR B) AND (C OR D)", the followi ng
code woul d be produced, where LD, BT, BF are mmenonics for Load,

Branch True, and Branch Fal se respectively:

LD A
BT L1
LD B
L1
BF L2
LD C
BT L3
LD D
L3
L2
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The first mention of a *¥L within a rule causes both the gen-
eration of a label and the output of that |abel. Subsequent references
within the same rule output the sane label. That is, when a rule is
entered, new labels are generated. These labels only exist while the
rule is active. If a call is made to another rule, the labels are
pushed onto a stack. Upon return fromthe called rule, the previous
| abel s are restored. The "*" causes the last item recognized by the
primtive .IDto be added to the output. .EMPTY is a primtive which
has no effect on the input or output but is always satisfied or true

Meta3 was an attenpt to extend the basic Meta-II concept so that
ALGOL 60 could be conpiled for a 7090. It added some ability for
semantic tests and register manipulation, but the additions never
proved adequate. Meta5 was the first Meta conpiler that allowed
backup of the input stream It also added extensive string push-down
stacks, attribute assignment and testing, and output formatting
features. An indication of the flexibility of Meta5 is the fact that
it is capable of translating JOVIAL to PL/1. The LOT system ([Kir66]),
anot her extension of Meta-II, added syntax constructs which gave the
programrer conplete control of alnost all system paranmeters and flags
Normal |y, the setting of these paraneters is done by control cards
but enbedding it in the netal anguage proved extrenely useful in the
devel opnent of debugging aids. The LOT system was al so used to gather
statistics on the efficiency of top-bottom syntax analysis.

There is currently a very active interest in the devel opment of

Meta systens. The tendency in the newer systens is to build parsing
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trees and then, wth another special-purpose |anguage, test and
col lapse the trees, producing output as a side effect (cf. Section
II.D2). The slowness and inefficiency of Meta conpilers is recog-
nized by their authors, but the ease of inplenmentation, the boot-
strapping capabilities, and the large class of |anguages they can
handl e are used to justify the work that has gone into their

devel opnent .

Ref erences for II.B:

Ab 66, Gar 64, Kirk 65, McCl 65, Met 64, Rey 65, Sch 6k,
Schor 64,
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ITI.C. Meta-Assemblers and Extendible Conpilers

These forms of TWS are sinmilar in that they both attenpt to ex-
tend the macro concept to higher level programmng |anguages. The
basic idea in a macro processor is the systematic replacenent of
certain synbols with their associated pieces of text. A though al nost
all rmodern assenblers have sophisticated macro features, the best
descriptions of the idea are in the general papers by Strachey [stré5]
and Moers and Deutsch [Mo 65]. The meta-assembler and the extendible-
conpiler are based on two different conceptions of how to extend
macros to high level l|anguages. The meta-assembler approach considers
the conpiler to be special case of the assenbler, while the extendible
conpi l er approach is to add text replacement features to standard

conpilers

1. General Discussion and METAPLAN (Ferguson [Fer 66])

The article by Ferguson is taken fromthe San Dimas conference
and contains a good introduction to meta-assemblers. The basic ideas
arose from observing that all assenblers have many features in comon.
By building procedures for handling such things as synbol tables,
| ocation counters and macros, one could speed up the witing of part-
icular assenblers. To construct an assenbler for a particular machine
one woul d specify word size, nunber representations and the like.
Qutput for each machine would be programmed using format statenents

and could easily include relocation or synbolic debugging information



Wiile such a system seens feasible and quite useful, it is not obvious
how one would extend it to a TWs
The use of a nmeta-assenmbler as a TWS is based on the previously
mentioned assunption that the conpiler is a special case of the macro
assenbler. Discussions of this assunption sound |ike a reincarnation
of the macro vs. high |level |anguage debate. The macro assenbl er side
is on the defensive, is outnunbered and therefore has been the nost
vehement in argument. The whole situation is further conplicated by
a lack of agreement on what an assembler is (cf. discussion followng
this paper [Fer66]). An exanple will suffice for our purposes.
Ferguson describes how a meta-assembler woul d handl e the compiler-

li ke statenent:

IF F(A) PLUS 5 EQ G(B) GO0 L

He woul d have IF, PLUS, EQ and GOTO be defined as (prefix)
operators using a scheme called many-many macros. The many-nany nacro
has features for using and updating state information during text
replacement. This seems to be considered an outstanding contribution
to macro techniques and is certainly a prerequisite for reasonable
code selection. The nmany-many macro is flexible enough to inplenent
any known conpiler; the real question is whether nany-many macros are
a good way of doing it. The answer to this depends on the nechanisns
for recording and using state information and these were not discussed

in the paper.




2. PLASMA (G aham and Ingerman [GraM65])

The meta-assembler effort of G aham and Ingerman concentrates
mainly on the problens of substitution and binding. They are nuch
| ess concerned with syntax than Hal pern (next discussion), because
they assume a syntax-directed front end (presumably [Ing 66]) for a
conpi ler witten in their system

The basic input to their meta-assembler is a "line" which is a
list of lists. The first list is a generalized |abel consisting of a
synbol, the nunber of higher levels at which it is active, and the
nunber of lower levels at which it is active. The second |ist contains
the operation and the third contains the operands. The input is con-
verted into a tree and substitutions are made on the basis of the tree
structure. By allowng substitutions by symbol or numeric val ue,
they conbine the text replacenent with assenbly functions.

The authors are continuing their work at RCA, Cherry Hll, and
will presumably report on it again. Their current efforts involve
even nore elaborate substitution processes. They have not, as yet, put
forth specific suggestions on how their system mght be used as the

basis for a conpiler.

3. XPOP (Halpern [Hal 64])

Hal pern is the nmost sanguine and vocal of the meta-assenbl er
proponents. H's work on meta-assenmblers is related to his controv-
ersial stands on natural |anguage prograns by his statenment that

XPOP will allow one to inplement sonething "closely approaching"
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natural |anguage. One should try to separate his work, which is
reasonabl e, from the tub-thunmping which mar his appearances in public
or in print.

The XPOP system follows fairly well the general neta-assenbler
description by Ferguson. The basic input format is, once again, a
| abel followed by an operator and one or nore operands. Halpern is
very interested in input forns and has three basic ways of altering -
the syntax of the source |anguage. The- first way is to change the
order of parameters by declaring a macro with the new paraneter
ordering which expands to the original operator. The second feature
is the ability to declare new separators and'termnators at any point

inthe text. The nost unusual feature is the facility for adding

- noise words which are ignored, as well as keywords which mark the

next synbol as a paraneter

To handle the problems of generating output, XPOP has severa
enbel | i shnents of the macro concept. It is possible to defer the
assenbly of code sections; the sections awaiting a particular [abel
can accumulate in FIFO or LIFO fashion. There is one illustration of
how this feature is used to inplement the DO statements in FORTRAN.
There is also mention of many-many macros and of assenbly tine
execution facilities. Once again, there is not enough information
presented to allow one to judge their suitability for translator
witing. The XPOP system has a large variety, of trace and debugging

aids which should add significantly to its useful ness
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Mre recently, Halpern has produced an el aborate defense of XPop-
like systems. He suggests that the <operator> <operand-string>
notation of macro systems is the canonical syntax of programm ng
| anguages as opposed to natural or nmathematical |anguages. He further
separates the study of progranmng |anguages into three parts:
Functional (macros), Notational (change punctuation conmands), and
Modal (assenbly-time executions). Halpern's paper can be taken as the
phi | osophi cal statement of the meta-assembler position on TWS and

conpared with other general descriptions of the problem

4. Extendible Conpilers - Basic Concepts.

Many attenpts (starting with McIlroy [McI160]) have been made to
enbed macro features in conpiler systems. (One approach was to retain
the macro syntax form but add a nunber of built-in features which
are conpiler-like. The SET system [Ben 64a] included a skel eton
conpi | er with:input-output, symbol nanipul ation, table handling, and
list processing features. These built-in routines were conbined wth
translation-time operations (Action Qperators) in the attenpt to
build a TW6. A nore successful approach has been to use the structured
syntax of high-level languages as a basis for extension.

Many existing conpilers incorporate sinple forms of macro
expansion, the first probably being JOVIAL [Shaw 6% ]. The nost
primtive formis pure text replacement wthout parameter substitution.

For exanple, in B5500 ALGOL one could define a macro with the statenent:

DEFINE LOOP1 = FOR | «1 STEP 1 UNTIL #
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and later form statenents |ike

LOOPL N DO All] « 0

whi ch would be expanded into

FOR It 1 STEP 1 UNTIL N DO A[I] «O .

The next step is to allow a macro definition with parameters.
This facility has been included in the AED-O conpiler [Ross 66],

among others. In AED-O one might define a macro with the statenent:

DEFI NE MACRO LOOP (P1,P2) TOBE
FOR P1 «1 STEP 1 UNTIL P2 DO ENDMACRO

In this case, one could get the same result as above with the

short statement

LOOP(1,N) All] « 0 .

These two sinple nacro fornms would forma useful addition to any
high level |anguage and one m ght imagine devel opi ng nechani sms which
paral l el nore sophisticated nacro techniques. Al though AED O does
permt arbitrary strings as paraneters and nested definitions,
features like conditional assenbly do not seem to have been used in
high level Ianguages. One reason for this is that conpilers normally
depend heavily on the structure of the text; the next two sections
describe the conplexities that arise in trying to extend conpilers

with macro techniques.
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5. Definitional Extensions (Cheatham [Che 66])

The definitional extension of high level |anguages is the |atest
attack on the TWS problem by the Conputer Associates group. This has
been the most active and productive group in the TWS area and has
devel oped a worl d-view which should be understood in reading their work
W will discuss the mainstreamof their activity in Section II.D2,
only a brief introduction will be given here.

