DIRECTED RANDOM GENERATION OF SENTENCES

by
JOYCE FRIEDMAN

This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F19628-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE-DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT
OCTOBER 1967




~ DIRECTED RANDOM GENERATION OF SENTENCES

-

L oy

Joyce Friedman

r==

-



r—-

r—-

—

—

Abstract

The problem of producing sentences of a transformational grammar by
using a random generator to create phrase structure trees for input to
the lexical insertion and transformational phases is discussed. A purely
random generator will produce base trees which will be blocked by the
transformations, and which are frequently too long to be of practical
interest. A--solution is offered in the formof a conputer program which
allows the user to constrain and direct the generation by thesimplebut
power ful device of restricted subtrees. The programis a directed
random gener at or which accepts as input a sub-tree with restrictions and
produces around it a tree which satisfies the restrictions and is ready
for the next phase of the grammar. The underlying linguistic nodel is

that of Noam Chonsky, as presented in Aspects of the Theory of Syntax.

The programis witten in Fortran |V for the |BM 360/67 and is part of
the Stanford Transformational Gammar Testing System It is currently

being used with several partial grammars of English,



rw.;;.; r.,.., — r.,,m r NN

r-

—

—

I. | NTRODUCTI ON

1. Mbti vati on

In Aspects of the Theory of Syntax 6 11, Noam Chomsky presents a

model of transformational grammar in which linguistic insights about a
natural |anguage are expressed in a precise formalism Witing such a
grammar for even a snall part of a natural language is intrinsically
difficult because of the conplex interrelationships of the phrase
structure rules, the lexicon, and the transformations. In addition,
gl obal decisions, such as ordering, or cycling conventions, or conventions
on the meaning of the notation, may |ikew se have unexpected effects
[f, in the course of witing a grammar, a global decision is changed
this may have repercussions in the already conpleted parts of the grammar.
These formal problens of grammar witing are likely to be regarded
as secondary by the linguist, who is first concerned with what is in the
| anguage and how it is derived, and would prefer to pay less attention
to formal detail. Yet, if the grammar does not produce the derivations
intended, the linguist cannot be said to have succeeded,
This is a situation in which it seens natural to use a conputer
the model is formal; the problemlies in the nmass of detail, Mst of
the errors can be fixed if only they are brought to the attention of

the |inguist.



%
-

r— = r— r—

N e r—

r

r— r-

—

2. D rected random generation

One valuable way to provide feedback to the linguist is by exercising
a grammar as a generator. If interesting base trees can be produced,
fromthe phrase structure rules, they can be used to test the grammar as
a whole. However, the use of base trees generated purely at random has
certain mgjor difficulties. [If the phrase structure rules are
recursive, the derivation may fail to termnate. An even nore serious
problemis that for a transformational gramar the rel ati on between
enbeddi ng and enbedded subtrees is a special one, and trees generated
at random will block in the transformation phase

Even if these difficulties could be somehow bypassed, it would be
desirable to have sone control over the generator. At any given tine
some types of trees are of nore interest than others; we may wsh to
test some particular set of transformations, or to study trees with a
particul ar subtree, and so on. W would like both to constrain the
generation away fromthe pitfalls of infinite length and of bl ocking
and to direct it toward areas of interest.

The solution offered here is a directed random generator, which is
as random as you like, but not nore so. The user gives the program a
rough description of the trees desired, and the program then fills in
the rest of the tree using phrase structure rules selected at random
If the input is the sentence symbol only, then the output is a random
tree (without enbedding). However, if nore detailed directions are
given, they will, if consistent with the grammar, be followed,

The description given to the generator is in the formof a "skeleton"

which is to be a subtree of the result and which may contain directions



-

governing the generation. These include restrictions of dom nance
nondom nance, and equality, and sonme special variables, Tree size is
controlled by allow ng recursion on. the sentence symbol only if specified
in the restricted skeleton

This use of a restricted skeleton to direct the generation is the
novel and distinguishing feature of the program The purpose of the
generation routine is to provide tests for the grammar as a whole
including the lexical and transformational parts. The use of restricted
skel etons makes it possible to generate trees which will undergo a
specific transformation. |In testing the programit was found that
several tries are occasionally necessary to find the right skeleton for
a particular transformation. Once found, however, the skeleton can
continue to be used even though other transformations of the grammar

are nodified.

