CS 72

CHEBYSHEV APPROXI(V\ATION OF CONTINUOUS FUNCTIONS
BY A CHEBYSHEV SYSTEM OF FUNCTIONS

BY

G. H. GOLUB
L B. SMITH

TECHNICAL REPORT NO. CS 72
JULY 28, 1967

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

=
%

5 A
W T
:/ \E
‘(j
2 z
QN V4
ety
L (L
~T

CHEBYSHEV APPROXI MATI ON OF CONTI NUQUS FUNCTI ONS

BY A CHEBYSHEV SYSTEM OF FUNCTI ONS

BY

G H. Glub and L. B, Smth

ABSTRACT

The second al gorithm of Renmez can be used to
conpute the minimax approximtion to a function,
f(x), by a linear conbination of functions,

{a; (=) }1(\1) , which form a Chebyshev system The
only restriction on the function to be approxi mated
is that it be continuous on a finite interval [a,b].
An Algol 60 procedure is given which will acconplish
the approximation. This inplenentation of the
second algorithm of Remez is quite general in that
the continuity of f(x) is all that is required
whereas previous inplenmentations have required
differentiability, that the end points of the
interval be "critical points,” and that the number
of "critical points" be exactly N2 . Discussion
of the method used and its nunerical properties is
given as well as some conputational exanples of the
use of the algorithm The use of orthogonal poly-
nomals (which change at each iteration) as the

Chebyshev system is also discussed.

1. Introduction

G ven a Chebyshev system cpo(x), qu(X), C cpN(x), we define the

Chebyshev or minimax approxi mation to a continuous function f(x) over

an interval [a,b] to be the function
PN(x) = cocpo(x) + oo + chpN(x) (1.1)
such that € is mnimzed, where

e = max |[f(x) - PN(x)l . (1.2)
asx<b
I oo, (x) = x> we have the minimax pol ynomi al approxi mation of degree
Nto f(x) . If cpi(x) = Ti(x), wher e Ti(x) denot es the Chebyshev
polynom al of the first kind of order i, we have the minimax approxi-
mation as a sum of Chebyshev polynomals. For the definition of a

Chebyshev system see Achieser([3, p. 73].

The al gorithm presented here conputes the coefficients css i =0,
L, N in (1.1) for any given Chebyshev system cpi(x), i =0,
1, N. The algorithmis based on the second al gorithm of Remez [1],

and al so makes use of the exchange nethod described by Stiefel [2].

The characterization of the error curve, given by

N
e(x) = i;Ocicpi(x) - f£(x), (1.3)
is the basis for the second algorithm of Remez. |t is shown, for exanple,

N
by Rice [11, p.56] that pX(x) =) c.9.(x) is the Chebyshev

1

approximation to f(x) on [a,b] if and only if there exists a set of

points & < x, <x; <x, ..o <3 < b such that

() elxyyg) = elxy),

®) leb)=¢, and

() max le()] = ¢
asx<b

Thus, when the conmputed error curve attains this "equal ripple" character
wth at |east N+1 sign changes in [a,b] we know we have the desired
minimax approxi mati on.
The second algorithm of Renmez, based on the characterization, can
be outlined in three steps
(i) choose an initial set of points, the reference set,
a<y <x < ...<xy) <D
(i1) Conpute the discrete Chebyshev approximtion to f(x) on the
reference set.
(iii) Adjust the points of the reference set to be the extrene of
the error curve, (1.3).
Steps (ii) and (iii) are repeated until convergence is obtained.
Proof of the existence of the minimax pol ynomal (given by (1.1)
and (1.2) wth {¢i}§’ a Chebyshev system) is given by Achieser[3,
p. 741.
Proof that the second al gorithm of Remez converges for any starting

values for the critical points is given by Novodvorskii and Pinsker [4].

If f(x) is differentiable, Veidinger [12] proves that the convergence

Is quadratic. That is

SO

K. (k-l)) 2

g as k -,

* . o
where ¢ is the maximum error for the Chebyshev approximtion and

e<k) Is the maxinmum error at the KB iteration. A survey article

concerned with minimax approximations is given by Fraser [8].

2. Applicability

The algorithm presented herein has wide applicability in that it
can be used to approximte any continuous function given on an arbitrary
closed interval. In addition, the approximating function is not restricted
to polynomals or Chebyshev polynomials, but is allowed to be any |inear
Chebyshev system to be supplied by the user. The three standard or
sinplifying assunptions usually made in an inplenentation of the second
algorithm of Remez are:

(a) Differentiability of f(x), the function to be approxi nated.

(b) The end points of the interval are critical points.

(c) The existence of exactly N+2 points of extreme val ue on

the error curve.

- None of these three assunptions is made for this algorithm

2. Formal Paranmeber List

3.a Input to the Procedure

n integer degree of the Chebyshev system of functions to be

used in the fit {o (x), ¢, (x), ..., o _(x)} .

a | ower end point of the interval of approximation, of type

real .

upper end point of the interval of approximtion, of type

real .

kst art integer controlling the number of points (kstart X (n+2))

used in the initial approximation. See (i) in Section 5.

kmax integer allowi ng control of the number of times k is

i ncreased above kstart .

| oops integer allowing control over the nunber of iterations
taken by Renmez's second algorithmif convergence is not

yet attained.

a real procedure to conpute the function f(x) to be

approxi mated; procedure heading required:

real procedure f(x);
val ue x;

real x:

the argument is the untransforned variable x . f(x)

must be continuous in the interval [a,b] .

chebyshev a procedure to evaluate the Chebyshev system of functions
being used at some point, X, in the interval [a,b];

procedure heading required:

procedure chebyshev(n,x,t);
val ue n,x;

i nteger n;

real x;

real array t;

n is the degree of the system x is the point in [a,b],
and 't is an array that will contain the values t[i] =

cpi(x)) izovla""n-

eps

exchange

a real procedure to conpute the error curve given by

(5.1); procedure heading required:

real procedure eps(x,c,n);

val ue x,n;
real x;
i nteger n;

real array c;

x is apoint in [a,b],-n is the degree of the system
and ¢ is an array containing the coefficients of the

approxi mation, c[i] = c; in (5.1).

a procedure, [10] for exanple, to locate the n+2 subset

of m+l given points which determne the minimax poly-

nomal on those mt+l points* procedure heading required:

procedure exchange (a,d,c,m,n,refset,
emax, singular,r) ;

value mn; integer mn;, real emax;

real array a,d,c,r;

integer array refset;

| abel singular;

a is areal ml by ntl array, d is a m+l conpon-
ent vector, c is a n+t2 conponent vector, ml is the

integer nunber of points (x xm), nis the degree

O’
of the system refset is a n+t2 conponent integer

vector, emax s a real nunber and singular is a |abel.

r is a vector containing the mtl values of the residua
at the m1 points under consideration. On entry the com

ponents of a and d are

ali,j] = qvj(xi) and

ali] = f(xi),i = 0o()m, j = 0(L)n .