Cheatham defines conpiling as a six-step process involving:
| exi cal analysis, syntactic analysis, interpretation of the parse
optimzation, code selection, and output. The principal driving force
behind their work has been run-time efficiency, although other consid-
erations have played an inportant role fromtinme to time. The current
TWs efforts of Conputer Associates use a single |anguage TRANDIR for
all the steps of conpilation. TRANDIR consists essentially of an
al gebraic section, a pattern matching section (cf. Section II.A5) and
a number of built-in functions. The language is procedural and, to
date, has been used only by experienced conpiler-witers.

The paper under discussion shows signs of having been hastily
witten and contains references to several internal docunents in
preparation. This is clearly an early attenpt along these lines and
w |l be expanded and clarified in subsequent papers. The extensions
to conpilers nentioned here fall into two broad categories: a descrip-
tive neta-|anguage Ly and a series of macro facilities.

The descriptive meta-|anguage Ly is meant to be translated into

TRANDI R procedures, presumably by a (meta-meta) processor. The

>7



translation of the |anguage Ly I's based on a granmar inversion technique
conbining notions of Wrth and Early (cf. Section ILA). To allow for
nmore powerful |anguages, one can append predicates (e.g. type checking)
and even arbitrary conputations to the declarative syntax. Finally,
there are rules for outputting internediate code attached to the syntax
rules. The declarative |anguage has not been inplenented, but Cheatham
clains that it has proved useful for the initial fornulation of TRANDIR
conpilers. Wile this is probably true, one would expect that the
translation to procedural formis not, at present, a nechanica
process. Further, the sophistication required of an Ly user does not
seem appreciably less than that required by TRAND R

The extensions to |anguages using macro techniques fall into
three basic categories: text, syntactic, and conputational nacros
Text macros are assuned to be well understood and woul d presumably be
simlar to those described above. It is in treating syntactic macros
t hat Cheatham begins to face seriously the problems of adapting macro
concepts to conpilers.

The basic features of syntactic nmacros are free format and type

specifications for parameters: An exanple would be

LET N BE | NTEGER

MACRO MATRI X (N) MEANS 'ARRAY[1:N, 1:N]' .

The advantage of free format over the conventional <operator> |,
<operand list> format are obvious; the specification of paraneters

allows conditional assenbly and better error detection. The call of a

o
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syntactic macro woul d be set off by a special delimter (e.g. %) and
woul d have to have a detectable termination. These problens can be
avoi ded by adding the macro formdirectly to the syntax tables of the

translator. The corresponding declaration would be:

LET N BE | NTECER
SMACRO MATRI X (N) AS ATTRI BUTE MEANS 'ARRAY[1:N,1:N]'

where ATTRIBUTE is a syntactic type in the definition of the underlying
language . Neither of these schenes presents an inplenmentation problem
in TRANGEN (cf. Section III.D2), but either of them could have drastic

results if msused.

I'n discussing syntactic macros, Cheatham touches upon the problem
of adding 'semantics' to the macro definition. This is the anal ogue of
the many-many macros and the assenbly-tine actions used in neta-assenblers
Cheathamis conclusion that this approach is not feasible should be
conpared with the meta-assenbl er approach which has put nost of its
eggs in this basket. H's solution is to provide a nunmber of primtive
operations (e.g. table expansions) and to point out the existence of a
conpl ete nmeta-language behind the extendible |anguage

The third type of macro extension is called the conputational macro
Wth this technique the substitutions are made in the internediate code
resulting from a declared macro. This requires that the macro body be
restricted to constructs for which the internediate code can be
conpiled (with formal parameters) independent of context. If this
condition can be net, the conputational macro is a useful and efficient

tool. A sinple conputational macro mght be the follow ng mapping
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function for a 4 x 4 upper left triangular matrix M

TAKE 1,0 AS | NTEGER
MAP M1,J) = (11-1) * 1/2 + J-6;

where TAKE and MAP are declarators in the language, Since this code

is for array accessing, it should not be inserted into the source

text and the conputational nmacro formis nost appropriate. As Cheatham
points out, conputational macros have long been used by conpiler witers
to produce accessing code for arrays. The paper includes several

exanpl es of accessing functions, a subject that will reappear in the
discussion of Perlis and Galler paper in the next section. The
inportant point is that Cheatham has provided a procedural way of
describing access functions while Perlis and Galler try to generate the

code from non-procedural descriptions.

6. ALGOL C (Galler and Perlis [Gll 671)

This is a very long, difficult and inportant paper by two of the
outstanding workers in the field of progranmmng |anguages. Al though
there are many significant aspects of the paper, we will discuss here
only those dealing with extendible conpilers. Qher topics will be
treated in Section III.B as significant first steps in new research areas.

The basic idea is, once again, to add macro-like facilities to a
high level language. For this purpose they define an extension of
ALGOL called ALGOL C which is meant to be well suited to extension.
Any extension of ALGOL Cis called an ALGOL D and a programin any of
these can be nmechanically reduced to an equivalent ALGOL C program
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The extensions are acconplished through constructs rather like

Cheat hamis SMACROS. Because they want to do the macro processing in
very sophisticated ways, Perlis and Galler allow redefinitions only in a
few fixed syntactic categories. The augnented |anguage ALGOL C contains
many features for handling arrays as well as those nore directly con-
cerned with extendibility. Anong the latter are operators for con-
version between |ocation and val ue

(a) A unary operator with integer result:

where x is a <procedure identifier>, <variable, or <array identifier>.
loc ot X is essentially the address of the word(s) containing the

valuz of X.

(b) Two binary operators whose |eft operand is a <type> or is mssing,
inplying real, and whose right operand is an integer expression, rep-

resenting the "address" of sonme <procedure , <variable> or <array:

<type> x¢ of x

<type> pic of x .

These represent "value contents of" and "procedure identifier contents

of", respectively. Thus
real vc of (loc of. x) = x

if x is a variable of <type> real.
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(c) The notions of location and value are extended to <procedure> S
with the help of an application operator @ . The precise syntax
changes are bound up with the array conventions, but revised definitions

of <primary> and <function designator> should convey the intent.

<primary> ::= <unsigned number> | <variabl e |

<function designator> | (<arithnetic
expressi on>) |

loc of <procedure identifier>

<type> vc qf <arithnetic expression>

<function designator> ::= <procedure identifier> @ <actua

par amet er part>

(pic of <arithnetic expression>) @

<actual paraneter part>

Thus, one is able to manipulate the nanes of procedures in much the
same way as address variables and could, for exanple, have procedure
arrays. These additions to ALGOL to form ALGOL C constitute only a
smal| part of the extra mechanism nmost of it is enmbedded in the
various forms of ALGOL D

Al ALGL D languages will have fairly nuch the same syntax. The
conmmon syntax for all ALGOL D's is the same as ALGOL C except for the
repl acenent of <type> , <arithnetic expression> , <Bool ean expression>
and <assignment statement> wWith a set of rules which enable the def-
inition of special forms for these syntactic types. The introduction

of new definitions occurs as a series of declarations at the beginning
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of a block. The detailed description of this process is quite com
plicated and we will present only an overview followed by an exanple.

The basic intention is to allow the definition of new data types
and their associated operators. The problem of finding synbols for
these operators is solved by assuming a large al phabet of boldface
characters. By assuning an operator precedence grammar (cf. Section
II.A1), one can define the precedence of new operators in relation to
operators of known precedence as in MAD [Ar 66]. The remaining
problenms with operators involve data types and will be deferred for
a few sentences.

New data types are defined in terms of ALGOL C or previously
defined types by a neans statement. This may include formal para-
meters which, if present, play a crucial role in all further proc-
essing, e.g. matrix(u,v) .neans array [l:u, 1:v].

One then combines operator and type information in a set of
context statements. A context statement describes, for an operator,
the data types of its operands and its result. It also contains a
<string> which is (eventually) reducible to the appropriate ALGOL C
text. The follow ng exanple of [pseudo) LISP definitions should help
clarify these notions.

List Definition Set:
The following set of definitions is based on the LISP [McCar62b]

primtives. The basic LISP predicates "atonf and "eq" are assumed to
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have been defined as Bool ean procedures:

Bool ean procedure aton(x); list Xx;

atom := cdr x = 0;

Bool ean procedure eq(x,y); list x,y;

eq :=car X = car y A aton(x) A atom(y);

"NIL" in LISP is represented here by 0. The following definitions are

used to organize lists as structures of nanes.

(10)

list neans integer array [1:2];

cons = ¥

car > cons,

cdr = car;

of < cons;

list acons list b =1list 'list(a,b)';
car list a =1list 'a[1]';

cdr list a=1list 'a[2]';

loc of list a = integer,

integer a :=1list b =integer "a :=_loc of b';

Statenent (1) defines the new data type list as a two-elenent integer

array.