3. Historical remarks

Yngve's random generation program The first programto generate

sentences at random froma grammar was the well-known COMIT program

of Yngve [7], who used random generation to test asmal grammar for

its adequacy to natural language. Since the grammar was a (discontinuous)
phrase structure grammar the problems with respect to blocking did not
arise. There was no need or desire to direct the sentences in any way;

it was precisely their randommess which made them useful as a test of
adequacy. Al though the grammar did contain several types of recursion,

the rules were such that excessively long sentences were highly



L

r—

— M r

. r*-“"‘ r-«-s~\

r—

i mpr obabl e, Y and apparently Yngve was | ucky.

The semantic generator of Sakai and Nagao. Sakai and Nagao [6 ]
describe a program which uses a special form of controlled generation
to produce "semantically correct? sentences. The generation is controlled
by allowing it to start with an arbitrary gramnmatical category and a
word to be domnated by it. The generation then works in both directions,
up to the sentence synbol, and down from the category to the word,
Sakai and Nagao use a transformational nodel, without conplex synbols,
but with a formalism which allows a lexical itemto be associated with
a hi gher non-iexi cal category. Their type of specification would be

handl ed by the dom nance restriction in our program

Meyers and Yang, A brief report by Meyers and Yang [3 ] from Chio

State University indicates that an attenpt was made to use a random
generation program to test a transformational grammar,, They report
that "it is seldom possible to generate two sentences at random such

that one can be enbedded into the other".

M TRE generation program A random generation programwitten by

the present author was used in testing the grammars whi chwere

part of the MTRE syntactic anal ysis procedure.[8]. This programwas a

-/For exanpl e, the node adjectives has only probability 1/2" of
expanding into n+l adjectives. This is in sharp contrast wth, say
the adjective phrase rule AP — {AP AND AP (AND AP)*, (DEG ADJ (s) (apv)} (57,
which, if all choices are taken with equal probability, wll al nost
never termnate,



first attenpt at solving the problens which are solved by the present
program A device was included which nade it possible to generate
trees which underwent the transformation that enbedded relative
clauses. However, the device was ad hoc and did not extend to ot her
embedding transformations. There were other minor disadvantages which

have also been elimnated in the new program

Conaal e-control | ed grammar testers. The progranms nentioned so

far, and the programto be discussed in this paper, are all non-
interactive prograns, An alternative approach is to allow the grammr
tester to be controlled by the user froma console. Such on-line

grammar testers are being witten by Louis Goss at the MTRE Corporation

and David Londe at Systens Devel opnent Corporation.

4, Stanford Transformational G anmar Testing System

The Stanford Transformational Gammar Testing System of which
the generation programis a part, includes facilities for dealing with
all the conponents of a transformational grammar. The System includes
programs for phrase structure, for transformations, and for conplex
synbol s and lexicons. The phrase structure prograns include input
prograns which accept the usual conpact linguistic form and also a
parsing program Feature-handling prograns accept features and conplex
synbol s, and conpare, expand, and nodify conpl ex symbols. A |exical

insertion programis now being witten, The transformational prograns

will include an analysis program (dsoused in lexical insertion) and

prograns to accept transformations and cycling rules, and to transform

a hase tree into a surface tree.



r« r — rv e

r—

r—

a——

The generation program uses other progranms of the .system, in
particular the input and output prograns for phrase structure grammars
and for trees. The trees produced-by the generation program can be
fed directly into the lexical insertion program and thence into the
prograns which apply transformations to obtain sentences, or they

can be punched on cards for later input.



