
WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT NO. CS 77
. SEPTEMBER 22, 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

. .
.‘

E

+ -r
::

I

L
L
L
t
L
t
I
I
L
L
L
L
L
L
L
1
1

. .

WHAT TO DO TILL THE COMPUTER SCIE3VTIST COMES

George E. Forsythe

Computer Science Department

Stanford University

Stanford, California 94305

L
IL

L

I.

L

L
L
L
I
L
L
L
L
I
t
L
L
L

WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

George E. Forsythe1
Computer Science Department

Stanford.vniversity

Computer science departments

What is computer science anyway? This is a favorite topic in

computer science department meetings. Just as with definitions of math-

ematics, there is less than total agreement and--moreover--you must know

a good deal about the subject before any definition makes sense. Perhaps

the tersest answer is given by Newell, Perlis, and Simon [8]: just as

zoology is the study of animals, so computer science is the study of

computers. They explain that it includes the hardware, the software,

and the useful algorithms computers perform. I believe they would also

include the study of computers that might be built, given sufficient

demand and sufficient development in the technology. In an earlier

paper [4], the author defines computer science as the art and science

of representing and processing information. Some persons [lo] extend

the subject to include a study of the structure of information in nature

(e.g., the genetic code).

Computer scientists work in three distinguishable areas: (1) design

of hardware components and especially total systems; (2) design of basic

languages and software broadly useful in applications, including monitors,

compilers, time-sharing systems, etc.; (3) methodology of problem solving
with computers. The accent here is on the principles of problem solving

--those techniques that are common to solving broad classes of problems,

as opposed to the preparation of individual programs to solve single

problems. Because computers are used for such a diversity of problems

(see below), the methods differ widely. Being new, the subject is not

well understood, and considerable energy now goes into experimental

solution of individual problems, in order to acquire experience from
- -

1
Expanded version of a presentation to a panel session before the Math-
ematics Association of America, Toronto, 30 August 1967- The author is
grateful to Professors T. E. Hull, William Miller, and Allen Newell for
various ideas used in the paper.

1

,
t
I
L

L
1
L
i

L

i
L

i
L

d

i

i

I
L

i
L

which principles are later distilled. But in the long run the solution

of probiems in field X on a computer should belong to field X, and

computer science should concentrate on finding and explaining the prin-

ciples of problem solving0 . .

One example of methodological research in computer science is the

design and operation of "interactive systems," in which a man and a com-

puter are appropriately coupled by keyboards and console displays (perhaps

within a time-sharing system) for the solution of scientific problems.

Because of our emphasis on methodology, Professor William Miller

likens the algorithmic and heuristic aspects of problem solving in computer

science to the methodology of problem solving in mathematics so ably dis-

cussed by Professor Pdilya in several books [9]. In computer science there

is great stress on the dynamic action of computation, rather than the

static presentation of logical structure. It tends to attract men of

action, rather than contemplative men. Our students want to do something

from the first day.

.

Computer science is at once abstract and pragmatic. The focus on

actual computers introduces the pragmatic component: our central questions

are economic ones like the relations among speed, accuracy, and cost of

a proposed computation, and the hardware and software organization requiredo

The (often) better understood questions of existence and theoretical com-

putability--however fundamental--remain in the background. On the other

hand, the medium of computer science--information--is an abstract one.

The meaning of symbols and numbers may change from application to appli-

cation, either in mathematics or in computer sciencr. Like mathematics,

one goal of computer science is to create a basic structure in terms of

inherently defined concepts that is independent of any particular appli-

cation,

Computer science has hardly started on the creation of such a basic

structure, and in our present developmental stage computer scientists are

largely concerned with exploring what computers can and cannot economically

idUoO Let me emphasize the variety of fields in which computing has become

an important tool, One of these is applied mathematics, as Professor Lax

emphasizes, but this is merely one. Others include experimental physics,

2

.).
E

t’;

t

L

L
L
t
L
L
L
t
L
L
L
L
L
L
L

business data processing, economic planning, library work, the design of

almost anything (including computers), education, inventory management,

police operations, medicine, air traffic control, national population

inventories, space science, musical performance, content analyses of

documents, and many others. I mus-temphasize that the amount of computing

done for applied mathematics is an almost invisible fraction of the total

amount of computing today.

There is frequent discussion of whether computer science is part

of mathematics--i.e., applied mathematics or "mathematical science." In

a purely intellectual sense such jurisdictional questions are sterile and

a waste of time. On the other hand, they have great importance within

the framework of institutionalized science --e.g., the organization of

universities and of the granting arms of foundations and the Federal

Government. L

I am told that the preponderant opinion among administrators in

Washington is that computer science is part of applied mathematics. I

believe the majority of university computer scientists would say it is

not; cf. [8]. I would have to ask you how mathematicians feel about the

matter. COSRIMP has so far taken the position that computer science is

a mathematical science, but many of the discussions emphasize differences

between mathematics and computer science.

