

Some conf'usion has arisen over the terms "top-down" and "bottom-

up". These rcbf'er to two different methods of recognizing or parsing

a sentence of a language. Part of the confusion has arisen because

people draw their syntax trees differently - for example, the tree for

the string LT + T I_ can be written as in (a) or (b) of Figure 4.

T

I
E + T
\I/

l\lP
<ProgramD

b)
Figure 4

We will use (a) throughout the paper.

The other part of the confusion has arisen because the two con-

cepts have actually merged as recognizers have become more sophisticated.

We will try to clear up this confusion here.

A pure top-down recognizer is entirely goal-oriented. The main

goal is of course the distinguished nonterminal symbol<ProgramD -- a

prediction is made that the string to be recognized is actually a

program. The next step is to see whether the string can be reduced to

Lfle left part :;-IG,,.c ..S, of some production <Progrars> + SlS2...Sn.

'bus, if Sl is a terminal symbol, the string must begin with the same

terminal symbol. If Sl is nonterminal, our first subgoal is to see

whether some head of the string may be reduced to Sl. At any step, if

13

some subgoal is not met, the failure is reported to the next higher

level, which must try another alternative.

This type of recognizer gets its name from the way the syntax

tree is being constructed. At any point of the parse, certain

connections have been made (perhaps wrongly) by constructing the tree

from the top node and reading down to the string (Fig. 5).

<Program,

Partial Top-Down Parse

Figure 5

If some of these connections are wrong -- a subgoal cannot be met --

some of the connections must be erased and other alternatives tried

(backtracking or backup). A top-down recognizer may of course be

programmed in many different ways -- as recursive subroutines, as a

single routine working with a stack, etc. The significant feature is

that it is goal-oriented. .

In contrast, a pure bottom-up recognizer has essentially no goals

(except of course the implicit goal<ProgrW). The string is searched

for substrings which are right parts of productions. These are then

replaced -- perhaps wrongly if they are not really handles -- by the

corresponding left side. This may be illustrated by Fig. 6.

P
I

I,1 +

Partial Bottom-Up Parse

1,

Figure 6

In order to reduce backup, modified top-down recognizers have

been introduced. For instance, before starting out on a new subgoal,

a modified top-down recognizer may see whether some derivative of the

subgoal may actually start with the initial symbol of the substring in

question (look ahead) or whether the subgoal could occur with the partialPP

tree (memory). Examples of modified top-down recognizers are those in

[Ir 613 and [War 641. Most of the syntax directed symbol processors

(1I.B) used modified top-down recognizers.

Similarly, as will be seen in II.A, bottom-up recognizers can be

constructed (for suitable grammars) which eliminate backup entirely.

Such modified bottom-up recognizers generally look to the left and

right of a possible handle to see if it really is a handle or noto

It is these modifications which have led to the (con)fusion of

the two concepts. It is sometimes very difficult to tell whether a

particular recognizer is bottom-up or top-down. For instance, a pro-

duction language recognizer as generated by Earley's algorithm (cf.

Section ILA5) has some of the properties of both. If a recognizer

has any explicit goals and subgoals to meet, we tend to call it

(modified) top-down , Since it is essentially goal-oriented.

Most of the remaining terminology should be familiar to anyone

with general knowledge of Computer Science. We will use a few data-

structure terms which require definition. The term list structure will

be used generically to describe any programming system making signif-

icant use of pointers (links) and dynamic storage allocation. A list

structure which does not allow more than one path between any two nodes

is zi tree. A list structure which explicitly allows general connect-

ivity is called a plex. The term plex also loosely implies that each

element is a block of storage containing several (often two-way) links,

We will also use the terms LIFO (last-in-first-out) and FIFO (first-in-

first-out) as general rules for handling sequential information. For

those who worry about such things, the symbol TWS will be used as the

singular, plural, possessive and adjectival forms of "Translator

Writing Systems."

II. Review of Cl-?rrent Translator Writing Systems

1I.A. Recognizers which are constructed mechanically

In this section, several practical techniques for parsing,

or recognizing, sentences of languages defined by grammars will

be described and evaluated. A "practical" technique is one that

has been or is being used to write a compiler. Each of these

recognizers has a second important property -- there is an

algorithm for constructing, or generating, it from a suitable

grammar of the language, either in the form of tables to be used

by a set of basic routines or in the form of a program. We will

call such an algorithm a constructor.

This property of automatic generation is very important to

the compiler writer. Most of the constructors check the grammar

for unambiguity before actually constructing the recognizer -- a

decided advantage. Automatic construction of parts of a compiler

also means less work, leaving more time for considerations such

as code optimization. Moreover, the automatic construction will

guarantee that the recognizer follows the formal syntax.

Unfortunately, these recognizers and their constructors do

not solve all problems.- First of all, much of the syntax of a

language can not be defined by existing grammars. Secondly,

semantics form a much larger and more difficult part of a pro-

gramming language -- often either the grammar or the generated

recognizer must be changed in order to fit in semantics properly.

Thirdly, while a technique may be theoretically very nice, it

may not be practical. The usual programming language grammar may

17

for some reason not be accepted by the constructor of some

technique. If not, the grammar must be altered substantially or

another technique used.

We note in passing that the "efficiency" of several recog-

nizers have been compared by Griffiths and Petrick [Grif 651.

While theoretically interesting, this comparison is of no

practical value, since it is based mainly on the efficiency of

Turing machines corresponding to each of the recognizers. We

are interested in the practical problems of actual space used and

time consumed, as well as the problems of adequacy mentioned in

the last paragraph,

Some of the recognizers discussed here have been used in many

compilers by many people; we cannot list references to all of

them. For each recognizer we have given one reference to a

paper where not only the recognizer, but also its constructor, is

discussed. Some theoretically interesting recognizers which can

be mechanically constructed, as well as formal properties of

systems desc&$bed here, are discussed briefly in section III.Bl.

Top-down methods will not be discussed here, although they

are used in some compilers. They are in general less efficient

than the recognizers to be discussed, since some amount of back-

up is almost always necessary. See [War 613 and [Ir 613 for

details of compilers which use modified top-down recognizers.

[Che 64~1 is a good tutorial paper on the use of top-down

18

rec~~gnizers in compiling, while [Flo &b] also contains a good

description of the technique.

The grammar in Figure 1 (page 10) will be used throughout

this section as an example. At this point it may be advisable

to briefly review section 1.B for definitions and notations.

1. Operator Precedence (Floyd [Flo 633)

The grammar is restricted to an operator grammar; no

production may be of the form U -+xUlU2y for some strings x

and y and nonterminals U U1' 2' This means that no sentential

form contains two adjacent nonterminal symbols. This is not a

serious restriction; many programming language grammars are

already in this form. Most programming languages grammars which

are not, can be made into operator grammars without essentially

disturbing the structure of a sentence.

During the parse of a sentence Tl...Tm, a LIFO stack will

contain symbols S S
0 1

. ..Si of the partially reduced string

SoSl...S.T.T. T
1 J J+l”’ II-l’

At any step, it is necessary to be able

to tell solely from the symbols Si l,Si and T. whether
J

1) Si is the tail of a handle (the leftmost substring for

which a reduction may be made) in the stack; or whether

2) Si is not the tail of a handle and Tj must be pushed into

the stack.

In order to do this, the following three relations are defined

between terminal symbols Tl and T2 of an operator grammar.

1) Tl f T2 if there is a production U -+ xTlT2y or U -+

. .xTlUlT2y where Ul is nonterminal.

2) T13 T2 if there is a production U + xUlT2y and a

derivation U,& zTl or U1=a zT U for some z and U2.1 2

3) Tl<‘T2 if there is a production U -+ xTIUly and a

derivation Ul&T2z or Ul aU2T2z for some z and U2"

If at most one relation holds between any ordered pair

T,,T, of terminal symbols, then the grammar is called an ouerator
I L

precedence grammar

language.

In an operator

and the language an operator precedence

precedence language, these unique relations

may be used quite simply for detecting a handle (or any right

part of a production which may be reduced). Suppose ToxT is a

substring of a sentential form, and suppose that the following

relations hold between To, the terminal symbols Tl,T2,...,Tn(n > 1)

of x, and T:

To Q Tl 1 T2 g . . . : Tn+ T .

(Note that nonterminals of x play no role here). Then x is what

Floyd calls a prime phrase; it is either the right part of a

production U +x, or there is a production

u -3x

where x' a x and the only productions in the derivation x'= x3

20

are of the form Ui + U..
J

The substring x may therefore be

replaced by the nonterminal U, yielding TOUT.

The parse of a sentence (or program) is quite straightforward.

Symbols are pushed into the stack until the relation Tn + T

holds between the top terminal stack symbol Tn and the next

;.ncoming symbol T. If the program is indeed a sentence of the

language, the top stack elements then hold a string Tax as

described above. One searches back in the stack, using the

re1 :itions, to find To and the beginning of x. x is then a handle

and can then be reduced to some U, yielding ToU in the stack. The

process is then repeated by comparing To with T.

The relations 3, A and + can be kept in an 1x2 matrix, where

P is the number of terminal symbols of the grammar. (In 1~10 631,

the matrix for an ALGOL-like language is about 35 x 35). The

comparison is then just a test of the relation in the matrix

element defined by the row corresponding to the top stack

terminal symbol and the column corresponding to the incoming

symbol.

The space needed for the relations may be reduced to two

vectors of length P if two precedence functions f(T) and g(T)

can be found such that TIQ T2 implies f(Tl) < g(T2) , Tl A T2

implies f(Tl) = g(T2) and T13 T2 implies f(Tl) > g(T2). These

functions can usually be found. Floyd outlines the algorithm for

finding the matrix of precedence relations and the functions f and

g (if they exist). For the language of Figure 1 the following

precedence matrix and functions are generated:

21

1

I

*

+

(

1.

(1 * + 1 > T f(T) g(T)

> 5 1

I 5 6

* 5 4

+ 3 2

(1 6

1 1 1

Fi::ure 7 gives the algorithm for recognizing a sentence of an

operator precedence grammar. The precedence relations will have

been produced from the grammar by the constructor.

Semantic routines may only be called when a prime phrase,

or handle, is to be reduced. A separate routine is written to

process each different handle. This may mean that the grammar

has to be altered to allow the correct semantic interpretation.

For instance, the production

<COND + IF <BD THEN <EXPID ELSE <EXPI6

would have to be explicitly written as

<IFClS + IF <BD

<IF-THEl!D 3 <IFC13 THEN <EXPB

<CONm + <IF-THEN> ELSE <EXPD

so that the tests and jumps may be inserted at the proper places

by semantic routines.
22

I READ ONE SYMBOL FROM

SOURCE PROGRAM: STORE IN R I

so+ l l l > Si IS A STACK HOLDING A PORTION OF

THE SENTENTIAL FORM UNDER ANALYSIS.

SSiATERMI

SYMBOL?

Yes

j t i
A

I

P
No jti-1

le-1+1

SitR
Yes Yes

Q tS.
J No c

jej-1 j t j - 1

I No

I

I Yes

,$
I (CALL A SEMANTIC ROUTINE); GET

LEFTPARTU;itj +l;SitU

I
1

Fig. 7. Recognizer using operator precedences

However, the revised grammar to the generator will not in

all likelihood be essentially different from the original ref-

erence grammar of the language (see for example Floyd's

language in [Flo 631). Although to our knowledge no compiler

contains a mechanically constructed recognizer of this type, the

precedence technique has been used in quite a few ALGOL, J%AD and

FORTRAN compilers and will be used in many more. The technique

is easy to understand, flexible, and very efficient.

It is rather difficult to figure out a good error recovery

scheme if the functions f and g are used, since an error can be

detected only when a probable handle turns out not to be one.

With the full matrix, an error is detected whenever no relation

exists between the top terminal stack symbol and the incoming

symbol. Therefore the functions should be used only if a

previous pass has provided a complete syntax check.

One objection to this technique is that the language may

still contain ambiguous sentences. The structure of the parse

tree is unambiguous if the grammar is a precedence grammar, but

the names of the nodes may not be. For% prime phrase x there

may exist more than one nonterminal to which it may be reduced.

This objection is partly answered by the fact that the non-

terminals are usually manipulated by semantic routines anyway,

and not so much by the syntax. The syntax defines the structure;

whether a node is named (say) "integer expression" or "real

expression" is a semantic matter.

2:c

The handle SSi is then replaced by the left part U of the
J

unique production U ::= S .".Si
J

(if the program is a sentence).

The main difference between this technique and Floyd's is that

2. Precedence Languages (Wirth and Weber [Wir 66~1)

Wirth and Weber modified Floyd's precedence concept. The

grammar is not restricted to an operator grammar and the relations

@ , @ and @ may hold between all pairs Sl,S2 of symbols:

1) s1 a s2 if there is a production U -+xSlS2y

2) Xl a S2 if there is a production U +xUlS2y (or U +xUlU2y)

and a derivation UlqzSl (and U2&S2w) for some z.

3) s1 0 s2 if there is a production U +xSIUly

and a derivation U 41
S2z for some z.

If at most one relation holds between any pair Sl,S2 of

symbols, and if each right part is the right part of only one

production, then the grammar is called a precedence grammar and

the language a precedence language. Any sentence of a precedence

language has a unique canonical parse. As long as either the

relation @ or a holds between the top stack symbol Si and

the incoming symbol T, T is pushed into the stack. When

Si @ T, then the stack-is searched downward for the configuration

25

E'E T' T P (I * +)I S f(S) ids)

E'

E

T'

T

P

)

I

*

+

(

1

E'

E

T'

T

P

>

I

*

+

(

1,

1 1

2 2

3 2

3 3

4 3

4 1

4 4

3 3

2 2

1 4

1 1

As with Floyd's recognizer, one may use either the prec-

edence matrix or the functions f and g. The matrix is much

larger than Floyd's (over 70 x 70 for ALGOL), since the relations

may hold between any two symbols. As with Floyd's recognizer,

semantic routines may-only be -called when a handle is detected.

Theoretically, the technique is very sound and efficient.

Since the relations may hold between any two symbols, it is in

a sense more reliable than Floyd's; if the precedence relations

are unique, one knows that a unique canonical parse exists for

each sentence. In practice, however, one must manipulate a

grammar for an average programming language considerably before

it is a precedence grammar. The reason is that not enough

2i'

context is used in determining the precedence relations; very

often more than one relation holds between two symbols. It

may be necessary to insert intermediate productions (as in the

above example) or even to use a different symbol for (say) a

comma depending on its context. A prescanner must then be

changed to look at the context and decide which internal symbol

to use for each comma. The final grammar could not be presented

to a programmer as a reference to the language.

This recognizer and itsconstru& have been used to write

a sophisticated assembler, PL 360, ([Wir 66a]) and a compiler

for a proposed successor to ALGOL [Wir 66b]) on the IBM 360.

3* Extended Precedence (McKeeman [McKee 663)

McKeeman extended Wirth's concept by first of all separating

the precedence matrix into two tables - one for looking for the

tail, the other for the head of a handle - and secondly by

having the recognizer look at more context so that fewer

precedence conflicts arise. The constructor will therefore accept

a much wider class of grammars. _

a) The top two symbols S i-l,Si of the stack and T, the

incoming symbol, q,re used to decide whether T should be put

into the stack, or whether Si is the tail of a handle and a

reduction should take place.

b) Similarly, in order ta go back in the stack to find the

initial symbol of the handle, three symbols instead of two are used.

28

This technique should be compared with the one proposed by

Eickel et al. [Ei 631. See Section III.Bl. In practice, the number

of different triples is too large (over 10,000). Also, in most cases

two symbols suffice to determine uniquely what is to be done.

McKeeman's recognizer compromises by using Wirth's two-argument

precedences whenever possible and switching to triples only when

necessary. When looking

handle, a matrix MATRIX1

and @ (@ and either

to the right to see if the stack contains a

with entries 0 (@ or @) , @ ,

0 or 0) is used. If @ holds between

the top stack symbol Si and the incoming symbol T then a list of

triples is searched to find the value of the following three-argument

function Pl;

TRUE

P1(Si @J~,T) = J-

Si@T (S i is tail of a handle) in the

1

context S
i-lSiT

FALSE Ti@S holds in the context Si lSiT

Of course this function must be single valued for all triples, and

the constructor checks this. A similar matrix MATRIX2 with entries

@,O~d0(@ and either @ or @) and a function P2 are

used when looking in the stack for the initial symbol of the handle:

P2(S
j_l'sj,sj+l =>

j-1 8'j ('j
is head of a handle)

in the context S S.S
j-l J j-t1

FALSEc S j-l@ Sj holds in the context

S s .sj-l j j+l '

29

Sot’l’
so+ l � l 9

Si IS A STACK HOLDING A PORTION OF

THJ3 SENTENTIAL FORM UNDER ANALYSIS

I
I

READ ONE SYMBOL FROM

SOURCE PROGRAM; STORE IN R

4 I 1

R =
4

(

Yes

FALSE

----I TRUE

t
jt-i‘

I PROCESS RIGHT PART S....Si OF A PRaDUCTIONJ
AND GET LEFT PART U; i tj; S, tU

Fig. 8 Recognizer using Wirth precedences plus McKeeman triples

The recognizer which uses the matrices and triples is given in

FitSure 8. Of course functions f and g may be used as in Floyd's or

Wirth's case, if they can be found.