II. PROGRAM DESCRI PTI ON

1. Ceneration al gorithm

The generation routine GENrequires as basic input an ordered context-
free grammar. For each set of trees to be generated, a “restricted
skel eton” 1is also input, These inputs will be described in detail in
a later section,

A basic skeleton is a tree and has the sentence synbol as root, It
may contain any of the synbols of the grammar, and also special variable
node synbols,. A restricted skeleton is a basic skeleton which may al so
contain restrictions in terns of donm nance, nondom nance and equality,

The skeleton is expanded by a process which begins with a current
string consisting of only a sentence symbol. (The generation process
is illustrated in Figure 1 using the grammar given in Figure 2.) The
program cycles through the rules of the grammar, and for each rule
searches fromleft to right through the current string for the next
synbol to be expanded by the rule. If none is found it proceeds to the
next rule.

Wien all rules are done, they are recycled if’ and only if there
are unexpanded sentence synbols in the current string. |f there are,
the current string will be revised to contain only the sentence symbols
and the program will begin again with the first rule.

In expanding a synbol the set of possible expansions given by the
grammar is first reduced by elimnating expansions inconpatible with
the basic skeleton and with the special synbols 7, v, anc 5.,

X and Y are variables over O or nore and 1 or nore nodes.



L

r

r= r— r—

r«u«w

r r

r—

-

NL is a null node. No new sentence symbol wll be introduced unless
explicitly specified either as part of the skeleton or in a dom nance
restriction,

From the expansions which are consistent with the basic skeleton,
the programelimnates those which cannot neet sone restriction on that
node in the skeleton. Then an expansion is chosen at random from those
which are left, the tree is expanded, and the current string is updated,

The dom nance and nondom nance restrictions are now reconsi dered,
If a domi nance restriction has now been satisfied, or will now inevitably
be satisfied,. it is dropped; otherwise it is noved to a node selected
at random from those which can later satisfy it. A nondom nance
restriction NDOM M is dropped when no further occurrence of Mis
possible ; otherwise , copies of the restriction are attached to all new
nodes which mght domnate M. An inportant exception is that the
dom nance and nondomi nance restrictions are never moved down over a
sentence synbol,

Treatnent of the dom nance andnondom nance restrictions is
facilitated by the use of a special subroutine which determnes whether
a synmbol M nust, may, or cannot domnate a synbol N .

The equality restrictions are handled by expanding only the first
node encountered with a particular equality restriction EQ i
Expansi on of other nodes with EQi is not carried out, but a narker
is attached, Then, as the final stage in generation, copies of the
first expansion are filled in for the other equal nodes,

An exanple of a skeleton with an equality restriction and a possible

output tree for that skeleton are given in Figure 3.



r

r

r= r-

— r— r— r

Tor r r r— r— r r— r—

2. Restricted skel etons

W now describe restricted skel etons nore conpletely, beginning

with sonme underlying notions

Basic skel et on

Definition, A basic skeleton (for a grammar G) is a subtree of

some tree of G. It further satisfies the condition that the daughters
of any node in the basic skeleton are adjacent in sone tree of G.

That is, if the daughters of a node A of the skeleton axe (from left
... B (n>1), then G nust contain a rule

to right) Bl, Be’ N

A =C;...CB . ..B D, ...D (k,r > 0)
The basic skeleton will be a subtree of the generated tree.

Al though the basic skeleton is not the nmost general subtree one m ght

consi der, the cases excluded can be included by the use of the special

symbol s

Special synbol s

Definition X, Y and NL are special symbols. X and Y are

variables over O or nore and 1 or nore nodes; NL is the null synbol.

A
The skel et on%[\xn;%.. w |l be expanded as
A
7 B €l Cp BJ. ~. Wwhere k > 0 and A—e...BiCl...CkBj.,,

is a phrase structure rule. If "~ occurs in place of X, then k >0 .

