
I c \
CS -80

I

I
. .

DIRECTED RANDOM GENERATION OF SENTENCES

*
I

,I

I
)

I

bY

JOYCE FRIEDMAN

I
I
I This research was supported in part by the United States Air Force

Electronic Systems Division, under Contract F19628-C-0035.

I .

I
I STANFORD UNIVERSITYCOMPUTER SCIENCE-DEPARTMENT

COMPUTATIONALLINGUISTICS PROJECT

OCTOBER 1967

*I

r- - I---‘” -

i

c

L

i
-.

Abstract

E
t

4
i
?
IL

*
!
,
1
L
f
i

c
tL

i *

I
lb.

The problem of producing sentences of a transformational grammar by

using a random generator to create phrase structure trees for input to

the lexical insertion and transformational phases is discussed. A purely

random generator will produce base trees which will be blocked by the

transformations, and which are frequently too long to be of practical

interest. A--solution is offered in the form of a computer program which

allows the user to constrain and direct the generation by the simple but

powerful device of restricted subtrees, The program is a directed

random generator whichaccepts as input a sub-tree with restrictions and

produces around it a tree which satisfies the restrictions and is ready

for the next phase of the grammar. The underlying liriguistic model is

that of Noam Chomsky, as presented in A.spects of the Theory of Syntax.

The program is written in Fortran IV for the IBM 360/67 and is part of

the Stanford Transformational Grammar Testing System, It is currently

being used with several partial grammars of English,

f

i

i

i

i

; I. INTRODUCTION

f
1. Motivation

i

!

-.

In Aspects of the Theory of Syntax 6 11, Noam Chomsky presents a

L model of transformational grammar in which lin~~listic insights about a

r-I
k

natural language are expressed in a precise formalism. Writing such

grammar for even a small part of a natural language is intrinsically

i
L

difficult because of the complex interrelationships of the phrase

structure rules, the lexicon, and the transformations. In addition,
t
1

i

I
:

f
L

”
L

1I
L

i

ii

k

a

global decisions, such as ordering, or cycling conventions, or conventions

on the meaning of the notation, may likewise have unexpected effects.

If, in the course of writing a grammar, a global decision is changed,

this may have repercussions in the already completed parts of the grammar.

These formal problems of grammar writing are likely to be regarded

as secondary by the linguist, who is first concerned with what is in the

language and how it is derived, and would prefer to pay less attention

to formal detail. Yet, if the grammar does not produce the derivations

intended, the linguist cannot be said to have succeeded,

This is a situation in which it seems natural to use a computer:

the model is formal; the problem lies in the mass of detail, Most of

the errors can be fixed if only they are brought to the attention of

the linguist.

2

2. Directed random generation-i

One valuable way to provide feedback to the linguist is by exercising

a grammar as a generator. If interesting base trees can be produced,

from the phrase structure rules, they can be used to test the grammar as

a whole. However, the use of base trees generated purely at random has

certain major difficulties. If the phrase structure rules are

recursive, the derivation may fail to terminate. An even more serious

problem is that for a transformational grammar t.h;e relation between

embedding and embedded subtrees is a special one, and trees generated

at random will block in the transformation phase.

Even if these difficulties could be somehow bypassed, it would be

desirable to have some control over the generator. At any given time

some types of trees are of more interest than others; we may wish to

test some particular set of transformations, or to study trees with a

particular subtree, and so on. We would like both to constrain the

generation away from the pitfalls of infinite length and of blocking

and to direct it toward areas of interest.

The solution offered here is a directed random generator, which is

as random as you like, but not more so0 The user gives the program a

rough description of the trees desired, and the program then fills in

the rest of the tree using phrase structure rules selected at random.

If the input is the sentence symbol only, then the output is a random

tree (without embedding). However, if more detailed directions are

given, they will, if consistent with the grammar, be followed,

The description given to the generator is in the form of a "skeletonV

which is to be a subtree of the result and which may contain directions

3

governing the generation. These include restrictions of dominance,

nondominance, and equality, and some special variables, Tree size is

controlled by allowing recursion on. the sentence symbol only if specified

in the restricted skeleton.