Upon exit from exchange, the array c contains the
coefficients of the minimax function found, refset
contains the subscripts identifying the points used to
conput e the minimax function, i.e. the reference set,
and emax contains the value of the maxi num deviation
of the minimax function from f£(x) on the points X.p

i = 0o(l)m .

from the Procedure

3.b. Qutput
C

emax

troubl e

why

the array of coefficients C. of Equation (5.1).

the maxi mum nodul us of the error curve (5.1) for the

final approximtion function, of type real,

a label to which control is transferred if remez does

not converge properly.

an integer whose value on exit will be set to one of the

fol | ow ng:
why = -1 i f number of added points is greater than
n. (See step (ii) in Section 5.)
why = 1 if trouble occurs in procedure quadraticmax .

why

why

why

why

why

why

why

why

4. Algol Program

procedure renez(n,

10

c, emax, trouble, why);

if trouble occurs in procedure exchange
if no convergence after iterating "loops"
times

converged according to the maxinum and

m ni mum resi dual conparison.

converged according to why = 4 and the
critical point test.
converged according to why =4 and the

coefficient test.

converged according to why = 4 and both
the critical point and the coefficient tests
converged according to critical point test
only

converged according to coefficient test

only.

converged. according to critical point and

coefficient tests.

a, b, kstart, kmax, |oops, f, chebyshev, eps, exchange

value n, a, b, kstart, kmax, | oops;

real _array c;

real a, b, emax;

| abel trouble;

integer n, kstart,

kmax,

| oops, why;

8

real procedure f, eps;

procedure chebyshev, exchange;

begin comment Procedure remez finds the best fit (in the minimax

sense) to a function f using a linear conbination of functions
which form a Chebyshev system The exchange algorithm of E L.
Stiefel is used to obtain starting values for the critical points
and the Remez algorithmis then used to find the best fit;
procedure quadraticmax(n, x, niter, alfa, beta, ok, a, b, c, nadded,
eps) ;

value n, niter, alfa, beta, nadded

array x, ¢,

integer n, niter, nadded,

real alfa, beta, a, b;

bool ean ok;

real procedure eps;

begimme nt Procedure quadraticmax is called to adjust the values

of the critical points in each iteration of the Remez algorithm
The points are adjusted by fitting a parabola to the error curve
in a neighborhood, or if that proves unsatisfactory a brute force
determ nation of the extrema is used;
integer i, countl, count2, nhal f, signepsxstar, signu, signv, signw,
j max, ncrude, j, nn;
real u, v, w, denom epsu, epsv, epsw, Xxstar, epsxstar, Xxxx, msse
mssx, dx, emax, etnp;

i nteger array signepsx [0 : n + 1];

array epsx [0 : n + 1];

coment

| abel LI, 12, L3, troubl e& savexstar, done, L5,L6,L7,L3,L9,
LBL1, LBL2;

nn := n - nadded,

conment on arbitrary paraneters,..

ncrude is the number of divisions used in the brute force search
for extrema.

nhal f The paraneter (alpha) which deternmines the size of interval
to be examned for an extremumis reduced by half if a bad
value for xstar is conputed, however this reduction may
occur only nhalf 'tinmes.

m sse If the value of the error curve at a new critical point
differs fromthe previous value by a relative difference
of nore than msse then the brute force method is
brought in.

m SSX The brute force nethod keeps searching until it is within
mssx of an extremum;

comment set values of the constants;

ncrude := 10;

nhal f := 4;

msse :=1.0 @ -2

mssx := 1.0 @-5

comment conpare nissx to absepsx. They should be equal.;

for i :=0step 1 until n + 1 do

bpgkhil := eps(x[i], ¢, mn);
signepsx[i] := sign(epsx[il]);

end;

10

Il:

for i :=1 step 1 until n + 1 do

begin comment |f the starting values for the critical points do not

alternate the sign of eps(x), then we go to the Ilabel trouble;
i f signepsx[i] X signepsx[i-1] # -1 then go to trouble;

end;

coment First find all the interior extrema, then we will find the
end extrema, which may occur at the ends of the interval.;

for i :=1step 1 until n do

begi n countl : = 0;

count2 : = 0;

u = x[i];

v i=u + alfa X &[i+1] - u);
w i=u +alfa X (x[i-1] -u);
epsu : = epsx[il;

signu := signepsx[i];

epsv :=eps(v, ¢, nn);

signv = sign(epsv);

epsw : = eps(w, C, nn);

signw := sign(epsw;

if nat signu = signv or not signv = signw then go to L3;

coment |f the sign of eps(x) at the three points is not the
sane, we go to L3 where alfa is reduced to make the points

cl oser together.;

epsu := abs(epsu);
epsv := abs(epsv);
epsw := abs(epsw);

11

L2:

denom := 2.0 X ((epsv - epsu) X (w - u) + (epsw - epsu) X (u - v));
if denom= 0.0 then xstar := 0.5 X (v +w else xstar := 0.5 X
(v+w +(v-u x (u-w X (epsv - epsw)/denom
countl := countl + 1;
comrent Test xstar to be sure it is what we want. IS it between
x[i-1] and x[i+1] . |s eps(xstar) > eps(u, v, and w) . If
xstar is too bad, go to L3 and reduce alfa unless alfa
has been reduced nhalf times, otherwise if ok go savexstar.;
if xstar = u or xstar = v or xstar = w then
begi n epsxstar := eps(xstar, ¢, nn);
si gnepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);
go to savexstar
end;

if xstar < x[i-1] or xstar > x[i+1] then go to L3;

epsxstar := eps(xstar, c, nn);
si gnepsxstar = sign(epsxstar);
epsxstar := abs(epsxstar);

if signepsxstar # signu or epsxstar < epsu or epsxstar < epsv or
epsxstar < epsw then
begin if epsu > epsv and epsu > epsw then
begin if abs(epsxstar - epsu) > nmisse X epsu then go to
LBL2;
xstar ;= u;
epsxstar := epsu;
si gnepsxstar := signu;
go to savexstar;

end;
12

if epsv > epsu and epsv > epsw then
begin if abs(epsxstar - epsv) > nmisse X epsv then go to
LBL2;
xstar ;= v;
epsxstar := epsv;
si gnepsxstar := signv;
go to savexstar;
end;

i f abs(epsxstar - epsw) > nisse X epsw then go to LBL2;

xstar := w
epsxstar := epsw,
si gnepsxstar := signw,

go to savexstar;