NL is neaningful only when used as the left-nost or right-nmost daughter

10



}
(-

r- r— r— r— r—

r—

r—

e

of a node. NL B ... B Wi |l result in node A having B,
as its left-nmost daughter, whereas wi t hout NL additional daughters
m ght be introduced to the left of B, .

The special synbols are used as terminal nodes of the skeleton
and increase the expressive power of the basiec skeleton. X and Y
can be used to nake the basic skeleton nmore general; NL is used to

prevent expansions to the left or right of the explicitly-given

expansi on. Figure 4 illustrates the use of the special symbols.

Restriction

Definition. A restriction consists of RES, followed by an

operator DOM, NDOM or EQ and its operand, The operators and their
operands are described in the next section. A restriction is attached

as daughters of the node to which it epplies.

Exanpl e. SA

A

RES operator operand

Restricted skeleton

Definition. A restricted skeleton is a basic skel eton which nay

have as node names not only synbol:; of the granmar, but also restrictions,

and ape cial synbol s.

11



r—

Restrictions on a skeleton

Three types of restrictions may be used in specifying a skeleton:

dominance, nondominance, and equality. Dominance isuseful in trying to

get a tree which will undergo a specific transformation. Nondominance
is also used in that way, but is particularly useful in avoiding the
lengthy trees which would otherwise be generated by such rules as

NP — NP AND NP . FEquality 1s an essential requirement for many

transformations, most particularly for embedding transformations.

Form of-.restrictiocns

A restriction is input as three consecutive daughters of the
restricted node. The restrictions are RES DOM A , RES NDOM A , and
RES EQ i , where A is a symbol of the grammar and i is an integer

(1 <i< 20). A node may have more than one restriction.

Dominance restriction, DOM

If a node A bears the restriction RES DOM B , then in the
resulting tree, node A will dominate at least one node B . The
condition will be satisfied without introducing any intervening sentence
symbol.

The restriction RES DOM B may be extended by allowing B to be
the roct of a restricted skeleton. Thus, among the possibilities are

A and A

REA(I)M\ RES/D!)M\B
/\
reS  DOM A 5 B

D E

RES NDOM F

12



P

RERELY

r-

r—

r— r— r

r—

r—

—

Nondominance restri cti on, NDOM

If Ais restricted by RES NDOMB , no node B Wi ll be domi nat ed

by A (unless a sentence synbol cones between then.

Equality restriction, EQ

The equality restriction is used to cause two or nore nodes to
dom nate identical subtrees. For any i , all nodes with
the restriction RES EQii wi Il have identical subtrees. The program
actual 'y expands only the first such node encountered and copies the
result for other simlarly restricted nodes. As a consequence of this
treat nment, onluy this node can have a partial eXpansi on or have

additional restrictions

3, Phrase Structure G ammar

The program requires that the underlying phrase structure grammar
be ordered and context-free, In deciding to use ordered rather than
unordered grammars, we were followi ng our interpretation of the nodel
in Aspects, Inplenmentation of an alternative nodel with unordered

rules would of course be possible, but would result in a slower and

| ess elegant program particularly in the treatnent of the dom nance

and nondom nance restrictions,

The ordering constraint is:

The rules are ordered linearly. Each nonterminal synbol is expanded

by precisely one rule (which may give nore than one alternative
expansion), Except for the sentence synbol, no nontermnal is

reintroduced after the rule which expands it,

13



r

— r— r—

r

r— r— r-

-

In Aspects (p. 137) Chomsky expresses the belief that recursiveness
in the base conponent is linted to rules which reintroduce the sentence
synmbol .  The ordering restriction above is in fact |ess restrictive,
since it allows other recursion iﬁ the formA=- ... A.... |t does,
however, exclude [oops of the formA 5 .. .B.,, , B :i... A,...