The use of triples helps avoid most of the unpleasantries one

encounters with precedence grammars. But, again, semantic routines

may only be called when a handle is detected, so that it may be

necessary to alter the grammar for this reason. McKeeman is writing

a compiler for a subset of PLl (in itself) on the IBM 360 using this

technique. He expects to use the final grammar as a standard reference

for the PLl subset.

I+ . Transition Matrices (Samelson and Bauer [Sam 601, Gries [Grie 67a])

This technique for parsing sentences was first introduced by

Samelson and Bauer. It has been used by the Europeans for writing a

number of ALGOL compilers. NELIAC compilers use it under the name CO-

NO tables [Hals 621. In [Grie 674 a constructor was written for the

recognizer. The grammar is restricted to an operator grammar. Essen-

tially one gets a transition matrix by replacing the precedence relations

in a Floyd precedence matrix by addresses, or numbers, of subroutines

which perform the necessary stack reductions or push the incoming symbol

onto the stack.

The constructor uses the following scheme to reduce the number of

elements in the stack which must be tested in order to find the beginning

of the handle. SuPpose that

(4.1) <COND +IF <BD THEN <ExPD ELSE <EXPm

is a production of the grammar. At one point in parsing a sentence the

stack should look like (say):

t-BOTTOM STACK TOP

* + IF <BD THEN .

Instead, a representation for "IF <BD THEN", say "IBT", is put in

the stack -- the stack would look like

t BOTTOM STACK TOP +-BOTTOM STACK TOP

"IF-_. I_*t-e+
<BD

or . . . + "IBT"

THEN"

This is equivalent to changing production (4.1) to

" IF" + IF

" IBT" -3 "IF" <BD THEN

"IBTEE" + "IBT" <EXPD ELSE

<COND + "IBTEE" <EXPD

The productions are then all of length one, two, or three. One row of

the matrix is allotted to each new symbol in quotes. One column is

allotted to each possible incoming terminal symbol. A stack element Si

consists of two parts Sli and S2..
1

The first is one of the quoted

symbols introduced by the generator (a kind of operator), the other is

empty or contains a nonterminal symbol (an operand). The basic

recognizer is

33

so,... Si IS A STACK HOLDING A
PORTION OF THE SENTENTIAL FORM

UNDER ANALYSIS. Si CONSISTS

OF TWO PARTS Sli and S2i.

JUMP TO SUBROUTINE DEFINED

BY MATRIX ELEMENT CORRESPONDING

TO ROW OF Sl; and COL OF R.

The matrix and subroutines produced by the generator for the grammar of

Fig. 1 are

1. + * f 1 I

I' ll
L

"E+"

1' *IIT

11 II
(

14 5 6 8

2 2 5 6 2 8

3 3 3 6 3 8

4 5 6 7 8

1: = E OR 5 = T

THEN SUCCESS EXIT ELSE ERROR;

2:

THEN BEGIN i t iPP - 1; S2i tE; GOT0 GOIN END ELSE ERROR;m-

3: g Pi = P

THEN BEGIN i t iPP - 1; S2i t T; GOT0 GOIN END ELSE ERROR;- -

4: = E OR S5 = T

- . . THEN BEGIN i ti + 1; Si t ("E+", empty); GOT0 SCAN END ELSE- - - -

ERROR;

5: IJ?32i = P s S2i = T

. THEN BEGIN i t i + 1; Si t ("T*", empty); GOT0 SCAN END ELSE- - v-

ERROR;

6: IF S2
i

= empty

THEN BEGIN i ti + 1; Si t ("(", empty); GOT0 SCAN END ELSE- - - -

ERROR;

7: I&S'i=EgS2i=TgS2i=P

THEN BEGIN i t i- - - 1; 5 +P; GOT0 SCAN END ELSE ERROR;- -

8: IF ~2 = empty
i

THEN BEGIN S2i t P; GOT0 SCAN END ELSE ERROR;- - - -

A matrix for ALGOL is about 60 x 40. The checks for ST
i
= empty

may be deleted by doubling the number of rows of the matrix (see [Grie

67a]). Some alterations are usually necessary once the recognizer is

generated, but since semU&&@:. may be inserted at any step of the

parse (in any of the subroutines l+above), and not only when a

right part is recognized, the system is perhaps more flexible than the

previous three. The grammar does not have to be changed much, although

it must be an operator gr+mmar. The constructor itself has not been

used to generate a compiler yet, but the generated recognizers resemble

to a large degree recognizers built by hand using the same technique

(see [Grie 651).

This is perhaps the fastest technique. Switching tables are

always used when speed is essential. Its drawbacks are the space used

and the large number of subroutines needed to implement the technique.

59 Production Language (Floyd [Flo 613, Evans [Ev 641, Earley [Ear 653)

The production language introduced by Floyd and modified by Evans

consists of a set of productions of the form

LO: s
3

S2 Sl 1 jS; Si 1 'AGl

A more natural name for this would be a reduction, since it is used to

indicate how to reduce, or parse a string.

We start parsing a sentence by putting the first symbol1, of the

sentence on the stack. Then we sequence through the productions,

comparing the top of the stack with the symbols Sl,S2, . . . directly

to the left of the first bar 1 . When a match is found, the matched

symbols SlS2,... in the stack are replaced by the symbols Si,S$

(If no replacement is to be made the arrow -'L)' and symbols Si,S~ do not

appear.) The symbol r appearing as some Si matches any symbol on the

stack. Then, if "*" appears following the second :I the next input

symbol is scanned and pushed onto the stack. Finally we start comparing

symbols of the stack again, beginning with the production labeled by

the name appearing at the right of the production (Gl in this case).

Any production may be labeled. Earley has written a generator which

produces from a suitable grammar a recognizer written in production

language.

The production language program generated from the grammar in

Fig. 1 is given in Fig. 9.

PROGRAMO:

EO:TO:PO:

El:

Tl:

Pl:

4
d
(I
4-t
d

LEll
w *

E+I
4

T*l
E+Ta\+

Tw(+

0-I
T*Pa(+

Pd+

+

I *EO

I ERROR EXIT

I *EO
PI*Pl

I ERROR EXIT

I SUCCESS EXIT
P*Pl

-I VO

I ERROR EXIT

I *PO
Er(El

ErIEl

'ERROR EXITI
TclTl

TdTl

I ERROR EXIT

Fig. 9 Production language recognizer

Semantics are introduced onee the productions have been gener-

ated by inserting "actions" of the form EXEC i , where i is the

number of some semantic subroutine, directly after the second bar I

in any line of a production.

37

m,.‘. .,.*.. ... ,I ‘..’ ,’ >’
<

This production language is the basis for a working ALGOL compiler

[EVA 641 and forms a significant part of FSL, a language for writing

compilers (see section II.Dl). A variation of the production language

is also used in TGS (cf. section II.D2). Once one has some practice,

it is quite a natural, flexible language to program in. A programmer

can learn to write compilers with it relatively easily. No compilers

have yet been written using a mechanically constructed recognizer,

but the MEC actions may be inserted in any production, so that in

general few alterations will have to be made in the grammar. More

context can be used by the recognizer, so that a grammar is more

likely to be accepted by this constructor than the other four.

It is perhaps the least efficient of the recognizers discussed,

'since at each step, the stack must be compared with successive pro-

ductions until a match is found. The productions, however, take up

less space than the other recognizers.and the efficiency can be im-

proved by good programming when they are constructed by hand.

We would venture to say that this branch of Translator Writing

Systems is fairly complete. One can devise only a finite number of

really different-left-right recognizers for parsing sentences using

limited context. Even the first four recognizers listed here differ

only in the programming techniques used -- theoretically they are all

[l,l] bounded context in the terminology of section III.Bl.

The operator precedence technique is most well-known. It often

is used to recognize portions of a language, most frequently arithmetic

and Boolean expressions, as is done in the IBM 360 FORTRAN compiler.

See [Ar 66, Grie 651 for documentation of other compilers using this

technique. [Gall 671 also mentions it. The transition matrix

technique has been used to write several ALGOL compilers [Grie 65,

Sam 603 as well as NELIAC compilers, under the name CO-NO table

[Hals 62, Mas 603. Both of the above techniques have undoubtedly been

used in many other compilers. The production language is used in an

ALGOL compiler [EVA 641, but is also a significant part of two

compiler-compilers [Feld 66, Mond 671 in which a number of other

compilers have been written [Rov 67, It 661. Two other compiler-

compiler projects use this language [Fie 67, Grie 67b], while inde-

pendent variations of it have been used by ‘[Che 651 and others. The

precedence and extended precedence techniques have been used mainly

by their authors, Wirth [Wir 66a, Wir 66b] and McKeeman [McKee 663.

There are further discussions of syntax techniques in several other

sections.

For the theoretically inclined reader, section III.Bl contains

discussions on more general, powerful and complicated left-right

recognizers, as well as some basic references on the theory of formal

languages.

39

1I.B. Syntax Directed Symbol Processors

The programs discussed in this section are not properly called

compiler-compilers, although each has been used to write compilers.

Their common treatment of compiler-writing as a symbol manipulation

task makes each of these programs both more than and less than a TWS.

Since such systems are so general, they have been used heavily in the

various non-translator tasks described in Section 1II.A. In fact, the

discussion of AED [Ross 663 will be deferred to that section, because

its goals have been more general from the outset.

1. TMG (McClure [McCl 651)

The TMG system was developed at Texas Instruments as a tool for

writing simple one-pass compilers. The syntax technique is a simple

top-down scan with backup. However, the embedding of semantic rules

enables one to write a more efficient recognizer than would be

possible with pure syntax.

The basic TMG statement form is:

<label> : <action0 / <identifier3 **/ <identifier> .

The first <identifier? names the statement to be executed if the

<action0 fail and the second <identifier3 names the statement to be

executed on success. The <action& can be: intermediate goals for

the syntax recognizer, string computations on the input, or built-in

statements. These <actions> are all to be performed by the translator;

output of code is treated by a different construct to be discussed

below. There is a character-based symbol table which is built from

40

input strings using the primitives MARKS and INSTALL. Consider the

following example.

INTEGER: ZERO* MARKS DIGIT DIGIT* INSTALL

The action ZERO* scans all leading zeros, then MARKS notes the

current value of the input-string pointer. The actions DIGIT DIGIT*

scan all characters in the class <digiti. The execution of INSTALL

causes the string starting at the pointer of MARKS to be entered into

the symbol table and a reference to it entered in the intermediate tree.

The only other information allowed in the table is a set of declared

FLAGS (Boolean variables).

The built-in routines include conditional arithmetic expressions,

number conversions and a few input-output functions. There are also

some system cells such as J, the input pointer, and SYMNRM, the length

of the last string entered. Output is also character-oriented, as the

following example will show:

LABELFIELD: LABEL = $(P:l/ BSS / 0 // $)

This statement would be used to detect the label in some language.

The "ZB" signals an output routine which is bounded by "$(" and "$)".

The body ofthe output statement will form one line of assembly code

label BSS 0 l

The symbol "Pl" is a command to evaluate the first construct to the

left of the "=" , presumably the symbolic name of the label. The "/ "

says insert a tab and "BSS" and "0" represent themselves. Finally, the

I'//" places a carriage return in the output.

The TMG effort was a pilot project and its clumsy syntax would be

easy to fix. It has been used to write a number of compilers and a

related system TROL has been used by Knuth for teaching compiler-

writing. The EPL (Early PL/I) used in MULTICS was written as a two-

pass system, using two sets of TMG definitions, to get better code.

The TMG system does not seem to be as coherent as some to be considered

below, and would benefit from another iteration.

2. GARGOYLE (Garwick [Gar 641)

The GARGOYLE system was developed by a Norseman and is not very

well known in Vinland. It is also quite similar to TMG and so it will

not be covered in as much detail.

The syntax processor is, once again, basically a top-down

recognizer with the ability to direct the search. The descriptive

language form is a five-field line, essentially

<label> : <actiorD ; <nex* ;

The sequencing rule is more complicated than TMG with IZRROR and EXIT

being special cases and three successor fields to consider.

<line ; <else>

The <action& combine tests and output statements in an ALGOL-

like syntax more pleasant than that of TMG. For example, a line in

the routine COMPILE is:

if U = '+' then f t 'FAD' ; INSERT

42

where INSERT (in the <nexti field) is an output routine with 'f' as a

,
parameter. In this case, 'U' is a temporary variable previously

filled in by character tests on the input string.

There are a number of auxiliary features mentioned, but it is

not always clear which ones are built in. The whole paper is somewhat

tentative, suggesting that Garwick's intent was to present a schema

for a TWS rather than a particular system. We have no information on

implementations, uses or extensions of GARGOYLE.

2. COGENT (Reynolds [Rey 651)

The COGENT system was designed at Argonne National Laboratory by

John Reynolds and implemented on a CDC 3600. A program written in

COGENT has two parts: the syntax and a set of processing routines

called generators.

The syntax is given by a synthetic grammar. Syntactic analysis

proceeds by producing list structure to represent the syntax tree.

For example, use of the production

<TERM> ::= <TERM> + <FACTOT(>

would produce a list element <TERM> with pointers to the subexpressions

<TERM> and <FACTOm. Alternatively, one can preceed a production by

action labels - names of generators which are capable of conditional

analysis of list structures and of (recursively) calling other

generators:

PROCESSTERM / <TERI+ ::= <TERl@ + <FACTOID l

Instead of a list element <TERI0 being created, the generator

PROCESSTERM is called with the sublists <TERM> and <FACTOII> as

arguments. The output of PROCESSTERM is then placed in the parse

tree.

Certain kinds of local ambiguity are allowed in COGENT. The

object syntax processor goes into ambiguity mode, switching back and

forth between possible parses each time a parse requires a new

character. No generator calls are made until the ambiguity is

resolved.

The generator language is based on list-processing operations

and the mechanism of failure. List elements may have varying numbers

of pointers to other elements. The types of list elements include

numbers (fixed or floating), generator entry pointers, dummy elements

(corresponding to LISP's NIL), identifier elements, and parameter

elements. Fixed point numbers may be of any magnitude and take up

sufficient words to represent that magnitude. This feature facilitates

symbolic mathematics applications of CWENT.

In addition to the conventional assignment statements, generators

may use synthetic and analytic assignment statements to describe the

synthesis and analysis of list structures. A synthetic assignment

statement has the form

<identifier> / = <template , <expression listi

where a <template is essentially a production in parentheses. For

example, the execution of the synthetic assignment statement

z / = (TERM / FACTOR * FACTOR) , x, Y

where X had the value (FACTOR/ABE) and Y the value (FACTOR/BED),

would assign to Z a copy of (TERM / ABE * BED).

Similarly, analytic assignment statements of the form

<test expressiom = / <template , <identifier list>

are used to decompose an expression. The <test expressiom is

matched against the template. If they match, the value corresponding

to the ith parameter (nonterminal) of the template is assigned to the

it4I <identifier> of the <identifier list>. Thus, if Z has the value

(TERM / ABE * BED) , then the statement

Z = / (TERM / FACTOR * FACTOR) , X, Y

will give x the value (FACTOR / ABE) and Y the value (FACTOR / BED).

If <test expressiom and <template do not match, the analytic

assignment statement fails. Failure is the method of branching in

COGENT. If no conditional statement includes the action that fails,

the entire‘generator fails. Thus failure proceeds up the chain of

generator calls until a conditional statement is encountered.

In addition to the above, the following features of COGENT

require mention: ID-tables, saannersand internal variables.la' '

The action label $IDENT, n/ specifies that the result of that pro-

duction (which must be a character string), should be placed in

identifier table n. If it is already there, a pointer to the old

copy will be returned, i.e. all identifiers in any given table have

unique character strings.

Generator entry pointers can be passed as arguments to generators.

This is useful, for example, for producing output for cards, printing,

etc. One generator, called a scanner, could reduce a list structure to

a character string and pass the characters one at a time to an output

routine through a formal parameter. There are also several internal

variables which may be set or tested by primitive generators and used

by various built-in routines. For example STANDSCN, the standard

scanner, calls on the routine indicated by an internal variable to

convert negative or floating point numbers.

COGENT is admittedly experimental and has several shortcomings:

the structure of the language for generators is not as neat as Algol

has shown languages can be, one syntax error in the input is fatal,

and list processing should be generalized to include arbitrary plex-

creation, rather than just plexes based on the syntax. COGENT has been

applied to a number of problems in symbolic mathematics. Reynolds has

suspended work on COGENT pending the development of a better theory of

data structures which he, among others, is working to develop.

Ice The META Systems (Schorre [Schor 641 et al.)

The early history of Meta compilers is closely tied to the history

of 883PLAN Working Group 1 on syntax-directed compilers. The latest

inventory listed twenty-five different Meta compiler systems on ten

different computers. The proliferation of these compilers is due in

46

part to the fact that they are not only able to compile a metalanguage

but can be expressed in their own language and thus compile themselves.

Almost all of the systems have been used to implement translators for

other languages as well.

Although the original work was diversified, the current systems

are generally based on a model known as Meta-II, developed by Schorre.

Within this model, the parsing and translation processes for a language

are all stated in a set of BNF-like rules. These rules become recursive

recognizerswith embedded code gaerators when the language specifications

are implemented.