LBL2: jmx = 0;
LBL1: dx := (v-w)/ncrude;
emax .= 0.0;

XXX 1= W - dx;

for j := 0 step 1 until ncrude do

begin xxx := xxx + dx;
jmx = jmx + 1
etnmp := eps(xxx, ¢, nn);

if abs(etnp) > emax then

brgkn = epsxstar := abs(etnp);
si gnepsxstar := sign(etnp);
u := xstar = xxx;
Vv = u + dx;

15

w oI= U - dx;
end
end,
if dx > mssx then go to LBL1;
comment Make sure v and w are wthin bounds.;
if v > x[i+1] then go to I3;
if w< x[i-1] then go to L3;
go to savexstar
end;
if countl > niter then go to savexstar;
if epsu < epsw then
begin if epsv < epsu then

begin comrent v IS mninum

if xstar > u then

begin v := xstar;

epsxstar;

epsv :
go to L2;
end;
if xstar > wthen
begin epsv := epsuy;
v o= u;
epsu := epsxstar;
u := xstar;
go to L2;
end el se

begin v := u;

14

D
o
w
<
1

epsu;

epsu = epsw
w .= Xxstar;
epsw = epsxstar;
g0 to L2;
end;
end el se comment u is mninmm

begin if xstar > v then

begin u :=v;
epsu 1= epsv;
v = xstar;
epsv .= epsxstar;
go to L2;
end;

if xstar > w then

begin, 1= xstar;
epsu := epsxstar;
go to L2;

end else

begin u :=w,
epsu := epsw
w = xstar;
epsw : = epsxstar;
go to L2

end;

end;

15

end else

begin if epsv < epsw then

begin conment Vv iS mninum

go %o Ih;

end el se

begin comrent W i S m ninmum

if xstar > v then
begin w:= u;
epsw : = epsu
u = V3
epsu : = epsy;
v = Xstar;
epsv @ = epsxstar;
go to L2;
end;
if xstar > u then
begin w:= u;
epsw := epsu;
u .= xstar;
epsu := epsxstar;
go to L2;
end el se
begi n = Xstar;
epsw := epsxstar;
g to L2
end;
end,

16

L3:

savexstar:

count2 := count2 + 1;
if count2 > nhalf then go to trouble;
alfa :=0.5 Xalfa
comrent The factor 0.5 used in reducing alpha is arbitrarily
chosen.
010 L1;
comment Replace x[i] by xstar after checking
alternation of signs.;
if i > 1 _and signepsxstar X signepsx[i-1] # -1 then go to trouble;
signepsx[i] := signepsxstar;

x[i] := xstar;

end;

comment This is the end of the loop on i which finds all interior

extrema. Now we proceed to locate the extrema at or near the two

endpoints (left end, then right end).

comment W assume beta > alfa

for i :=0, n+1do

begin countl := 0; count2 := O;

18:

u = x[i);

if i =0 then

beginif a<uthenw:=u+alfa X(a-u) else w:=u + beta
X (x[1] -) ;
v :=u +alfa X &[1] - u);

end el se

beginifb > u then w:= u + alfa X (b - u) else w:=u+ beta

X (x[n] - w);

17

L5:

v i=u + alfa X (x[n] - u);

end;
epsu : = epsx[i];
signu : = signepsx[i];

epsv := eps(v, ¢, nNn) 3
signv := sign(epsv);
epsw : = eps(w, c, nNn);

signw : = sign(epsw;

if signv # signu or signv # Si gnw then go to L7;

epsu := abs(epsu);
epsv := abs(epsv);
epsw := abs(epsw);

denom := 2.0 x (epsu x (v-w) + epsv x (wu) + epswx (u-v));

if denom= 0.0 then xstar := 0.5 x (wtv) el se xstar := 0.5 x
(v#w) + (v-u) x (u-w) x (epsv - epsw)/denom;
if i =0 and (xstar < a or xstar > x[1]) then
begi n xstar := a;
epsxstar := eps(a, ¢, nn);
si gnepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);
nd else if i =n+ 1 and (xstar > b or xstar < x[n]) then

begin xstar := b;

epsxstar := eps(b, C, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);

end el se

18

begi n epsxstar := eps(xstar, ¢, nn);

signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);
end;
countl : = countl + 1;

if i =0 and xstar > x[1] then go to L7;

if i =n+ 1 and xstar < x[n] then go to L7,

if xstar = u or xstar = v or xstar = w then go to L6;

if signepsxstar # signu or epsxstar < epsu or epsxstar < epsv or
epsxstar < epsw then

begin if epsu > epsv and epsu > epsw t hen

begin xstar := u;
epsxstar := epsu;

si gnepsxstar := signu;
go to 16
end;

i f epsv > epsu and epsv > epsw then

begin xstar :=v;
epsxstar := epsv;

si gnepsxstar := signv;
go to I6;

end;

xstar = w

epsxstar := epsw,

si gnepsxstar := signw,

go to Lé6;

end;

19

if countl > niter then go to I6;
iIf epsu < epsw then
begin if epsv < epsu then

begin conment v is mninum

v = xstar;
epsv := epsxstar;
go to L5;
end else comment u is mninum
begin u := xstar;
epsu := epsxstar;
g0 to L5;
end;
end el se
begin if epsv < epsw then

begin comrent v is ninimnmm

vV 1= xstar;
epsv := epsxstar;
go to L5;

end el se

begin comrent w is- mninmum

w ;= xstar;
epsw : = epsxstar;
go to L5;

end

end,

20

L7:

6:

troubl e:

done:

