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CALCULATION OF GAUSS QUADRATURE RULES*

Gene H. Golub and John H. Welsch

Introduction

Most numerical integration techniques consist of approximating the

integrand by a polynomial in a region or regions and then integrating

the polynomial exactly. Often a complicated integrand can be factored

into a non-negative=."weight" function and another function better

approximated by a polynomial, thus

= s; cu(t)f(t)dtm f wif(ti) o
i=l

Hopefully, the quadrature rule fw corresponding to the weight

function cu(t) is available in tabulated form, but more likely it is

not0 We present here two algorithms for generating the Gaussian quadra-

ture rule defined by the weight function when:

4 the three term recurrence relation is known for the orthogonal

. polynomials generated by cu(t), and

b) the moments of the weight function are known or can be calcu-

lated.

*The work of the first author was in part supported by the Office of
Naval Research and the National Science Foundation; the work of the
second author was‘in part supported by the Atomic Energy Commission.
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1. Definitions and Preliminaries

Let w(x) 10 be a fixed weight function defined on [a, b] . For

dx), it is possible to define a sequence of polynomials-. P,(X), P,(X), l **

which are orthonormal with respect to U(X) and in which p,(x) is of

exact degree n so that

J'; w(x)pm(x)pn(x)dx  = when m = n l

when m # n

The polynomial

--.

P,(X) = kn n"
i=l

has n real roots

a < tl < t2

Cxuti)  9 kn ’ 0,

< . . l <t/b.

The roots of the orthogonal polynomials play an important role in

-Gaussian quadrature.

.

Theorem: Let f(x) E C2N[a, b], then

(1.1)

s” cu(X)f(X)dX  = e Wj’(tj) ’ ~, (a < 5 < b),

a j=l .

where
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5+1 1
pN+l(tj)Pv t*) '

N( 3

dPN(t)
Pi F dt -. 9 j = 1, 2, ooo, N q

t t.=;
J

Thus the Gauss quadrature rule is exact for all polynomials of degree

< 2N-1 0 Proofs of the above statements and Theorem can be found in

Davis and Rabinowitz [4], chapter 2,

Several algorithms have been proposed for calculating

Cwj9 tjlr=l~ cf @I, is910

In this note, we shall give effective numerical algorithms which are

based on determining the eigenvalues and the first component of the

eigenvectors of a symmetric tri-diagonal matrix.

2. Generating the Gauss Rule

-
Any set of orthogonal polynomials, cPj(x) )~=19 satisfies a three

term recurrence relationship:

p,,,(X) c ("J+r + bj+l) Pj(x) - Cj+lPj-l(x) (2.1)

j = 0, 1, 2, ..ej N-l; P-,(x) = 09 P,(X) = 19

with

aj > 0, c.>o,
J

3



The coefficients {a., b., cj] have been tabulated for a number of
3 3

weight functions 4x) 9 cf[6]. In section 4 we shall give a simple

method for generating (aGj b,, c;] for any weight function.
J J J

. .

Following Wilf [lo], we may identify (2.1) with the matrix equation

X

P,(X)

P,(X)

.

.

.

PN-1 x( 1

-bl/y9 l/al9 0

c*/ap +*/a*9  l/a,

0 .

0

L

. .

. .

.

0
. lb&

Pl(4
.
.
.

pN..,1 x;( 1

-I
IN x( )/ all

or9 equivalently in matrix notation

x-&b) = TR(X) + L PN(x)sN
e aN

where T is the tri-diagonal matrix and zN = (0, 0, ..,) 0, l)Te Thus

p&J) = 0 if and only if

where t .
3

is an eigenvalue of the tri-diagonal matrix T . In [ld,

it is shown that T is symmetric if the polynomials are orthonormal.

If T is not symmetric, then we may perform a diagonal similarity
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transformation which will yield a symmetric tri-diagonal matrix J .