This use of a restricted skeleton to direct the generation is the

novel and distinguishing feature of the program. The purpose of the

generation routine is to provide tests for the grammar as a whole,

including the lexical and transformational parts. The use of restricted

skeletons makes it possible to generate trees which will undergo a

specific transformation. In testing the program it was found that

several tries are occasionally necessary to find the right skeleton for

a particular transformation. Once found, however, the skeleton can

continue to be used even though other transformations of the grammar

are modified.

30 Historical remarks

Yngve's random generation program. The first program to generate

sentences at random from a grammar was the well-known COMIT program

of Yngve [7], who used random generation to test a small grammar for

its adequacy to natural language. Since the grammar was a (discontinuous)

phrase structure grammar the problems with respect to blocking did not

arise. There was no need or desire to direct the sentences in any way;

it was precisely their randomness which made them useful as a test of

adequacy. Although the grammar did contain several types of recursion,

the rules were such that excessively long sentences were highly

4

improbable,J1 and apparently Yngve was lucky.

The semantic generator of Sakai and Nagao. Sakai and Nagao 66]
. .

describe a program which uses a special form of controlled generation

to produce "semantically correct? sentences. The generation is controlled

by allowing it to start with an arbitrary grammatical category and a

word to be dominated by it. The generation then works in both directions,

up to the sentence symbol, and down from the category to the word,

Sakai and Nagao use a transformational model, without complex symbols,

but with a formalism which allows a lexical item to be associated with

a higher non-lexical category. Their type of specification would be

handled by the dominance restriction in our program.

Meyers and Yang, A brief report by Meyers and Yang [3] from Ohio

State University indicates that an attempt was made to use a random

generation program to test a transformational grammar,, They report

that "it is seldom possible to generate two sentences at random such

that one can be embedded into the other".

MITRE generation program. A random generation program written by

the present author was used in testing the grammars whichwere

part of the MITRE syntactic analysis procedure,[8]. This program was a

J1 For example, the node adjectives has only probability 1/2n of\
expanding into n+l adjectives~ This is in sharp contrast with, say,
the adjective phrase rule AP -+(AP AND AP (AND AP)*, (DEG) ADJ (S) (ADV)) [5],
which, if all choices are taken with equal probability, will almost
never terminate,

5

first attempt at solving the problems which are solved by the present

program. A device was included which made it possible to generate

trees which underwent the transformation th&t embedded relative

clauses, However, the device was ad hoc and did not extend to otherI_-

embedding transformations. There were other minor disadvantages which

have also been eliminated in the new program,

Conaale-controlled grammar testers. The programs mentioned so

far, and the program to be discussed in this paper, are all non-

interactive programs, An alternative approach is to allow the grammar

tester to be controlled by the user from a console. Such on-line

grammar testers are being written by Louis Gross at the MITRE Corporation

and David Londe at Systems Development Corporation.

4. Stanford T.ransTormational Grammar .Testing System

The Stanford Transformational Grammar Testing System, of which

the generation program is a part, includes facilities for dealing with

. all the components of a transformational grammar. The System includes

programs for phrase structureb for transformations, and for complex

. symbols and lexicon& The phrase structure programs include input

programs which hecept the usual compact linguistic form, and also a

parsing program, Feature-handling programs accept features and complex

symbols, and compare, expand, and modify complex symbols A lexical

insertion program is ww being written, The transformational programs

will include an analysis program (also used in lexical insertion) and

programs to accept transformations and cycling rules, and to transform

a base tree into a surface tree.