The rules do not allow left recursion; but use instead the

(prefix) iteration operator "$". Alternation (the bar in BNF) is

indicated by a slash, and parentheses are used for grouping in a normal

fashion. The following is a typical rule in Schorre's Meta-II language:

SUM = TERM $('+' TERM .OUT('ADD')/

' -' TERM +OUT('SUB'));

The rule defines a procedure for recognizing a sum in an algebraic

language. The word "SUM" -followed-by "=" defines the name of the rule,

while the right part of the rule is both an algorithm for testing an

input streak for the occurrence of a sum as well as a code generator

in case the awn is found. The above rule contains examples of the

three basic entities used in most Meta compilers. The mention of the

name of another rule, in this case "TEXM," causes a recursive call on

that'recognizer to be invoked. The occurrence of a literal string '+'

47

signifies that a test is to be made against the input stream for a plus

sign; most Meta systems have built-in recognizers for identifiers and

numbers as well as literals. In the " .OUT" construct, we see the

embedding of code generation.

The recursive nature of the rules and the method of handling

generated labels may be seen in the following example:

5 UNION = INTER ('OR' .OUT('BT' *l) UNION .LABEL *l

INTER = PRIMARY('AND' .OUT('BF' *l) INTER .LABEL

PRIMARY= .ID .OUT('LD' *) / '(' UNION I)';

For the input stream "(A OR B) AND (C OR' D)", the

I l -a;
*l / .EMPTY);

following

code would be produced, where LD, BT, BF are mnemonics for Load,

. Branch True, and Branch False respectively:

LD A

BT Ll

LD B

Ll

BF L2

LD C

BT L3

LD D

L3

L2

The first mention of a *l within a rule causes both the gen-

eration of a label and the output of that label. Subsequent references

within the same rule output the same label. That is, when a rule is

entered, new labels are generated. These labels only exist while the

rule is active. If a call is made to another rule, the labels are

pushed onto a stack. Upon return from the called rule, the previous

labels are restored. The "*" causes the last item recognized by the

primitive .ID to be added to the output. .EMPTY is a primitive which

has no effect on the input or output but is always satisfied or true.

Meta 3 was an attempt to extend the basic Meta- concept so that

ALGOL 60 could be compiled for a 7090. It added some ability for

semantic tests and register manipulation, but the additions never

proved adequate. Meta 5 was the first Meta compiler that allowed

backup of the input stream. It also added extensive string push-down

stacks, attribute assignment and testing, and output formatting

features. An indication of the flexibility of Meta 5 is the fact that

it is capable of translating JOVIAL to PL/l. The LOT system ([Kir 66]),

another extension of Meta-II, added syntax constructs which gave the

programmer complete control of almost all system parameters and flags.

Normally, the setting of these parameters is done by control cards,

but embedding it in the metalanguage proved extremely useful in the

development of debugging aids. The LOT system was also used to gather

statistics on the efficiency of top-bottom syntax analysis.

There is currently a very active interest in the development of

Meta systems. The tendency in the newer systems is to build parsing

49

trees and then, with another special-purpose language, test and

collapse the trees, producing output as a side effect (cf. Section

II.D2). The slowness and inefficiency of Meta compilers is recog-

nized by their authors, but the ease of implementation, the boot-

strapping capabilities, and the large class of languages they can

handle are used to justify the work that has gone into their

development.

References for 1I.B:

Ab 66, Gar 64, Kirk 65, McCl 65, Met &,.Rey 65, Sch 64,

Schor 64,

50

1I.C. Meta-Assemblers and Extendible Compilers

These forms of TWS are similar in that they both attempt to ex-

tend the macro concept to higher level programming languages. The

basic idea in a macro processor is the systematic replacement of

certain symbols with their associated pieces of text. Although almost

all modern assemblers have sophisticated macro features, the best

descriptions of the idea are in the general papers by Strachey [Str 651

and Mooers and Deutsch [Moo 653. The meta-assembler and the extendible-

compiler are based on two different conceptions of how to extend

macros to high level languages. The me-La&assembler approach considers

the compiler to be special case of the assembler, while the extendible

compiler approach is to add text replacement features to standard

compilers.

1. General Discussion and METAPLAN (Ferguson [Fer 661)

The article by Ferguson is taken from the San Dimas conference

and contains a good introduction to meta-assemblers. The basic ideas

arose from observing that all assemblers have many features in common.

By building procedures for handling such things as symbol tables,

location counters and macros, one could speed up the writing of part-

icular assemblers. To construct an assembler for a particular machine

one would specify word size, number representations and the like.

Output for each machine would be programmed using format statements

and could easily include relocation or symbolic debugging information.

While such a system seems feasible and quite useful, it is not obvious

how one would extend it to a TWS.

The use of a meta-assembler as a TWS is based on the previously

mentioned assumption that the compiler is a special case of the macro

assembler. Discussions of this assumption sound like a reincarnation

of the macro vs. high level language debate. The macro assembler side

is on the defensive, is outnumbered and therefore has been the most

vehement in argument. The whole situation is further complicated by

a lack of agreement on what an assembler is (cf. discussion following

this paper [Fer 661). An example will suffice for our purposes.

Ferguson describes how a meta-assembler would handle the compiler-

like statement:

IF F(A) PLUS 5 EQ G(B) GOT0 L .

He would have IF, PLUS, EQ, and GOT0 be defined as (prefix)

operators using a scheme called many-many macros. The many-many macro

has features for using and updating state information during text

replacement. This seems to be considered an outstanding contribution

to macro techniques and is certainly a prerequisite for reasonable

code selection. The many-many macro is flexible enough to implement

any known compiler; the real question is whether many-many macros are

a good way of doing it. The answer to this depends on the mechanisms

for recording and using state information and these were not discussed

in the paper.

=2/

2. PLASMA (Graham and Ingerman [GraM 651)

The meta-assembler effort of Graham and Ingerman concentrates

mainly on the problems of substitution and binding. They are much

less concerned with syntax than Halpern (next discussion), because

they assume a syntax-directed front end (presumably [Ing 663) for a

compiler written in their system.

The basic input to their meta-assembler is a "line" which is a

list of lists. The first list is a generalized label consisting of a

symbol, the number of higher levels at which it is active, and the

number of lower levels at which it is active. The second list contains

the operation and the third contains the operands. The input is con-

verted into a tree and substitutions are made on the basis of the tree

structure. By allowing substitutions by symbol or numeric value,

they combine the text replacement with assembly functions.

The authors are continuing their work at RCA, Cherry Hill, and

will presumably report on it again. Their current efforts involve

even more elaborate substitution processes. They have not, as yet, put

forth specific suggestions on how their system might be used as the

basis for a compiler.

3* XPOP (Halpern [Hal 641)

Halpern is the most sanguine and vocal of the meta-assembler

proponents. His work on meta-assemblers is related to his controv-

ersial stands on natural language programs by his statement that

XPOP will allow one to implement something "closely approaching"

5 -3

natural language. One should try to separate his work, which is

reasonable, from the tub-thumping which mar his appearances in public

or in print.

The XPOP system follows fairly well the general meta-assembler

description by Ferguson. The basic input format is, once again, a

label followed by an operator and one or more operands. Halpern is

very interested in input forms and has three basic ways of altering '

the syntax of the source language. The- first way is to change the

order of parameters by declaring a macro with the new parameter

ordering which expands to the original operator. The second feature

is the ability to declare new separators and‘terminators at any point

in the text. The most unusual feature is the facility for adding

- noise words which are ignored, as well as keywords which mark the

next symbol as a parameter.

To handle the problems of generating output, XPOP has several

embellishments of the macro concept. It is possible to defer the

assembly of code sections; the sections awaiting a particular label

can accumulate in FIFO or LIFO fashion. There is one illustration of

how this feature is used to implement the DO statements in FORTRAN.

There is also mention of many-many macros and of assembly time

execution facilities. Once again, there is not enough information

presented to allow one to judge their suitability for translator

writing. The XPOP system has a large variety, of trace and debugging

aids which should add significantly to its usefulness.

54

More recently, Halpern has produced an elaborate defense of XPOP-

like systems. He suggests that the <operator> <operand-strin@

notation of macro systems is the canonical syntax of programming

languages as opposed to natural or mathematical languages. He further

separates the study of programming languages into three parts:

Functional (macros), Notational (change punctuation commands), and

Modal (assembly-time executions). Halpern's paper can be taken as the

philosophical statement of the meta:assembler position on TWS and

compared with other general descriptions of the problem.

4. Extendible Compilers - Basic Concepts.

Many attempts (starting with McIlroy [McIl 601) have been made to

embed macro features in compiler systems. One approach was to retain

the macro syntax form, but add a number of built-in features which

are compiler-like. The SET system [Ben &a] included a skeleton

compiler withsinput-output, symbol manipulation, table handling, and

list processing features. These built-in routines were combined with

translation-time operations (Action Operators) in the attempt to

build a TWS. A more successful approach has been to use the structured

syntax of high-level languages as a basis for extension.

Many existing compilers incorporate simple forms of macro

expansion, the first probably being JOVIAL [Shaw 63.1. The most

primitive form is pure text replacement without parameter substitution.

For example, in B5500 ALGOL one could define a macro with the statement:

DEFINE LOOP1 = FOR I tl STEP 1 UNTIL #

55

and later form statements like

LOOP1 N DO AII] t 0

which would be expanded into

FOR It 1STEPlUNTIL N DO A[I]tO.

The next step is to allow a macro definition with parameters.

This facility has been included in the AED-O compiler [Ross 661,

among others. In AED-O one might define a macro with the statement:

DEFINE MACRO LOOP (Pl,p2) TOBE

FOR Pl tl STEP 1 UNTIL P? DO ENDMACRO

In this case, one could get the same result as above with the

short statement

LOOP(I,N) AII] t 0 .

These two simple macro forms would form a useful addition to any

high level language and one might imagine developing mechanisms which

parallel more sophisticated macro techniques. Although AED-O does

permit arbitrary strings as parameters and nested definitions,

features like conditional assembly do not seem to have been used in

high level languages. One reason for this is that compilers normally

depend heavily on the structure of the text; the next two sections

describe the complexities that arise in trying to extend compilers

with macro techniques.

5. Definitional Extensions (Cheatham [Che 661)

The definitional extension of high level languages is the latest

attack on the TWS problem by the Computer Associates group. This has

been the most active and productive group in the TWS area and has

developed a world-view which should be understood in reading their work.

We will discuss the mainstream of their activity in Section ILD2,

only a brief introduction will be given here.

Cheatham defines compiling as a six-step process involving:

lexical analysis, syntactic analysis, interpretation of the parse,

optimization, code selection, and output. .The princi@l driving force

behind their work has been run-time efficiency, although other consid-

erations have played an important role from time to time. The current

TWS efforts of Computer Associates use a single language TRANDIR for

all the steps of compilation. TRANDIR consists essentially of an

algebraic section, a pattern matching section (cf. Section II.A5) and

a number of built-in functions. The language is procedural and, to

date, has been used only by experienced compiler-writers.

The paper under discussion shows signs of having been hastily

written and contains references to several internal documents in

preparation. This is clearly an early attempt along these lines and

will be expanded and clarified in subsequent papers. The extensions

to compilers mentioned here fall into two broad categories: a descrip-

tive meta-language I& and a series of macro facilities.

The descriptive meta-language LD is meant to be translated into

TRANDIR procedures , presumably by a (meta-meta) processor. The

57

translation of the language ID is based on a grammar inversion technique

combining notions of Wirth and Early (cf. Section II&).. To allow for

more powerful languages, one can append predicates (e.g. type checking)

and even arbitrary computations to the declarative syntax. Finally,

there are rules for outputting intermediate code attached to the syntax

rules. The declarative language has not been implemented, but Cheatham

claims that it has proved

compilers. While this is

translation to procedural

useful for the initial formulation of TRANDIR

probably true, one would expect that the

form is not, at present, a mechanical

process. Further, the sophistication required of an LD user does not

seem appreciably less than that required by TRANDIR.

The extensions to languages using macro techniques fall into

three basic categories: text, syntactic, and computational macros.

Text macros are assumed to be well understood and would presumably be

similar to those described above. It is in treating syntactic macros

that Cheatham begins to face seriously the problems of adapting macro

concepts to compilers.

The basic features of syntactic macros are free format and type

specifications for parameters: An example would be

LET N BE INTEGER

MACRO MATRIX (N) MEANS 'ARRAY[l:N, l:N]' .

The advantage of free format over the conventional <operator> ,

<operand listi format are obvious; the specification of parameters

allows conditional assembly and better error detection. The call of a

58

syntactic macro would be set off by a special delimiter (e.g. '$) and

would have to have a detectable termination. These problems can be

avoided by adding the macro form directly to the syntax tables of the,
.

translator. The corresponding declaration would be:

LET N BE INTEGER

SMACRO MATRIX (N) AS ATTRIBUTE MEANS 'ARRAY[l:N,l:N]'

where ATTRIBUTE is a syntactic type in the definition of the underlying

language . Neither of these schemes presents an implementation problem

in TRANGEN (cf. Section III.Dz), but either of them could have drastic

results if misused.

In discussing syntactic macros, Cheatham touches upon the problem

of adding 'semantics' to the macro definition. This is the analogue of

the many-many macros and the assembly-time actions used in meta-assemblers.

Cheatham's conclusion that this approach is not feasible should be

compared with the meta-assembler approach which has put most of its

eggs in this basket. His solution is to provide a number of primitive

operations (e.g. table expansions) and to point out the existence of a

complete meta-language behind the extendible language.

The third type of macro extension is called the computational macro.

With this technique the substitutions are made in the intermediate code

resulting from a declared macro. This requires that the macro body be

restricted to constructs for which the intermediate code can be

compiled (with formal parameters) independent of context. If this

condition can be met, the computational macro is a useful and efficient

tool. A simple computational macro might be the following mapping

59

function for a 4 x 4 upper left triangular matrix M.

TAKE 1,J AS INTEGER

MAP M(I,J) = (11-I) * l/2 + ~-6 ;

where TAKE and MAP are declarators in the language, Since this code

is for array accessing, it should not be inserted into the source

text and the computational macro form is most appropriate. As Cheatham

points out, computational macros have long been used by compiler writers

to produce accessing code for arrays. The paper includes several

examples of accessing functions, a subject that will reappear in the

discussion of Perlis and Galler paper in the next section. The

important point is that Cheatham has provided a procedural way of

. describing access functions while Perlis and Galler try to generate the

code from non-procedural descriptions.

6. ALGOL C (Galler and Perlis [Gall 671)

This is a very long, difficult and important paper by two of the

outstanding workers in the field of programming languages. Although

there are many significant aspects of the paper, we will discuss here

only those dealing with extendible compilers. Other topics will be

treated in Section 1II.B as significant first steps in new research areas.

The basic idea is, once again, to add macro-like facilities to a

high level language. For this purpose they define an extension of

ALGOL called ALGOL C which is meant to be well suited to extension.

Any extension of ALGOL C is called an ALGOL D and a program in any of

these can be mechanically reduced to an equivalent ALGOL C program.

60

The extensions are accomplished through constructs rather like

Cheatham's SMACROS. Because they want to do the macro processing in

very sophisticated ways, Perlis and Galler allow redefinitions only in a

few fixed syntactic categories. The augmented language ALGOL C contains

many features for handling arrays as well as those more directly con-

cerned with extendibility. Among the latter are operators for con-

version between location and value:

(a) A unary operator with integer result:

lot of xPm-

where x is a <procedure identifier> , <variable, or <array identifier>.

lot of x is essentially the address of the word(s) containing the- -

mi.1~~~: of x.

(b) Two binary operators whose left operand is a <type> or is missing,

implying real, and whose right operand is an integer expression, rep-,

resenting the "address" of some <procedure , <variable> or <arra3S>:

<type pit of x .- -

These represent "value contents of" and "procedure identifier contents

of", respectively. Thus

real vc of (lot of x) = x- - - -

if x is a variable of <type> real.

41

(c) The notions of location and value are extended to <procedure s

with the help of an application operator 0. The precise syntax

changes are bound up with the array conventions, but revised definitions

of <primarp and <function designator> should convey the intent.

<pri.marp ::= <unsigned number7 \ <variable \

<function designator> 1 (<arithmetic

expression>) 1

lot of <procedure identifier> I- -

<type> vc of <arithmetic expressi- -

<function designator> ::= <procedure identifier> @ <actual

parameter part> I

(pit of <arithmetic expression>) @-m

<actual parameter part>

Thus) one is able to manipulate the names of procedures in much the

same way as address variables and could, for example, have procedure

arrays. These additions to ALGOL to form ALGOL C constitute only a

small part of the extra mechanism; most of it is embedded in the

various forms of ALGOL D. _

All ALGOL D languages will have fairly much the same syntax. The

common syntax for all ALGOL D's is the same as ALGOL C except for the

replacement of <type> , <arithmetic expressiom , <Boolean expression>

and <assignment statementi with a set of rules which enable the def-

inition of special forms for these syntactic types. The introduction

of new definitions occurs as a series of declarations at the beginning

62

of a block. The detailed description of this process is quite com-

plicated and we will present only an overview followed by an example.

The basic intention is to allow the definition of new data types

and their associated operators. The problem of finding symbols for

these operators is solved by assuming a large alphabet of boldface

characters. By assuming an operator precedence grammar (cf. Section

II.Al), one can define the precedence of new operators in relation to

operators of known precedence as in MAD [Ar 663. The remaining

problems with operators involve data types and will be deferred for

a few sentences.

New data types are defined in terms of ALGOL C or previously

defined types by a means statement. This may include formal para-

meters which, if present, play a crucial role in all further proc-

essing, e.g. matrix(u,v) means array [l:u, l:v].- -

One then combines operator and type information in a set of

context statements. A context statement describes, for an operator,

the data types of its operands and its result. It also contains a

<strin@ which is (eventually) reducible to the appropriate ALGOL C

text. The following example of [pseudo) LISP definitions should help

clarify these notions.