In spite of the infancy of our subject, there are approximately 30

There. computer science departments in the United States and Canada today@

is no longer any doubt that computer science will have a separate university

organization for several coming decades. I believe that the creation of

_ these separate departments is a correct university response to the computer

revolution, for I do not think computers would be well studied in an

environment dominated by either mathematicians or engineers. However,

finding suitable faculty members is very difficult today.

What are these computer science departments doing? Answer: Roughly

the same things that mathematics departments are doing: education, research,

*Committee on the Support of Research in the Mathematical Sciences,
appointed by the National Academy of Science - National Research Council.

3

L
I
L
I
1
I
L
L
L
L
L
I
L
L
IL
1
1
t

and service. We teach computer science to three types of students: to

our majors at the B.S., M.S., and Ph.D. levels, to technical students

who need computing as a tool, and to any students who wish to become

acquainted with computing as an important ingredient of our civilization.

We do research in our several specialties: e.g*, numerical analysis,

programming languages and systems, heuristic methods of problem solving,

graphical data representation an:! processing, time-sharing systems,

logical design, business data processing, etc. We perform an unusually

large amount of community service in helping our colleagues with their

computing problems, both individually and by advising or managing the

university computation center.

At Stanford University our graduate students are distributed

among roughly three major areas of computer science: numerical mathematics

(about 10 percent), programming languages and systems (about 50 percent),

and artificial intelligence (about 40 percent). I have to emphasize

that my own research field--numerical mathematics--is drawing only about

10 percent of our students. This is because the other two areas have

problems that seem more exciting, important, and solvable at this particu-

lar stage of computer science. Moreover, they require less prior educa-

tionl, permitting the student to start original research at a younger stage.

Thus in the past fifteen years many numerical analysts have progressed

from being queer people in mathematics departments to being queer people

in computer science departments!

.
Computer science is rich in designs of programming systems and

languages, full of techniques for meeting this and that difficulty, and

heavily beset with colleagues who want to help. We are poor in theorems

. and general theories; our deep intellectual questions are shared with

logic, economics, applied physics, and mathematics. On the other hand,

the totality of techniques and ideas built into many of our moderate-

sized computing systems (say an Algol compiler or a large eigenvalue

routine) is quite impressive, for a computer is extremely good at dealing

with very complex situations.

Most of known computer science must be considered as design tech-

nique, not theory. This-doesn't bother us, as we all know that a period

4

I.‘_

I

I

I

I

t

L

L
L
i
L
i
I
L
I
L
L
L

of developing technique necessarily precedes periods of consolidating

theory, whether the subject be physics, mathematics, biology or computer

science, As long as computers continue changing drastically every three

or four years, there is scarcely a chance to sit down and contemplate

the creation of a theory. In this respect our subject is reminiscent of

early engineering, and also of mathematical analysis in the time after

Newton, I wish to emphasize my Lelief that this is a passing stage of

computer science.

The most valuable acquisitions in a scientific or -technical educa-

tion are the general-purpose mental tools which remain serviceable for a

lifetime, I rate natural language and mathematics as the most important

of these tools, and computer science as a third. The mathematics you

teach reaches its effective application largely through digital computing,
--.

and hence you and your students need to know some computer science. The

learning of mathematics and computer science together has pedagogical

advantages, for the basic concepts of each reinforce the learning of

the o%her (e,g., the concepts of function in mathematics and procedure-I_
in Algol 60).

I have emphasized certain differences between computer science

and mathematics 9 particularly because I feel this audience may not be

aware of them, However, in another sense computer science and mathematics

are remarkably similar, The computer industry is overwhelmed by the pains

of growing so large so fast. In 1967 there are over 40,000 computers in
.

the United States, Many thousands of programmers are constantly at work,

producing software and descriptions thereof. These people work under

extreme pressure of time, and many have had little supervised practice

- in the twin arts of programming for computers and expounding for human

beings Many compromises are made in the hurried effort to make reason-

ably available to users programs that work reasonably well (if not per-

fectly) o .