Statements (2) through (5) state the relative precedence of the

four LISP operators. Statenents (6) through (9) define expressions;

e.g. (7) defines the car of alist 'a'to be the first elenent of the

nmodel ing array. Statement (10) defines the assignment statement for

assigning a list to an integer variable.
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(11) op(r) f of list x = list 'E(list (loc of F,0),x)';

1l

(12) op(F) f of op(G) g =

list "list (loc of list (lgec of F,0), loc of . Q";
(12) list y of op(F) f =1list "list_(y, loc of F)';
(14) list y of list x = list 'E(y,x)';

Context definitions (11) through (14) provide an efficient rule for
sequencing through a conposition of operations on lists, each one of
which operates only on atons to produce atoms or even lists. The pro-
cedure E is organized so that as each atom of data is encountered the
remaining operators in the conposition are applied to it. Thus the
lists are not totally deconposed and conposed for each successive
operator. In a <declaratior> such as op (H h, the <actual paraneter>
H represents the <procedure to be used to apply h to a list. The
lists are assumed to be nonrecursive, in the sense that no list is a
sublist of itself.

The block containing these list definitions nust also contain the

procedure E

|ist procedure E(f,x); list f,x;

E :=if aton(x) then (if aton(f) then (list pic of car f) (x)

el se E(car f, (list pic of cdr f))) else E(f, ggi_x) cons

E(f,cdr X);




An exanple of a LISP programis:

begi n op(F)f; op(G)g; integer c; list a, b, d, h, k;

I nteger procedure subst (x, y, z); list x, vy, z;

subst:= if aton(z) then (if eq(z,y) then x else z) else

subst(x,y, car_z) cons subst (x,y, cdr z);

list procedure F(x); list x; F := subst(a,Kk,Xx);

“list procedure G(x); list x; G:= subst(d,h,x);

c 1= (f of g) of b end;

The exanpl e above does justice neither to LISPnar to the Galler-
Perlis system The full design of their system has ALGOL C defined by
a simlar definition set in the outernost block. In each subsequent
bl ock the translator builds a type table and a context table using the
local definition set. The actual processing of local ALGOL D text is
quite involved. This arises fromthe facts that contexts are recursive
and that ALGOL C text can be interspersed with locally defined text.
The discussion in the paper is further conplicated by a desire to
optimze the conputation in addition to producing ALGOL C code.

Ve have deliberately, if not successfully, distorted the intent
of Galler and Perlis' paper. They were also concerned with arrays, and
nore particularly with saving space in matrix calculations. It would
have been preferable on all sides for themto have nade the separation
of issues thenselves. As we have mentioned, the paper contains inport-
ant discussions of subjects other than extendible conpilers. TIts

contribution to our topic is nore theoretical than practical. They
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have shown that very sophisticated macro-processing is possible and
can lead to substantive changes in an algebraic language. (One woul d
guess, however, that inefficiency at translation time and sensitivity
to programming errors would seriously restrict its practicality.
There is, in addition, a general question of how often one woul d want
to change a high-level language; this will be taken up again in

Section III.C.
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II.D;  Conpiler-Conpilers

The distinguishing characteristic of this set of TW5 is the
attenpt to automate many of the post-syntactic aspects of translator
witing. Such systens nmight better be called conpiler-witing-systens
because they include significant programs which are resident at trans-
lation and execution time, as well as neta-language processors. The
prograns in this section are nmuch more conplex than nost of those dis-
cussed previously; none has ever been inplemented by someone not in
contact with a previous effort of the same type. The followi ng excerpt
froma paper on FSL outlines basic philosophy and should serve as an
adequate introduction to our discussion of conpiler-conpilers. The

ot her conpiler-conpiler projects discussed in this section have simlar
philosophies; we will point out the differences in the appropriate
sections.

Wien a conpiler for sone |anguage, L, is required, the follow ng
steps are taken. First the formal syntax of L, expressed in a syntactic
neta-language, is fed into the syntax |oader. This program builds
tables which will control the recognition and parsing of prograns in
the language L. Then the semantics of L, witten in a semantic meta-
| anguage, is fed into the Semantic Loader. This program builds another
table, this one containing a description of the meaning of statements
in L Finally, everything to the left of the double line in Figure 1

is discarded, leaving a conpiler for L.
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ISCURCE CODE IN L

!
SYNTAX OF I;{ — -r’l
LOADER : BASI C
E COVPI LER
SEMANTI CS OF L | SEMANTI C T
| LOADER 1"“';
; NACH NE  CCDE

Fig. 10. A conpiler-conpiler

The resulting conpiler is a table-driven translator based on a
recognizer using a single pushdown stack. Each element in this stack
consists of two machine words -- one for a syntactic construct and the
other holding the semantics of that construct. \Wen a particular con-
struct is recognized, its semantic word and the semantic table deter-
mne what actions the translator will take. The Basic Conpiler
includes input-output, code generation routines and other facilities

used by all translators.

1. FSL and its descendents (Fel dman [Feld 66])

The problem faced in the original FSL effort was the devel opnent
of a language for describing the post-syntactic (semantic) processing.
An adequate semantic meta-language Should permt the description of
the source language to be as natural as possible. |t should be

readable so that other people can understand the neaning of the source
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| anguage being defined. It should allow a description which is
sufficiently precise and conplete to enable efficient automatic
conpilation. Finally, the meta-language should not depend on the
characteristics of a particular conputer.

Since there are satisfactory ways of representing syntax, the
formalization of semantics should make possible a conplete formal
description of conputer |anguages. Wth a conplete formal description
avail abl e, one could organize a conpiler as shown in Figure 10

The syntax meta-language used in FSL is very close to the Floyd
[Flo 61] and Evans [EvA 4] production |anguage and is discussed in
Section II.A5. A statenent in this syntax |anguage may include a
comand "EXEC n" which is a call on the semantic statement |abel ed
-n.  The only other interaction between syntax and semantics is the
pairing of syntactic and semantic descriptions in the pushdown stack.
This clean division of syntax and semantics has some advantages, but
has proved to be a great handicap in inplenenting certain |anguages.

The senmantic meta-language, called the Formal Semantic Language
(whence FSL), was the main focus of effort and will be discussed in
sone detail here. The overriding consideration in FSL was machine
i ndependence as opposed to object code optimization in the TRANGEN
effort discussed below The plan was to have the neta-language be
machi ne independent, with the machine dependent aspects of translation
handl ed by a large set of prinmtives inbedded in the basic conpiler.
Statenments in the meta-language Woul d be conpiled into machine code
made up largely of calls on primtive routines. Sone exanples shoul d

serve to illustrate this approach.
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Suppose the syntax phase is processing a REAL declaration and
calls semantic routine 1 with the identifier being declared in the

second position of the stack (LEFT2).

1. TO « STORLOC, SET[ TO, DOUBLE];
ENTER [ SYMB; LEFT2, TO REAL, LEV];

STORLOC « STORLOCH+2

"The current value of STORLOC (the storage pointer) is placed in a
tenporary and tagged with bits marking it a doubl e-precision operand.
Then a description of the variable is placed in the synbol table, SYMB.
The entries for the variable are its nane, the tagged address, the
word REAL, and the current level. Finally, STORLCC is increased by
two, allocating two cells to the double-precision variable.

When an identifier is scanned in an arithnmetic statenent,

semantic routine 2 is called.

2. | F CONST[LEFT1] THEN RI GHT1 « LEFT1
ELSE | F sYMB[LEFT1,,$,] = REAL
THEN Rl GHT1 « SYMB[LEFT1,$,,]

ELSE FAULTL -

In semantic routine 2, the predicate CONST is applied to the
identifier (in LEFT1) to test if it is a constant. |If so, the stack
is adjusted and the routine termnates. |If not, the identifier is a
variable and nust be |ooked up in the synbol table. The table-Ilookup

is acconplished in FSL through a special table operand of the form
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SYMB[ LEFT1,,$,] .

This operand initiates a search of the table SYMB for an entry in the
first row which equals the contents of LEFT1. Then the position of
the $ is used to select the desired entry of the matched row.

In routine 2 the third entry (data type) of the matched row is
selected and conpared with the string construct REAL. If they are
the sane, the variable was declared to be REAL and all is well. In
this case the second entry (tagged address) of the matched row in
SYMB i s assigned as the semantics of the real variable. [If the
variable is not of type REAL or is not in the table at all, the state-
ment FAULT 1 will be executed. This causes the printing of an error

message on the listing of the source |anguage program being conpil ed.

Finally, suppose the syntax has recognized an addition which is

to be conpiled and calls semantic routine 3.
%3:  COODE(VALUE2 « LEFT4 + LEFT2);

The code brackets 'CODE(' and ')' specify that the statenent
within themis to be conpiled into object code, rather than executed
during translation. This statement will produce a call on a code
generating routine which uses the semantic descriptions in the second
and fourth positions of the stack to conpile an addition code-sequence.
The result of an addition is itself an expression and the syntax is
presuned to have put its synbol (E) into the second position of the

stack. The assignment to VALUE2 will associate the semantics of the
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result (e.g. DOUBLE, in accunulator) with the syntactic synbol. The
FSL system allows alnost all constructs to appear inside code brackets
(to be done at execution time) or outside code brackets (to be done
during translation).

The semantic neta-language, FSL, allows a conpiler witer to
declare and use a variety of data structures in building a translator.
Besides the tables nentioned in the exanples, there are stacks, masks
strings, and conventional cells. The language also includes other
features such as chaining, addressing levels, and output statements
which facilitate conpiler witing. The Fornula Algol conpiler was
largely witten in FSL and the description [It 66] of that inplemen-
tation provides a good study of the strengths and weaknesses of FSL.