The decision to use context-free rather than context-sensitive
grammars also follows Aspects. In unrestricted generation the use of
a context-sensitive grammar introduces no serious problens. However,

it would vastly conplicate the handling of our restrictions, particularly

the equality restriction.

4, Formats

The generation program uses other programs of the Systemfor all
its input and output requirenents, These prograns will not be described

here, but we will give the formats.

Fornats for trees

The fixed-field input for trees (and for restricted skeletons) is
used in the exanple of Figure 3. It is essentially a nirror reflection
of the tree, followed by a deformation which puts the first daughter of
a node in the same row (card) as the node, and puts all daughters of a
node in the same colum (field). The daughters of a node in field L
appear in field I+1 . The first (left-nost) daughter is in the sane

card as its parent, Daughters to the right appear on later cards. Thus

14



r

r

A B C
D E F
G . RES
DOM
B
H

represents the tree

Atree begins with a title card (which may be blank) and is ended

by a blank card.

Substitution feature for trees

A potential difficulty in the basic format is that the depth of a
tree may exceed the maxi mum nunber of fields allowed. A substitution

feature avoids this by replacement of a dummy node by a subtree. This

is indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second, Thus, the input

15



11
H
|
(-

EXAMPLE
- A B C
| D E.. F
-

G
L_ H
[ XX G
!
- S B C
‘E D
-
(bl ank)

[
-

represents the tree

r—
™

c
-
The output format for trees is essentially the same as the input
(-
format, An option allows the output to be punched on cards which are
- then acceptable as input. Another output option displays the interna
node nunbers for the trees.
The System also has an alternative of free-field tree input [ 2 ].
- Input format for phrase structure granmar
The phrase structure grammar is input in a conpact parenthesized
C
form It is described syntactically by the follow ng B.N,F. grammar
[ -

16



.

<phrase structure> ::= <rule> . | <phrase structure> <rule> .
<rule> ::= <word> = <RHS>

<RHS> ::= <node |ist> | <RHS> , <node |ist>

<node list> : := <node> | <node> <node Iist>

<node> : := <word> | (<RHS>)

This corresponds to common |inguistic use except that curly brackets
have been replaced by parentheses, and items which would be displayed

on different lines within brackets are now separated by commas.

Example: 4 \
MV (NP)

cop <{§g}>

VP - * (ADV)

AUX

VP = (AUX(Mv(NP),coP( (NP;AP))),S)(ADV).

Figure 2 shows a phrase structure grammar as input, fol | owed by

the expanded form produced by the input routine.

5. Conput er consi derati ons

GENis witten in FORTRAN IV H and currently runs under OS on
Stanford's | BM 360/67. Table | shows the subroutine structure in a

run of GEN

17



i

rw_n —— r— —

m r r

r—

N

Tabl e |

CGEN and its subroutines

CGeneration routine

Test for dom nance

System programs used by GEN

Phrase Structure grammar input.
Phrase structure grammar output
Free-field output

Free-field read

Tree input (used for skeletons)
Tree output

El ementary operations on trees

Running tine

The running tinme for the program is approximately .16 seconds

per generated tree.

Fi nal renarks

The current version of the generation program has been wused both
with our own phrase structure grammar, OLAG[ %], and with drafts o f
UCLAG, a grammar at U.C.L.A.[ 5 |. We believe that it could be useful
to other t ransf ormat i onal 1linguists, and wel conme inquiries.

The Grammar Testing System is being extended by al exical insertion

model which will be an implementation of one of t he nobdels suggested in

18



r-

r~

r r r -

r—

Aspects. The generation programw || then accept complex symbols and

restrictions containing conplex synbols.

ACKNON_EDGEMENT

John H. Gilman programmed the addition of restricted skeletons to
a purely random generation routine, Thomas H Bredt inproved the code,
and extended it to allow the dom nance restriction to govern a restricted
skeleton. The program used for input of the phrase structure rules was

designed and written by Robert W. Doran.