6

(/
I

:i
i

t

L

i

e

The generation program uses other programs of the .system, in

particular the input and output programs for phrase structure grammars

and for trees. The trees produced-by the generation program can be

fed directly into the lexical insertiorkprogram and thence into the

programs which apply transformations to obtain sentences, or they

can be punched on cards for later input.

i

L

L

L

I

L

i

L

c

L

are unexpanded sentence symbols in the current string. If there are,

IL PROGRAM DESCRIPTION

1. Generation algorithm
. .

The generation routine GEN jrequires’ as’basic input an ordered context-

free grammar. For each set of trees to be generated, a “restricted

skeleton” i0r3 also input, These inputs will be described in detail in

a later section,

A basic skeleton is a tree and has the sentence symbol as root, It

may contain any of the symbols of the grammar, and also special variable

node symbols,. A restricted ske,leton is a basic skeleton which may also

contain restrictions in terms of dominance, nondominance and equality,

The skeleton is expanded by a process which begins with a current

string consisting of only a sentence symbol. (The generation process

is illustrated in Figure 1 using the grammar given in Figure 2) The

program cycles through the rules of the grammar, and for each rule

searches from left to right through the current string for the next

.

symbol to be expanded by the rule. If none is found it proceeds to the

next rule.

When all rules are done, they are recycled if’ and only if there

the current string will be revised to contain only the sentence symbols

and the program will begin again with the first rule.

In expanding a symbol the set of possible expansions given by the

grammar is first reduced by eliminating expansions incompatible with

the basic skeleton and with the special symbols ,I , v J ?~i~l ;‘L D

X and Y are variables over 0 or more and 1 or more nodes

8

NL is a null node. No new sentence symbol will be introduced unless

explicitly specified either as part of the skeleton or in a dominance

restriction, . .

From the expansions which are consistent with the basic skeleton,

the program eliminates those which cannot meet some restriction on that

node in the skeleton. Then an expansion is chosen at random from those

which are left, the tree is expanded, and the current string is updated,

The dominance and nondominance restrictions are now reconsidered,

If a dominance restriction has now been satisfied, or will now inevitably

be satisfied,. it is dropped; otherwise it is moved to a node selected

at random from those which can later satisfy it. A nondominance

restriction NDOM M is dropped when no further occurrence of M is

possible ; otherwise J copies of the restriction are attached to all new

nodes which might dominate M . An important exception is that the

dominance and nondominance restrictions are never moved down over a

sentence symbol,

Treatment of the dominance andnondominance restrictions is

facilitated by the use of a special subroutine which determines whether

a symbol M must, may, or cannot dominate a symbol N .

The equality restrictions are handled by expanding only the first

node encountered with a particular equality restriction EQ i .

Expansion of other nodes with EQ i is not carried out, but a marker

is attached, Then, as the final stage in generation, copies of the

first expansion are filled in for the other equal nodes,

An example of a skeleton with an equality restriction and a possible

output tree for that skeleton are given in Figure 3.

2. Restricted skeletons

t
i

f
t

i

!
s

i

d
L

t

t
L

E
L

ie
cL

We now describe restricted skeletons more completely, beginning

with some underlying notions
. .

B,asic skeleton

Definition, A basic skeleton (for a grammar G) is a subtree of

sOme tree of G . It further satisfies the condition that the daughter.s

of any node in the basic skeleton are adjacent in some tree of G 0

That is, if the daughters of a node A of the skeleton axe (from left

to right) Bl-F B2, .oO, B (n 2 1) t then G must contain a rulen

A -+C1 -CkBl""BnDl.".Dr _(k,r > 0) .

The basic skeleton will be a subtree of the generated tree*

Although the basic skeleton is not the most general subtree one might

consider, the cases excluded can be included by the use of the special

symbols

Spxial symbols

.
Definition X 5 Y and NL are special s&bols. X and Y are

variables over 0 or more and 1 or more nodes; NL is the null symbol.