Thus

DTD
-1 =J=

where

1 . ..
0

a. = - bi
1 ii-'i

Bi =

. .
. 0

Ci-1
2

i+l .
a.a1 i+l

(2.2)

It is shown by Wilf [lo] that as a consequence of the Christoffel-

Darboux identity

Wj[Q(tj)  lT[~(tj)  I = ’

j = l9  ”
*..y

~

(2.3)

where g(tj) corresponds to the normalized eigenvector  associated with

the eigenvalue t. .
J

Suppose that the eigenvectors of T are calculated

so that

J3j
= tjaj- j = 1, 2, qeej N cm
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with

T
LL$Lj = 1.

._

Then if

(2.5)
2

'Oj '- wj(PO(tj))2

by (2.3! 0 Thus from (LL), we see

2 2

w5 z ,2cG.L=% *
P&) k;

=qoj xSbm(x)dx=L$j XVo.
a

(2.6)

Consequently, if one can compute the eigenvalues of T and the first

component of the orthonormal eigenvectors, one is able to determine the

Gauss quadrature rule.

;. The Q-R algorithm

One of the most effective methods of computing the eigenvalues and

eigenvectors of a symmetric matrix is the Q-R algorithm of Francis [5].

The Q-R algorithm proceeds as follows:

(0)Begin with the given matrix J = Jo , compute the factorization

J (0) = Q(O!R(0)

6



where Q co)  TQ(“) =I and R (0) is an upper triangular matrix, and

then multiply the matrices in reverse order so that

J (1) = R(O)  Q(O) = Q(‘iT~(‘)~(‘)
0

Now one treats the matrix J (1) in the same fashion as the matrix (0)
J 9

and a sequence of matrices is obtained by continuing ad infinitum, Thus

Ji( ) = Q(dRb-)

9

--. J(i+l) = ,b)Qb) = Q(i+l)R(i+l)

so that

= Qb-jTBbdT
a . e

Q(“)TJQ(o)Q(l)  Qb)
0 .a 0

(301)

(34

Since the eigenvalues of J are distinct and real for orthogonal poly-

. nomials, a real translation parameter h may be chosen so that the
.

eigenvalues of J i( 1 - h1 are distinct in modulus. Under these conditions,
.

it is well known [5] that J i( 1 - hI converges to the diagonal matrix of
.

eigenvalues of J - hI as i 3 ~3 and that P i( 1 F Q(O) x Q(l) x e * . x Qci)

converges to the orthogonal matrix of eigenvectors of J . The method
.

has the advantage that the matrix J i - h1 remains tri-diagonal( 1

throughout the computation.

Francis has shown that it is not necessary to compute the decomposi-

tion (3.1) explicitly but it is possible to do the calculation (3X)

directlye Let
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di)l, 1 = IQ
f

( 1
ilk1Y

(k = 0, 1, .*o, N-I-),

.
( i,e., the elements of the first column of S 1( 1 are equal to the. .

elements of the first column of Q (i) ). Then if

i)

ii)

iii)

iv)

KC i-4
=

,(i)TJ(i)s(i)

9

&+I) is a tri-diagonal matrix,

Jic 1 is non-singular,

the sub-diagonal elements of K (i+l) are positive,

it follows that K (i+l) = Jb+‘) .

For the tri-diagonal matrices, the calculation is quite simple.

Dropping the iteration counter i, let

1

1

0 0 0’  0

0

(P)

.

cos 8
P

sin 8
P

0

Then cos el is chosen so that

sin 8
P

-cos Q
P

.

0
1

1
-

(P)

(Pi-l) o

121Jl, 1 = 0 k = 2, 3.,
9

0 l ., N n



Let

J=

--.

The matrix

zlJzl =

al

bl

0

3

ai

bi

bl
0

a,2 b2

0 0

.