The weaknesses of FSL can be characterized as the lack of sev-
eral conveniences and a nunber of basic structural defects. The lack
of conveni ences such as index variables, assenbly |anguage enbedding
and debugging aids are due to its developnment as a thesis (hit and
run) project and have been renedied in later systens. The structura
defects result mainly from the attenpt to preserve machine independence

An FSL system is useful to the extent that the conpiler-witer's
needs are nmet by the facilities of the semantic neta-language. This,
inturn, is possible only if there are suitable formalizations of the
pertinent concepts. Thus all the research problens listed in
Section III.C (e.g. data structures, paging, parallelism are
problems in any FSL system Neither of the systens now running have

good facilities for global code optimzation or nultipass conpilers,
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but these problens are being attacked by Gies [Grief7b] at Stanford
and the CABAL group [Fie 67] at Carnegie. There are, however, limts
to the level of code optimzation which can be achieved in a machine-

i ndependent way. There is a sense in which any FSL systemis predes-
tined to failure; techniques will always be used before they are
sufficiently well understood to be formalized. Such a system can still
be very helpful and the search for meta-language representations should
lead to careful study of new techniques.

The only other FSL-like systemconpleted to date is VITAL [Mnd 67]
at the Lincoln Laboratory. VITAL runs in a time-sharing environment
and differs from FSL mainly in system features. These, along with a
nunber of notational inprovements, make VITAL nuch easier to use, but
are of little theoretical interest. As an illustration we present the

routines described above as they would appear in VITAL.

1: ENTER[SYMB; LEFT2, (STORLOC|DOUBLE), REAL, LEVI;
TALLY[ STORLOC, 2]
2: IFNOT LEFT1 IS CONSTANT THEN
| F SYMB[LEFT1, TYPE] = REAL THEN
R GHT1 « SYMB[LEFT1, SEMANTI CS]
ELSE FAULT 1 :

3: RIGHT2 « CODE(LEFT4 + LEFT2)

There are also several substantive changes from FSL, including a con-
ditional in the syntax |anguage which depends on semantic information.

The combined features of persistent storage and conpile-tinme execution
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facilitates the witing of increnmental conpilers, VITAL also allows the
conpi ler-witer direct access to the accumulator marker and semantic
words if he so chooses.

The FSL systens have undoubtedly been handi capped by being inple-
mented on uncommon machines, the G20 and the TX-2. To conpensate for
this there are now three separate inplenentations for the | BM 360 series
in progress. The CABAL group at Carnegie [Fie 67] is designing a system
for multipass conpilers using a semantic |anguage which is a mnimal
extension of ALGOL in the direction of FSL. The work under Gies at
Stanford [Grie67b] will also be nultipass-oriented, but will use a
special purpose semantic |anguage. The Lincoln Laboratory effort under
J. CQurry will probably be quite simlar to VITAL. All of these projects
may be considered attenpts to conbine the virtues of FSL with those of

TGS, our next subject.

2. TGS (Cheathamet al. [Plas 66, Che 65])

One of the nost productive groups in TWS research has been the
smal | consulting conpany, Massachusetts Conputer Associates (COWPASS) .
Al though their TWS have undergone many changes, the basic world-view
and goals of their effort have remained rather constant. The COWPASS
work has been narked by careful attention to systems questions and to
obj ect-code optimzation. Qher aspects of their effort are di scussed
in Section II.C5 which deals with an extendible conpiler scheme within
165 .

The first attack on the TWS probl em at COWPASS was cal | ed CGS

[War 64] and was quite different fromtheir current work. Al though
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they have abandoned this approach, we will discuss it briefly here

because it seens to be rediscovered periodically. The CGS system was
based on a top-down recognizer which produced a syntax tree to be used

in further analysis. The input to this phase was essentially BNF. The
second phase was the generation of intermediate code using a tree-nmatching
| anguage called GSL. The actual code selection process was witten in a
third language, MDL. This effort was abandoned because trees were

found to be slow to build and difficult to do pattern recognition upon

The TGS systens differ from CGS, as well as the other systens
described in this section, in the use of a single language for describing
all phases of the conpiler. This |anguage, TRANDIR is conpiled into
an interpretive code which is processed by the TRANGEN interpreter. I|f
one conbi nes the syntax and semantic |oaders of Fig. 10,the FSL nodel
applies quite well to TGS. In fact, there has been good communications
between these two efforts and they have converged to a marked degree.

The communi cation has not, however, been perfect; two concurrent
i mpl enentations of TGS and FSL took place within a few hundred yards of
each other without making contact.

The TRANDIR |anguage contains a pattern-matching subset which is
essentially the sane as the syntax |anguage used in FSL (cf. Section
II.A5). The TGS version is nore flexible in that it can be used on a
variety of stacks and can match on properties other than identity of
synbols.  The pattern matching features can be used in various code
optim zation techniques as well as in syntax analysis.

The remaining features in TRANDIR | anguage are quite simlar to

the semantic language in FSL. There is a "symbol description" (SD
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connected with each syntactic construct which is the analog of the
"semantic word" in FSL. There are fairly elaborate facilities for
declaring tables, stacks, masks, etc. for use by the translator. These
various storage methods with the associated operators provide a very
flexible means of recording and accessing the information needed for
conpiling efficient code. The FSL notion of code brackets is replaced
in TGS by a series of synbol manipulation primtives to help the
conpiler witer produce output code. The operation of a TGS conpiler
can be best described by working through an exanple fairly conpletely.

The exanple will be taken from a conpiler for a mniature algebraic
| anguage Ly, described in [Plas 66]. The basic conpilation technique

chosen is to use a tabular internediate code as is common in COVPASS

conmpilers [Che 66]. A typical internediate code translation of
Z <X *Y
woul d be

0O nves x v

B s> z (Q

The intermediate code will be processed by a code selection phase
which will produce the final output for |ater assenbly.

Consider first the TGS statenent:

...VAR AE // EMIT(STORE,COMP(1),COMP(0));

EXCI SE; TRY(ENDST).
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The left part (up to the //) of this statement is a pattern of
type <variable> <expression> which is conpared with main stack
(SYMLIST). If a match is attained the remainder (action part) of the
statement is executed. The action EMT produces a STORE intermediate
instruction with the operands being the first and zeroth elenents of
the stack as matched. Since there is no resulting semantic descrip-
tion (SD), the action EXCISE is used to erase the two matched el ements
fromthe stack. Finally, the action TRY(ENDST) directs TRANGEN to try
to match the pattern labelled ENDST.

A sonmewhat nore conplicated routine would be used for recognizing

a multiplication:

...VAL $* VAL // PHRASE(SYMRES(TIMES,COMP(2),COMP(0)));

AESET:  SYNTYP (COMP(0)) = AE: TRY(AE1)

Wen one understands that "$*" denotes the terminal synbol "x",
the left part of this statement should be clear. The action SYMRES is
a call on a routine which perforns an EMT of the same paranmeters and
also returns an SD as its value. This SD becones a parameter to
PHRASE which uses it to replace the matched portion of the stack. The
action labelled AESET causes the syntactic type of the new top el enent
to be assigned the value "AE". Finally, the statenent TRY(AEl) |eads
to further expression processing.

These two TGS statements, if appearing in reverse order, would
conpile "z « X *Y" into internediate language. In the real world,

typical statements would involve table operations, string commands,
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conditionals and other nore conplicated TRANDIR constructs. There are
also fairly sophisticated <procedure> features which inprove the
readability as well as the witability, of translators.

In any event, the internmediate code will itself be processed by
another set of TRANGEN routines called the code selectors. These are
witten in the same form as the syntax routines considered above.

For exanpl e:

//  TIMES | NVEM | NVEM ..

LOADMQ(XM+1) .

This statement has a pattern involving a predicate INVEM (meaning in
menory) on stack entries rather than symbols to match. (The delimters
"//"and " . . ." indicate that the pattern is to be matched against the
intermedi ate code portion of the stack). The subroutine LOADM) is
called with a pointer to the second stack operand as paraneter. This
user-witten routine will assenmble a LOAD M) conmand if necessary and
will adjust the SDin the stack to reflect the fact that one operand is
now in the M) register. A sinmilar routine will be used to conpile the
appropriate multiply sequence. The result will be in the accumul ator

and TRANGEN wi || eventually match the statement:

// STORE #*x *INAC. . .
| F SIGN(SYMBOL(ACHOLDS ) )THEN
G5: EMT (CHS);
C&EMT (STO ARGE1));
c5: LINE(TEMPS) = O;
ACHOLDS = 0; MQHOLDS = 0; TO (STEP)
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The pattern here contains a "*" which is always matched and a *
neaning indirect reference. |If the operand in the accumulator, which
I's described by ACHOLDS is negative a "conplement” (CHS) instruction
nust be emtted. The store command is emtted in any case w thout any
tests on the variable to be replaced. The succeeding actions effect
the state of the translator, reclaimng the tenporaries and freeing the
AC and MQ registers. Finally there is a transfer to the action STEP
whi ch sequences through the internediate code.

The TGS system has been inplemented on several conputers and has
been used in the construction of a variety of conpilers. The conpiler
witers have been professionals and have not been constrained to stay
within the formal system The use of TGS has been sufficiently

val uable to COWPASS that they continue to use it on comercial com
pilers. The main differences between TGS and FSL accurately reflect
the difference in design goals: TGS allows more flexibility by
requiring more detailed information from the conpiler-witer. The
efforts of Gies [Gie 67/b] at Stanford and Fierst [Fie 66] at Carnegie
are attenpts to have the best of both by allowing sinple code state-
nents as well as nulti-phase- processing. Both VITAL [Mnd 67] and
the nost recent TGS [Plas66] are interactive and have sophisticated

trace, edit, and debug features.
3. CC (Brooker, Morris, et al. [Brook 67])

The CC (Conpiler-Conpiler) project at Mnchester University is

the ol dest and one of the nost isolated TWS efforts. Rosen [Ros 6kia]
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has attenpted to play Marco Polo to this inperial court, but trade has
been slow. The CC system has been running for some time and has been
used to inplenent several algebraic |anguages [Cou 66, Kerr 67].