List Definition Set:

The following set of definitions is based on the LISP [McCar 62b]

primitives. The basic LISP predicates "atom" and "eq" are assumed to

63

have been defined as Boolean procedures:

Boolean procedure atom(x); list x;

atom := cdr x = 0;

Boolean procedure eq(x,y); list x,y;

eq := car x = car y A atom(x) A atom(y);

'NIL' in LISP is represented here by 0. The following definitions are

used to organize lists as structures of names.

(>1

(>2

(3)

(4)

(5)

(6)

(7 >

(8)

(9)

(10)

list means integer array [1:2];- -

cons A *

car $ cons;- P

cdr A car;- P

of 4 cons;- -

list a cons list b z list 'list(a,b)';- - - -

car list a - list 'a[l]';- -

cdr list a- - f list 'a[2]';

lot of list a E integer;--P

integer a := list b z integer 'a := lot of b';- -

Statement (1) defines the new data type list as a two-element integer

array. Statements (2) through (5) state the relative precedence of the

four LISP operators. Statements (6) through (9) define expressions;

ea (7) d fe ines the car of a list 'a' to be the first element of the

modeling array. Statement (10) defines the assignment statement for

assigning a list to an integer variable.

64

(11) op(F) f of list x - list 'E(list (lot of F,O),x)';- - - -

(12) op(F) f of op(G) g =- -

list 'list (lot of list (lot of F,O), lot of G)';P P P-P - - - -

(13) list y of op(F) f - list 'list (y, lot of F)';- - - - - -

(14) list y of list x = list 'E(y,x)';- -

Context definitions (11) through (14) provide an efficient rule for

sequencing through a composition of operations on lists, each one of

which operates only on atoms to produce atoms or even lists. The pro-

cedure E is organized so that as each atom of data is encountered the

remaining operators in the composition are applied to it. Thus the

lists are not totally decomposed and composed for each successive

operator. In a <declaratioD such as op (H) h, the <actual parameter>

H represents the <procedure to be used to apply h to a list. The

lists are assumed to be nonrecursive, in the sense that no list is a

sublist of itself.

The block containing these list definitions must also contain the

procedure E:

list procedure E(f,x); list f,x;

E := if atom(x) then (if atom(f) then (list pit of car f) (x)-m --m-

else E(car f, (list pit of cdr f))) else E(f, car x) cons-P-P

E(f,cdr x);

An example of a LISP program is:

begin op(F)f; op(G)g; integer c; list a, b, d, h, k;

integer procedure subst (x, y, z); list x, y, z;

subst:= if atom(z) then (if eq(z,y) then x else z) else-m P -

subst(x,y, car z) cons subst (x,y, cdr z);

list procedure F(x); list x; F := subst(a,k,x);

' list procedure G(x); list x; G := subst(d,h,x);

C := (f of g) of b end;m -

The example above does justice neither to LISPncr to the Galler-

Perlis system. The full design of their system has ALGOL C defined by

_ a similar definition set in the outermost block. In each subsequent

block the translator builds a type table and a context table using the

local definition set. The actual processing of local ALGOL D text is

quite involved. This arises from the facts that contexts are recursive

and that ALGOL C text can be interspersed with locally defined text.

The discussion in the paper is further complicated by a desire to

optimize the computation in addition to producing ALGOL C code.

We have deliberately, if not successfully, distorted the intent

of Galler and Perlis' paper. They were also concerned with arrays, and

more particularly with saving space in matrix calculations. It would

have been preferable on all sides for them to have made the separation

of issues themselves. As we have mentioned, the paper contains import-

ant discussions of subjects other than extendible compilers. Its

contribution to our topic is more theoretical than practical. They

66

have shown that very sophisticated macro-processing is possible and

can lead to substantive changes in an algebraic language. One would

guess, however, that inefficiency at translation time and sensitivity

to programming errors would seriously restrict its practicality.

There is, in addition, a general question of how often one would want

to change a high-level language; this will be taken up again in

Section 1II.C.

References for 1I.C.

Benn &a, &b, Brook 60b, Che 6&a, 66, Fer 66, Gal 67,

GraM 65, McIl 60, Mea 63, MOO 65, Str 65

67

1I.D; Compiler-Compilers

The distinguishing characteristic of this set of TWS is the

attempt to automate many of the post-syntactic aspects of translator

writing. Such systems might better be called compiler-writing-systems

because they include significant programs which are resident at trans-

lation and execution time, as well as meta-language processors. The

programs in this section are much more complex than most of those dis-

cussed previously; none has ever been implemented by someone not in

contact with a previous effort of the same type. The following excerpt

from a paper on FSL outlines basic philosophy and should serve as an

adequate introduction to our discussion of compiler-compilers. The

other compiler-compiler projects discussed in this section have similar

philosophies; we will point out the differences in the appropriate

sections.

When a compiler for some language, L, is required, the following

steps are taken. First the formal syntax of L, expressed in a syntactic

meta-language, is fed into the syntax loader. This program builds

tables which will control the recognition and parsing of programs in

the language L. Then the semantics of L, written in a semantic meta-

language, is fed into the Semantic Loader. This program builds another

table, this one containing a description of the meaning of statements

in L. Finally, everything to the left of the double line in Figure 1

is discarded, leaving a compiler for L.

68

SYNTAX OF Ld syNTAx-

LOADER

SEMANTICS OF L 1 SEMANTIC

I

I SOURCE CODE IN I;

T
'*A

B
L
E

T
'+A

B
L
E _

BASIC

COMPILER

MACHINE CODE

Fig. 10. A compiler-compiler

The resulting compiler is a table-driven translator based on a

recognizer using a single pushdown stack. Each element in this stack

consists of two machine words -- one for a syntactic construct and the

other holding the semantics of that construct. When a particular con-

struct is recognized, its semantic word and the semantic table deter-

mine what actions the translator will take. The Basic Compiler

includes input-output, code generation routines and other facilities

used by all translators.

1. FSL and its descendents (Feldman [Feld 661)

The problem faced in the original FSL effort was the development

of a language for describing the post-syntactic (semantic) processing.

An adequate semantic meta-language should permit the description of

the source language to be as natural as possible. It should be

readable so that other people can understand the meaning of the source

language being defined. It should allow a description which is

sufficiently precise and complete to enable efficient automatic

compilation. Finally, the meta-language should not depend on the

characteristics of a particular computer.

Since there are satisfactory ways of representing syntax, the

formalization of semantics should make possible a complete formal

description of computer languages. With a complete formal description

available, one could organize a compiler as shown in Figure 10.

The syntax meta-language used in FSL is very close to the Floyd

[Flo 613 and Evans [EVA 641 production language and is discussed in

Section 11.~5. A statement in this syntax language may include a

command "EXEC n" which is a call on the semantic statement labeled

- n. The only other interaction between syntax and semantics is the

pairing of syntactic and semantic descriptions in the pushdown stack.

This clean division of syntax and semantics has some advantages, but

has proved to be a great handicap in implementing certain languages.

The semantic meta-language, called the Formal Semantic Language

(whence FSL), was the main focus of effort and will be discussed in

some detail here. The overriding consideration in FSL was machine

independence as opposed to object code optimization in the TRANGEN

effort discussed below. The plan was to have the meta-language be

machine independent, with the machine dependent aspects of translation

handled by a large set of primitives imbedded in the basic compiler.

Statements in the meta-language would be compiled into machine code

made up largely of calls on primitive routines. Some examples should

serve to illustrate this approach.

'70

Suppose the syntax phase is processing a REAL declaration and

calls semantic routine 1 with the identifier being declared in the

second position of the stack (LEFTZ?).

1: TO t STORLOC; SET[TO,DOUBLE];

ENTER [SYMB; LEFT2, TO, REAL, LEVI;

STQRLOC t STORLOC+2

'The current value of STORLOC (the storage pointer) is placed in a

temporary and tagged with bits marking it a double-precision operand.

Then a description of the variable is placed in the symbol table, SYMB.i

The entries for the variable are its name, the tagged address, the

word REAL, and the current level. Finally, STORLOC is increased by

two, allocating two cells to the double-precision variable.

When an identifier is scanned in an arithmetic statement,

semantic routine 2 is called.

2: IF CONST[LEFTl] THEN RIGHT1 t LEFT1

ELSE IF SYMB[LEFTl,,$,] = REAL

THEN RIGHT1 t SYMB[LEFTl,$,,]

ELSE FiULTl -

In semantic routine 2, the predicate CONST is applied to the

identifier (in LEFTl) to test if it is a constant. If so, the stack

is adjusted and the routine terminates. If not, the identifier is a

variable and must be looked up in the symbol table. The table-lookup

is accomplished in FSL through a special table operand of the form

This operand initiates a search of the table SYMB for an entry in the

SY-MB☯LEFTl,,$,l l

first row which equals the contents of LEFTl. Then the position of

the $ is used to select the desired entry of the matched row.

In routine 2 the third entry (data type) of the matched row is

selected and compared with

the same, the variable was

this case the second entry

the string construct REAL. If they are

declared to be REAL and all is well. In

(tagged address) of the matched row in

SYMB is assigned as the semantics of the real variable. If the

variable is not of type REAL or is not in the table at all, the state-

ment FAULT 1 will be executed. This causes the printing of an error

message on the listing of the source language program being compiled.

Finally, suppose the syntax has recognized an addition which is

to be compiled and calls semantic routine 3.

3: CODE(VALUE2 t LEFT4 + lXFT2);

The code brackets 'CODE(' and ')' specify that the statement

within them is to be compiled into object code, rather than executed

during translation. This statement will produce a call on a code

generating routine which uses the semantic descriptions in the second

and fourth positions of the stack to compile an addition code-sequence.

The result of an addition is itself an expression and the syntax is

presumed to have put its symbol (E) into the second position of the

stack. The assignment to VALUE2 will associate the semantics of the

73I c-

result (e.g. DOUBLE, in accumulator) with the syntactic symbol. The

FSL system allows almost all constructs to appear inside code brackets

(to be done at execution time) or outside code brackets (to be done

during translation).

The semantic meta-language, FSL, allows a compiler writer to

declare and use a variety of data structures in building a translator.

Besides the tables mentioned in the examples, there are stacks, masks,

strings, and conventional cells. The language also includes other

features such as chaining, addressing levels, and output statements

which facilitate compiler writing. The Formula Algol compiler was

largely written in FSL and the description [It 661 of that implemen-

tation provides a good study of the strengths and weaknesses of FSL,

The weaknesses of FSL can be characterized as the lack of sev-

eral conveniences and a number of basic structural defects. The lack

of conveniences such as index variables, assembly language embedding

and debugging aids are due to its development as a thesis (hit and

run) project and have been remedied in later systems. The structural

defects result mainly from the attempt to preserve machine independence.

An FSL system is useful to the extent that the compiler-writer's

needs are met by the facilities of the semantic meta-language. This,

in turn, is possible only if there are suitable formalizations of the

pertinent concepts. Thus all the research problems listed in

Section 1II.C (e.g. data structures, paging, parallelism) are

problems in any FSL system. Neither of the systems now running have

good facilities for global code optimization or multipass compilers,

73

but these problems are being attacked by Gries [Grie 67b] at Stanford

and the CABAL group [Fie 671 at Carnegie. There are, however, limits

to the level of code optimization which can be achieved in a machine-

independent way. There is a sense in which any FSL system is predes-

tined to failure; techniques will always be used before they are

sufficiently well understood to be formalized. Such a system can still

be very helpful and the search for meta-language representations should

lead to careful study of new techniques.

The only other FSL-like system completed to date is VITAL [Mond 673

at the Lincoln Laboratory. VITAL runs in a time-sharing environment

and differs from FSL mainly in system features. These, along with a

number of notational improvements, make VITAL much easier to use, but

are of little theoretical interest. As an illustration we present the

routines described above as they would appear in VITAL.

1: ENTER[SYMR; LEFTY, (STORLOC~DOUBLE), REAL, LEVI;

TALLY[STORLOC,2]

2: IFNOT LEFT1 IS CONSTANT THEN

IF SYMB[LEFTl, TYPE] = REAL THEN

RIGHT1 t SYMB[LEFTl, SEMANTICS]

ELSE FAULT 1 :

3: RIGHT2 t CODE(LEFT4 + LEFT2)

There are also several substantive changes from FSL, including a con-

ditional in the syntax language which depends on semantic information.

The combined features of persistent storage and compile-time execution

74

facilitates the writing of incremental compilers, VITAL,also allows the

compiler-writer direct access to the accumulator marker and semantic

words if he so chooses.

The FSL systems have undoubtedly been handicapped by being imple-

mented on uncommon machines, the G-20 and the TX-2. To compensate for

this there are now three separate implementations for the IBM 360 series

in progress. The CABAL group at Carnegie [Fie 671 is designing a system

for multipass compilers using a semantic language which is a minimal

extension of ALGOL in the direction of FSL. The work under Gries at

Stanford [Grie 67b] will also be multipass-oriented, but will use a

special purpose semantic language. The Lincoln Laboratory effort under

J. Curry will probably be quite similar to VITAL. All of these projects

may be considered attempts to combine the virtues of FSL with those of

TGS, :Our next subject.

2. TGS (Cheatham et al. [Plas 66, Che 651)

.

One of the most productive groups in TWS research has been the

small consulting company, Massachusetts Computer Associates (COMPASS)

Although their TWS have undergone many changes, the basic world-view

and goals of their effort have remained rather constant. The COMPASS

work has been marked by careful attention to systems questions and to

object-code optimization. Other aspects of their effort are discussed

in Section II.C5 which deals with an extendible compiler scheme within

TGS . ,

The first attack on the TWS problem at COMPASS was called CGS

[War 641 and was quite different from their current work. Although

75

they have abandoned this approach, we will discuss it briefly here

because it seems to be rediscovered periodically. The CGS system was

based on a top-down recognizer which produced a syntax tree to be used

in further analysis. The input to this phase was essentially BNF. The

second phase was the generation of intermediate code using a tree-matching

language called GSL. The actual code selection process was written in a

third language, MDL. This effort was abandoned because trees were

found to be slow to build and difficult to do pattern recognition upon,

The TGS systems differ from CGS, as well as the other systems

described in this section, in the use of a single language for describing

all phases of the compiler. This language, TRANDIR, is compiled into

an interpretive code which is processed by the TRANGEN interpreter. If

one combines the syntax and semantic loaders of Fig. lC,the FSL model

applies quite well to TGS. In fact, there has been good communications

between these two efforts and they have converged to a marked degree.

The communication has not, however, been perfect; two concurrent

implementations of TGS and FSL took place within a few hundred yards of

each other without making contact0

The TRANDIR language contains a pattern-matching subset which is

essentially the same as the syntax language used in FSL (cf. Section

11.~5). The TGS version is more flexible in that it can be used on a

variety of stacks and can match on properties other than identity of

symbols. The pattern matching features can be used in various code

optimization techniques as well as in syntax analysis.

The remaining features in TRANDIB language are quite similar to

the semantic language in FSL. There is a "symbol description" (SD)

76

connected with each syntactic construct which is the analog of the

"semantic word" in FSL. There are fairly elaborate facilities for

declaring tables, stacks, masks, etc. for use by the translator. These

various storage methods with the associated operators provide a very

flexible means of recording and accessing the information needed for

compiling efficient code. The FSL notion of code brackets is replaced

in TGS by a series of symbol manipulation primitives to help the

compiler writer produce output code. The operation of a TGS compiler

can be best described by working through an example fairly completely.

The example will be taken from a compiler for a miniature algebraic

language Lto described in [Plas 663. The basic compilation technique

chosen is to use a tabular intermediate code as is common in COMPASS

compilers [Che 663. A typical intermediate code translation of

ZtX*Y

would be

01 TIMES X Y

04 STORE Z 10
The intermediate code will be processed

which will produce the final output for

Consider first the TGS statement:

by a code selection phase

later assembly.

. . . VAR AE // EMIT(STORE,COMP!(l),COMP(O));

EXCISE; TRY(ENDST).

77

The left part (up to the //) of this statement is a pattern of

type <variable <expression> which is compared with main stack

(SYMLIST). If a match is attained the remainder (action part) of the

statement is executed. The action EMIT produces a STORE intermediate

instruction with the operands being the first and zeroth elements of

the stack as matched. Since there is no resulting semantic descrip-

tion (SD), the action EXCISE is used to erase the two matched elements

from'the stack. Finally, the action TRY(ENDST) directs TRANGEN to try

to match the pattern labelled ENDST.

A somewhat more complicated routine would be used for recognizing

a multiplication:

. . .VAL $* VAL // PHRASE(SYMRES(TIMES,COMP(2),COMP(O)));

AESET: SYNTYP (COMp(0)) = AE; TRY(AE1)

When one understands that "$*" denotes the terminal symbol "*",

the left part of this statement should be clear. The action SYMRES is

a call on a routine which performs an EMIT of the same parameters and

also returns an SD as its value. This SD becomes a parameter to

PHRASE which uses it to replace the matched portion of the stack. The

action labelled AESET causes the syntactic type of the new top element

to be assigned the value "AE". Finally, the statement TRY(AE1) leads

to further expression processing.