0

. .
0

b; dl

a; b; 0

b; a3 b3

0
b3 l

. . bN-

0
Q

bN-l aN

0
. 0 bN

bN-l aI3

-

i-l

where the primes indicate altered elements of J; then
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K = z
N-lZN.w2 �**  f 1 l  - �  �☺&ml

z �Z

and ‘29 o"", ZN-1 are constructed so that K is tri-diagonal0 The. .

product of all the orthogonal rotations yields the matrix of orthogonal

eigenvectors. To determine cw.3
N

J j=l' however, we need only the first

component of the orthonormal  eigenvector. Thus, using (2.3)

h-()19 4029 0ee9 q()N] = ☯b �, �, l **, �1 � j. (�1
(0 ⌧ z(i>⌧..  l ⌧ ,(i))2 N-l=

and it is not necessary to compute the entire matrix of eigenvectors.--.

More explicitly, for j = 1, 2, .o., N-l

sin 8 ( i 1
j

= d;i!/[\dJ!il)2  + (i;J!i;)21*,

@OS 8 ( i 1
j

= $i;/[(d$2 + (i;j(i;)2$j

( 1i-f- - i
a, 1 ( ) ( 1i ( )i ( 1i--- a. cos* ,(i) 4)+ 2b cos 0 sin 8 + a sin* &i
J J 3 3 3 j j+l 3

.

-( i 1 -(i) 2 ,(i) *;(i) ( i 1 ( i 1 ( 1i
aj+l z aj.sl, @OS j

+
j

cos 0
3

sin 0
3

+ aj+l
sin* e(i)9

d

1
Y

,(i+lj F(i)
j-l = "j-1

cos 8 sin 0 (i) c ~(b(~))* + (d(i))2]h
j-l j-l

b-i‘ = (=-a i( 1
0

( > ( )i ) sin 0 ( )i cos 8 ( )i + 7 b i- aj+l 1 2 -
3 3 3 3 3 (sin

,(i)
j

cos*
&)) j '

-i
b ( 1 ( )i
j-t1 7' -bj+l cos 0 ( )i

3 '
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with

so that

( > ( 1 ( 1do1 t-z bli ., coi

(0).z1 - J-Y (0)zj = O

(i) TZN
* ($

( ( )iz
al

fw j

as i'

, (2))

0 0 ., N

In the actual camputation, no additional storage is required for

&I, ,(i), i;(i), $1
J 3 3 3 ')-0

5 IX'CX they may overwrite

(a0, ,(i), ,b)
J 3 3 '* l

I
we LthL.~St? A it( 1 as an approximation to an eigenvalue; usuaUy, it is

re1af.i. 3 TV the eigenvalues of the matrix
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( 1iWhen bN,1 is sufficiently

is replaced by N-l .

I .

( 1i ( 1i
aN-l 'bN-l

( )i
bN-l

( )i
aN . .

L .

.

small, ( 1i
aN is taken as eigenvalue and N

4. Determining the Three Term Relationship from the Moments

For many weight functions, the three term recursion relationship of

the orthogonal polynomials have been determined. In some situations,

however, the weight function is not known explicitly but one has a set

of 2N-t1 moments, viz.

pk = f cu(,)xkdx k = 0, 1, . . . . 2N .
a

Let

D
3

= det

M = %'
...

3

'j+l
..
.

:

'N+l

J

9.
..

'2N

9 3 = 0, 1, r.., N-l,



and

c1*� I-+ l **,

I

�j-1� "j+l-

F. = det
☯-liY  ~2’ "'Y  ~jY 'j+2

3 . .

It is shown in [l] that

1 j = 1, 2, . . . . N-l .

xPj(x)--. = pj-lpjml(x> + ajPj(x) + BjPj+l(x) (4.1)

for j = 1, 2, l * �, N

where

F
a. = 'D j-1 - Fj-2
3

(F

j-l j-2'
D -1

j = 1, 2, . . . . N

0 -1 = 1, Do = II,) j = 1, 2, . . . . N-l O

Note that the tri-diagonal matrix so generated is symmetric.

1 In [7], Rutishauser gives explicit formulas in terms of determinants

for the Gauss-Crout decomposition of a matrix. We may use these relation-

ships to evalute the coefficients

N N-l
1 3a.

J j=l'
CB I. .