L9:

count2 := count2 + 1;

if count2 > nhalf then go to trouble;

alfa := 0.5 x alfa;
beta := 0.5 x beta;
go to 18;

comment Repl ace x[i] by xstar after checking its sign;

if i =0 and signepsxstar x signepsx[l] #- 1 then g

—

troubl e;

if i #0 and signepsxstar x signepsx[n] # - 1 then go to
troubl e;

signepsx[i] : = signepsxstar;

x[i] := xstar;

end,
go to done;

ok := false;

go to IL9;

c= true;

end quadrati cmax;

comrent Procedure start conputes the arrays which are then input to

exchange to find the best approximation on the points

at hand;

procedure start(m, n, a, d, xi, chebyshev, f);
value m n;

integer m n;

21

array a, d, xi;
procedure chebyshev;

real procedure f;

begin integer i, j; real array t[O:n];

for i := 0 step 1 until mdo

begi n chebyshev(n, xi[il, t);
for j := 0 step 1 until ndo afi,j] := tljl;

afil i= f(xi [i]);

"end
end start;
conment Now the procedure remez;
real epsc, alfa, beta, epsx, absepsc, absepsx, rcompare, dx, maxr,
mnr, tenpr, mnsep;
integer m i, itenp, j, niter, nloop, k, nadded, isub, maxri,
ilast, signnow, jj;
i nteger signnew;

integer array refset[0 : n + 1 + n];

comrent Assume nunber of points added < n;
integer array ptsadd[0 : nl;

array clast[0 : n + 1], xq, xqlast[¢ : n + 1 + n];

conment

| abel newk;

bool ean firsttinme, ok, convx, conve, addit;
why = 0;

k := kstart:

22

newk: comment Come here if k gets changed;
m:=n+1+k-1) x(n+ 2);
begin array r, xi, d4[0: m], aal[0 : m, 0 : n + 1];
coment
| abel loop, converged, singular, LBL;
firsttime := true;
convx : = false;
conve : = false;
“nloop := 0;

comrent This makes the initial points spaced according to the extrema

of the Chebychev polynomal of degree ml

for i := 0 step 1 until mdo
xi[i] := (at+b)/2.0 - (b-a) x cos((3.14159265359 x i)/m)/2.0;
dx := (b-a)/m;

conment This makes the initial points evenly spaced in the interva
[ayb];
conment Renove this card to use equally spaced points

for i := 0 step 1 until ”199 xifi] ;= a + i x dx;

start(m, n, aa, d, xi, chebyshev, f);

comment The following constants are used in testing for

conver gence
epsc used in relative test on coefficients
absepsc used in absolute test on coefficients
epsx used in relative test on critical points
absepsx used in absolute test on critical points
rcompare used to conpare relative magnitudes of max and nin

val ues of residua

25

on the critica

points;

epsc .= 1.0@-T;

absepsc : = 1.0@-7;

epsx : = 1.08-5;

absepsx : = loo@-5;

rcompare .= 1.0000005;

comment epsx and absepsx should be the same as mssx in procedure
quadrat i cmax.

epsc and absepsc shoul d be adjusted according to know edge of
the expected magnitudes of the coefficients (if known). |t js
best to depend on the critical points and/or the max and nin

of the residuals for convergence criteria.;

comment Now call on exchange to find the first approximtion to
the best approximating function;

exchange (aa, d, ¢, m, n , refset, emax, singular, r);
comment The subscripts of the points chosen are in array
refset[0:n+1], the coefficients of the best approximating
function on the mpoints are in c[0:n], the residuals in r;
coment The reference set, the coefficients at this step, and/or
the residuals may be witten at this point;

for i :=0_step 1 _until n_do clast[i] := c[il];

conment Now we are going to look for any extrema not given by
the points chosen by exchange;
conment Make sure critical points are algebraically ordered,

for i := 0 step 1l until ndofor j :=1i + 1step 1 until n+ 1do

begin if refset[j] < refset[i] then
bedine m p := refset[jl;

refset[j] := refset[il];

oL

refset[i] : = itenp;

end;

maxri ;= 0;

ilast : = O;

signnow : = sign(r [0]);

f

o

ri :=0step 1 until m+ 1 do

o

eginif i =m+1 LDEE.QQ to LBL;
if sign(r [i]) # 0 and sign(r [i]) = signnow then
begin if abs(r [i]) > maxr then
begin maxri =i

mexr := abs(r [i]);

end
end el se
LBL: begin if i <m+ 1_then signnow := sign(r [i]);

addit := true;

for j := 0 step 1 until n + 1 do

begin for jj :=ilast step 1 until i -1 do
begin if jj = refset[j] then addit := fal se;
end;

end,

i f addit then

begi n nadded := nadded + 1;

li nadded > n then

25

begin conment W assume "nadded" is always < n.

if nadded is > n, why is set to -1 and we go to the

| abel "trouble". This can be nodified by changing
this test and changing the declarations for "ptsadd",
"refset", "xq", and "xqlast" above.

why = -1;

g0 to trouble

end;

ptsadd[nadded] := maxri;

refset[n + 1 + nadded] := maxri;
end;

if i <m+ 1 then

begin ilast :=i;
maxr = abs(r [i]);
maxri = i
end,;
end;

end,

comment W now have n+2+nadded points to send to0 gquadraticmax
for adjustnent;

m:= n + nadded,

comment Make sure critical points are algebraically ordered;

for i :=0step 1 until mdofor j :=i + 1 step 1 until m+ 1 do

begin if refset[j] < refset[i] then
begin itenp := refset[j];

refset[j] := refset[i];

26

| oop:

refset[i] : = itenp;

end,
end;
for i := 0 step 1 until m+ 1 do xq[i] := xi[refset [i]];
niter := 2;

conment This is the nunber of tines to iterate in quadraticmax;

alfa := 0.15;

beta := 0.2

" comment alfa and beta are used to determne the points used in

quadraticmax to fit a parabola. They are

arbitrary subject to. 0 <alfa<beta<1l. Aso beta
should be fairly small to keep the points on one side of
zero.;
conmment This is the beginning of the loop that calls on quadraticnax,
exchange, etc.
nloop := nloop + 1;
quadraticmax(m xq, niter, alfa, beta, ok, a, b, c, nadded, eps);

if not ok then

begin k := k + 1,
if k> kmax then
begin why := 1,
go to trouble;
end;
go to newk;

end;