A-+-LThe skeleton Do0 Bi X B. UOO
J

will be expanded as

A

where k 2 0 and A +...BiCl.3$Bj~-S

is a phrase structure ruleY If .- occurs in place of X , then k > 0 6

NL is meaningful only when used as the left-most or right-most daughter

10

i

i

L

I
L

i

i
L

FL

!
e

f
L

i
i

s
L

of a node. PiL .B
1

. . . B
n will remal% in node A having BIT

. .
as its left-most daughter, whereas without TJL &dditAonal daughters

might be introduced to the left of B, .

The special symbols are used as tarmin&l. nodes of the skeleton

and increase the expressive power of the basic skaleton. X and Y

can be used to make the basic skeleton more general; NL is used to

prevent expansions to the left or right of $he explicitly-given

expansion. Figure 4 illustrates the use of the special sym’bols+
--.

Restriction

Definition. A restriction consists of RES , followed by an

operator DOM , NDOM or EQ and its operand, The operators and their

operands are described in the next section. A restriction is attached

as daughters of the node to which it appJ.ies.

Example.

Restricted skeleton

Definition. A restricted skeleton is a basic skeleton which may

have as node names not only symbol:; of the grammar, but also restrictions,

and ape cial symbols.

11

Restrictions on a skeleton

Three types of restrictions may be used in SpEcif'ying a skeleton:
. .

dominance, nondominance, and equa.l,ity,, Dominance is ~sd’tii in trying to

get a tree whi,zh wi.U undergo a specific transformation, Nondominance

is also used in that way, but is particularly useful. in avoiding the

i

L Form of--restrictions

lengthy trees which would otherwise be generated by such rules as

NP-+NPANDNP. Equ.ality is an essential requirement for many

transformations, most' particularly for embedding transformations,

A restriction is input as three consecutive daughters of the

restricted node, The restrictions are RES DOM A 3 RES NDOM A 7 and

RES EQ i ,? where A is a symbol of the grammar and i is an integer

(1-c i < 20) 0 A node may ‘have more Than one restriction,- R

i

Dominance restriction, DOM

If a node A bears the restriction RES DOM B J then in the

resulting tree, node A wi.11 dominate at leas-t one node B 5 The

condition will be satisfied without introducing any intervening sentence

symbol_,

The restriction RES DOM B may be extended by allowing B to be

the ro& of a restricted skeleton. Thus, among the possibilities are

i

L

i

RE&
/qRES DOM

A

and

RES&B

A
D E

‘.

12

1

i

i

I
1
L

1
I.
L

c
t

i

I .
L

t
L
f
c

I
i

,Jkr&3min,ance restriction, NDOM

If A is restricted by RES NDOM B o no mde B will be dominated

by A (unless a sentence symbol comes between them).

Equality restriction, EQ

The equality restriction is used to cause two or more nodes to

dominate identical subtrees. For &ny i , all nodes with

the restriction RES EQ i will have identical subtrees, The program

actually expands only the first such node encountered and copies the

result for other similarly restricted nodes. As a consequence of this

treatment, only this node can have a partial expansion or have

additional restrictions

3. Phrase Structure Grammar

The program requires that the underlying phrase structure grammar

be ordered and context-free, In deciding to use ordered rather than

unordered grammars, we were following our interpretation of the model

in Aspects, Implementation of an alternative model with unordered

rules would of course be possible, but would result in a slower and

less elegant program, particularly in the treatment of the dominance

and nondominance restrictions,

The ordering constraint is:

The rules are ordered linearly. Each nonterminal symbol is expanded

by precisely one rule (which may give more than one alternative

expansion), Except for the sentence symbol, no nonterminal is

L
reintroduced after the rule which expands it,

13

In Aspects (pa 137) Chomsky expresses the belief that recursiveness

in the base component is limited to rules which reintroduce the sentence

symbol. The ordering restriction above is in fact less restrictive,
. .

since it allows other recursion in the form A * .,. A ,.. . It does,

however, exclude loops of the form A 4 W . . B . , , , &...A... 0.

The decision to use context-free rather than context-ssnsitive

grammars also follows Aspects. In unrestricted generation the use of

a context-sensitive grammar introduces no serious problems. However,

it would vastly complicate the handling of our restrictions, particularly

the equality restriction.