J j=l

Let R denote the Cholesky decomposition of M so that



M
T= R R

and R is an upper triangular matrix whose elements are. .

r =
ii (mii - % rEi)'

i=l
and

i-l
r m cij - k=l

i < j,

for i and j between 1 and n .

--.

Then, from the formulas of Rutishauser

cl. =
'j,j+L - rj-l, j

3 'j,j rj-l,j-l
3 = 1, 2, . . . . N

7

Bj =

rtj+l,cj+l

'j,j

3 = 1, 2, . . . . N-l
J

(4.2)

(4.3)

with r0'0 = l' rO,l =
0 .

There are other means for evaluating (a! ), (pj] but it is the
j

opinion of the authors that the above method will lead to the most

accurate formulas.

50 Description of Computational Procedures

In the following section there are three ALGOL 60 procedures for

performing the algorithms presented above. We have tried to keep the

identifiers as close to the notation of the equations as possible without
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sacrificing storage or efficiency. The weights and abscissas of the

quadrature rule are the result of the procedure GAUSSQUADRULE which

must be supplied with the recurrence relation by either procedure
. .

GENORTHOPOLY or procedure CLASSICORTHOPOLY . The former requires the

moments of the weight function and the latter the name of the particular

orthogonal polynomial. A short description of each procedure follows.,

CLASSICORTHOPOLY produces ~0 and the three term recurrence

relationship (a., b cj)
J j'

for six well-known kinds of orthogonal

polynomials:

KING = 1, Legendre Polynomials P,(x) on [-1.0, +l.Ol,

44 = 1.0 .

KIND = 2, Chebyshev Polynomials of the first kind T,(x) on

[-1.0, +1.01, CD(x) = (1-x2)-$ l

KIND=3, Chebyshev Polynomials of the second kind V,(x) on

c-1.0, +1.0], w(x) = (l-x2)+& .

KIND = 4, Jacobi Polynomials nP(a'p)(x)* on [-1.0, +l.O]'

4x1 = (l-x)a(l+x)@ for cx > -1 and @ > -1 .

IKIND = 5, ( 1Laguerre Polynomials L," (x) on LO, +4,

w ( x )  = ewxxa for a > -1 .

2
KIND = 6, Hermite Polynomials H,(x) on [-a, +a], m(x) = e-x o

Notice that this procedure requires a real procedure to evaluate

the gamma function P(X) .

15



GENORTHOPOLY uses the 2N+l moments of the weight function which

are supplied in JfUXl through Md=!@N] to compute the CX~'s and p.'s
J

of formula (4.1). First, The Cholesky decomposition (formula 4.2) of the._

moment matrix is placed in the upper right triangular part of the array

R’ then the formulas (4.3) are used to compute the cx 's and p.'s
3 J

which are placed in the arrays A and B respectively.

GAUSSQUADRULE has two modes of operation controlled by the Boolean

parameter SYMM which indicates whether the tri-diagonal matrix is

symmetric or not. When the recursion relation is produced by GENORTHOPOLY,

SYMM is true; when produced by CLASSICQRTHQPOLY, SYMM is false. If--_

SYMM is false, the matrix is symmetricized using the formulas (2.2). The

diagonal elements ai are stored in A[I] and the off diagonal elements

'i are stored in B[I] .

Beginning at label SETUP, several calculations and initializations

are done: the Ll norm of the tri-diagonal matrix and the relative zero

tolerance are computed; the first component of each eigenvector W[I] and

the Q-R iteration are initialized. LAMBDA is a variable subtracted off

the diagonal elements to accelerate convergence of the Q-R iteration

and control to some extent in what order the eigenvalues (abscissas) are

found. It begins with a value outside and to the right of the interval

containing the abscissas (=NORM) and moves to the left as the abscissas

are found; thus the abscissas will be in ascending order in the array T

(just to be sure an exchange sort is used at label S@RT ).

The maximum (EIGMAX) of the eigenvalues ( LAMBDA1 and LAMBDA2 )

of the lower 2 X 2 submatrix is compared to the maximum (RHO) from

the last iteration. If they are clase, LAMBDA is replaced by EIGMAX .
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<’

This scheme seems to stabalize LAMBDA and speed convergence immediately

after deflation.