27

if not first-time then

begin comment Conpare the largest and smallest of the residuals

at the critical

points (after adjustnent);
comment Set minr to a |arge nunber;
maxr := 0.0;
mnr := 1.0@50;

for i :=0step 1 until n+ 1 do

begi n addit := true;

for j :=1 step 1 until nadded__do_if refset[i] = ptsadd[j]

then addit : = false;

if addit then
begin tenpr := abs(eps (xq [refset [i]], ¢, n));
If tempr > maxr then maxr := tenpr else if tempr < mnr
then mnr := tenpr;
end,
end,
if maxr < rcompare xminr then why := 4
end,
coment Conpare Xxq to xglast;
if not firsttine then

begi n convx := true;

for i =0 step 1 until m+ 1 do

begin if abs(xq [i] - xqlast[i]) > absepsx then

28

begin if abs (xq [i]- xalast[i]) > epsx xabs(xq [i]) and
xq[i] # 0.0 then convx := false;
if xq[i] = 0.0 and abs(xq [i] - xqlast[i]) > absepsx
then convx := false;
end;
xqlast[i] : = xq[i];
end;

end el se

begin firsttinme := fal se;

J—

o

-
1

0 step 1 until m+ 1 do xqlast[i] := xq[il;

p—

o

=
i

0 step 1 until n_do clast[i] := c[i];

end

comment Get ready to call exchange again;

start(m + 1, n, aa, d, xq, chebyshev, f);

exchange(aa, d, ¢, m+ 1, n |, refset, emax, singular, r);
comment Now conpare the new coefficients to the last set of
coefficients;

if not firsttine thﬁ

begin conve := true;

for i := 0 step 1 until n do

begin if abs(c [i] - clast[i]) > epscxabs(c [i]) and c[i]

0.0 then convc := false;

if e[i]l = 0.0 and abs(c [i] - clast[i]) > absepsc then
convc : = false;

clast[i] := c[i];

29

end ;

end,
comment Set the parameter why to the proper value according to

the fol | owi ng:

why = 4 if maxr < rcompare x ninr.

why = 5if "4" and convx = true.

why = 6 if "4" and convc = true.

why = 7if "k and convx = convc = true.

why = 8if convx = true.

why = 9 if convc = true.

why =101if COnvX = convC = true. Any value of why >4

i ndi cates convergence;

if why = 4 and convx then why := 5;
if why = 4 and convc then why := 6;
if why = 5 and convc then why := 7,
if why = O and convx then why := 8;
if why = O and convc then why := 9;
if why = 8 and convc then why := 10;
if why > L4 then go to converged;

if nloop > | oops_then .
begin why := 3;
g0 to trouble;
end;
conment W go to label trouble in calling programif no

convergence after a nunber of iterations equal to |oops;

g0 to loop;

30

singular: why := 2;

go to trouble;

conment W cone to "singular" if exchange gets into trouble;
conver ged:

end;

coment End of block using min array declarations;
comment There are four exits to the l[abel trouble...
(why=1) i f k gets > kmax
(why=2) if exchange gets into trouble
(why=3) if no convergence after iterating
"l oops" nunber of times

(why=-1) if nunber of added points is greater than n;

end renez:

31

5. Oganization and Notational Details

The algorithmcalls for three procedures, in addition to the

function f(x) to be approxi mated, as indicated by the Formal Para-

meter List.

exchange Based on Stiefel's Exchange algorithm which
finds the nN+2 subset of M+l given points
whi ch determ ne the minimax polynomal. Use
[10], for exanple.

eps To be supplied by user: eps conputes the

error curve

N
e(x) = -Zociq)i(x) - f(x) (5.1)
i =

where the ¢y 1=20,..., N, are paraneters

and the @i(x),i =0, 1,. .., N, are the
Chebyshev system of functions being used to fit
the function f(x) . For best results e(x)
shoul d be conputed in double precision and

then rounded to single precision accuracy. If
f(x) can not be calculated easily or efficiently

in double precision at least the sum

N
2: c.9.(x), should be accunulated in double
=0 *°

precision and rounded to single.

32

chebyshev To be supplied by user: chebyshev eval uates

t he Chebyshev system (pi(x), i =0, 1,..., N
for a given argunent x . chebyshev is called
by eps .

The functions e(x) and Cpi(x) (computed by eps and chebyshev)
can often be conputed by sinple recursive procedures. For exanple,
if the Chebyshev system used is the set of Chebyshev polynonmals, there
is a well-known recurrence relation (cpi_l_l(x) = 2xq)i(x) - cpi_l) that
can be used to efficiently evaluate the required functions.

An outline of the organization of the algorithmis given in the

foll owi ng steps:

(i) Let M= K x(n+2), take M+l points in the interval
[a,b] and use exchange to determne the "best"

polynomal (i.e., the

N
c. ¥ OrgiM li:% cicpi(xj) - f(xj)l = mninmunm on

t hose points. Exchange will pick x2 of the original
points as "critical" points. The M+l points are
chosen equal |y spaced or as the zeros of

Ty (%) - T3 (x) with K> 1 .

(ii) Use the N+2 points chosen by exchange in step (i)
and vother local extrema (subject to the conditions
di scussed under Exanple 2, Section 7)as input to the

procedure quadraticmax > 0)

33

(iii) Procedure quadraticmax adjusts the N+ v + 2 critica

points to be the abscissas of the extrema of the error
curve given by (51). Section 6.b gives a discussion
of how the adjustnents are conputed. After adjustnent
the new points are tested for alternation of sign, and
if the property has been lost, we increase K and go

back to step (i).

(iv) The adjusted critical points are then input to exchange

which finds the new coefficients c.r 1= 0, 1,..., N
for the "best" polynomal on the adjusted N+ v + 2

poi nts

(v) Now convergence tests can be applied to the coefficients

ci,found in step (iv), to the critical points X,

i =0, 1,..., Nand to the extrenme values of (.1).