4. Formats

The generation program uses other programs of the System for all

its input and output requirements, These programs will not be described

here, but we will give the formats.

Formats for trees

The fixed-field input for trees (and for restricted skeletons) is

used in the example of Figure 3. It is essentially a mirror reflection

of the tree, followed by a deformation which puts the first daughter of

a node in the same row (card) as the node, and puts all daughters of a

node in the same column (field). The daughters of a node in field L

appear in field I;+1 6 The first (left-most) daughter is in the same

card as its parent, Daughters to the right appear on later cards. Thus

14

<’

’ :

t

, .

I. ,

L
IL
L
L
L
I
L
I
1
L
L
L
L
L
I
L
I
1

A I3 c

D E F

G . . RES
DOM
B

H

represents the tree

A

A tree begins with a title card (which may be blank) and is ended

by a blank card.

Substitution feature for trees

A potential difficulty in the basic format is that the depth of a

. tree may exceed the maximum number of fields allowed. A substitution

feature avoids this by replacement of a dummy node by a subtree. This

is indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second, Thus, the input

15

i

EXAMPLE

A B C

D E . .

G

11

XXX G

S B C

D

(blank)

--.
represents the tree

F

The output format for trees is essentially the same as the input

format, An option allows the output to be punched on cards which are

then acceptable as input. Another output option displays the internal

node numbers for the trees.

The System also has an alternative of free-field tree input [2 lo

Input format for phrase structure grammar

The phrase structure grammar is input in a compact parenthesized

form. 1t is described syntactically by the following B,N,F. grammar:

16

L

,
I
L

r

i

i

L
i
Ii
iL-

<phrase structure> :2= <rule> . 1 qhrase structure> <rule> .

Crule> ::= <wora> = aS>

cRI-Is> ::= <node list> 1 CEXKS> , -ode list>

<node ais0 : := <node> 1 <node> <node list>

<node> : := *o&P 1 (GKP)

This corresponds to common linguistic usi except that curly brackets

have been replaced by parentheses, and items which would be displayed

on different lines within brackets are now separated by commas.

Ex,ample,:

VP+

AUX

s

c (ADv)

VP = (AUX(MV(NP),COP((NP;AP))),S)(ADV).

Figure 2 shows a phrase structure grammar as input, followed by

the expanded form produced by the input routine.

50 Computer considerations

GEN is written in FORTRAN IV H and currently runs under OS on

Stanford’s IBM 360/67. Table I shows the subroutine structure in a

run of GEN.

17

Table I

GEN and its subroutines

Generation routine

Test for dominance

System profr,rams used $y GEN

Phrase Structure grammar

Phrase structure grammar

Free-field output

Free-field r&ad

input,

cutpit

Tree input (used for skeletons)

Tree output

Elementary operations on trees

Running time

The running time for the program is approximately d.6 seconds

per generated tree.

6..
Final remarks

The current version of the generation program has been used both

with our own phrase structure grammar, OLAG [k 1, Qnd with drafts o f

LJcLAG, a grammar at U.C.L.A. [5 I. We believe that it could be useful

t0 other transformational linguists, and welcome inquiries.

The Grammar Testing System is beitlg extended by a lexical insertion

model which will be an implementation of one of the models suggested in

18

i

I

k

;;
I

i

i

iL

Aspects. The generation program will then accept compkx symbols and

restrictions containing complex symbols.

ACKNOWLEDGEMENT

John H. Gilman programmed the addition of restricted skeletons to

a purely random generation routine, Thomas H. Bredt improved the code,

and extended it to allow the dominance restriction to govern a restricted

skeleton, The program used for input of the phrase structure rules was

designed and written by Robert W. Doran-

c

i
t
i

L

19

I

i

--.

i
L

I
L

L
I
t

FIGURE 1

Steps in the Generation of a Tree

Skeleton
s

RES NDOM ADV

Current string: S

Expansion of top S. T9.e restriction is moved t3 a randrjm choice among
HP, VP and ADV.