An eigenvalue has been found when the last off diagonal element falls
. .

below EPS (see section 7). Tts value is placed in T[I] and the corre-

sponding weight W[I] is computed from formula (2J). This convergence

test and the test for matrix splitting are done following label INSPECT  l

Only the Lower block (from K to M ) needs to be transformed by the

Q-R equation given in formulas (3.3) q



6. The ALGOL 60 Procedures



Procedure classicorthopoly(kind, alfa, beta, n, a, b, c, muzero);

value kind, n, alfa, beta;

integer kind, n; real alfa, beta, muzero;

real array a, b, c;PP . .

begin comment This procedure supplies the coefficients  of the three term

recurrence relationship for various classical orthogonal polynomials.  ;

integer i; real abl, pi;

switch swt := legendre, chebyshevl, chebyshev2, jacobi,.m. _-I. -

laguerre, hermite;

Pi ,"= 3.14159265359;

legendre: muzero := 2.0;

comment P(x) in [I-l, 11, w(x) = 1.0

for i.:=l step 1 until n do

begin a[i] := (2xi-1)/i; b[i];=O;

go to return;--

chebyshevl: muzero :=pi ;

;

c[i];=  (i-1)/i end;

comment T (x) in [-1, 11, w(x) = (l-x+2)$(-.55)  ;

for i:=l step 1 until. n do

begin a[i] := 2; b[i] := 0; c[i]:-1 end;

la[i] := 1; go to return;

chebyshev2: muzero := pi/?.*;

comment u(x) in E-1, 11, W(x) = (l-xR2)'F  .5;

for i:=l step 1 until n do

begin a[i] := 2; b[i] :=O; c[i] := 1 end;



jaxcobi: muzero:I-2$ (a2f'a+bcta+1)Xgamma(alfa+-1)~arnma(beta+l)

/gamma(alfa+beta+2)  ;

comment P (al.fa,beta)(x) in [-1, 11, w(x) = (I-x)talfaX(l+x)ebeta

alfa b -1 and beta 1 -1 ;
. .

a[i] :c OJx(alfa+beta+2); b[i] := OJx(alfa-beta);

for i:c2 step 1 until n do

begin 2'3 1 ; = 2xi.x( i+alfa+beta);

aCi1 7 (2X3-alfa+beta-1)X (2xi+aMa+beta)/abl;

end;

go to return;- -

laguerre: muzero := gamma(alfa+J-.O) ;

comment E(alfa)(x) in [0, infinity), w(x) = exp(-x)Xxkfa,

alfa > -1;

for i:=l step 1 until n do

b[i] ::(2Xi.-l+alfa)/i;begin a[i];= -l/i;
c:i]. := (i-l+alfa)/i;

end;

go to return ;-m

hermite: muzero := sqrt(pi);

comment H (4 in (-infinity,+infinity), w(x) = exp(-x?2) ;

for i;r: 1 step 1 until n s

begin a[i];‘2; b[i] z-0; c[ i] ;z 2x( i-l) end;

return: end classicorthopoly ;

’ c;_!_



procedure genorthopoly(n, mu, a, b);

value n; integer n;

real qray mu, a, b;

beginGent Given the 2n+l moments of the weight function,

generate the recursion coefficients of the orthogonal

polynomials. ;

real array-- r[O:n+l,O:n+l];  real sum ;

integer i, j, k;

comment Place the Cholesky decomposition  of the moment matrix in r[];

for i:=l step 1 until n+l do

for j::i step 1 until n+l dr- -
. begin sum:= mu[i+j-2] ;

for k:=i-1 step -1 until 1 doP -

end;

e n  sqrt(s7x.n)  else sum/r[i,i?);

comment Compute the recursion coefficients'from the decomposition r[];

r[O,OJ := 1.0; r[O,l] := 0;

for i:=O step 1 until n+l do-.
a[n] := r[n,n+l]/r[n,n] -r[n-l,n]/r[n-l,n-l] ;

for j: =n-1 ste? -1 until 1 do

begin b[j] := r[ j-i-l,j+l] /rL3,j3;

a[j] := CLWl/rCj,jl-r[  j-1, j]/r[ j-l&l];

end ;

end- genorthopoly ;
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procedure gaussquadrule(n, a, b, c, muzero, symm, t, w);

value n, muzero, symm;

integer n;real muzero; boolean symm;

real array a, b, c, t, W; . .