Seen from this hurly-burly of production, we academic mathematicians

and computer scientists look much alike. We both insist on high standards

of rigor and exposition (in mathematicians* language), or performance and

documentation (in computer science terminology), and place a higher premium

t

i

i

i

L
Ii

i

I
L
t

1
!
I
1
I

on quality than on promptness. As the computer era matures, we may find

ourselves more and more thrown together in defense of this intellectual

attitude. For the typical industrial programmer has little sympathy for

it. He knows that the computer is often powerful enough to overcome the

slipshod way it is understood and used. As an academic type, I can hardly

admit it, but I have seen enough computing to believe it. Despite some

grave deficiencies in users' understanding of the operation of hardware

and software, the fact is that most large programs yield results that

are satisfactory to the user--results that satisfy him as well or better

than the analyses he used to get from mathematicians!

We academic types must surely defend our premise that critical

analyses and proofs are worthwhile in this age of wholesale number-crunch-

ingO

What can you do now?- - - -

And now follow my answers to the question of the title.,

First, you can get a little acquainted with computing. This

involves two steps:

A :Step Learn to program some automatic digital computer in some

language-- e,g., Fortran, Algol, PL/l, --and actually use the computer

. enough to find out some of the fascination and frustrations of the com-

puter-man's world. Step B: Read some books from the list at the end of

this paper Since computer science is not yet very deep and mathematicians

are very smart people, this should not be onerous.

Second, you can study how computing intersects mathematics. Applied

mathematics is no longer the same subgect, now that you have a magnificent

experimental tool at hand. Moreover, there are several undergraduate

courses that owe their large enrollments largely to their wide applications

in technology and science: e.g,, linear algebra, and ordinary differential

equations. I think both of these courses should be substantially influenced

by computers.

t

h ;

I
“.
‘L

L
i
t
I
i
L
L
I
L
L
1

L
L
I
L
I
L

In a linear algebra course, along with concepts like rank, deter-

minant eigenvalues, linear systems, and so on, ought to go some construc-

tive computational methods suitable for automatic computers. There is

plenty of literature now, and I think some of it should be worked into

(.l~rses in linear algebra. If not,‘then an instructor should loudly

confess that he is ignoring these topics, and furnish some reading lists

for his students.

The same goes for ordinary differential equations, Here the situ-

ation is slightly different, in that textbooks in this field usually do

say something about numerical methods. The trouble is that it usually

dates from before the days of computers. It should be expunged and

replaced with at least an equivalent amount of orientation in today's

useful numerical methods for computers. See [?I for Professor Hull's
--

suggestions.

I think also that the calculus courses should be influenced by an

awareness of computing, -but I do not expect this to be a very large

fraction of the courses, See C6.j for some ideas.

.

The alternative to weaving computational material into various

mathematics courses is to teach computational mathematics in separate

courses, in either the department of mathematics or the computer science

department. This alternative is the accepted method at present, but many

have felt it should be only a temporary expedient. If computational

mathematics is taught in the computer science department, what effective

mechanism can there be to reunite the theoretical and the computational

aspects of mathematics?

There is a good deal of interest nowadays in computer-aided

instructiond I don? expect this to have a very large application to

university mathematics teaching. However, I should like to call your

attention to the usefulness of a computer-controlled cathode-ray-tube

display and "light pen" in giving vivid graphical representations of

sophisticated concepts. In one of these, developed by Professor William

MrKeeman and Mr. William Rousseau at Stanford University, the scope shows

'both the complex z plane and the plane of f(z), for any simple elemen-

tary function f typed at the console. When the light pen traces any

7

.I
I

I

L
I
I
t
L
L
L
L
L
L
I
I
L
L
L
L
L

curve in the z-plane, a dot of light traces the curve f(z) * Many of

the elementary theorems of analytic function theory receive an impressive

illustration in this way. Professor Marvin Minsky has used similar dis-

plays in dealing with nonlinear ordinary differential equations.-
. .

At a more fundamental level, the emergence of computer science has

added one more applier of mathematicsn Along with operations research,

economics, and other more recently mathematized subjects, computer science

is relatively more interested in discrete mathematics (e.g., combinatorics,

logic, graph and flow theory, automata theory, probability, number theory,

etc.; see Crj), than in continuum mathematics (e.g., calculus, differential

equations, complex varia'bles, etc.). Hence the mat'hematics department (in

my view) should devote much thought to orga-izing its curricuium suitably

from the standpoint of consumers of discrete mathematics, I feel that
-a.

eurrentiy common curricula are inherited from the days when continuum

mathematics was more in demand (from physics, mechanical engineering,

etc,) o

Third, you can help the computer scientist find his way to your

campus, and make him feel welcome0 A?JoXY all, please don% judge him as

a mathematician, for he isn't one and isn't supposed to be one--his values

are different., The difference in values between mathematics and numerical

analysis is the subject of a provocative paper [5jo

When the computer scientist does arrive on ca'mpus, be prepared for

a rather large impact, He is tied to a t. rampan field of rapidly growing

interest to students and scholars everywhere, He will need many coileagues

and new buildings He may take some of the heat off mathematics faculties

_ by providing a partial substitute for mathematics as a research tool. This

vast energy may h.ave some undesirable side effects on your sense of impor-

tance and even your budget.