If not converged, go back to step (iii) since the
previous "critical" points will not be the exact extreme
points after the approximting polynomal is changed

in step (iv)

34

6. Di scussion of Nunmerical Properties and Methods

6.a Accuracy and Convergence

The accuracy of the approxi mations generated by this procedure
is limted by the precision of the arithnmetic used and the accuracy
of the subsidiary procedures F, EXCHANGE, EPS, and CHEBYSHEV . The
use of double precision in EPS, for exanple, can inprove the results
of REMEZ since it will then have a "smoother" error curve to work
on. This use of double precision in EPS is strongly recomended by
the authors. The maxi num absolute error of the approximtion is output
from REMEZ and depends, of course, on N, the degree of approximation.
The procedure is deemed to have converged when the coefficients
of the approximating function or the critical points have satisfied

certain relative criterion between successive iterations. W use the

not ati on ci(n) to represent the ith coefficient at the nth itera-
tion and simlarly, x§n) represents the ith critical point at the
2B iteration.
Vhen
14
maxlcgn) - ci.(n_l)] < epsclc;n)J (6.1)
i -
or
e) - 2| < epala™| (6.2)
|
we consider the procedure to have converged. | f lq_.(n)l or Ix-ﬁ(n>|
is very small the relative test is not appropriate. In that case we

35

t est lc§n)- cgn’l)l and len) - x§n'l)l agai nst allowed absol ute

errors, absepsc and absepsx . Typical values for the constants (for

an |l-decimal place machine) could be

epsc = 10_8
epsx. = 1074
_ -8
absepsc = 10 (6.3)
absepsx = 1074

A third convergence criterion is the conparison of the maxi mum

and m ni mum magni tudes of the error curve at the critical points. Let

MexXr = max |€(X§n))'

and

mine = min Ie(xi(n))l

th iteration

wher e {xfn)} are the critical points chosen at the n
and then make the following test. |If maxr < rconpare ® minr then
claim convergence. A typical value for the constant rconpare coul d
be 1. 0000005

\When the maxi num absol ute error approaches ufs(me where s

is the number of places available in the machine, and fm is

max |f(x) |, we are approaching the limt of obtainable accuracy
a<x<b

Ve are working with

36

e(x) = PN(X) - f(x) (6.4)

so when e(x) is nearly equal to 107 °f(x), we are |osing about s
places in the subtraction in (6.4). This is where judicious use of
doubl e precision can be made to increase accuracy if necessary. PN(x)
can be conputed in double precision and a single precision difference
formed, or for even further accuracy f(x), if possible, could be
conputed in double precision and the double precision difference
t aken.

A conparison of the discrete approximtion on a finite nunber
of points in an interval, and the continuous approximtion which this
algorithm finds, is studied by Rivlin and Cheney in [9]. This relates
to the question of how large to choose K in step (i), Section 5.
W have found that for well behaved functions like ¢ on [-1,1]
a value for K of about 3 gives good starting values. On the other
hand a function like 1/(x-») on [-1,1] with » > 1 and) near

1, requires K to be about 15 to obtain good starting val ues.

6.b Locating the extrema of e(x)

Most of the programming effort is involved in locating the extrema
of the error function e(x) ., The programming is simlar to that done
by Cc. L. Lawson in a FORTRAN program to conpute the best minimax approxi -

mation [7]. g x) is given by

E(X) =

™=

ci@i(x) - f (%) .

37

The procedure EXCHANGE then is used to conpute the coefficients of
the minimax function. Thgt is, given N+ v+ 2 points, v> 0,

N
EXCHANGE conputes the coefficients of the function Z c.l(p.l(x) such

i=0
that on the discrete set of points e(xj),j =0, 1,..-, N+ vy +1
has at |east N+2 extrene values (at the given points) equal in
magni tude and of alternating signs. The satisfaction of this condition
when the points are indeed the extreme of the continuous e(x)
guar ant ees t hat ZNcicpi(x) is the unique minimax approxi mating

i=0
function that we seek.

6.b.1 Parabolic Approximation to Locate Extrenum

Gven the initial guesses Xi’i =0, 1,..., N+ v + 1 (at each
iteration) for the abcissas of the extrema of the error curve, we
nmust locate these "critical points" more precisely. W consider two
cases. First the interior points, and secondly the least and greatest
of the initial guesses which nay be equal to the respective end
points of the interval on which the function is to be approxinated.

For interior points we do the follow ng:

Take
U=X1
Vo Xy o+ oalgy - oxg) (6.5)
W= X'l + og(xi 1 xi)

where o is a paraneter 0 <o <1 (e.g., « =0.1) . W then

determ ne the parabola through the three points g(uv), e(v), and

38

e(w) . The abcissa, x*, corresponding to the vertex of this parabola

is then taken as the next guess for the ith "critical point". The
poi nt < s gi ven by
Ko L1 e ¢ (Fd) elw) + E) e(m)] g g
2 [UV e W+ V-We U)+ (Wwu) e(v] ’)

For conputational purposes x I's not conputed directly by (6.6)

since for u, v, and w very close, the denomnator will be quite

small. Therefore, the denom nator of_ (6.6) i s conputed
d = [(u-v) e(w) + (v-w) e(u) + (wu) e(v)] (6.7)

and then by dividing out (6.6) we express X as

2 (utv) if d=0
X = (6.8)

l% (wtv) * é (v-u) (u-w)c[1€ (v) - € (w)] ifd#0

nce x is conputed, it.is then tested to insure acceptability since
for u, v, and w very close, machine roundoff may introduce spurious
results. Also, the value of ¢ or the nature of the function f(x)
and therefore of e(x) may introduce an unacceptabl e val ue for X in
whi ch case u, v, or w, whichever has highest ordinate value, is

* . .
used for x . If x* is acceptable it can replace u, v, or w,

whi chever has the lowest (in absolute value) ordinate value on the

39

error curve e(x) and a second < s conputed. This iteration wll
converge to the abcissa of the extremum near X.. i f roundoff i$S
ignored and u, v, and w are sufficiently close to that point.
(Conpare convergence to Muller's nethod for solving al gebraic equations
[5].) However, this iteration need not be carried out excessively
(2-4 iterations should be sufficient) since during each iteration of
the over-all process we reconpute the approximting function and
thereby obtain a new error curve whose extrema will not necessarily

have the sane abcissas.

For the end points (6.5) cannot apply since X, and X,

+1
do not exit at the right and left ends respectively. Therefore

1

we take, at the left end for exanple,

u =X

1
Ve talxgy -xg)

x, + B(Xi+l - Xi) i f X, =a (6.9)
W =

with the requirement that o # 8. The right end is handled simlarly.
Agai n the parabola through the three points e(u), e(v) and e(w) is
used to determine x . The tests for acceptability and iterations

are performed as they were for the interior points.