The CC effort has concentrated on problems of semantics; the
syntax analysis is top-down with menory and one synbol |ook-ahead
(cf. Section IIA). The result of syntax analysis is a conplete syntax
tree which is used by the semantic phase. This is, of course, a slow
process and there are informal provisions for other techniques. W
wll follow the formal treatnent here, taking sone liberties with
their notation.

The input to the syntax phase is |ike BNF except for the optional
use of a repeat operator (¥) to replace sinple recursions. The notion
of non-termnal synmbol is divided into PHRASE and FORMAT. The FORWAT
non-termnals may be introduced in macro-fashion and each has an
associated (semantic) ROUTINE. The FORMAT synbols are further qual-
ified as [SS], [AS], [BS] neaning respectively source statenent, aux-
iliary statement, and pre-coded basic statement. For exanple, a source

| anguage assignnment statement mght be defined as:.
FORMAT[ SS] = <variable <—<ex§ression> .
Among the useful auxiliary statements would be:

FORVAT] AS]

LOAD <preceeding +> <term>

FORMAT[ AS] ACC « ACC <B <term>



Each of these woul d have an associated routine, whose first |ine
contains its calling syntax rule (FORMAT). The routine for the

assignment statement mght be:

1) ROUTINE[SS] = <vari abl e « <expression>

2) LET <expression> = <preceeding £ <term> <terms>
3) LOAD <preceeding £ <term>

4) L2: GOTO0 L1 UNLESS <terms> = <term> <terms>

5) ACC « ACC <> <term>

6) GOro L2

7) Ll: STORE ACC IN <variable>

8) END

In order to understand this routine we need two PHRASE

definitions:

PHRASE <expressior> = <preceeding # <term> <terms>

PHRASE <terms> = <& <ternp <terns> | <empty>

Notice that the unusual form of recursive definition facilitates
sequential code generation.

Line: 1) is the header containing the syntactic construct (FORVAT)
associated with this routine. Line 2) is a substitution statement and
is not an inportant consideration here. The rest of the statement is
a loop for conpiling a string of "add" and 'subtract’ conmmands and
then storing the result. The statement on line 3)is a call on another

ROUTINE[AS], this one forming as many successive products and quotients
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as possible. Qher statement forms such as GOTO and STORE are pre-
sunably pre-coded and thus of form ROUTINE[BS]. Notice that state-
ments like that on line 5)inply "using up" syntactic constructs as
they are processed.

The built-in part of CC contains, besides [Bs] routines, a fairly
conplete resident system (PERM. There is also a facility for deleting
many routines at the conpletion of the conpiler building (PR MARY)
phase. If these routines are left in, the conpiler is an extendible
one in the sense of Section II.C. In fact, the earlier CC systens
woul d be better described as extendible conpilers altogether.

In the earlier versions of CC, the formats and format routines
for a language were kept in an encoded form and interpreted by the
conpiler.  The actual nechanism was a tree matching and substitution
process somewhat simlar to that of Galler and Perlis (cf. Section
III.C6). The detailed procedure is quite conplicated and is described
rather completely in Rosen [Ros 64a]. The current CC systemis
interesting in that viable extensions to a |anguage can often be
"conpiled into" the translator with considerable savings in tinme and
space. There are still some routines which must be interpreted and
the ratio of the two types for a given extension is not easy to
determ ne

The CC group has recently produced a nunber of reports on the
uses and performance of their system These include the first attenpt
ever to conpare a TWs with handwitten conpilers [Brook 67]. Brooker

was able to (in a year) reduce the space required by a factor of two
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and the tine by about five by hand coding an Atlas Autocoder conpiler.
The results are hard to interpret wthout more information; the formnal
CC system uses techniques which are intrinsically time and space
consumng. One hopes that this attenpt will induce the CC group,

as well as others, to make nore careful studies. There are also

two adaptations of CC technique underway in England. The first

i nvol ves inbedding nuch of the CC systemin the ALGOL-Iike |anguage
ATLAS AUTOCODER [Br 67a]. The other effort is an ambitious attenpt
to generalize CC to a source and object code independent system

[Cou 67].
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[11.  Related Topics and Concl usions

IIT.A. Oher uses of Syntax-Directed Techniques

Very early in the TWs devel opment, it was observed that syntax-
directed techniques could be used in a wide variety of problens. A
syntax-directed approach can be considered whenever the form of the
input to a program contains a significant part of the content.

I ndividual applications of syntax-directed techniques tend not to get
witten up. The applications presented here are based |argely on
personal know edge and, though perhaps representative, are certainly
not conprehensi ve.

The TWS systens described in Section Il vary widely in the ease
with which they are put to other uses. The syntax-directed synbol
processors are the nost flexible and seemto be the nost widely
applied. One such system AED [Ross 66], was designed from the out-
set to be a general purpose processor. Because of certain peculiarities
of attitude and termnology, the AED project has had little effect on
other TWS efforts.

The syntax phase of AED is based on a precedence technique simlar
to those described in Section II.A. By incorporating type checking and
the ability to add hand-coded syntax routines, the AED parser becones
nore powerful at the cost of violating the underlying theory. |t is,
however, the internediate representation of AED statements that is
most interesting. This is based on the use of plexes, which are data
structures whose el enents each can have many links. The construction
and processing of the "modelling plex" are acconplished with a set

of macro routines. These nmight include routines for code generation,
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computer graphics or programed-tool commands. Reference [Ross 63]
Is a good introduction to the AED systemw th detailed exanples of its
use in several problem areas.

The essential features in the AED systemare the precedence matrix
in syntax and the plex manipulations in semantics. A sonmewhat different
approach to the syntax-directed universe can be devel oped from the
general conpiler-conpiler nodel discussed in Section II.D. In this
schene, the entire semantic mechanism including the choice of data
structures, can be different for each application area. In the VITAL
[Mond 67] effort, two basically different data structure |anguages
(both witten in VITAL) are being conpared in a syntax-directed graphics
package [Rob 66].

Most of the other applications of TWS systens have been in
synbol manipul ation tasks of one sort or another. Sone of the first
applications [Schor 65] were in synbolic mathematics. A TWS would be
used to help nodel the structure of an expression, perhaps for
sinplification or differentiation. The use of TWS (esp. COGENT, META)
in synbolic mathematics is currently w despread and has given rise to
systens [Cla66] constructed specifically for that purpose. There
have al so been a few pure mathematicians (e.g. [Go 66]) who have
found the syntax-directed nodel useful.

The nost wi despread and |east surprising application of TWS is
in problems of format conversions. These arise in connection with
large data files and in translating between closely related source-

| anguage to source-language translators. Once again, the syntax-
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directed synbol processors of Section II.B have been used the nost

often. These systems have also been of sone use in such varied
tasks as: logic design, translating geonetric descriptions, and
si nul ation.

There are also a nunber of applications of TWS techniques to
produce command sequences for special purpose devices. For exanple,
a fairly sophisticated TWs [Cas 66] was used in translating commands
for various conponents of a satellite tracking system

In addition to their direct application in many fields, the TWS
have inspired work in several others. One active area has been the
syntactic-description of pictures. There arer a nunber of: published
papers (e.g. [Nar 66]) and a great deal of current work which has not
yet seen print. The pattern matching features incorporated in the
new |ist-processing |anguages [Ab 66, It 66]¥re partially inspired
by TWS

Conputational linguistics, in both its theoretical and practical
aspects, is closely related to TWs studies. The applications here,
t hough fewer than one woul d suspect, have been significant. The
syntactic theories of computational linguistics and TWS both are
based on the early work of Chomsky [Chom 63] and share many ideas.
The inplementations of English syntax (esp. [Kun 62]) devel oped con-
currently with top-down TW5, but the natural |anguage efforts have
been slow to incorporate the efficiency inprovenents devel oped in TWS
work. In applied semantics, the DEACON project [Th 66], whose approach

was quite novel to linguists, can be |ooked upon as a straight-forward
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application of TWS techniques (cf. [Nap 67]). One can expect to see
more interaction between these research areas as linguists attenpt to
test semantic theories and TWS workers attenpt to cope with non-
procedural |anguages.

The last, but by no means the least, of the applications
considered here is to teaching. Several of the TWS systems described
above have been used as the basis for courses on translator-witing.
These have ranged from undergraduate courses to faculty semnars
and have been well regarded. Al though they can be taught wi thout
machi ne problens, these courses are nuch nore successful when the
students have easy access to the TWS under discussion. This approach
to teaching was sufficiently appealing to cause D. Knuth at Cal Tech

~to inplement a version of TM5G (called TROL) largely for that purpose.
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III.B. Related WMathematical Studies

Conputer science owes much to mathematics and is beginning to pay
off that debt. Both the syntax and semantics of programmng |anguages
have inspired formal treatnments. In this section we will briefly dis-
cuss the devel opnents nmost relevant to TWS and provide an entree to the

literature on the formal aspects of progranmng |anguages.