Fourth, if you are really enthusiastic, I recommend tackling some

research problems of a mathematical nature that would help computer science

(and your own publication list). There are serious and important mathe-

matical questions at almost every t2rn, and most computer scientists aren't

very good at mathematics I will leave to Professor Lax the important

area of experimental mathematics. One area of computer science with a

8

probable payoff is the automation of algebra and analysis. So far, most

actual computing consists of automated arithmetic, A Fortran program,

for example, asks a computer to carry o.~~t, addition, sn;ibtractiorig multipli-

cation and division of (simulated) real or complex numbers, in a-sequence

which is dynamically determined by the course of the computation There

is nothing else., It is clear that computers are capable of automated

alge'bra,9 and there have been exgcrimental systems for this since about

ig61 o They are still primitive. Some of the roadblocks to further

development occur at surprising pl.aces, One is the ques*l.ion of simplifi-

cation (e.g,, of rational polynomial expressions in n varia'bles). 'What

do we mean by simplification? How shall we do it? See Brown [2] for one

lndica,tion of the depth of the problem0

Proposed by DL R, W0 Hamming, but still largely in the f'lture, 1s

the partial a5tomation of analysis0 Faced ,with an initial-value problem

for an ordinary differential equation, for example, a computer should 'be

a'ble to put, the pro'blem into some sort of normal. form (using automated

a?Lge'bra, of coursejo Then the computer shoul.d inspect the r.-orma form

to see whether it is a recognized standard equation. If it> is, ther, a

solution formula should be obtained from a ta'b.Le, and then transformed

("boy automated algebra) back into the variables originally presen,ted. Of

CO L.T"Se, the user may want a table of values- The computer then must

decide whether to use the solution formula (if one exists>, or to compute

a E3merieal solution, In the Eatt.er case, a numerIcal integration formula

. must be automatically selected (or devised), and then used (by autiomatic.

arithmeticj to produce a table of answers and error bounds (more automated

acalysisj, There are many unsolved pro'blems in this program, and mathe-

.maticians are .dniquely qtiaiified to define the problems and start their

solution 0

Most computation to date has been serial in nature, with only one__I_>
computation or decision being made at a time wlthin the central processor,

Soon to arrive will be para1le.E compr;itersJ in which from two to perhaps

several hundred operations can ‘be .formed simultaneously0 The general

pattern of serial computation has been well understood since the work of

Ea'bbage, Aiken, von Neumann, and others, There are good research problems

9

L
L
L
L
t
L
L
L
1
I
I
t
L
I
L
L
L
t

in analyzing parallel computation and identifying the important features.

See [3] for a recent contribution.

There are good research problems in the theoretical aspects of the

design of algorithms. Initiated by..Post, Turing, and others, there is an

important theory that tells us that some functions are computable on a

"Turing machine," and some are not. (Turing machines differ in theoretical

capability from existing computers only in having infinite storage capac-

ity.) This theory has been extended to state that some problems can be

solved on a Turing machine with a suitable algorithm, but for some prob-

lems no such algorithm can exist.

It is essential to know that a problem is solvable, but this is

only the beginning. What is needed next is information about how much

computer storage is required for the program and data, and how long the--_
algorithm will run, In other words, we need theoretical information on

the complexity of solvability. There are some results by Kolmogorov and

others on the complexity of a computable function, but much more research

is needed.,

Other research problems lie in areas further removed from mathe-

matics 0 One such area is computer graphics --the uses of computers for

dealing directly with information in the form of structures. (Examples:

representing graphs of mathematical trees, design of networks, recognition

of three-dimensional block structures from photographs, automatic reading

of bubble chamber pictures.) In this area there are problems of represent-

ing information, both visually and inside a computer store, and of proces-

sing the information. Most algorithms are being created by persons with

only a modest knowledge of mathematics, and it seems likely that an inter-

-es-ted mathematician could both help solve some computing problems and find

worth-while mathematical problems.

In summary, here are my four answers to the question of the title:

(1) Learn a little about computer science.

(2) Consider how mathematics curricula should be affected by

computer science.

(3) Help the computer scientist find his way, but expect a big

blast after he gets there.

(4) Think of computer science as a possible source of mathematical

research problems.