c o m m e n tbegin Given the coefficients a, b, c of the three term recurrence I

relation : p[k+l] = (a[k+l]x+b[k+l])p[k]-c[k+l]p[k-11, this procedure

computes the abscissas t and the weights w of the gaussian type

quadrature rule associated with the orthogonal polynomial by &Ti

tY? iteration with origin shifting;

integer i, j, k, m, ml;

real norm, eps, ct., st, ct2, st2, SC, aa, ai, aj, a2, eigmax, lambda,

lambdal, lambda2, rho, r, det, bi, bj, b2, wj, cj;

boolean ex;

real procedure max(x,y); value x, y; real x, y;

max := if xay then x else y; '

if symm then & & setup;

comment Symmetrize the matrix, if required.; ,

for i:=l step 1 until n-l &

. begin ai := a[i]; a[i] := -b[i]/ai;

b[i] := sqrt(c[i+l]/(aixa[i+l]));

end;

a[nj := -b[n]/aCn];

comment Find the maximmn row sum norm and initialize W[ I;

setup : h[Of :T= 0; norm := 0;

for i :=l step 1 until n-l do

.bot~:m3 norm := max(norm, abs( :: ! .i:] ) -+nbs(b[:i  -11) +abs(b[i-11));

wCi.1 r- 0;



end;

norm := max(norm, abs(a[n])+abs(b[n-11));

WC11 := 1.0; w[n] := 0; m := n;

eps:=norm><l.O x81(-13); comment Relative zero tolerance:-.

lambda := lambda1 := lambda2 := rho := norm;

comment Look for convergence of lower diagonal element;

inspect:F if m=O m go to sort else i := k := ml := m-l;

if abs(b[ml])seps  then

begin t[m] := aim]; w[m] := muzeroXw[m]T 2;

rho := (if lambdal(lambda2 then lambda1 else lambda2);

m := ml;--. 0 to inspect;

end;

comment Small of diagonal element means matrix can be split;

for i:=i-1 while abs(b[i]))eps do k := i;

comment Find eigenvalues of lower 2x2 and select accelerating shift;

b2 := b[ml]?2; det := sqrt((a[mi]-a[m]l?2+4.0xb2)  ;

aa := a[m.ll+a[m];

lambda2 := 0.3x(if aa&O then aa +det else aa-de-t);

- lambda1 := (a[mL]>a[m]-b2)/lambda2;

eigmax := max(lambda1,  lambda2);-.

if-abs(eigmax-rho)LO.l25Xabs(eigmax) then lambda := rho := eigmax

else rho := eigmax;

comment Transform block from k to m;

cj := b[k]; b[k-l] := a[k]-lambda;

for j:=-k step 1 until ml do

22



begin r := sqrt(cj$'2+b[j-1]?2)  ;

st := cj/r; st2 := st?2;

ct := b[j-l]/r; ct2 := ct$2;

SC := s-tXct; aj := a[j];

W := b[j]; wj := w[jl;

djl := ajXct2+2.0xbjXsc+a[j+l]Xst2;

b[jl := (aj-a[j+l])Xsc+bjX(st2-ct2);

a[j+l] := ajXst2-2.0XbjXsc+a[j+l]xct2;

c 3 := b[j+l]Xst; b[j+l] := -b[j+l]Xct; b[j-l] :=r

wCj] := wjXct+w[j+l]Xst;  w[j+l] := wjXst-wlIj+llXct;

end; --.