These two TGS statements, if appearing in reverse order, would

compile "Z t X * Y" into intermediate language. In the real world,

typical statements would involve table operations, string commands,

q!!g
:: , . ’ ,
(.

’

conditionals and other more complicated TRANDIR constructs. There are

also fairly sophisticated <procedure features which improve the

readability as well as the writability, of translators.

In any event, the intermediate code will itself be processed by

another set of TRANGEN routines called the code selectors. These are

written in the same form as the syntax routines considered above.

For example:

/I TIMES INMEM INMEM... _

LOADMQ(XM+l).

This statement has a pattern involving a predicate INMEM (meaning in

memory) on stack entries rather than symbols to match. (The delimiters

'1
I/ " and " . . ." indicate that the pattern is to be matched against the

intermediate code portion of the stack). The subroutine LOADMQ is

called with a pointer to the second stack operand as parameter. This

user-written routine will assemble a LOAD MQ command if necessary and

will adjust the SD in the stack to reflect the fact that one operand is

now in the MQ register. A similar routine will be used to compile the

appropriate multiply sequence. The result will be in the accumulator

and TRANGEN will eventually match the statement:

/I STORE ** *INAC . . .

IF SIGN(SYMBOL(ACHOLDS))THEN

c5 : EMIT (CHS);

C4: EMIT (STO, ARG(1));

c5 : LINE(TEMPS) = 0;

ACHOLDS = 0; M&HOLDS = 0; TO (STEP)

‘19

pq!j
*

The pattern here contains a "+w' which is always matched and a *

meaning indirect reference. If the operand in the accumulator, which

is described by ACHOLDS is negative a "complement" (CHS) instruction

must be emitted. The store command is emitted in any case without any

tests on the variable to be replaced. The succeeding actions effect

the state of the translator, reclaiming the temporaries and freeing the

AC and MQ registers. Finally there is a transfer to the action STEP

which sequences through the intermediate code.

The TGS system has been implemented on several computers and has

been used in the construction of a variety of compilers. The compiler

writers have been professionals and have not been constrained to stay

within the formal system. The use of TGS has been sufficiently

valuable to COMPASS that they continue to use it on commercial com-

pilers. The main differences between TGS and FSL accurately reflect

the difference in design goals: TGS allows more flexibility by

requiring more detailed information from the compiler-writer. The

efforts of Gries [Grie 67b] at Stanford and Fierst [Fie 661 at Carnegie

are attempts to have the best of both by allowing simple code state-

ments as well as multi-phase- processing. Both VITAL [Mond 671 and

the most recent TGS [Plas 663 are interactive and have sophisticated

trace, edit, and debug features.

30 CC (Brooker, Morris, et al. [Brook 671)

The CC (Compiler-Compiler) project at Manchester University is

the oldest and one of the most isolated TWS efforts. Rosen [Ros &a]

83

has attempted to play Marco Polo to this imperial court, but trade has

been slow. The CC system has been running for some time and has been

used to implement several algebraic languages [Cou 66, Kerr 671.

The CC effort has concentrated on problems of semantics; the

syntax analysis is top-down with memory and one symbol look-ahead

(cf. Section IIA). The result of syntax analysis is a complete syntax

tree which is used by the semantic phase. This is, of course, a slow

process and there are informal provisions for other techniques. We

will follow the formal treatment here, taking some liberties with

their notation.

The input to the syntax phase is like B&F except for the optional

use of a repeat operator (*) to replace simple recursions. The notion

of non-terminal symbol is divided into PHRASE and FORMAT. The FORMAT

non-terminals may be introduced in macro-fashion and each has an

associated (semantic) ROUTINE. The FORMAT symbols are further qual-

ified as [SS], [AS], [BS] meaning respectively source statement, aux-

iliary statement, and pre-coded basic statement. For example, a source

language assignment statement might be defined as:.

FORMAT[SS] = <variable +<expressiorD .

Among the useful auxiliary statements would be:

FORMAT[AS] = LOAD <preceeding +> <term

FORMAT[AS] = ACC tACC <+> <term-

m‘.7. ..:‘.. , ;

Each of these would have an associated routine, whose first line

contains its calling syntax rule (FORMAT). The routine for the

assignment statement might be:

1) ROUTINE[SS] f <variable t<expression>

2) LET <expressiorD 3 <preceeding +> <term <term0

3) LOAD <preceeding +> <term

. 4) L2: GOT0 Ll UNLESS <term0 z <term <terms>

5) -ACC tACC W <term

6) GOT0 L2

7) Ll: STORE ACC IN<variable

8) END

In order to understand this routine we need two PHRASE

definitions:

PHRASE <expressiorD G <preceeding & <terrrD <term0

PHRASE <term0 = * <term> <terms> 1 <emptp

Notice that the unusual form of recursive definition facilitates

sequential code- generation. -

Line: 1) is the header containing the syntactic construct (FORMAT)

associated with this routine. Line 2) is a substitution statement and

is not an important consideration here. The rest of the statement is

a loop for compiling a string of 'add' and 'subtract' commands and

then storing the result. The statement on line 3) is a call on another

ROUTINE[AS], this one forming as many successive products and quotients

as possible. Other statement forms such as GOT0 and STORE are pre-

sumably pre-coded and thus of form ROUTINE[BS]. Notice that state-

ments like that on line 5) imply "using up" syntactic constructs as

they are processed.

The built-in part of CC contains, besides [BS] routines, a fairly

complete resident system (PERM). There is also a facility for deleting

many routines at the completion of the compiler building (PRIMARY)

phase. If these routines are left in, the compiler is an extendible

one in the sense of Section 1I.C. In fact, the earlier CC systems

would be better described as extendible compilers altogether.

In the earlier versions of CC, the formats and format routines

for a language were kept in an encoded form and interpreted by the

compiler. The actual mechanism was a tree matching and substitution

process somewhat similar to that of Galler and Perlis (cf. Section

111.~6). The detailed procedure is quite complicated and is described

rather completely in Rosen [Ros &a]. The current CC system is

interesting in that viable extensions to a language can often be

"compiled into" the translator with considerable savings in time and

space. There are still some routines <which must be interpreted and

the ratio of the two types for a given extension is not easy to

determine.

The CC group has recently produced a number of reports on the

uses and performance of their system. These include the first attempt

ever to compare a TWS with handwritten compilers [Brook 671. Brooker

was able to (in a year) reduce the space required by a factor of two

83

and the time by about five by hand coding an Atlas Autocoder compiler.

The results are hard to interpret without more information; the formal

CC system uses techniques which are intrinsically time and space

consuming. One hopes that this attempt will induce the CC group,

as well as others, to make more careful studies. There are also

two adaptations of CC technique underway in England. The first

involves imbedding much of the CC system in the ALGOL-like language

ATLAS AUTOCODER [Br 67a]. The other effort is an ambitious attempt

to generalize CC to a source and object code independent system

[COU 671.

_ References for 1I.D:

Design

Brook 6Oa, 62a, 63, 67b, 67~, Che &a, &c, 65,

cou 67, Feld &, 66, 67, Fie 67, Grie 67b, Mond 67, Plas 66,
Ros 64a, War 61, 64

Uses

Brook 67a, 67b, Cou 66, It 66, Kerr 67, Nap 67,

ROV 67

III. Related Topics and Conclusions

1II.A. Other Uses of Syntax-Directed Techniques

Very early in the TWS development, it was observed that syntax-

directed techniques could be used in a wide variety of problems. A

syntax-directed approach can be considered whenever the form of the

input to a program contains a significant part of the content.

Individual applications of syntax-directed techniques tend not to get

written up. The applications presented here are based largely on

personal knowledge and, though perhaps representative, are certainly

not comprehensive.

The TWS systems described in Section II vary widely in the ease

with which they are put to other uses. The syntax-directed symbol

processors are the most flexible and seem to be the most widely

applied. One such system, AED [Ross 661, was designed from the out-

set to be a general purpose processor. Because of certain peculiarities

of attitude and terminology, the AED project has had little effect on

other TWS efforts.

The syntax phase of AED is based on a precedence technique similar

to those described in Section 11-A. By incorporating type checking and

the ability to add hand-coded syntax routines, the AED parser becomes

more powerful at the cost of violating the underlying theory. It is,

however, the intermediate representation of AED statements that is

most interesting. This is based on the use of plexes, which are data

structures whose elements each can have many links. The construction

and processing of the "modelling plex" are accomplished with a set

of macro routines. These might include routines for code generation,

85

computer graphics or programmed-tool commands. Reference [Ross 631

is a good introduction to the AED system with detailed examples of its

use in several problem areas.

The essential features in the AED system are the precedence matrix

in syntax and the plex manipulations in semantics. A somewhat different

approach to the syntax-directed universe can be developed from the

general compiler-compiler model discussed in Section 1I.D. In this

scheme, the entire semantic mechanism, including the choice of data

structures, can be different for each application area. In the VITAL

[Mond 671 effort, two basically different data structure languages

(both written in VITAL) are being compared in a syntax-directed graphics

package [Rob 661.

Most of the other applications of TWS systems have been in

symbol manipulation tasks of one sort or another. Some of the first

applications [Schor 651 were in symbolic mathematics. A TWS would be

used to help model the structure of an expression, perhaps for

simplification or differentiation. The use of TWS (esp. COGENT, META)

in symbolic mathematics is currently widespread and has given rise to

systems [Cla 661 constructed specifically for that purpose. There

have also been a few pure mathematicians (e.g. [Gro 661) who have

found the syntax-directed model useful.

The most widespread and least surprising application of TWS is

in problems of format conversions. These arise in connection with

large data files and in translating between closely related source-

language to source-language translators. Once again, the syntax-

86

directed symbol processors of Section 1I.B have been used the most

often. These systems have also been of some use in such varied

tasks as: logic

simulation.

There are

design, translating geometric descriptions, and

also a number of applications of TWS techniques to

produce command sequences for special purpose devices. For example,

a fairly sophisticated TWS [Cas 663 was used in translating commands

for various components of a satellite tracking system.

In addition to their direct application in many fields, the TWS

have inspired work in several others. One active area has been the

syntactic-description of pictures. There are a number of:published

papers (e.g. [Nar 661) and a great deal of current work which has not

yet seen print. The pattern matching features incorporated in the

new list-processing languages [Ab 66, It 66]jare partially inspired

by TWS.

Computational linguistics, in both its theoretical and practical

aspects, is closely related to TWS studies. The applications here,

though fewer than one would suspect, have been significant. The

syntactic theories of computational linguistics and TWS both are

based on the early work of Chomsky [Chom 631 and share many ideas.

The implementations of English syntax (esp. [Kun 621) developed con-

currently with top-down TWS, but the natural language efforts have

been slow to incorporate the efficiency improvements developed in TWS

work. In applied semantics, the DEACON project [Th 663, whose approach

was quite novel to linguists, can be looked upon as a straight-forward

application of TWS techniques (cf. [Nap 671). One can expect to see

more interaction between these research areas as linguists attempt to

test semantic theories and TWS workers attempt to cope with non-

procedural languages.

The last, but by no means the least, of the applications

considered here is to teaching. Several of the TWS systems described

above have been used as the basis for courses on translator-writing.

These have ranged from undergraduate courses to faculty seminars

and have been well regarded. Although they can be taught without

machine problems, these courses are much more successful when the

students have easy access to the TWS under discussion. This approach

to teaching was sufficiently appealing to cause D. Knuth at Cal Tech

- to implement a version of TMG (called TROL) largely for that purpose.

References %QcE II1.A.

Ab 66, Brook 67a, Cas 66, Chom 65, Cla 66, Gro 66, Hal 66,

It 66, Kun 62, Mond 67, Nap 67, Nar 66, Rob 66, ROSS 63, 66,

Scho 65, Th 66,

1II.B. Related Mathematical Studies

Computer science owes much to mathematics and is beginning to pay

off that debt. Both the syntax and semantics of programming languages

have inspired formal treatments. In this section we will briefly dis-

cuss the developments most relevant to TWS and provide an entree to the

literature on the formal aspects of programming languages.

III.B&. Syntax

We will discuss briefly some theoretically interesting left-right

recognizers and their construction algorithms. Of course, given a

grntnmar G and a string x, there is a relatively simple method for test-

ing whether x belongs to L
GO One can generate all strings belonging to

LG of length equal to length (x) and see whether x has been generated.

This is not very practical. In contrast to those in II.A., these have

not yet been used to write compilers, due to their complexity. The

construction algorithms are interesting because they give sufficient

conditions for the unambiguity of a grammar, besides mechanically pro-

ducing the efficient left-right recognizer. By efficient we mean that

no backup is necessary - the recognizer can always detect the handle.

a) (1,l) Grammars - Eickel &t al. [Ei 6f3]

By inserting intermediate productions (cf. Section II.A4), the

constructor changes the grammar to one consisting of production of

length one or two -U+SorU+SS
12'

When looking for a handle at the top of the stack, the two top

stack symbols and the incoming terminal symbol must uniquely determine

the step to be taken. Thus, for each triple (Sl,S2,T) one and only

one of the following conditions must hold:

1) SlS2 is a handle and one reduction U ::= SlS2 may be executed.

2) S, is a handle and one reduction U ::= S2 may be executed.
L

3) T must be

4) SlS2T may

pushed into the stack.

not appear as a substring of a sentential form (error).

The algorithm for producing the triples and the corresponding action is

given in [Ei 631, along with examples. This algorithm and the recog-

nizers produced have been programmed and tested, but not used to write

compilers.

b) Bounded Context Grammars

A grammar is called an (m,n) bounded context grammar if and only

if the handle is always uniquely determined by the m symbols to its

left and n symbols to its right. A left-right recognizer may thus

find the unique canonical parse of a sentence of an (m,n) bounded

context grammar by considering at each step at most m symbols to the

left (into the stack) and n terminal symbols to the right of a possible

handle. The first four types' of grammars discussed in Section II are

(1,l) bounded context grammar, as are all grammars accepted by the

Eickel-Paul-Bauer-Samelson constructor [Ei 631.

Recognizers for (m,n) bounded context grammars for m> 1, n > 1

are likely to make unreasonable demands on computer time and storage

space. Therefore (m,n) bounded context grammars have not been used

so far in compilers. There have been three major papers on bounded

90

context analysis. Each of them defines "context bounded" slightly

differently. The idea behind all of them, though, is the same, and

we will not discuss the differences here.

The paper by Floyd on Bounded Context [Flo &a] and the paper by

Irons on Structural Connections [Ir 641 should be read by any person

interested in delving further into the mysteries of bounded context.

However neither gives an algorithm for actually generating the recog-

nizer . Eickel's aim [Ei 641 is to describe the recognizer and its

construction in detail (and is therefore less readable than the other

two). The recognizer uses the usual stack, and a pointer p to the tail

symbol of a possible handle. As in [Ei 631 the grammar is restricted

to productions of length 1 or 2 (this is not a restriction on the

language). The generator produces 54uples

(x;s ;Y,wJ)

where x,y are strings with length (x) < m and length (y) < n, S is a

symbol, U a non-terminal, and k a number. Suppose the stack contains

S&..S s sp-l p p+l"'si

S
P'

the symbol at the reduction position, is then tail of a possible

handle. The 54uples are searched until one is found such that S = S
P'

x is a tail of S . ..S
0 P-l

and y is a head of Sp+l". .si. The step to be

taken depends on the corresponding k and U as follows:

91

k action

0

1

2

' 3

4

stop - syntax error

replace handle S
P
by U (make a reduction U + Sp)

replace handle S S by U (make a reduction U + S
P-l P p-lsp);

P +-P-l

if p = i then push next symbol onto stack else p tp+l

push next symbol onto stack (more context needed on the right).

Eickel has programmed and tested both the constructor and recog-

nizer, but no compiler has been written using this technique. 'The

- constructor starts by limiting the length of x and y to 1 and producing

all possible 54uples. If two (or more) 5-tuples exist with the same

x,y and S but different i (or the same i but different U), then the

grammar is not (1,l) bounded context. For such 'j-tuples, the lengths

of x and y are alternately (or in some other predetermined order)

increased, thus adding more context, until the conflict is resolved

or some maximum m,n are reached.

Wirth and Weber [Wir 66c] extended the idea of precedences (see

Section II.A2) to strings. Thus we have x@y , x@y and x@y where

length (x) 5 m and length (y) 5 n. A (m,n) precedence grammar is of

course also (m,n) bounded context according to our definition. A

precedence grammar according to Section II.A2 is a (1,l) precedence

grammar.

92

c) Deterministic Push-Down Automata (DPDA). Ginsburg and Greibach

[Gin 66b]

A DPDA is a formalization of the concept of a left-right recognizer

working with a stack and using the usual notation of automata theory -

one has a set K of "states" containing a start state I?, a set of inputs

a7, (terminal symbols), a set r (corresponding to our nonterminal

symbols) containing a start symbol v, and a mapping g;

5 : (states x (nonterminal symbols) x (input symbols)) +

(states x (strings of nonterminal symbols))

or

$: (K x r x (W@‘))) + (K x r *)

This mapping 5 must be a function (single valued). Other restrictions

are also placed on it to take care of the empty symbol E which may

appear anywhere in the input. At each step we have a triple

(where i>_ 1), the initial triple-being (E,u, Tl...Tm). At each step,

with the help of the mapping (k,Ui,Tj) 3 (kl,Ui* 0 l Un) where n >, 0,

the triple gets changed to

(klj Ul...Ui lUi***Un> Tj+l***T) lm

A string (of inputs) is accepted if the final state km is a member of

a set of final states F.