IIT.Byu. Syntax

VW will discuss briefly sone theoretically interesting left-right
recognizers and their construction algorithms. f course, given a
grammar G and a string X, there is a relatively sinple nethod for test-
ing whether x belongs to LG. (One can generate all strings belonging to
Lg of length equal to length (x) and see whether x has been generated.
This is not very practical. |In contrast to those in Il.A, these have
not yet been used to wite conpilers, due to their conmplexity. The
construction algorithnms are interesting because they give sufficient
conditions for the unanbiguity of a grammar, besides mechanically pro-
ducing the efficient left-right recognizer. By efficient we nean that
no backup is necessary - the recognizer can always detect the handle.
a) (1,1) Ganmars - Eickel et al. [Ei 6B]

By inserting intermediate productions (cf. Section II.Ak), the
constructor changes the grammar to one consisting of production of
length one or two - U - S or U - 845,

When [ooking for a handle at the top of the stack, the two top
stack synbols and the incomng termnal symbol nust uniquely determ ne
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the step to be taken. Thus, for each triple (Sl,SQ,T) one and only

one of the follow ng conditions nust hold:

1) 8,8, is a handle and one reduction U::= 5.8, may be executed.

12

2) s, is a handle and one reduction U::= s, my be executed.

)

) 8,

3) T nust be pushed into the stack.
)

L) s.S.,T may not appear as a substring of a sentential form (error).

172

The algorithm for producing the triples and the corresponding action is
given in [E 63], along with exanples. This algorithm and the recog-
ni zers produced have been progranmed and tested, but not used to wite

conpilers

b) Bounded Context G anmmars

A grammar is called an (mn) bounded context grammar if and only

if the handle is always uniquely determned by the m synbols to its
left and n synbols to its right. A left-right recognizer may thus
find the unique canonical parse of a sentence of an (mn) bounded
context grammar by considering at each step at nost m synbols to the
left (into the stack) and n termnal synbols to the right of a possible
handle. The first four types' of grammars discussed in Section Il are
(1,1) bounded context grammar, as are all grammars accepted by the
Ei ckel - Paul - Bauer - Samel son constructor [E 63].

Recognizers for (m,n) bounded context grammars for nm> 1, n > 1
are likely to make unreasonable demands on conputer time and storage
space. Therefore (mn) bounded context grammars have not been used

so far in conpilers. There have been three najor papers on bounded
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context analysis. Each of them defines "context bounded" slightly
differently. The idea behind all of them though, is the sanme, and
we will not discuss the differences here.

The paper by Floyd on Bounded Context [Flo éka] and the paper by

Irons on Structural Connections [Ir 64] should be read by any person

interested in delving further into the nysteries of bounded context.
However neither gives an algorithmfor actually generating the recog-
nizer . Eickel's aim|[E 64] is to describe the recognizer and its
construction in detail (and is therefore |ess readable than the other
two). The recognizer uses the usual stack, and a pointer p to the tail
symbol of a possible handle. As in [E 63] the grammar is restricted
to productions of length 1 or 2 (this is not a restriction onthe

| anguage). The generator produces 5-tuples

(XES 5Y;k1U)

where x,y are strings with length (x) < mand length (y) <n, Sis a

symbol, U a non-terninal, and k a nunber. Suppose the stack contains

Sy Sp S part 53

Sp, the synbol at the reduction position, is then tail of a possible

handle. The 5-tuples are searched until one is found such that S = Sp,
x is atail of S 5 ..SP_| and y is a head of Sp+l...si. The step to be
taken depends on the corresponding k and U as follows:
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k action

0 stop - syntax error
1 replace handle SP by U (make a reduction U - sp)

2 replace handle S SPby U (make a reduction U - Sp_lsp);

P-1
P+ P-I
3 if p=1 then push next synbol onto stack else p « p+l

4 push next synbol onto stack (nore context needed on the right).

Eickel has programmed and tested both the constructor and recog-
nizer, but no conpiler has been witten using this technique. The
constructor starts by limting the length of x and y to 1 and producing
all possible 5-tuples. If two (or nore) 5-tuples exist with the same
x,y and S but different i (or the sane i but different U, then the
granmar is not (1,1) bounded context. For such 5-tuples, the |engths
of x and y are alternately (or in some other predetermned order)
increased, thus adding more context, until the conflict is resolved
or some maxi mum m,n are reached.

Wrth and Weber [Wr 66c] extended the idea of precedences (see
Section II.A2) to strings. Thus we have x®y , xQy and x&y where

length (x) < mand length (y) < n. A (mn) precedence grammar is of

course also (mn) bounded context according to our definition. A
precedence granmar according to Section II.A2 is a (1,1) precedence

gramar .
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c) Deterministic Push-Down Autonata (DPDA). G nsburg and G eibach

[Gn 66b]

A DPDA is a formalization of the concept of a left-right recognizer
working with a stack and using the usual notation of automata theory -
one has a set K of "states" containing a start state k, a set of inputs
@ (termnal synmbols), a set [ ( corresponding to our nonterminal

synbol s) containing a start synbol T, and a napping §%;

¥ . (states x (nonterninal symbols) x (input synbols)) -
(states x (strings of nonterminal synbols))

or

§ (K x M x (@uie}) ) » (K x p *)

This mapping § nust be a function (single valued). Other restrictions
are also placed on it to take care of the enpty synbol € which nay

appear anywhere in the input. At each step we have a triple

(k , Ul...Ui, Tj...Tm)

state stack rest of input
(where i> 1), the initial triple-being (k,T, Tl...Tm). At each step,
with the help of the mapping (k,Ui,TJ.) - (kl’U]‘_” [ Un) where n > 0,

the triple gets changed to

(kl, URERA MRS Tjﬂ...TmJ

A string (of inputs) is accepted if the final state k. is a menber of
a set of final states F.

~
Z
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A language (a set of strings of input synbols derivable from sone

grammar) is deterministic if it is accepted by some DPDA. G nshurg

and Gei bach prove sone interesting properties of DPDAs and detern n-
istic languages. Note that a deterministic language is defined by a
DPDA - and not by certain properties of the grammar defining the

| anguage. Wat is significant for us here is the relation to LR(k)

| anguages of Knuth (bel ow).

d) IR(k) Granmar (Knuth [ Knué5])
A granmar is IR(k) if and only if a handle is always uniquely
determned by the string to its left and the k termnal synbols to its

right. The corresponding |anguage is an IR(k) |anguage. Thus, when

- parsing a sentence using a stack, the left-right recognizer may | ook

at the conplete stack (and not just a fixed nunber of symbols in it)
and the following k termnal synbols of the sentence. This is the
most general type of grammar for which there exists an efficient left-
to-right recognizer that can be mechanically produced from the grammar.
In fact, a grammar accepted by any of the other constructors discussed
is LR(I). Thus, the IR(k) condition is the nost powerful general test
for unanbiguity that is now avail able.

Knuth gives two algorithns for deciding whether a grammar is
IR(k) or not, for a given k. The second algorithm also constructs
the recognizer - if the grammar is IR(k) - essentially in the form of
a DPDA (above). Knuth shows that for each LR(k) |anguage L there
exi sts a DPDA which accepts L. Mreover, for each |anguage L accepted

by a DPDA there is an LR(l) grammar which defines L. Thus, any LR(k)

qly




| anguage is also IR(1). Earley [Ear 67] has witten a constructor for
an LR(k) grammar, whose output is in the form of productions, sinilar

to but nore conplicated than the Floyd-Evans productions.

e) Recursive functions of regular expressions (Tixier [Tix 67])

Many conpilers break the syntax analysis into small parts. Thus,
one subroutine wll recognize <expressions> while another wll handle
<declarations>. A saving of space arises because the character set
involved in each subroutine is quite small. For instance, one m ght
have three 20 x 20 precedence matrices instead of one 60 x 60 matrix.
Tixier has formalized this concept quite nicely in his thesis.

One can consider a non-termnal synbol as a variable denoting the
set of termnal strings which are derivable fromit. The productions
can then be transformed into sets of equations using the set operations

uni on (+), product and closure (*). Thus the productions

<identifier> «<letter>

<identifier> «<identifier> <letter>
my be witten equivalently as

<identifier9 <l etter> + <identifier> <letter>

or

<identifier> = <letter3 <letter>¥

Tixier has rewitten the 120 productions for Euler [Wr 67cl as 7

functions of 7variables, 3of which we give here (the synbols "(",
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") are nmeta-synbols used to bracket set expressions):

program = lblock L
bl ock = begin((new id + |abel id);)*(i:)*expr(;(i:)*expr)*end
expr = (out + if expr then expr else + i ([expr]+.)* <—)*

(goto primary + block + catena)

The point is that one can now nechanically construct a finite
stat e automaton,which is very efficient, to accept each of the above
expressions. (ne can then connect these automata by a pushdown stack,
so that they may (recursively) call each other. Thys, when the finite
state automaton for "progrant (see above) decides that a "block" nust
be recognized, it places in the stack a return point to itself and

calls the "block" autonata.

Tixier has formalized this in his thesis and shows how to construct

an efficient restricted DPDA for a certain class of grammars, called

RCF, These languages are thus LR(1).
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The diagram bel ow presents an inclusion tree for the classes of
grammars accepted by the particular constructors discussed in this

section and in Section II.A.

deterministic (ILR(n))

Product i 0N
cont ext | anguage

(m,n) bounded

(1,1) grammar

Extended transition matrix

(c)

operator precedence

precedence

(a) Although (1,1) grammars and extended precedence grammars both use
triples, the advantage for (1,1) grammars arises fromthe automatic
internediate reductions performed, which essentially allows nore context.
(b) Transition matrix granmmars fall somewhere between (1,1) and (0,1)
bounded context.