1
L RES DoM srkL

RES NDOM ADV

L
L
L
L
h
L
1
I

Current s+,rirq: # NP VP ADV sf

Exgqnsion of VP. The restriction is moved to MV*

A
RES DOM S

Current strirq: # NP AUX MV ADV #

20

r
i
‘:
. ‘,
L (Figure 1 continued)

Expansion of MV, AUX, and ADV's. Choices are random; but do not

L introduce S. The restriction
continues to move down.

L

#I##

i

6
h

. .

1

i
,A V6DVpmp NP

ii!
I, A

PREP NP

L fiS DOM S

r

i --. RES NDOM ADV

1
L Current strinq # NP TNS M V PREP NP PREP NP #

i
Expansion of rest of main S, The restriction is dropped when satisfied,

L

a
##,

L
DdMA&k?NP

I
/I I n n n

L ART POST N TNS M V ARV D NOM

I A \ \
L QUANT PREP NP ART N

A
i D S

ART POST
A

I

I L
QUANT RES NDOM ADV

L

Current string: #- ART QUANT N TNS M V PWP ART QUANT SI
PREP ART N 8L

21

L

, .1
(Figure 1 continued)

L

i

L

i

!

i

I
L

i
i

i

I
L

L
,

i
L

lb

After main S is completed.

Current string: S

. .

Expansion of embedded S. Restriction moved to the VP.

RES NDOM ADV

Current string: # PRE NP VP#

Expansion of VP. Restriction i,s no longer needed, since AU& COP, AP
cannot dominate ADV.

A
AUX COP AP

Current string: # PRE NP AUX COP AP #

Embedded subtree completed.

##&
NEG D .NOM

I I R cop 'i'
ART ti TN% M ADJ

Current string: # NEG ART N TNS M COP ADJ #

22

CGNJ = ((WH) OR, BUT, AND),
Asp = (PERF)(PR~G)~
POST = QUANT.
IMP = (NOT)(PLEASE) IM~ER.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

- 18
- 19

20
21
22
23
24
25
26
27
28
29
30
31
32

S
#S=C~NJ s cow s#,
#S CONJ S#,
#PRE NP VP ADV#,
#l?RE NP VP#,
#NP VP ADV#,
#N? W#.
VI?=
S ADV,
%
AUX MV NP ADV,
AUXMVNI?,
AUX MV ADV
AU-X MV,
AUX COP N-E' ADV,
AUX CQP NP,
AUX COP AP ADV,
AUX COP AP,
AUX COP ADV,
AUX COP,
MV =
-: ADV,
V.
AP =
ADJ,
AUX=
TNS M IMP ASP,
TNS M IMP,
TNS M ASP,
TNS M,
TNS ASP,
TNS,

FIGURE 2

Phrase-Struc$ure Input

"REDUCED VERSION OF UCLAG 15 SF,PT 67"
S = # (S C9NJ S(CONJ S),(PRE) N-P VP (ADV)) # .
VP = (Avx(Mv(NP),c~P((N~,AP))),S)(ADV) e
MV = V(ADV) 0
AP = ADJ.
AUX = TNS (M(IMP)) (ASP) e
ADV = (PREP NP, ADVB).
NP = D (NOM,SL
NOM = ((NOM) s, N).
D = ART (POST).
PRE = NEG,

23

as input

expanded form
produced by
input rwtine

T

i

i
bm

,

i

I

i

L

i

;c
i

(i

L

I

i

I
L

i
L

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
5$
55
56
54
58
59
60
61
62
63

(Figure 2 continued)

ADV =
P-REP NP,
ADVB.
NP =
D s,
D NOM.
NOM =
%
NOM S,
N.
lJ=
ART POST,
ART,
PRE =
NEG.
CONJ =
WH OR,--'
OR9
BUT,
AND,
ASP =
PRGG y
XRF PRCG,
PERK
POST =
QUANT.
IMP =
PLEASE IMPER,
NCT PLEASE IMPER,
NOT IMPER,
IMPE:R y