19



|
r
—

— r— r— r

r r— r— r— r— r—r

—

FIGURE 1

Steps in the Generation of a Tree

Skeleton

n

DOM S

w

RES NDOM  ADV

Current string: S

Expansion of top S. The restriction is moved to a random choice among
NP, VP and ADV.

# NF VP ADV #
RES DOM S
RES NDOM ADV

Current string: # NP VP ADV +#

Expansion of VP. The restriction is moved to MV.

RES DOM S
RES NDOM ADV

Current string: # NP AUX MV ADV #

20



=

(Figure 1 continued)

Expansi on of M, AUX, and ADV's. Choices are random, but do not
introduce S. The restriction
continues to nove down.

3

A MV  PREP NP
T\\d v K

PREP NP

AN
AN

Qurrent string: # NP TNS M V PREP NP PREP NP #

Expansion of rest of main 8. The restriction is dropped when satisfied,

S
#M#
D" NOM AUX MV PREP NP
| n n
ART POST N TNS M VvV ADV D NOM
\ A \ \
QUANT PREP NP ART N
A
D S
AFﬁt POST

QUANT RES NDOM ADV

Current string: # ART QUANT N TNS MV PREP ART QUANT S

PREP ART N #

21



(Figure 1 continued)

- After main S is conpleted.
— Current string: S
- Expansi on of enbedded S. Restricti'on moved to the VP.

- 7NN

#° PRE NP VP #

o

RES NDOM ADV

r

Qurrent stringg # PRE NP VP #

Expansion of VP. Restriction is no |onger needed, since AUX, COP, AP
cannot dom nate ADV.

 rr

#~ PRE NP VP #

Y

-

AUX COP AP
‘!
- Current string: # PRE NP AUX COP AP #
|
- Enbedded subtree conpl et ed.
. S
L .

+#~ R P VP #

NZG D NOM AUX COP AP

VAV

ART N TNS M ADJ

—

Current string: # NEG ART N TNS M COP ADJ #

22



{
i
(-

—

r—

r'—»v 2 r.wm—‘#.

r—

FI GURE 2

Phrase-S8tructure Input

"REDUCED VERSI ON OF UCLAG 15 SEPT 67" A

S=#(Scow S(CONJ S),(PRE) NP VP (ADV)) # .

v = (AUX(MV(NP),cOP((NP,AP))),S)(ADV) .

W = V(ADV) .
AP = ADJ.
AUX = TNS (MIMP)) (ASP) .
ADV = (PREP NP, ADVB).

NP = p (NOM,S). y
Nov = ((Nov) S, N).

D= ART (PCST).

PRE = NEG.

CG\J = ((WH OR BUT, AND),
ASP = (PERF)(PROG).

POST = QUANT.

IMP = (NOT)(PLEASE) IMPER.

$END

p

1 S =

2 #S CONJ s cow S#, \
3 #S CONJ s#,

N #PRE NP VP ADV#,

5 #PRE NP VPH#,

6 #NP VP ADV#,

7 #NP VP#.

8 VP =

9 S Awl

10 S, 5
11 AUX W NP ADV,

12 AUX MV NP,

13 AUX W ADV

14 AUX MWV,

15 AUX COP NE  ADV,

16 AUX COP NP

17 AUX COP AP ADV,

18 AUX COP AP,

19 AUX cop ADV,

20 AUX COP,

21 W =

22 7 ADV,

2% V.

o AP = /
o5 ADJ.

26 AUX=

27 TNS M | MP ASP,
28 TNS M | WP,
29 TNS M ASP,

30 NS M
31 TNS ASP,
32 TNS.

23

as input

expanded form
produced by
i nput routine



i
£
L

r—

r—

3

IMP =

PLEASE IMPER,
NCT PLEASE IMPER,
NOT IMPER,

IMPER .