b[k-l] := 0; -go to inspect;

comment Arrange abscissas in ascending order;

sort: for m:=n step -1 until 2 &

begin ex := false;

for i:=2 step 1 until m &

if t[i-l]>t[i] then

begin r:= t[i-13; t[i-11 := tf il;
Ti]:= r; r:=w[i-1-j;

w[i-11 := w[i]; w[i] :=r;

ex:= true ;-- -

end ;

if -I ex then go to return ;-WV

end;

return : end gaussquadrule  ;



7. Test Program and Results

The procedures in section 6 have been extensively tested in Burroughs

B5500 Algol and IBM os/360 Algal There are two machine dependent items

which must be mentioned. First, the constant used to define the %elative

zero tolerance" EPS in procedure GUASSQUADRULE is dependent on the

length of the fraction part of the floating-point number representation

( = B-l3 for the 13 octal digit fraction on the B5500, and = 16
-14

for

a 14 hexadecimal digit long-precision fraction on the IBM 360). Second,

the moment matrix M defined in section 4 usually becomes increasingly

ill conditioned with increasing N . Thus the round-off errors generated

during Cholesky decomposition in GENORTHOPOLY cause an ill conditioned

M to appear no longer positive definite and the procedure fails on

taking the square root of a negative number.

The procedure GAUSSQUADRULE proves to be quite stable and when

the recursion coefficients are known or supplied by the procedure

CLASSICORTHOPOLY it loses only several digits off of full-word accuracy

even for N = 50 . Procedure GENORTHOPOLY usually failed to produce

the recursion coefficients from the moments when N was about 20 for.

the IBM 360,

The test program given below is designed to compare the two methods

of generating the quadrature rules--from the moments or the recursion

coefficients. N can be increased until GENORTHOPOLY fails. Numerical

results may be checked against tables for Gauss-Legendre quadrature in [9]

and Gauss-Laguerre quadrature in [2]. In the Table, we compare the

abscissas and weights of the Gauss-Laguerre quadrature rule with

CX= -0.75 and N = 10 computed by (1) the analytic recurrence



,* . .1.
I.

. . ,I

relationship and the Q-R algorithm; (2) the moment matrix and the Q-R

algorithm; (3) Concus et. al. [2].w- The calculations for (1) and (2) were

performed on the IBM 360.
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begin

comment Driver program for gaussrule;

real array a, b, c, mu, t, w[O:lO];

real muzero; integer i, n;

n := 10; . .

comment Legendre polynomials. ;

outstring (1, 6- legendre quadrature.');

classicorthopoly(1,  0, 0, n, a, b, c, muzero);

gaussquadrule(n,  a, b, c, muzero, false, t, w);

. outstring(1, 4. abscissas: '); outarray (q);

outstring(1, 6weights:J ); outarray(l,w);

for i:=O step 1 until 2xt-1 do mu[i] := 0;

for i:=O step 2 until 2Xn & mu[i] := 2.O/(i+l);

genorthopoly(n, mu, a, b);

muzero := mu[O]; ,

gaussquadrule(n,  a, b, c, muzero, true, t, w);

outstring  (l/abscissas?  ); outarray (1, t);

outstrjnq(1, 6 weights:3 ); outarray(1, w); ,

comment Laguerre polynomials. ;

. outstring(1, 'laguerre quadrature. alpha =-0.5’ );

classicorthopoly(5,  -0.5, 0, n, a, b, c, muzero);

gaussquadrule(n,  a, b, c, muzero, false, t, w);

outstring  (1, ' 4abscissas : ); outarray (1, t);

outstring (l/weights: Y ); outarray (1, w);

muI: := muzero := 1.7724538509 ; comment gamma (0.3);

for i;=l step 1 until 23.n do

mu[i] := (i-O.?)>onu[i-11;

ger;orthopoly(n, mu, a, b);

gaussquadrule(n, a, b, c, muzero, true, t, w);
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nutstring(l, ‘ abscissas:'  ); out.array (1, t>;

outstring(l, c weights: 9 ); outarray: (1, w);

end;
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