10

Some books to readp-n-

Here are some suggested book readings in computer science:

F. L. Alt (editor), Advances Computers, annual serial volume,

of which the seventh was issued in 1966, Academic Press. [These contain. .
interesting survey articles on a wide variety of topics in computer

science.]

Anonymous, Information, Freeman, 1966. [Originated as the Septem-

ber 1966 issue of the Scientific American.]

Jeremy Bernstein, The Analytical Engine: Computers, Past, Present,

and Future, Random House, 1964. [A good book to start with; it originally

appeared in the New Yorker.]

Edward A, Feigenbaum and Julian Feldman (editors), Computers and

Thought, McGraw-Hill, 1963. [These articles are devoted to the topicof

"artificial intelligence": to what extent can computers accomplish tasks

heretofore performed by human minds?]

L. Fox (editor), Advances Programming ,and Non-Numerical ,Computa-

tion, Pergamon, 1966. [Series of articles explaining programming and non-

numerical computation to the uninitiated mathematician. The main non-

numerical applications dealt with here are theorem-proving, game-playing,

and information retrieval.]

T. E. Hull, Introduction Computing, Prentice-Hall, 1966. [A

first course in Fortran and its use in computing, both arithmetic and

symbolic, by a mathematician and numerical analyst. It has a good

annotated bibliography that can serve to expand the present list.]

Kenneth E. Iverson, A Programming Language, Wiley, 1962. [The

author has created a notation useful for describing the logical design

of automatic computers and for programming computers. In other works

the author makes it clear that he would like hfs notation to replace

mathematical notation, which he finds full of inconsistencies.]

Marvin Minsky,

Prentice-Hall, 1967.

computability, and so

Computation: Finite and Infinite Machines,

[An advanced undergraduate textbook on automata,

on. Actual automatic computers are never far out

of the author's mind.] -

11

B0 Randell and L. J. Russell, Algol 60 Implementation,, Academic

i
i

f

i

L
FL

I

L
L
L
I
I

Press, 1960. [This book describes a program that translates a program

written in Algol 60 into the machine-language program of an actual com-

puter. Such programs are called "compilers," and are by far the most

i'requent programs run by computers.]

Saul Rosen (editor), Programming Systems and Languages, McGraw-

Hill, 1967~ [One of the most sopnisticated of the emerging parts of

computer science is the theory of programming languages. It extends

from abstract theories of written linguistics over to the psychological

questions of what languages human beings can most effectively use"]

Peter Wegner (editor), Introduction to System Programming, Academic

Press, 1964. [By a system the author means any program that controls the

course of programs through a computer, programs that translate from one

language to another, etc. Such systems are the Y'intelligence'E that turns

a bare pile of electronic componentry into an effective "living" computing

machine.]

J0 H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,

19650 [.This is devoted to computing the eigenvalues and eigenvectors of

a finite square matrix, by a man who has personally tested and analyzed

most known methods You will be surprised at how little space is wasted

in the 662 pages.]

12

k
IL

i

I
t

f
L

h
i

I
i

I
ErL

P

e
L

10

2.

60

8.Fe
fc

10.
F
t

References

Edwin F. Beckenbach (editor), Applied

1964. . .

Combinatorial Analysis, Wiley,

W. S. Brown, "Rational exponential expressions and a conjecture

concerning n and e," manuscript, Bell Telephone Laboratories,

196F

A. B0 Carroll and R. T. Wetherald, 'Application of parallel processing

to numerical weather prediction,' J. Assoc. Cornput Macho, vol. 14

(1967), PP~ 591-614.

George E. Forsythe, 'A university's educational program in computer

science," Comma Assoc. Comput. Math., vol. 10 (1967), ppO 3-1L
--_

R. W. Hamming, "Numerical analysis vs. mathematics," Science,

VOL 148 (23 April 1965), pp. 473-475.

R. W. Hamming, Calculus and the Computer Revolution, Committee on- -
the Undergraduate Program in Mathematics, PO 0. Box 1024, Berkeley,

California 94301~ 1966.

To E0 Hull, The Numerical Integration of Ordinary

Equations, Committee on the Undergraduate Program

PO 0. Box 1024, Berkeley, California 94701.

Differential

in Mathematics,

Allen Newell, Alan J. Perlis, and Herbert A. Simon, 'What is computer

science?" submitted as a letter to Science, 19670

George Pblya , How To Solve It,- - - - 2nd edit. Anchor Book A93, Doubleday.

[Several other books.]

University of Chicago, Graduate Programs in the Divisions, Announce-- -
ments 1966-67, pp. 175-177, describing their Committee on Information

Sciences.

13