--.

A language (a set of strings of input symbols derivable from some

grammar) is deterministic if it is accepted by some DPDA. Ginsburg

and Greibach prove some interesting properties of DPDAs and determin-

istic languages. Note that a deterministic language is defined by a

DPDA - and not by certain properties of the grammar defining the

language. What is significant for us here is the relation to LR(k)

languages of Knuth (below).

d) IX(k) Grammar (Knuth [Knu 651) _

A grammar is LP(k) if and only if a handle is always uniquely

determined by the string to its left and the k terminal symbols to its

right. The corresponding language is an IX(k) language. Thus, when

- parsing a sentence using a stack, the left-right recognizer may look

at the complete stack (and not just a fixed number of symbols in it)

and the following k terminal symbols of the sentence. This is the

most general type of grammar for which there exists an efficient left-

to-right recognizer that can be mechanically produced from the grammar.

In fact, a grammar accepted by any of the other constructors discussed

is LR(l). Thus, the IX(k) condition is the most powerful general test

for unambiguity that is now available.

Knuth gives two algorithms for deciding whether a grammar is

IX(k) or not, for a given k. The second algorithm also constructs

the recognizer - if the grammar is LB(k) - essentially in the form of

a DPDA (above). Knuth shows that for each LR(k) language L there

exists a DPDA which accepts L. Moreover, for each language L accepted

by a DPDA there is an LR(l) grammar which defines L. Thus, any LR(k)

F-- -~-- -_-. -_ -

language is also LR(1). Earley [Ear 671 has written a constructor for

an LR(k) grammar, whose output is in the form of productions, similar

to but more complicated than the Floyd-Evans productions.

e) Recursive functions of regular expressions (Tixier [Tix 671)

Many compilers break the syntax analysis into small parts. Thus,

one subroutine will recognize <expressions> while another will handle

<declaration0. A saving of space arises because the character set

involved in each subroutine is quite small. For instance, one might

have three 20 x 20 precedence matrices instead of one 60 x 60 matrix.

Tixier has formalized this concept quite nicely in his thesis.

One can consider a non-terminal symbol as a variable denoting the

set of terminal strings which are derivable from it. The productions

can then be transformed into sets of equations using the set operations

union (+), product and closure (*). Thus the productions

<identifier> t<letter>

<identifier> t<identifier> <letter>

may be written equivalently as _

<identifier9 = <letter> + <identifier3 <letteD

or

<identifier3 = <letter3 <letteD*

Tixier has rewritten the 120 productions for Euler [Wir 67~1 as 7

functions of 7 variables, 3 of which we give here (the symbols "(",

95

")I' are meta-symbols used to bracket set expressions):

program = Lblockl

block = begin((new id + label id);)*(i:)*expr(;(i:)*expr)*end

expr = (out + if expr then expr else + i ([expr]+.)* +)*- m

(goto primary + block + catena)

The point is that one can now mechanically construct a finite

state automaton,which is very efficient, to accept each of the above

expressions. One can then connect these automata by a pushdown stack,

so that they may (recursively) call each other. Thus, when the finite

state automaton for "program" (see above) decides that a "block" must

be recognized, it places in the stack a return point to itself and

calls the "block" automata.

Tixier has formalized this in his thesis and shows how to construct

an efficient restricteQ DPDA for a certain class of grammars, called

RCF, These languages are thus LR(1).

The diagram below presents an inclusion tree for the classes of

grammars accepted by the particular constructors discussed in this

section and in Section 1I.A.

!zIduct ion

I-context

I (1,l) grammar

language

transition matrix

(>C

operator precedence

(a) Although (1,l) grammars and extended precedence grammars both use

triples, the advantage for (1,l) grammars arises from the automatic

intermediate reductions performed, which essentially allows more context.

(b) Transition matrix grammars fall somewhere between (1,l) and (0,l)

bounded context.

(c) We are making the assumption here that the operator precedence

conditions have been augmented to include conditions for a unique

canonical parse (cf. Section II.Al). Otherwise inclusion does not hold.

The advantage of the matrix technique over operator precedence is, as in

(a), the use of automatic intermediate reductions.

97

References for III.B.l,

Introduction to the theory of formal languages

Bar 64, Gins 66a.

Pure or modified top-down algorithms

Barn 62, Br 6Za, Che 6&c, GraR 64, Ing 66, Ir 63a, Kurt 62, Kir 66,

Rey 65, Scho 65, War 64.

Construction of efficient recognizers - sufficient conditions for

unambiguity

Ea 65, Ea 67, Ei 63, Ei 64, Flo 63, Flo 64b, Gins 66b, Grie 67a, Ir 64,

KIMA 65, McKee 66, Paul 62, Wir 66c, Tix 67.

Surveys, tutorials on recognizer techniques

Che 6k, Flo 64b, GraM 6k

Ambiguity in context free languages

Can 62, Flo 62a, Flo 62b, Gor 63, Lang 64, Ross 64.

13 different ways to define languages

Gorn 6~

98

mqg.I : ” ‘8. . :. :I e’

III.B.2. Semantics

Any formal study of the semantics of programming languages

immediately confronts the problem of separating syntax from semantics.

Programming languages combine ideas from logic (where the problem is

solved) and natural language (where it is no longer taken seriously).

In most treatments of programming languages, syntax is taken to be

precisely these aspects of language describable in the syntactic meta-

language under discussion. This practice has the unpleasant effect of

changing the definition of syntax with each change in meta-language.

Computer scientists trained in logic (e.g. [Tix 671) would like

us to adopt the definitions used there although this approach has not

proved effective for natural language and has immediate problems in

programming languages. For example, are the statements

x tY / 0.0

Ll: GOT0 Ll

well-formed in ALGOL 607 Surely, an algorithm capable of handling data

types could detect these errors, and the question is now one of how far

to go. It is not obvious that one could produce a notion of syntax

which satisfied a logician's tastes and still left well-formedness a

decidable property.

The situation is further complicated by the fact that all major

languages contain statements unparseable by the formal syntax alone.

An example from ALGOL 60 is:

99

X t IF B THEN C ELSE D > E

the structure of which depends on whether "C" is Boolean or arithmetic.

Thus, in practice, syntax-directed compilers must incorporate "semantic"

features in the syntax phase. One ingenious approach to the separation

question is the abstract syntax [McCar 62a] of McCarthy. He is mainly

concerned with semantics and considers (analytic) syntax to be just the

set of predicates and functions necessary to extract pertinent infor-

mation from the form of a source string. This does not "solve" the

problem of defining syntax but does enable one to consider semantics

without facing the separation question.

As usual, formal studies of semantics have lagged behind work on

.the syntax of programming languages. By far the best general work on

this subject is [Ste 661 where the discussions, even more than the

papers, provide an overView of formal semantics. The various formal-

izations that have been presented are all procedural; they are either

abstract machines or imperative formalisms such as the h-calculus

[Chu.51]. This is reasonable to expect, but greatly restricts the*

choice of existing mathematical models.

Since the formalizations are procedural one might prefer the word

"effect" to "meaning" in the description of programming languages.

This is not the place to defend the notion of semantics as effect and

we will adopt it merely as a convenient way of looking at things. This

view does lead one to expect a program to have different effects depend-

ing on an "environment" and this will prove useful in our discussion.

100

It might also lead one to suspect that the choice of semantic meta-

language will be influenced by the intended use of a formal description.

The existing efforts in formal semantics may be separated into

those concerned with proofs about programs and those interested in

elucidating the processing of programs by computers. Among the latter,

one might include the semantic meta-languages described in Section II.D,

although this is not de rigueur. There are, however, slightly abstracted

translation models (e.g. [Wir 66~1) which are considered acceptable.

In any such model, a language can have very different effects depending

on whether its translator is an interpreter or a compiler. This seems

reasonable to programmers, but disturbs mathematical types who would
I

prefer to see meaning reside in the algorithm rather than the program.

A related set of developments are the attempts to define all programming

languages by reduction to a single high level [Ste 661 or machine- I
1

like [Brat 61, Ste 611 language. .\
!
I

The approaches to formalization described above are more closely
I

related to TWS, but are far too complex to be very useful in proofs.

For those who consider proofs to be the sole end of formalization (and

would be reading this paper at all) the preceding paragraph will be

considered an anathema. An interesting halfway house is to be found in

the work of Van Wijngaarten and de Bakker [Bak 6 y Wij 661. They

attempted to reduce the complexity of their model by using a universal

Turing machine. This machine had only a few rules, which would inter-

pret additional rules, eventually forming a translator which would

recursively translate e.g. ALGOL. The difficulty was that the formalism

was so primitive that the ALGOL semantics became a large paper and

101

neither proofs nor insight seemed to result.

Most mathematically based attempts at formalization have stressed

tractability and have almost all been based on existing mathematics.

There are only a few imperative systems in logic, and each has been

used in formalizing some aspect of computer science. Most of the work

in formal semantics is based on the h-calculus of Church [Chu 511 and

the combinator calculus of Curry [Cur 581.

Both of these theories were primarily concerned with the role of

variables and their successes in programming languages have been largely

in that area. The h-expression plays a crucial role in LISP and is

discussed as a programming concept in various LISP documents

It is also the most popular vehicle for attempting to formalize

semantics. The work of Landin and Strachey [Lande 661 is particularly

interesting because they combined their research with the development

of an extension of ALGOL 60 called CPL [Burs 65, Cou 651.

The applications of h-calculus to semantics have been pursued most

diligently by Landin. In a series of papers he considers the relation-

ships between programming languages (ALGOL) and an augmented h-calculus

called imperative applicative expressions (IA.@. The declaration and

binding of variables in ALGOL is modelled quite clearly and the formal-

ization has helped point out some weak spots in ALGOL. The IAE system

(like pure LISP) is purely functional and must represent statements as

0-adic functions with side effects on the environment. In fact, much

of Landin's description of ALGOL can be viewed as a generalization of

the "program feature" in LISP [McCar 62b]. Thus far, these efforts

102

have neither achieved the descriptive clarity nor maintained the

tractability of h-calculus in accordance with the original plan. The

most conspicuous benefit of the work has been CPL [COV. 661 which is

an extremely civilized language. There is presently an active group

at M.I.T. which is pushing this approach as far as it is ever likely

to go.

Although he introduced the h-calculus into computer science,

McCarthy has taken a somewhat different approach to formal semantics.

His term "theory of computation" indicates that heis more concerned

with algorithms than with algorithmic languages. His approach utilizes

a state vector, operations upon it, abstract syntax and conditional

expressions. Typical state functions are

CbP>

Ah ~,a)

read the contents of symbolic position 'x1 in state vector 'a* and

the state resulting from substituting 'z' for 'x' in state vector 'a'.

He is then able to get conditional expression definitions of

machine-code-like operations and constructs found by the abstract

syntax. The resulting formalism is fairly tractable and McCarthy

and his students have been able to push through a number of proofs

[M&r 671.

A more recent, and intuitively more satisfying, approach has been

developed by Floyd [Flo 671. He considers the flow chart of a program

written in an ordinary (fixed) programming language. The basic idea

is to attach a proposition to each connection in the flow chart; the

proposition is to hold whenever that connection is taken during

execution (thought of as interpretation). With these propositions and

some related mechanisms, Floyd establishes techniques for proving

properties of the form "If the initial state satisfied Rl then the

final state will satisfy R2, if reached." Proofs of termination are

handled by showing that some function of, say, the positive integers

decreases as the program is executed. There are current efforts to auto-

mate both the generation of propositions and the proofs of correctness

for restricted languages.

Our description of the work in formal semantics has been

sufficiently shallow to perhaps be misleading. Most of these efforts

- have their comrades and fellow-travellers and the development has been

richer than we suggested; the references at the end of this section

should cover all major trends related to TWS. The impact of formal

semantics, especially the proof-oriented kind, has been limited to a

few isolated insights. There has been no work having the impact of

e.g. Krohn and Rhodes on automata theory. It is our conjecture that

this breakthrough is not to be found-in existing imperative logics;

programming languages will have to be faced directly as mathematical

and natural languages have been.

References for III.B.2

yak 65, Braf 63, Burg 64, Bu-s 65, Chu 51, Cal 62, cw 58, ~10 67, Er 61,

Ir 63b, Landi 63, 65, 66, LUC 65, McCar 62a, 67, Org 66, Rig 62,

Ste 64, Tars 56, Tix 67, Zem 66.

104

1II.C. Summary and Research Problems

The TWS described in this paper represent the most recent devel-

opments in a long line of research by many outstanding computer

scientists. Each category described in Section II has its peculiar

strengths and weaknesses and a preferred problem domain. After a

brief summary of the relations between the various categories, we will

suggest a number of fruitful areas for future research.

The automatic constructors of recognizers, described in Section

ILA, are tools which are potentially useful in any problem attacked

with a syntax-directed approach. By automatically producing an efficient

recognizer, such systems should extend the useful range of syntax-

directed techniques. The major problem is to find a convenient way of

embedding semantic definitions in the synthetic syntax. A solution to

this problem would also produce a marked improvement in the capabilities

of the syntax-directed symbol processors of Section 1I.B. These TWS

all have fairly convenient methods for introducing semantics, but all

share the use of relatively inefficient recognizers. The already far-

reaching applications of such systems could be significantly widened by

the development of more efficient recognizers.

The meta-assemblers described in 1I.C are presently much better

suited to assembler-writing than compiler-writing. They have, however,

introduced several significant additions to macro languages which will

have a long range effect. By extending the facilities of meta-assemblers

for translation-time actions and adding a syntax phase one could make

them comparable to the syntax-directed symbol processors of Section 1I.B.

105

The work on extendible compilers is more recent and difficult to

assess accurately, Although it seems clear that some macro facility

should be included in any high-level language, the more exotic systems

may be limited in their usefulness. In any event, it seems unlikely

that extendible compilers will compete with compiler-compilers in the

original implementation or radical change of a translator.

The compiler-compilers of Section 1I.D are the high point in the

evolution of specialized TWS. This specialization has made them by far

the most useful for compiler-writing, but has its attendent costs. The

compiler-compilers are harder to implement and are often unsuited to

tasks appreciably different from compiling. As the semantic languages

attempt to encompass more sophisticated programming constructs, one can

expect the specialization to become even more pronounced. There is,

however, a tendency to allow the insertion of different specialized

semantic languages in a TWS, preserving the syntax and system features.

None of the TWS discussed here is a panacea. We have attempted to

show that it is unreasonable to expect one and the results of various

attempts at a universal programming system of any kind tend to support

this position. We do feel that, taken as a whole, the TWS efforts have

solved many of the significant problems in compiler writing and documen-

tation [Naur 63a]. There are now enough available techniques to satisfy

a great variety of possible TWS requirements. It is our contention

that future work on general TWS should be considered development and

perhaps undertaken by a different set of people. The area most suitable

for research seems to be the careful consideration of a number of

isolated problems related to TWS.

1.05

The syntactic aspects of TWS have received considerable attention

and have fewer outstanding questions. The three problems that do come

to mind are closely related to semantics and to one another. One

problem is to find a satisfactory way of embedding extra-syntactic

features to allow "syntax" to correspond more closely to one's intuition

[Gil 661. A related issue is the absence of an adequate technique for

embedding semantics in the rules of a synthetic grammar without know-

ledge of the details of the recognizer constructing program being used.

Finally, there is the problem of graceful degradation (this year's OK

phrase) in automatic recognizer constructing programs. One would like

the system to use efficient techniques where possible and automatically

move to more general schemes (rather than quit) when the going gets

rough.

There has been much less work on the post-syntactic aspects of

TWS. There have been three basically different approaches to this

"semantics" problem. The first approach is to provide a general pur-

pose list-processing.or other symbol manipulation capability (cf.

Section 1I.B). The second is to provide a number of data structures

and built-in routines especially designed for compiler-writing (cf.

II.D2). The third approach partakes of the first two, but also

attempts to automate significant parts of the compiler-writing task

(cf. 1I.D). By making use of macros and subroutines, either of the

first two techniques can look, to the average user, like the highly

automated system. From this point of view, the key problem in

semantics is finding general purpose routines for handling significant

aspects of compiler writing. We feel that the TWS approach has been

proven feasible and that the general problem should now be considered

in the development stage. There are, to be sure, several kinds of

programming languages (e.g. simulation [Te 661) still beyond the pale,

but each has a few basic concepts that need to be studied first. In

short, future research in TWS should be directed toward understanding

(and eventually, automating) the outstanding problems in programming

languages.

1 With this formulation of TWS research, we have, of course, pro-

vided a guaranteed annual project for everyone. A justification for

this can be found in the many contributions to programming systems which

have resulted from considering meta-problems. In the remainder of this

section, we will discuss a number of interesting problems which might

be amenable to a TWS approach and provide an entr& into the literature

for each. The references listed at the end of the section for each

subject are either very recent or comprehensive or are already used as

a reference in this paper.

One question of long standing that is still open is the formal

description of machine languages. A solution here could be used as a

third input to a TWS, describing the target machine. This problem has

been attacked, both theoretically and directly, but nothing has come

close to being usable by a TWS. The availability of parallel processors

adds a new level of complexity or, better, a new research area. Most

of the work on software for parallel processors has been concerned with

particular machines and is not within the scope of this paper. There

have been some significant abstract [Kar 663 and concrete [Shed 67,

Sto 671 theories which might serve as a foundation for research in

i0zI

parallelism.

beginning to

Another

Parallelism in high level languages [Dij 651 is also

receive attention.

hoary question concerns a theory of code selection and

enhancement (the "optimization" problem). Not only has the theory been

weak, but there are still only a half-dozen or so types of code enhance-

ment in general use by compiler writers. The most striking improvements

in program performance usually come from restructuring the entire

approach to the problem. This could be-called optimization-in-the-large

but we will discuss it as one aspect of non-procedural programming. The

accepted definition of "non-procedural", like that of "semantics", has

yet to appear. A programming system will be called non-procedural to

the extent that it makes selections and rearrangements of procedural

steps in response to some higher order problem statement.