L

24

!
i

:e
I
L

i

. .
Skeleton

ANP VP

A
RES EQ 1

i

EL

t

i

FIGURE 3

A Skeleton and An Output Tree

S NP RES
EQ
1

VP s NP
VP AUX

Mv
NP RES

EQ
1

i

:

I

f
I:
L

(Figure 3 continued)

Generated Tree (Node numbers reflect the order of generation)

f
L

.'i
' f

1s 16 #
17 PRE 3lNM:
2 NP 22 D 28 ART

23 NOM 26 N
6w 7s 33 #-

8w

f

L

34 ADV
35 #

18 ADV 2OPREP
21 NP 24 D

Ekm 25 NOM
19 #

, .
NJ?& ART N # ART

L

ART N PRIZP ART N ADVB

. .

44 D

45 NOM
lo AUX

50 ART

11 MV
55 NF

36 ADV

43 APvJ3

29 ART
30 POST
27 N

51 POST 54 QUJLNT
48 N
38 TNS
39 M
40 ASP 53 PRCG

3576 :: 58 ART
57 NOM 59 N
4~PFEP
42 NP 46 D 52 ART

47 NOM 49 N

32 QUAN!T

QUANT N TNS M PROG V

'PREP ART QUANT N

26

FIGURE 4

Use of Special Node Symbols

. .

Rule: S = # (S CONJ S(CONJ S),(PRE) NP VP) # .

Skeleton Possible Expansions

i

E
L

L

S

A
x NP

S

A# y NP

#AVP #

#Aw #

27

i
.

t

i

I

i

i

L

I
i

(Figure 4 continued)

Rule: VP = (AUX(MV(NP), COP((W,AP))), S)(ADV).

Skeleton

MV l!uJ

I
L S

A
NP VP

I
MV

Possible Expansions

AUX MV NP

M-V NP ADV AU?C MV ADV

28

f
L’

L
REFERENCES

h

L
L
L
L

t
L

L
F
L

i

L
E
&

[l] Noam Chomsky, Aspects of the Theory of Synt6wp M.I-Tc Press,4

Cambridge, 1965.

[2] R. W . Doran, 360 0. S. Fortran I V f r e e f i e l d ine/output lsubroutine

pa.ckage, Report AF-14 of the Computational Linguistics Project,

Stanford University Computer Science Department, Oatober 1967.

[3] L. F. Meyers and J, Yang, Chinese grammars and the computer at the

Ohio State University, Project on Linguistic Analysis, RF 1685-7,
--.

Report No. 10, May 1965, pp& ~8-37~ Rewarch Foundation, Ohio

State University, Columbus, Ohio.

[4] Olasope 0, Oyelaran, AF test grammar, Report AF-13 of Computational

Linguistiqs Project, Stanford University Computer Science Department,

September 1967.

[5] Be H, Partee, P. Schachter, R, Stockwell, et. al*, Working Papers,

. U,C,L.A.-Air Force English

(multilitheG).

- [6] Toshiyuki Sakai and Makoto Nagao, Sentence generation by semantic

concordance, International

1965, (mul t i l i thed) 22 pp-

Syntax Conference, September 4-15, 1967

Conference on Computational Linguistics,

[7] Victor He Yngve, Random generation of English sentences, Proc. 1961

Int'l Conf, on Machine Translation of Languffes and Applied Languw

Analysis , Teddington, H.M.S.O+, London, 1962, pp. 66-80.

I

i
29

E

8.

L
c
L

i

i

i

c
i
L

[S] A . M . Zwi&y, J. F~Aexbna n, B. C. Hall and D. E. Walker,' The MITRE

syntactic anelysis p r o c e d u r e f o r transformational gram@rs 9 Pr?c.

;F~U JOIQ~ Computer Conference, 1965, pp. 3~326~

i

30