4o

6.b.2 Crude Search to Locate Extremum

In case approximtion by parabola does not yield an acceptable
value for the abcissa of an extremum the follow ng rather crude method
works effectively. W sinply divide the interval under consideration
into £ equal intervals (e.g., £ = 10) and exam ne the ordinate
of the error curve at the end points of the intervals. The points
to the left and right of the point with maximum ordinate (in absolute
val ue) then define a new interval upon which the process is repeated.
This subdivision continues until the subintervals become smaller than
sonme specified value (e.g., 10'5). The method causes the function
to be evaluated more often than the parabolic approximtion, but
wor ks successfully at a point where the error curve has a sharp cusp-
l'i ke extremum

To decide whether to use this crude search or not we enploy a
relative test. Let the parabolic choice be X and the three poi nts
used to conpute < be u, v and w . Then one would expect (hope)

t hat

leG)] > |e(m), [e(v)], and le(w)]

in which case x has the desired properties. However, if

e = mx |e@)], and |e(x)] < e, » then we nust doubt the
X=Uy VW

acceptability of X and perhaps use the crude nethod to determne

¥ . Ve found a successful way to make this decision was to use the

crude method if |le(x*)| - eml > C.e, where Cis an arbitrary
constant (e.g., 10'4)

41

7. Exanples

The procedure was tested on the Burroughs B5500 at the Stanford
Conputation Center using Burroughs Extended ALGOL.
V¢ have chosen two exanples to illustrate the use of the algorithm

The first is the function
£(x) = e on [-1,1] (7.1)
and the second is
fdx):1+x, -1.0 < X < -0.5 (7.2)

- x, -0.5< x< 0.0

x, 0,0<x<10.

FIGQURE 1

The first exanple, fl(x), is an infinitely differentiable function
so that the error curve (5.1) is also differentiable, whereas £,(x)
(see figure 1) is continuous, but its derivative, fé(x), has

Lo

di scontinuities at x = -0.5 and at x = 0.0 which cause the error
curve to have a discontinuous derivative. O course, in practice, if
we were aware in advance of the discontinuities in the derivative of
the function to be approximted, the interval of approximation could
be subdivided so as to avoid the discontinuities. However, we exam ne

fz(x) as it provides an interesting exanple of approximating a function
which is only continuous. In both cases we used Chebyshev pol ynom als

as the Chebyshev system of functions.

Exanpl e 1. [fl(x) = 5] .

Table 1 and Table 2 show how the "critical" points and the coeffi-

cients of the approximting polynomal converge as we approximte

X

by a yth degree sum of Chebyshev polynom als. Figures

f‘l(x) = e

differing fromthe final result are underlined at each step.

TABLE 1

4
Coefficients ¢, of "best" polynonial P, (x) =):ciTi(x) (To 6D)
i =0

1
n Start [teration 1 [teration 2 [teration 3
1.266 063 1.266 066 1.266 066 1.266 066
1.1%30 321 1.13%0 318 1.130 318 1.13%30 318
0.271 495 0.271 495 0.271 495 0.271 495
0.04k 337 0.044 336 0.044 336 0.044 336
0.005 523 0.005 519 0.005 519 00005 519

TABLE 2

"Critical" points of best polynonial (To 6D)

Start Iteration 1 Iteration 2 Iteration 3
-1.000 000 -1.000 000 -1.000 000 -1.000 000
-0. 771 L2g -0.797 573 -0.797 682 -0.797 682
-0.257 143 -0.278 189 -0.279 152 -0.279 152

0.314 286 0.339 805 0.339 061 0.339 061
0.828 571- 0.820 978 0.820 536 0.820 536
1. 000 000 1. 000 000 1. 000 000 1. 000 000

Table 1 shows that the coefficients of the "best" polynomal have
converged to 6p after only one iteration, however, the critica
points don't converge until the second iteration as shown by Table 2.
In other words, the polynom al does not change coefficients very much
with a small change in the "critical" points. The starting points
shown in Table 2 are chosen by EXCHANGE from 6x (N+2) =36 (for
N= 4) equally spaced points in the interval [-1,1].

Various nethods for choosing the starting values for the "critical"
points have been proposed. These include the zeros of TN+1(X) - TN_l(x),
which are also the extrema of Tﬂ+l(x), and what we propose here is
to | et EXCHANGE choose N+2 points from sonme original set of K(i+2)
points where K> 1. The original K(W2) points may be equally

spaced, or they may be the zeros of TK(N+2)+1(X) - TK(N+2)—1(X) .

44

Tabl e 3conpares various starting values for this exanple,

fl(x) =ef(w=1L4). D represents the maxi num deviation from the

max
"TRUE" val ues.

TABLE 3

Comparison of starting values for f(x) = e, N =L, (To 3D)

T5(X)'T5(X) = 0 |EXCHANGE on EXCHANGE on
6(N+2) points 201 points TRUE
n |or ITB(X) | = 1 pqually spaced |equal |y spaced |(conput ed)
0 -1.000 -1.000 -1.000 -1.000
1 -0.809 -0.771 -0.800 -0.798
2 -0.309 -0. 257 -0.280 -0.279
3 0.309 0.314 0.340 0.339
4 0.809 0.829 0.820 0.821
5 1.000 1.000 1.000 1.000
0.030 0.027 0. 002 —
nmax

Exanple 2. [f,(x)] .

th degree sum of Chebyshev

Approximation of f,(x) by an 8
polynom als (N = 8) poses the problem of having an error curve
with nore than N2 local extrema. This problem also arises when
approxi mating an even or odd function (see [6]). W resolve the
problem by including all the local extrema of the error function,

e(x), which have the alternation of sign property, in the search

45

for nN+2 “critical" points. That is, if the abcissas of the extrema
are ordered algebraically, the signs of the corresponding ordinates
nmust alternate. W obtain starting guesses for local extrema by
havi ng EXCHANGE pick ©N+2 starting points from sonme original set
of points, together with the corresponding first approximting
polynomal, and then examning the resultant residuals. |If the table
of residuals indicates an extrenum not already chosen by EXCHANGE,
which has the correct alternating sign, then the corresponding
abcissa IS included as a "critical" point for later iterations. K
must be chosen greater than 1 in order for this method to work.
Figure 2 shows the error curve, e(x), for the first and
third iterations of approximting fe(x) by an 8th degree |inear

conbi nation of Chebyshev pol ynom als.