Non-procedural programming languages have been discussed under many

rubrics: declarative languages , problem-oriented languages, question-

naire systems and the like. Most of this work is theoretically unin-

teresting (cf. [YOU 65-J); one writes a large routine and the user

supplies parameters. Fairly good non-procedural systems for limited

problem areas have been developed in computer graphics, relational

languages [Rov 671, array processing [Gal 671 and numerical analysis

[Ri 663. The analogue computer, of course, has always been programmed

this way and some promising systems [Schl 671 are being developed by

extending the languages used in hybrid computing. Cheatham envisions

adding non-procedural features of a general sort to the extendible

compiler discussed in Section III.Cg. Another approach would be to use

iOy

the more sophisticated syntax forms and transformations developed in

natural language processing.

We have felt for some time that TWS efforts shared many interests

with natural language systems. There have been the so-called query

languages [Corn 661 and, of course,COBOL [Samm 611, but these make only

superficial contact with the problem. The recent interest in conver-

sational and non-procedural programming languages along with the

syntax-directed natural language systems (cf. Section 1II.A) should

lead to a significant interchange of ideas.

There are several open problems concerning the connection between

TWS and executive systems. One of the major benefits of a TWS is

eliminating the effort (often more than half the total) of interfacing

each compiler to the executive. One indication of the past work in

this area is that the word "executive" has not occurred before this

paragraph. There has always been a small group interested in "envir-

onmental" questions for compilers [Le 661, but they had little effect

before the time-sharing revolution. The (hoped for) availability of

multi-access time-sharing systems gives rise to several additional

research problems related to TWS. _

The main task of any large time-sharing executive is resource

allocation. The resources to be allocated include programs such as

compilers as well as various memory and processing units. The research

problem is to devise a scheme for allowing translators to exchange

information with the executive so as to produce significantly better

system performance. The most pressing need in current systems is for

main memory, and there have been several schemes [Bob 67, Coh 67, Rov 673

110

to help reduce swapping for particular languages. A related problem is

the optimal (not maximal) use of pure procedure in both the TWS [Feld 671

and the resulting object code. While an elegant compiler-executive

interface will be very difficult to achieve, even a theoretically

uninteresting solution should prove of great practical value.

There are two other problems relating to executive systems which

we will mention briefly here. Control languages should be improved by

adding syntax processing; ideally using the same syntax code already in

the TWS. A more ambitious project would be the application of syntax-

directed techniques to the construction of executive programs themselves.

One additional related problem is debugging aids. There has been a

great deal of work on on-line debugging systems [EvT 661, but most of

it has been at the assembly language level. There have been some good

symbolic dump facilities,in particular batch-made compilers but these

have not found their way into print or into TWS. There has also been

very little effort [Ir 651 on the problems of automatic error detection

and recovery in syntax-directed processors. Once again, even a bad

system would be of great value to users.

The final research area to be discussed here is the study of data

structures. This field seems to include everything from matrix manip-

ulations to file handling, and has strong interrelationships with almost

everything. In some sense, data structures are the current problem in

computer science and it would be presumptuous to try to survey the out-

standing issues. We will mention a few aspects .connected with TWS and

indicate how data structure considerations occur in the other research

problems mentioned here.

111

One central question in any TWS is the choice of data structures

built-in at both translation and execution time. The survey in Chapter

II describes the translation time structures; essentially nothing has

been done to provide built-in structure operators for execution time.

Many sophisticated data-structure languages have been written using

TWS (e.g. [Ab 66, It 66, Rov 67]), but the structure operators have all

been hand-coded. There have been several recent attempts (e.g, [Ross 66,

IEM .66, Wir 66b] to devise a single general data-structure; such a

structure could easily be incorporated in a TWS. The problem is that

current proposals all become very inefficient in some area where data-

structures are now applied. The question of choosing the right structure

for a given algorithm takes one far into non-procedural programming.

- Similarly, one could make major advances in global optimization and

natural language processing with data-structure improvements~ In fact,

there are rich connections among all the research problems mentioned

here and many others as well; the TWS problem will, by its nature,

always be related to several frontiers of programming research.

Our brief survey of recent TWS efforts has turned out to be an

embarassingly long paper. We have attempted to show how a large number

of bright people, working almost in isolation, have brought about a

reasonable understanding of many aspects of systems programming, With

better communication and higher scientific standards, one could hope for

even more significant advances and more rapid application of the ideas

developed in research. It was this hope that led us to write this

paper and perhaps led you to read it.

112

References for 1II.C

Theory of Machine Instructions

Brat 61, Bur 64, Car 62, Gil 67, Maur 65, Ste 61.

Parallelism

Dij 65, Kar 66, Kuc 67, Mar 67, Shed 67, Sto 67.

Code Selection and Enhancement

General references, or 63, Grie 65, Hill 62.

Non-Procedural Languages

Che 66, Gall 67, Ri 66, ROV 67, Sbhl 67,. Sib 61, Wil 6&b, YOU 65.

Natural Language Processing

Bar 64, Chom 65, Cra 66, Hal 66, Int 63, Kun 62, Nap 67, Th 66.

Executive Interface

Feld 67, Le 66, Orch 66, Nob 63.

Paging

Bob 67, Cob 67, Den 65, Rev 67.

Debugging

EVA 63, EvT 66, Ir 65.

Data Structures

Ab 66, Brook 67~, Gall 67, IBM 66, It 66, Pra 65, Pra 66, Rov 67, Wir 66b.

BIBLIOGRAPHY

Ab 66

Ar 63

Ar 66

Bat 57

Bat 59

- Bak 65

Bar 64

Barn 62

m-t 63

Ben @+a

Ben @tb

Ber 62

Bob 67

Abrahams, P. W. The LISP 2 programming language and system.
BOC. AFIPS FJCC (1966), 661-676.

Arden, B. W., Galler, B. A. and Graham, R. M. An algorithm
for equivalence declarations. Comm. ACM 4 (July 1963),
330-334.

Arden, B. W., Galler, B. A. and Graham, R. M. Michigan
Algorithmic Decoder. University of Michigan Press, 1966.

Backus, J. W. et al. The FORTRAN automatic coding system.
Proc. Winter Joint Cornput, Conf. (19579, 188-198.

Backus, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conference. Proc. International Conf, on Information
Processing, UNESCO (1959), 125-132.

de Bakker, J. Formal definition of algorithmic languages.
MR74 Mathematisch Centrum, Amsterdam (May 1965).

Bar Hillel, Y. Language and Information. Addison-Wesley,
Palo Alto, 19ae -

Barnett, M. P. and Futrelle, R. P. Syntactic analysis by
digital computer. comm. ACM 5 (Oct. 1962), 515-526.

Barton, R. S. A critical review of the state of the
programming art0 Proc. SJCC (1963), 169-177.

Bennett, R. K0 and Kvilekval, A. SET, self extending
translator. Data Processing, Inc. (March 1964).

Bennett, R. K. and Neumann, D. H. Extension of existing
compilers by sophisticated use of macros. Comm. ACM 7
(Sept. 1964), 541 (actually about assemblers).

Berman, R., Sharp, J. and Sturges, L. Syntactical charts
of COBOL 61. COG. ACM 5 (my 1962), 260.

Bobrow, D. G. and Murphy, D. Structure of a LISP system
using two-level storage. Comm. ACM 10 (March 1967),
155-160.

114

Braf 63 Braffort, P. and Hirschberg, D. (Eds.) Computer Programming
and Formal Systems.
Amsterdam, 1963.

North-Holland Publishing Co.,

Brat 61 Bratman, H. An alternate form of the UNCOL diagram.
COIWIL ACM 4 (March 1961), 142.

Bro 63 Brown, S. A., Drayton, C. E. and Mittman, B. A description
of the APT language. Comm. ACM 6 (Nov. 1963), 649-658.

Brook 6Oa Brooker, R. A. and Morris, D. An assembly program for a
phrase structure language. Comp. J. 3 (1960)~ 168-174.

Brook 60b Brooker, R. and Morris, D.-Some proposals for the realiz-
ation of a certain assembly program. Camp, J. 3 (1960)~
220-231.

Brook 61 Brooker, R. and Morris, D. A description of Mercury Auto-
code in terms of a phrase structure language, Annual
Review in Automatic Programming 2 (1961), 29-66.

Brook 62a Brooker, R, and Morris, D. A general translation program
for phrase structure languages. J. ACM 9 (Jan. ~962)~
l-10.

Brook 62b Brooker, R0 et al. Trees and routines. Compo J, 5 (1962),
33 -47 0

Brook 63 Brooker, R. et al, The compiler compiler. Annual Review
in Automatic Programming 3 (1963, 2290

Brook 67a Brooker, R., Morris, D. and Rohl, J. S. Compiler compiler
facilities in Atlas Autocode. Camp. J. 9 (196~)~
350-3520

Brook 67b Brooker, R., Morris, Dc and Rohl, J. S. Experience with
the compiler compiler. Comp. J. 9 (1967)~ 345-349.

Brook 67~ Brooker, R. and Rohl, J. S. Simply partioned data struct-
ures: The compiler-compiler reexamined. Machine

(ed. by Collins and Michie) Oliver and

Burg 64 Burge, W. H. The evaluation, classification and interpret-
ation of expressions. Proc. 19th Natl. ACM Conf.,
Phila. (1964), A1.4.

1-15

Burk 65

Burs 65

Can 62

car 62

cw 63

Cas 66

Che 64a

Che &b

Che &c

me 65

Che 66

Chom 63

Chom 65

Chu 51

Cla 66

Burkhardt, W. Universal programming languages and processors.
Proc. FJCC, Las Vegas (1965), l-21.

Burstell, R. M0 Some aspects of CPL semantics. 3, Experim-
ental Programming Rpts., Edinburgh University (April, 1965).

Cantor, D. G. On the ambiguity problem of Backus Systems.
J. ACM 9 (oh 1962), 477-479.

Caracciolo DiForino, A. On a research project in the field
of languages for processor construction. Proc. IFIP
(1962), 514-5159

Caracciolo DiForino, A. Some remarks on the syntax of sym-
bolic programming languages- Comm. ACM 6 (Aug. 1963), 456.

Castle, J. A command program compiler. General Electric
MSD, King of Prussia, Pa. (1966).

Cheatham, T. E. The architecture of compilers. CAD-64-2-R,
Comp. Assoc. (1964).

Cheatham, T. E, et al. Preliminary description of the
translator generator system--II. CA-&-l-SD, Comp.
Assoc. (1964).

Cheatham, T. E. and Sattley, K. Syntax directed compiling.
Proc. AFIPS SJCC (1964), 31-57e

Cheatham, T. E. The TGS-II translator-generator system.
IFIP Congr., New York (1965).

Cheatham, To E. The introduction of definitional facilities
into higher level programming languages. Proc. AFIPS
FJCC (1966), 623-637.

Chomsky, N. Formal properties of grammars. Handbook of
Mathematical Psychology, Vol. 2, Lute, Bush and Galaer
(Eds.), J. Wiley, New Yorfl19&), 323-418.

Chomsky, N. Aspects of the Theory of Syntax. The MIT Press,
Cambridge, Mass., lq57

Church, A. The Calculi of Lambda-Conversion. Annals of
Math. Stud=,- Princeton University Press,
Princeton, 195L

Clapp, L. A syntax-directed approach to automated aids for
symbolic math. Summary in Comm. ACM 9 (fug. 1966), 549.

116

cob 67

Con 63

Conn 66

cou 66

cou 67

Cra 66

cul 62

Cur 58

Den 65

Dij 63

Dij 65

Ear 65

Ear 67

Ei 63

Ei 64

Cohen, J. A use of fast and slow memories in list processing
languages. COG. ACM lo,2 (Feb. 1~67)~ 82-86.

Conway, M. E. Design of a separable transition-diagram
compiler. COM. ACM 6 (JULY 1963), 396.

Connors, T. B. ADAM - A generalized data management system.
Proc. AFIPS SJCC (1966), 193-203.

Coulouris, G. F. and Goodey, T. J. The CPLl system manual.
PIDQ/GFC, Inst. of Comp. Sci., University of London.

Coulouris, G. The compiler processor project. Internal
Report, Imperial College, London (April 1967).

Craig, J. A., Berezner, S. C., Carney, H. C. and Longyear,
Co R. DEACON: Direct English Access and CONtrol. Proc.
AFIPS FJCC (1966), 365-380.

Culik, K. Formal structure of Algol and simplification of
its description. Symbolic Languages in Data Processing,
Gordon and Breach, New York (1962), 75-82.

Curry, H. B. and Feys, R. Combinatory Logic, Vol, I, North
Holland, Amsterdam, 1958.

Dennis, J. B. Segmentation and the design of multiprogrammed
computer systems, J. ACM 12 (Oct. 1~65)~ 589-602.

Dijkstra, E. W. On the design of machine independent pro-
gramming languages. Annual Review in Automatic Programming
3 (1963L 27-42.

Dijkstra, E. W0 Solution of a problem in concurrent
programming control. comm. ACM 8 (Sept. 1965), 569.

Earley, J. C. Generating a recognizer for a BNF grammar.
Computation Center Report, Carnegie Inst. of Tech. (1965).

Earley, J. C. An LR(K) parsing algorithm. Mimeo, Carnegie
Inst. of Tech. (1967).

Eickel, J., Paul, M., Bauer, F. L. and Samelson, K. A syntax
controlled generator of formal language processors. comm.
ACM 6 (Aug. 1963), 451-455.

Eickel, J. Generation of parsing algorithms for Chomsky 2-
type languages. 6401, Mathematisches Institut der
Technischen Hochschule mnchen (1964).

117

Eng 61

EVA 64

EvT 66

Feld 64

Feld 66

Feld 67

Fer 66

- Fie 67

Flo 61

Flo 62a

Flo 62b

~10 63

Flo 64a

Flo 64b

~10 67

Englund, D. and Clark, E. The CLIP-translator. Comm. ACM 4
(Jan. 1961), 19-22.

Evans, Arthur. An ALGOL 60 compiler. Annual Review in
Automatic Programming 4 (1964), R-124.

Evans, T. and Darley, D. On-line debugging techniques: A
survey - Proc. FJCC (1966), 37-50.

Feldman, J. A. A formal semantics for computer oriented
languages. Carnegie Inst. of Tech. (1964).

Feldman, J. A. A formal semantics for computer languages
and its application in a compiler-compiler. Comma ACM 9
(Jan. 1966), 3-v.

Feldman, J. A. and Curry, J. The compiler-compiler in a
time sharing environment. Lecture notes on Advanced
Computer Organization, University of Michigan (1967).

Ferguson, D. E. Evolution of the meta-assembly program.
COUIITL ACM 9 (March 1966), 190-196.

Fierst, J. CABAL Memos. Computer Center Reports, Carnegie
Inst. of Tech. (1967).

Floyd, R. W. A descriptive language for symbol manipulation.
J. ACM 8 (Oct. 1961), 579-584.

Floyd, R. W. On ambiguity in phrase structure languages.
COIIBL ACM 5 (Oct. 1962), 526, 534.

Floyd, R. W. On the non-existence of a phrase structure
grammar for ALGOL-60. Comm. ACM 5 (Sept. 1962), 483-484.

Floyd, R. W. Syntactic analysis and operator precedence.
J. ACM lo (~uly'l963), 31~6-333.

Floyd, R. W. Bounded context syntactic analysis. Comm.
ACM 7 (Feb. 1964), 62-67.

Floyd, R. W. The syntax of programming languages -- a
survey. IEEE Transactions Electronic Computers 13,4
(Aug. 1964), 346-3530

Floyd, R. W. Assigning meanings to programs. AMS Symposium
in Appl. Math. 19 (1967).

Gall 67

Gar 64

Gil 66

Gil 67

Gin 66a

Gin 66b

Gle 60

Gor 61

Gor 63

GraM 65

GraR 64

Grau 62

Gre 62

Grie 65

Gallery B. and Perlis, A. J. A proposal for definitions in
ALGOL. Comm. ACM 10 (April 1967).

Garwick, J. V. Gargoyle, a language for compiler writing.
Comm. ACM 7 (Jan. 1964), 16.

Gilbert, P. On the syntax of algorithmic languages.
J. ACM 13 (Jar. 1966), 90-107.

Gilbert, P. and McLellan, W. G. Compiler generation using
formal specification of procedure-oriented and machine
languages. Proc. AFIPS SJCC (1967), 447-455.

Ginsburg, S. The Mathematical Theory of Context Free
Languages. McGraw-Hill, New York, l$r

Ginsburg, S. and Greibach, S. Deterministic context free
languages. Information and Control 9 (1966), 620-648.

Glennie, A. E. On the syntax machine and the construction
of a universal compiler. Tech. Rpt. No.
Center, Carnegie Inst. of Tech. (1960).

2, Computation

Gorn, S. Specification languages for mechanical languages
and their processors, a baker's dozen. Comm. ACM 4
(Dec. 1~61)~ 532-542.