(c) W are making the assunption here that the operator precedence

condi tions have been augnented to include conditions for a unique

canoni cal parse (cf. Section II.Al). Qtherwise inclusion does not hold.
The advantage of the matrix technique over operator precedence is, as in

(a), the use of automatic internediate reductions.
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[11.B.2. Semantics

Any formal study of the semantics of programm ng |anguages
imediately confronts the problem of separating syntax from semantics
Programm ng | anguages conbine ideas from logic (where the problemis
solved) and natural |anguage (where it is no |onger taken seriously)
In nost treatnents of progranmng |anguages, syntax is taken to be
precisely these aspects of |anguage describable in the syntactic meta-
| anguage under discussion. This practice has the unpleasant effect of
changing the definition of syntax with each change in meta-language.

Conputer scientists trained in logic (e.g. [Tix 671) would like
us to adopt the definitions used there although this approach has not
proved effective for natural language and has inmmediate problens in

programm ng | anguages. For exanple, are the statenents

X «Y /0.0
L1: GOI0 L1

well-formed in ALGOL 60? Surely, an algorithm capable of handling data
types could detect these errors, and the question is now one of how far
to go. It is not obvious that one could produce a notion of syntax
which satisfied a logician's tastes and still left well-formedness a
deci dabl e property.

The situation is further conplicated by the fact that all mgjor
| anguages contain statenments unparseable by the formal syntax alone

An exanpl e from ALGOL 60 is:
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X« IFBTHEN C ELSE D > E

the structure of which depends on whether "¢" is Boolean or arithnetic.
Thus, in practice, syntax-directed conpilers nust incorporate "semantic"
features in the syntax phase. One ingenious approach to the separation
question is the abstract syntax [McCar62a] of McCarthy. He is nmainly
concerned with semantics and considers (analytic) syntax to be just the
set of predicates and functions necessary to extract pertinent infor-
mation fromthe formof a source string. This does not "solve" the
probl em of defining syntax but does enable one to consider semantics
without facing the separation question.

As usual, formal studies of semantics have |agged behind work on
the syntax of programming |anguages. By far the best general work on
this subject is [Ste 66] where the discussions, even nore than the
papers, provide an overview of fornal semantics. The various formal-

i zations that have been presented are all procedural; they are either
abstract machines or inperative formalisnms such as the h-calculus
[Chu.51]. This is reasonable to expect, but greatly restricts the
choice of existing mathematical nodels.

Since the fornalizations are procedural one mght prefer the word
"effect” to "meaning" in the description of programmng |anguages.

This is not the place to defend the notion of semantics as effect and
we will adopt it nerely as a convenient way of looking at things. This
view does |ead one to expect a program to have different effects depend-

ing on an "environment" and this wll prove useful in our discussion.
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It might also | ead one to suspect that the choice of semantic meta-
| anguage will be influenced by the intended use of a formal description.
The existing efforts in formal semantics may be separated into
those concerned with proofs about prograns and those interested in
elucidating the processing of programs by conputers. Among the latter,
one mght include the semantic meta-languages described in Section |I.D,
al though this is not de rigueur. There are, however, slightly abstracted
translation models (e.g. [Wr 66c]) which are considered acceptable.
In any such nodel, a language can have very different effects depending
on whether its translator is an interpreter or a conpiler. This seens
reasonable to programmers, but disturbs nathematical types who would
prefer to see meaning reside in the algorithm rather than the program
A related set of developments are the attenpts to define all programming
| anguages by reduction to a single high level [ Ste66] or machine-
like [Brat 61, Ste 61] | anguage.
The approaches to formalization described above are nore closely
related to TW5, but are far too conplex to be very useful in proofs.
For those who consider proofs to be the sole end of formalization (and
woul d be reading this paper at all) the preceding paragraph will be
consi dered an anathema. An interesting hal fway house is to be found in
the work of Van Wjngaarten and de Bakker [Bak 65 , Wj 66]. They
attenpted to reduce the conplexity of their nodel by using a universa
Turing machine. This machine had only a few rules, which would inter-
pret additional rules, eventually formng a translator which woul d
recursively translate e.g. ALGL. The difficulty was that the formalism

was so primtive that the ALGOL semantics becane a |arge paper and
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nei ther proofs nor insight seemed to result.

Most mat hematical |y based attenpts at formalization have stressed
tractability and have alnost all been based on existing mathematics.
There are only a few inperative systens in logic, and each has been
used in formalizing some aspect of conputer science. Mst of the work
in formal semantics is based on the h-cal culus of Church [Chu 51] and
the conbinator calculus of Curry [Cur 58].

Both of these theories were primarily concerned with the role of
variables and their successes in programnmng |anguages have been largely
inthat area. The h-expression plays a crucial role in LISP and is
di scussed as a progranmng concept in various LISP documents
It is also the nost popular vehicle for attenpting to formalize
semantics. The work of Landin and Strachey [Lande 66] is particularly
interesting because they conbined their research with the devel opnent
of an extension of ALGOL 60 called CPL [Burs 65, Cou 65].

The applications of h-calculus to semantics have been pursued nost
diligently by Landin. In a series of papers he considers the relation-
shi ps between programming | anguages (ALGOL) and an augnented h-cal cul us
called inperative applicative expressions (IAE). The declaration and
binding of variables in ALGOL is modelled quite clearly and the formal-
i zation has hel ped point out some weak spots in ALGOL. The | AE system
(like pure LISP) is purely functional and nust represent statements as
O0-adic functions with side effects on the environment. |In fact, much
of Landin's description of ALGOL can be viewed as a generalization of

t he "program feature" in LISP [McCar 62b]. Thus far, these efforts
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have neither achieved the descriptive clarity nor maintained the
tractability of h-calculus in accordance with the original plan. The
nost conspi cuous benefit of the work has been CPL [Cou 66] which is
an extrenely civilized |anguage. There is presently an active group
at MI.T. which is pushing this approach as far as it is ever likely
to go.

Al though he introduced the h-calculus into conmputer science,
MCarthy has taken a sonewhat different approach to formal semantics.
Hs term "theory of conputation" indicates that he is nore concerned
with algorithns than with algorithnic |anguages. H's approach utilizes
a state vector, operations upon it, abstract syntax and conditional

expressions. Typical state functions are

c(x,a)

A(X: Z:a)

read the contents of symbolic position 'x'in state vector 'a' and
the state resulting fromsubstituting 'z' for 'x'in state vector 'a'.
He is then able to get conditional expression definitions of
machi ne- code-|i ke operations and constructs found by the abstract
syntax. The resulting formalismis fairly tractable and MCarthy
and his students have been able to push through a number of proofs
[McCar 67].

A nmore recent, and intuitively nore satisfying, approach has been
devel oped by Floyd [Flo 67]. He considers the flow chart of a program

witten in an ordinary (fixed) programming |anguage. The basic idea
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is to attach a proposition to each connection in the flow chart; the
proposition is to hold whenever that connection is taken during
execution (thought of as interpretation). Wth these propositions and
some related mechanisns, Floyd establishes techniques for proving
properties of the form"If the initial state satisfied Rl then the
final state will satisfy R2, if reached.”" Proofs of termination are
handl ed by show ng that some function of, say, the positive integers
decreases as the program is executed. There are current efforts to auto-
mate both the generation of propositions and the proofs of correctness
for restricted |anguages.

Qur description of the work in formal semantics has been
sufficiently shallow to perhaps be msleading. Mst of these efforts
- have their conrades and fellowtravellers and the devel opment has been
richer than we suggested; the references at the end of this section
shoul d cover all nmajor trends related to TWS. The inpact of fornal
semantics, especially the proof-oriented kind, has been limted to a
few isolated insights. There has been no work having the inpact of
e.g. Krohn and Rhodes on automata theory. It is our conjecture that
this breakthrough is not to be found-in existing inperative logics;
programm ng |anguages will have to be faced directly as mathematica

and natural |anguages have been.

References for 111.B.2

Bak 65, Braf 63, Burg 64, Burs 65, Chu 51, Cal 62, Cur 58, Flo 67, Ir 61,
Ir 63b, Landi 63, 65 66, Luc 65, McCar 62a, 67, Org 66, Rig 62,
Ste 64, Tars 56, Tix 67, Zem 66.
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ITIr.c. Summary and Research Probl ens

The TWS described in this paper represent the nmost recent devel-
opments in a long line of research by nmany outstanding conputer
scientists. Each category described in Section Il has its peculiar
strengths and weaknesses and a preferred problem domain. After a
brief summary of the relations between the various categories, we wll
suggest a number of fruitful areas for future research.

The automatic constructors of recognizers, described in Section
II.A, are tools which are potentially useful in any problem attacked
with a syntax-directed approach. By automatically producing an efficient
recognizer, such systems should extend the useful range of syntax-
directed techniques. The nmgjor problemis to find a convenient way of
enbedding semantic definitions in the synthetic syntax. A solution to
this problem would al so produce a marked inprovement in the capabilities
of the syntax-directed symbol processors of Section II.B. These TWS
all have fairly convenient nethods for introducing semantics, but all
share the use of relatively inefficient recognizers. The already far-
reaching applications of such systenms could be significantly w dened by
the devel opnent of nore efficient recognizers.