(Figure 2 continued)

2k



f'
—

e

r—

r\—;}a\

— r— r—

r—

r— r— rr—

r—

FI GURE 3

A Skeleton and An Qutput Tree

Skel et on
/NIP\/\VP\
RES EQ 1

UX Mﬁﬁ/{/jg\\\\
RS B 1

A

Skeleton as Input

S NP RES

EQ
1
VP S NP
VP AUX
\Y
NP RES
EQ
1
25



v
'
t
L

r— r— r—

r;.i;;

rq ey

(Figure 3 continued)

Generated Tree (Node nunbers reflect the order of generation)

18 16 #
17 PRE %1 NEG
2 NP 22 D 28 ART
23 NOM 26 N
6 VP 78 3% #
8 NP
9 VP
34 ADV
35 #
18 ADV 20 PREP
21 NP 2k D
25 NOM
19 ¢
# NEG ART N # ART
ART N PREP ART N ADVB

4y D 50 ART
51 POST
L5 NOM 48 N
10 AUX 38 TNS
39 M
40 ASP
11 W 3V
55 NP 56 D
57 NOM
36 ADV 41 PREP
42 NP
43 ADVB
29 ART
30 PCST 32 QUANT
2T N
QUANT N TNS
# PREP ART

26

54 QUANT

53 PROG

58 ART
29N

46 D
47 NOM

52 ART
Lo N

M PROG V

QUANT N #



U

FI GURE 4
—
Use of Special Node Synbols

—

Rule: S = # (5 CONJ S(CONJ 8),(PRE) NP VP) # .

Skel et on Possi bl e Expansi ons
—

g S

- #/IlP | #@#
i
‘ S S S
L /I\ /\ A\

# X NP # NP VP # # PRE NP #
[ -
‘ S S
- /I\ /\

# Y NP # ‘PRE NP VP #
—
[
-
(-
{
-
-

27



f
;
-

r..{IL.'«

r—-

r—-

Skel et on

(Figure 4 continued)

Rul e: VP = (AUX(MV(NP), COP((NP,AP))), S)(ADV).

Possi bl e Expansions

#/j\rP\VP #4}#

N

W  NL AUX MV

S
# NP VP # NP VP #
| /I\
\Y,Y AUX M NP
S

e8



-

r

r— r— r—

r— r— r— r— r~

r-—

e

REFERENCES

[1] Noam Chonsky, Aspects of the Theory of Syntex, M.I.T., Press,

Canbridge, 1965.

(2] R. W. Doran, 360 0. S. Fortran |V free field input/output subroutine

ackage, Report AF-1k of the Computationa Li ngui stics Project,

Stanford University Conputer Science Depatment, Cat ober 1967.

[3]L.F. Meyers andJ. Yang, Chinese grammars and the computer at the

Ohio_State University, Project on Linguistic Analysis, RF 1685-3,

Report No. 10, May 1965,pp. 28-37.Research Foundation, Chio
State University, Colunbus, Chio.

[4] A asope 0. Oyel aran, AF test grammar, Report AF-13 of Computational

Linguistics Project, Stanford University Conputer Science Depatment,

September 1967.

[5] B. H.Partee, P. Schachter, R. Stockwell, et. al., Wrking Papers,

U.C.L.A. -Air Force English Syntax Conference, Septenber 4-15,1967

(multilithea).

-[6] Toshiyuki Sakai and Makoto Nagao, Sentence generation by semantic

concordance, International Conference on Computational Linguistics,

1965, (multilithed) 22 pp.

[7] Victor H. Yngve, Random generation of English sentences, Proc.1961

Int'l Conf. on Machine Translation of Languages and Applied Language

Analysis, Teddington, H.M.S.0., London, 1962, pp. 66-80.

29



(8 A. M . Zwicky, J. Friedman, B. C. Hall and D. E. Walker,’ The MITRE

§

~ syntactic analysis procedure for transformational grammars , Proc.
{ ell Joint Computer Conference, 1965, pp. 317-326.

(-

L

— r— r—

r— r— r—

— r -

30