Gorn, S. Detection of generative ambiguities in context-
free mechanical languages. J. ACM 10 (April 1963),
196-208.

Graham, M. L. and Ingerman, P. Z. A universal assembly
mapping language. fioc. 20th Natl. ACM Conf., Cleveland,
Ohio (1965).

Graham, R. M. Bounded context translation. Proc. AFIPS
SJCC (1964), 17-29.

Grau, A. A. A translator-oriented symbolic programming
language- J. ACM 9 (April 1962), 480-481.

Green, J. Symposium on languages for processor construction.
Proc. IFIP (1~62)~ 513-517.

Gries, D., Paul, M. and Wiehle, H. R. Some techniques used
in the ALCOR-ILLINOIS 7090. Comm. ACM 8 (Aug. 1965),
496-500.

Grie 67a

Grie 67b

Grif 65

Gro 66

Hal 64

Hal 66

Hals 62

- Hill 62

Hoa 65

Hus 62

IBM 66

Ing 62

Ing 66

Int 63

rr 61

Gries, D. The use of transition matrices in compiling.
Tech. Rpt. CS 57, Computer Science Dept., Stanford
University (March 1967)e

Gries, D. Internal notes on the compiler writing system.
Computer Science Dept., Stanford University (1967).

Griffiths, T. V0 and Petrick, S. R. On the relative
efficiencies of context-free grammar recognizers. comm.
ACM 8 (May 1965), 289-299.

Gross, M. Applications geometriques des langages formels.
ICC ~~11. 5 (Sept. 1966), 141-167.

Halpern, M. XPOP: a meta-language without metaphysics.
Proc. AFIPS FJCC (1964), 57-68.

Halpern, M. Foundations of the case for natural-language
programming. PI-OC. AFIPS FJCC (1966), 639-649.

Halstead, M. H, Machine-Independent Computer Programming.
Spartan Books, Washington, D. C., lr

Hill, V., Langmaack, H., Schwarz, H. R., and Seegmtiller, G.
Efficient handling of subscripted variables in ALGOL 60
compilers. Proc, Symbolic Languages in Data Processing,
Gordon and Breach, New York, 1962, 331-340.

Hoare, C. A. R. A programming language for processor
construction. IFIP Congr., New York (1965).

Huskey, Harry D. Languages for aiding compiler writing
(panel discussion). Symbolic Languages in Data Processing,
Gordon and Breach, New York, 1962, 187-204.

IBM System/360 Operating System PL/I Language Specification.
Form C28-657&$.- _

Ingerman, P. Z. Techniques for processor construction.
proc. IFIP (1~62)~ 527-528.

Ingerman, P. Z. A Syntax Oriented Translator. Academic
Press, New York; m

International Standards Organization. Survey of programming
languages and processors. Comm. ACM 6 (March 1963), 93.

Irons, E. T. A syntax directed compiler for ALGOL 60.
Comm. ACM 4 (Jan. 1~61)~ 51-55.

.I20

Ir 63a

Ir 63b

II-64

xr 65

It 66

Kar 66

Kerr 67

Kir 66

QIU 62

wu 65

Kuc 67

Kun 62

Lande 62

Irons, E. T. The structure and use of the syntax-directed
compiler. Annual Review in Automatic Programming 3
(1963L 2~227~

Irons, E. T. Towards more versatile mechanical translators.
Proc. Symposia Appl. Math 15 (1~63)~ 41-50e

Irons, E. T. Structural connections in formal languages.
Comm. ACM 7 (Feb. 1964), 67-7~

Irons, E. T. An error correcting parse algorithm, Comm.
ACM 6 (Nov. 1965), 669-6730

Iturriaga, RO, Standish, T. A.,, Krutar, R, A. and Earley,
J. C!, Techniques and advantages of using the formal
compiler writing system FSL to implement a formula Algol
compiler. Proc. AFIPs SJCC (1966), 241-252.

Karp, R. M. and Miller, R. E. Properties of a model for
parallel computations: determinacy, termination, queueing.
SIAM J. Appl. Math, 14 (NOV. 1966), 1390-1411.

Kerr, R. H. and Clegg, J. The Atlas Algol Compiler - an
ICT implementation of Algol using the Brooker-Morris
Syntax Directed Compiler. Camp, J. (1967).

Kirkley, C. and Rulifson, J. LOTS, a syntax-directed com-
piler. Internal Report, Stanford Research Institute
(May 1966).

Knuth, D. E, History of writing compilers. Digest of
Technical Papers, ACM Natl. Conf. (1962), 43, 126.

Knuth, D. E, On the translation of languages from left
to right. Information and Control 8 (Oct. 1965),
607-6390

Kuck, D. Programming the Illiac IV, Talk given at AFIP
SJCC (1967). Paper not yet available,

Kuno, S. and Oettinger, A. G. Multiple-path syntactic
analyzer, Information Processing 62 (IFIP Congress),
Popplewell (Ed.), North-Holland PuEishing Co., Amsterdam
(1962), 306-311.

Landen, W. Ho and Wattenburg, W. H. On the efficient
construction of automatic programming systems. Digest
of Technical Papers, ACM Natlo Conf. (1962), 91.

!pFq.:_” :
: ;:,>

Landi 63

Landi 65

Landi 66

Landw 64

Lang 64

Lea 64

- Leo 66

Let 65

LUC 65

Mas 60

Mar 67

MW 65

McCar 62a

McCar 62b

Landin, P. J. The mechanical evaluation of expressions.
Comp. J. 6 (1963), 308.

Landin, P. J. A correspondence between AIGOL 60 and
Church's h-notation. Comm. ACM 8 (Feb. and March 1965),
89-101, 158-167 e

Landin, P. J. The next 700 progrming languages. comm.
ACM 9 (March 1966), 157-166.

Landweber, P. S. Decision problems of phrase structure
grammars. IEEE Trans. Electronic Computers 13 (Aug.
19% 354-362.

Langmaack, H. and Eickel, J. -Pr&zisierung der begriffe
phrasenstruktur und strukturelle mehrdeutigkeit in
Chomsky-sprachen. Rep. no. 6414, Rechenzentrum der
Tech. Hoch. Mtichen (1964).

Leavenworth, B. M. FORTRAN IV as a syntax language. Comm.
ACM 7 (Feb. 1964), 72-80.

Leonard, G. and Goodroe, J. More extensible machines.
Comm. ACM 9,3 (March 1966), 190-195.

Letichevskii, A. A. The representation of context-free
languages in automata with a push-down type store.
Cybernetics (Kibernetika). Vol..l, no. 2, The Faraday
Press, New York (1965), 81-86.

Lucas, P. Definition of a subset of PL/l by finite local
state vectors. Working Paper to IFIP WG2.1 (July, 1965).

Masterson, K. S. Compilation for two computers with NELIAC.
Comm. ACM 3 (Nov. 1960), 607-611.

Martin, D. and Estrin, G. - Models of computations and systems.
J. ACM 14 (April 1967), 281-294.

Maurer, W. A theory of computer instructions. Memorandum
MAC-M-262, Project MAC, MIT (Sept. 1965).

McCarthy, J. Towards a science of computation. C. N.
Popplewell (Ed,), Information Procession, IFIP Conf.
Munich (1962), 21-28.

McCarthy, J. et al. LISP 1.5 programmers manual. Com-
putation Lab Report, MIT (1962).

McCar 67

McCl 65

McIl 60

McKee 66

Mea 63

Met &

Mond 67

Moo 65

Nap 67

Nar 66

Naur 60

Naur 63a

Naur 63b

Nob 63

McCarthy, J. and Painter, J. Correctness of a compiler for
arithmetic expressions.
(1967).

AMS Symposium in Appl. Math. 19

McClure, R. M. TMG--a syntax-directed compiler., Proc.
20th Natl. ACM Conf. (1965), 262-274.

McIlroy, M. D. Macro instruction extension of compiler
language. Comm. ACM 3 (April 1960), 214-220.

McKeeman, W. M. An approach to computer language design.
Tech. Rpt. CS 48, Computer Science Dept., Stanford
University (Aug. 1966).

Mealy, G. A generalized assembly system. Rand Mem.
RM-3646~PR (Aug. 1963). -

Metcalfe, H. H. A parametrized compiler based on mechanical
linguistics. Annual Review in Automatic Programming 4
(196&), X5-165.

Mondschein, L. VITAL compiler-compiler reference manual.
TN 1967 -1, Lincoln Laboratory (Jan. 1967).

Mooers, C. and Deutsch, L. P. TRAC, a text handling
language.
(1965).

Proc. 20th Natl. ACM Conf., Cleveland, Ohio

Napper, R. B. E. The third-order compiler. A context for
free man-machine communication. Machine Intelligence I
(ed. by Collins, Michie) Oliver and Boyd (1967). -

Narasimhan, R. Syntax-directed interpretation of classes
of pictures. Comm. ACM 9 (March 1966), 166-173,,

Naur, P. (Ed.) Report on the algorithmic language ALGOL 60,
Nw~. Math, ? (1960), 106-136; COITUL ACM 3 (May 1960),
299-314.

Naur, P. Documentation problems: ALGOL 60. Comm. ACM 6
b=h 1963), 77-79a

Naur, P. Revised report on the algorithmic language ALGOL
60. Comm. ACM 6 (Jan. 1963), l-17; Num. Math. 4 (1963),
420-452; Comp. J. 5 (1963), 349-367.

Noble, A. S. and Talmadge, R. B. Design of an integrated
programming and operating system, I and II.
J. 2 (June 1963), 152-181.

IBM Syst.

op 62

Orch 66

org 66

Par 61

Paul 62

Plas 66

Pra 65

Pra 66

Rab 62

Ran &

Rey 6

Ri 66

Rig 62

Rob 66

Opler, A. 'Tool' --a processor construction language.
Proc. IFIP (1962), 513-514.

Orchard-Hays, William0 Multilevel operating systems.
Comm. ACM 9 (March 1966), 189-190. (Abstract only).

Orgass, R. J. A mathematical theory of computing machine
structure and programming. Unpublished doctoral thesis.
Yale (1966).

Parikh, R. J. Language generating devices Quarterly
progress report no. 60, Research Laboratory of Electronics,
MIT, (Jan. 1961), 199-212. Reprinted with minor editorial
revisions under the title: On context-free languages.
J. ACM 13 (Oct. 1966), 570-581,

Paul, M. ALGOL 60 processors and a processor generator.
Proc. IFIP (1962), 493-497.

Plaskow, J. and Schuman, S. The Trangen system on the
~460 computer. AFcRL-66-516 (July, 1966).

Pratt, T, W. Syntax-directed translation for experimental
programminglanguages TNN-41, University of Texas
Computation Center (1965).

Pratt, T. W. and Lindsay, R. K. A processor-building
system for experimental programming language. Proc e
AFIPS FJCC (1966), 613-621.

Rabinowitz, I. No Report on the algorithmic language
FORTRAN II, COIIIITL ACM 5 (June 1962), 327-337.

Randell, B. and Russel, D. J. 'ALGOL 60 Implementation.
Academic Press, London, 1964.

--

Reynolds, J. Co An introduction to the cogent programming
system. Proc. 20th Natl. ACM Conf. (1965), 422-436.

Rice, J. and Rosen, S. NAPS& Numerical analysis and
problem solving system. Proc. ACM 21 Natl. Conf.,
Los Angeles (Aug. 1966), 51-56.

Riguet, J. Programmation et theories des categories.
Proc. Rome Symposium on Symbolic Languages in Data
Processing, Gordon and Breach, New York (1962), 83-98.

Roberts, L. G. A graphical service system with variable
syntax. COIDIL ACM 9 (March 1966), 173-1'76.

124

Ros &a

Ros 64b

Ross 63

Ross 64

Ross 66

Rov 67

Rut 62

sam 60

sate 62

samm 61

Sch 64

schi 67

Scho 65

Schor 64

Schfi 63

Rosen, S. A compiler-building system developed by Brooker
and Morris. Comm. ACM 7 (July 1964).

Rosen, S. Programming systems and languages. Proc. SJCC,
Washington, D. C., (1964), l-15.

Ross, D. and Rodriguez, J. Theoretical foundations of the
computer aided design system. Proce SJCC (1963), 305-322.

Ross, D. T. On context and ambiguity in parsing. Comm.
ACM 7 (Feb. 1964), 131-133.

Ross, D. T. AED bibliography. Memorandum MAC-~-278-2,
Project MAC, MIT (Sept, 1966).

Rovner, P. and Feldman, J0 An associative processing
system for conventional digital computers. TN 1967-19,
Lincoln Laboratory (April 1967).

Rutishauser, H. Panel on techniques for processor con-
struction Proc. PFIP (1962), 524-5310

Samelson, K. and Bauer, F. Lo Sequential formula translation.
COII.UL ACM 3 (Feb. 1960), 76-83.

Samelson, K. Programming languages and their processing.
Proc. IFIP (1962), 48'7-492.

Sammet, J. E. A definition of COBOL 61. Proc. Natl.
ACM Conf., LOS Angeles (1961).

Schneider, F. W. and Johnson, G. D. Meta-3; A syntax-
directed compiler writing compiler to generate efficient
code. P.D1,5-1, ProcQ 19th Annual ACM Conf. (1964).

Schlesinger, S. -and Sashkin, L. POSE: a language for
posing problems to a computer. Comm. ACM 10 (May 1967),
279-285.

Schorr, H. Analytic differentiation using a syntax
directed compiler. CompO Jo 7 (Jan. 1965), 290-298.

Schorre, D. V. Meta II: A syntax-oriented compiler writing
language. P.D1.3., Proco 19th Natl. ACM Conf. (1964).

Schtitzenberger, M. P. Context-free languages and push-
down automata, Information and Control 6 (Sept. 1963),
246-264.

Sh 58

Shaw 63

Shed 67

Sib 61

Ste 61

Ste 66

sto 67

- Str 65

Tar 56

Tay 61

Te 66

Th 66

Tix 67

war 61

War 64

Share Ad-Hoc Committee on Universal Languages, The problem
of programming communication with changing machines: a
proposed solution., Comma ACM 1 (Aug. 1958), 12-18.

Shaw, C. Jo A specification of Jovial, Comm. ACM 6
(Dec. 1963), 721.

Shedler, G. Parallel numerical methods for the solution
of equations. COIIIIL ACM lo (May 1967), 286-291.

Sibley, R. A. The SLANG-system. CommO ACM 4 (Jan. 1961),
75-84.

Steel, T. B. A first version of UNCOL. Proc. AFIPS
Western Joint Cornput, Conf-. (1961), 371-378.

Steel, T. B. (Ed.) Formal language description languages
for computer programming. (Proc. IFIP Conf., Baden,
Sept. 196b), North-Holland Publishing Co., 1966.

Stone, H. S. One-pass compilation of arithmetic expressions
for parallel processor. Comm, ACM 10 (April 1967),
220-2?3.

A general purpose macrogenerator, Comp. J. 8
st;;;:;"j; :;5-241.

Tarski, A. Logic, Semantics, Metamathematics. Clarendon
Press, London, 1956.

Taylor, W., Turner, L. and Waychoff, R. A syntactical
chart of ALGOL 600 COIRIL ACM 14 (Sept. 1961), 393.

Teichroew, D. and Lubin, J. F. Computer simulation-
discussion of the technique and comparison of languages.
COIU. ACM 9 (Oct. 1966), 727-741.

Thompson, F. B0 English for the computer. Proc. AFIPS
FJCC (1966), 349-356.

Tixier, Jr. Recursive functions of regular expressions in
language analysis Tech. Rpt CS 58, Computer Science
Dept., Stanford University (March 1967).

Warshall, S. A syntax directed generator Proc AFIPS
Eastern Joint Cornput, Conf, (1961), 295-3050

Warshall, S., and Shapiro, R. M. A general-purpose table-
driven compiler. Proc. AFIPs SJCC (1964), 59-65e

126

Weg 62

Wij 66

Wil 64a

Wil 64b

Wir 66a

Wir 66b

Wir 66c

Yer 65

YOU 65

Zem 66

Wegner, P. (Ed). Introduction to Systems Programming.
Academic Press, New York, 196z

van Wijngaarden, A. Recursive definition of syntax and
semantics in Formal Language Description Languages for
Computer Programming, North-Holland Publishing Co. ,366,
13-24.

Wilkes, M. V. An experiment with a self-compiling compiler
for a simple list-processing language. Annual Review in
Automatic Programming 4 (1964), l-48.

Wilkes, M. V. Constraint-type statements in programming
languages. Comm. ACM 7 (Oct. 1964), 587.

Wirth, N. A programming language for the 360 computers.
Tech. Rpt. CS 53, Computer Science Dept., Stanford
University (Dec. 1966).

Wirth, N. and Hoare, C.A.R. A contribution to the develop-
ment of ALGOL. COIUIL ACM 9 (June, 1966), 413-432.

Wirth, N. and Weber,H. EULER - a generalization of ALGOL,
and its formal definition: Part I, Part II.
(Jan.-Feb. 1966), 13-25, 89-99.

Comm. ACM 9

Yershov, A. P. ALPHA--an automatic programming system of
high efficiency. IFIP Congr., New York (1965).

Young Jr., J. W. Non-procedural languages. 7th Ann. ACM
Tech. Symp., Southern Calif. Chapter (March 1965).

Zemanek, H. Semiotics and programming languages. Comm.
ACM 9 (March 1966), 139-143.