46

E(X) x 10°

-1.000 1.000 %.000 5.000

-3.000

1

8
Approximating f£,(x) by gii)chn(x)

fe(x), N=28
st iteration 3rd iteration
I~ — //"\\

— /

/
/

- 1. 000

-0.600 -0.200 % 0. 200 0.600

FI GURE 2

47

1.000

TABLE 4

Critical points chosen at each iteration.

[teration The w+2 points used (see Figure 3)
1st 1 2 3 L 7 8 9 10 11 12
2nd 1 2 3 6 7 8 9 10 11 12
3rd 1 2 3 6 7 8 9 10 11 12

Tabl e 4 indicates how the choice of critical points can change from

one iteration to the next. |f we had not included the additiona

- extrema at points 5 and 6at the first iteration, we would have
arrived at the approximtion whose error curve is illustrated by

Figure 3. That is N2 extrema of the error curve have equal nagnitude

and alternating signs, but another extremum exists with larger nodul us.

48

E(X) x 10°

Error curve with points 5 and 6not used.

3 f2(x),N=8
o)
LA—
o
8 ks
. ﬁ
: |
S
S
= -
o
S
3
'—,.'_
. ﬂ
S
S
A } }

' \ Y4

1 2 3 4 5 6 78 9 10 11 12

| | I I 1
-1.000 -0.600 -0. 200 X 00200 0.600 1. 000
FI GQURE 3

As an interesting conparison to TABLE 3we give a simlar table

for f(x) = f2(x) - Dy epresents the maxi num deviation from the

"TRUE" val ues in TABLE 5.

k9

TABLE 5

Conparison of starting values for f(x) = fg(x),N =8 . (to 4D)
EXCHANGE on | EXCHANGE on
33 points 201 points TRUE
n T9(x)—T7(X) = 0 |equally spaced |equally spaced | (computed)
0 -1.0000 -1.0000 -1.00 -1.0000
1 -0.9397 -0.8750 -0.86 -0.8565
2 -0.7660 -0.6250 -0.62 -0.6248
3 -0.5000 -0.1250 -0.1k -0.1hkaok
4 -0.1736 000 0.0 0.0
5 0.1736 0.1250 0.15 0.1456
6 0.5000 0-4375 0.44 0.4413
7 0.7660 0.7500 0.73 0.7290
8 0-9397 0-9375 0.93 0.9289
9 1. 0000 1. 0000 1. 000 1. 0000
Dnax 0.3750 0. 0210 0.0048 ---

50

8. Use of Othogonal Pol ynonials

Consi der the pol ynonmi al s po(x), p, (X),..., p,(x) orthogonal on
the set of points Xy <x <X Such polynom als are described
by Forsythe [13], and they form a Chebyshev system This is easily

seen since any |inear conbination,
I
P(X) = Z Cipi(x)) (8'1)

is a polynomal of degree n which has exactly n zeros. Hence on
any interval, P(x) has no nore than n zeros. This satisfies the
definition of a Chebyshev system

It is known, see Forsythe [13], that orthogonal polynonials have
advant ages over standard polynomals in least squares data-fitting.
In the Remez algorithm if a new set of polynomials, orthogonal on the
critical points, is conputed each time the critical points are adjusted,
convergence is assured. This can be proved by noting that at each
iteration the best orthogonal polynomal fit is equivalent to the best
fit that would be obtained if the Chebyshev system were held constant
as standard polynomals. Perhaps this use of orthogonal polynomals
wi Il have conputational advantages over, say, standard pol ynom als
on the interval [0,1] .

The use of orthogonal polynomals for the Chebyshev system has
been inplenented and tried successfully on a Burroughs B5500 computer,
but as yet we have no illustrations of any dramatic advantages over

any ot her Chebyshev system

51

(6]

(7]

[9]

[10]

[11]

[12]

[13]

Ref er ences

Remez, E. Y.: "General conputational nethods of Chebyshev
approximation”. In The Problenms Wth Linear Real Paraneters.
AEC-tr-4491, Books 1 and 2, English translation by US AEC

Stiefel, E.L.: "Numerical nethods of Chebyshev approximation".
In On Nunerical Approximation. R. E. Langer, Ed. U of
Wsconsin Press, Mdison, 1959.

Achieser, N. |.: Theory of Approxinmation. (Transl ated by
C. J. Hyman), New York. Frederick Ungar Publ. Co, 1956.

Novodvorskig, E. N. and Pinsker, I. S.: "(On a process of
equal i zation of maxima". Uspehi Mat. Nauk. 6,174-181,(1951)
(Translation by A Shenitzer, available from New York University
Li brary.)

Mil ler, p. E: "A method for solving algebraic equations using
an automatic conputer”. Math Tables Aids Conp., 1956.

Mirnaghan, E. D., and Wench, J. W: Report No. 1175, David
Tayl or Model Basin, M., 1960.

Lawson, C. L.: Private comunication.

Fraser, W: "A survey of nethods of conputing minimax and near
minimax pol ynom al approximations for functions of a single

i ndependent variable". Journal of the A.c.M., Vol. 12, No. 3,
(July, 1965).

Rivlin, T.J. and Cheney, E. W.: "A conparison of uniform
approximations on an interval and a finite subset thereof".
SI AM Journal on Numer. Anal., Vol. 3,No. 2, (June, 1966).

Bartels, R. H. and Golub, G. H.: "Conputational considerations
regarding the calculation of Chebyshev solutions for overdeter-
mned |inear equation systenms by the exchange method". Tech.
Report No. ¢S67, Conmputer Science Departnent, Stanford University,
(June 1967).

Rice, J. R: The Approximation of Functions, Vol. 1, Reading
Mass.: Addi son-VésTey, 1964.

Veidinger, L.: "On the nunerical determnation of the best
approxi mations in the Chebyshev sense". Nunmer. Math., Vol. 2
(1960), pp. 95-105.

Forsythe, G. E.: "Generation and use of orthogonal polynonials

for data-fitting with a digital conputer". J. SIAM Vol 5,
No. 2, (June, 1957), pp.74-88.

52