The meta-assemblers described in II.C are presently nuch better
suited to assenbler-witing than conpiler-witing. They have, however,
i ntroduced several significant additions to macro |anguages which wll
have a long range effect. By extending the facilities of neta-assenblers
for translation-tine actions and adding a syntax phase one could nake

t hem conparable to the syntax-directed symbol processors of Section II.B.
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The work on extendible conpilers is nore recent and difficult to
assess accurately, Athough it seens clear that some macro facility
should be included in any high-level |anguage, the nore exotic systens
may be limted in their usefulness. In any event, it seems unlikely
that extendible conpilers will conpete with conpiler-conpilers in the
original inplenentation or radical change of a translator.

The conpil er-conpilers of Section II.D are the high point in the
evolution of specialized TW5. This specialization has made them by far
the most useful for conpiler-witing, but has its attendent costs. The
conpiler-conpilers are harder to inplenent and are often unsuited to
tasks appreciably different fromconpiling. As the semantic |anguages
attenpt to enconpass nore sophisticated programmng constructs, one can
expect the specialization to become even nore pronounced. There is
however, a tendency to allow the insertion of different specialized
semantic languages in a TW5 preserving the syntax and system features.

None of the TWS discussed here is a panacea. W have attenpted to
show that it is unreasonable to expect one and the results of various
attenpts at a universal programmng system of any kind tend to support
this position. W do feel that, taken as a whole, the TWS efforts have
solved many of the significant problens in conpiler witing and docunen-
tation [Naur 6%a]. There are now enough available techniques to satisfy
a great variety of possible TWS requirements. |t is our contention
that future work on general TWS should be considered devel opnment and
perhaps undertaken by a different set of people. The area nost suitable
for research seems to be the careful consideration of a nunber of

isolated problems related to TWS
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The syntactic aspects of TWS have received considerable attention
and have fewer outstanding questions. The three problenms that do cone
to mnd are closely related to semantics and to one another. (ne
problemis to find a satisfactory way of enbedding extra-syntactic
features to allow "syntax" to correspond nore closely to one's intuition
[G1 66]. A related issue is the absence of an adequate technique for
enbeddi ng semantics in the rules of a synthetic grammar wthout know
| edge of the details of the recognizer constructing program being used.
Finally, there is the problem of graceful degradation (this year's K
phrase) in automatic recognizer constructing programs. One would like
the system to use efficient techniques where possible and automatically
nmove to nore general schemes (rather than quit) when the going gets
rough

There has been nuch less work on the post-syntactic aspects of
TWS. There have been three basically different approaches to this
"semantics" problem The first approach is to provide a general pur-
pose |ist-processing.or other synbol manipulation capability (cf.
Section II.B). The second is to provide a number of data structures
and built-in routines especially designed for conpiler-witing (cf.
II.D2). The third approach partakes of the first two, but also
attenpts to automate significant parts of the conpiler-witing task
(cf. II.D). By mmking use of nmacros and subroutines, either of the
first two techniques can look, to the average user, like the highly
automated system  From this point of view, the key problemin
semantics is finding general purpose routines for handling significant

aspects of compiler witing. W feel that the TWS approach has been
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proven feasible and that the general problem should now be considered
in the devel opment stage. There are, to be sure, several kinds of
programm ng | anguages (e.g. sinmulation [Te 66]) still beyond the pale,
but each has a few basic concepts that need to be studied first. In
short, future research in ™s should be directed toward understanding
(and eventual |y, automating) the outstanding problens in programing
| anguages.

~Wth this formul ation of TW5 research, we have, of course, pro-
vided a guaranteed annual project for everyone. A justification for
this can be found in the many contributions to programing systems which
have resulted from considering nmeta-problens. |n the remainder of this
section, we wll discuss a number of interesting problens which nmght
be amenable to a TWS approach and provide an entrde into the literature
for each. The references listed at the end of the section for each
subject are either very recent or conprehensive or are already used as
a reference in this paper.

One question of long standing that is still open is the forma
description of machine |anguages. A solution here could be used as a
third input to a TW5, describing the target machine. This probl em has
been attacked, both theoretically and directly, but nothing has come
close to being usable by a TWs. The availability of parallel processors
adds a new level of conplexity or, better, a new research area. Mbst
of the work on software for parallel processors has been concerned with
particul ar machines and is not within the scope of this paper. There
have been sone significant abstract [Kar 66] and concrete [Shed 67
Sto 67] theories which might serve as a foundation for research in
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parallelism Parallelismin high Ievel languages [Dij 65]is also
beginning to receive attention.

Anot her hoary question concerns a theory of code selection and
enhancenment (the "optimzation" problemy. Not only has the theory been
weak, but there are still only a half-dozen or so types of code enhance-
ment in general use by conpiler witers. The nost striking inprovenents
in program performance usually come from restructuring the entire
approach to the problem This could be-called optimzation-in-the-large
but we will discuss it as one aspect of non-procedural programing. The
accepted definition of "non-procedural”, like that of "semantics", has
yet to appear. A programrming system will be called non-procedural to
the extent that it makes selections and rearrangements of procedural
steps in response to some higher order problem statement.

Non- procedural programmi ng |anguages have been discussed under nany
rubrics: declarative |anguages, problemoriented |anguages, question-
naire systems and the like. Mst of this work is theoretically unin-
teresting (cf. [vou65]); one wites a large routine and the user
supplies paranmeters. Fairly good non-procedural systems for |imted
probl em areas have been devel oped in conputer graphics, relational
| anguages [Rov 67], array processing [Gal 67] and nunerical analysis
[Ri 66]. The anal ogue conputer, of course, has always been programmed
this way and some pronising systens [Schl 67] are bei ng devel oped by
extending the languages used in hybrid computing. Cheatham envi Sions
addi ng non-procedural features of a general sort to the extendible

conpi l er discussed in Section III.C5. Another approach would be to use
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the nore sophisticated syntax forns and transformations devel oped in
natural |anguage processing.

Ve have felt for sone tinme that TWS efforts shared many interests
with natural |anguage systems. There have been the so-called query
| anguages [Corn 66] and, of course, COBOL [ Sanm 61}, but these nmake only
superficial contact with the problem The recent interest in conver-
sational and non-procedural programmng |anguages along with the
syntax-directed natural |anguage systems (cf. Section III.A) should
lead to a significant interchange of ideas.

There are several open problens concerning the connection between
TW5 and executive systens. (ne of the major benefits of a TWS is
elimnating the effort (often nore than half the total) of interfacing
each conpiler to the executive. One indication of the past work in
this area is that the word "executive" has not occurred before this
paragraph. There has always been a small group interested in "envir-
onnental " questions for conpilers [Le 66], but they had little effect
before the time-sharing revolution. The (hoped for) availability of
mul ti-access time-sharing systems gives rise to several additional
research problems related to TWS.

The main task of any large time-sharing executive is resource
allocation. The resources to be allocated include programs such as
conpi lers as well as various menory and processing units. The research
problemis to devise a schene for allowing translators to exchange
information with the executive so as to produce significantly better
system performance. The nmost pressing need in current systens is for
main menory, and there have been several schenes [Bob 67, Coh 67, Rov 67]
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to help reduce swapping for particular |anguages. A related problemis
the optimal (not maximal) use of pure procedure in both the TWS [Feld 67]
and the resulting object code. Wile an elegant conpiler-executive
interface will be very difficult to achieve, even a theoretically
uninteresting solution should prove of great practical value.

There are two other problems relating to executive systens which
we Wil nention briefly here. Control |anguages should be inproved by
adding syntax processing; ideally using the sane syntax code already in
the TW5. A nore anbitious project would be the application of syntax-
directed techniques to the construction of executive prograns themselves.
One additional related problemis debugging aids. There has been a
great deal of work on on-line debugging systens [EvT 66], but nost of
it has been at the assenbly |anguage level. There have been sone good
synmbol i ¢ dunp facilities, in particul ar batch-nade conpilers but these
have not found their way into print or into TW5. There has al so been
very little effort [Ir 65] on the problens of automatic error detection
and recovery in syntax-directed processors. Once again, even a bad
system woul d be of great value to users.

The final research area to be discussed here is the study of data
structures. This field seems to include everything from matrix manip-
ulations to file handling, and has strong interrelationships wth al nost
everything. In some sense, data structures are the current problemin
computer science and it would be presunptuous to try to survey the out-
standing issues. W will nmention a few aspects connected Wi th TWS and
i ndicate how data structure considerations occur in the other research

probl ens nentioned here.
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One central question in any TWs is the choice of data structures
built-in at both translation and execution time. The survey in Chapter
Il describes the translation time structures; essentially nothing has
been done to provide built-in structure operators for execution tine.
Many sophisticated data-structure |anguages have been witten using
™S (e.g. [Ab 66, It 66, Rov 67]), but the structure operators have all
been hand-coded. There have been several recent attenpts (e.g. [ Ross 66,
IBM 66, Wr 66b] to devise a single general data-structure; such a
structure could easily be incorporated in a TWs. The problemis that
current proposals all becone very inefficient in some area where data-
structures are now applied. The question of choosing the right structure

for a given algorithmtakes one far into non-procedural programming.

~ Simlarly, one could make major advances in global optimzation and

natural |anguage processing with data-structure improvements. In fact
there are rich connections among all the research problens mentioned
here and many others as well; the TWS problemwll, by its nature,
always be related to several frontiers of programmng research.

Qur brief survey of recent TWS efforts has turned out to be an
enbarassingly long paper. W have attenpted to show how a |arge nunber
of bright people, working almost in isolation, have brought about a
reasonabl e understanding of many aspects of systems programming, Wth
better communication and higher scientific standards, one could hope for
even nore significant advances and nore rapid application of the ideas
devel oped in research. It was this hope that led us to wite this

paper and perhaps led you to read it.
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