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ABSTRACT -

We introduce a new three-stage process for calculating

the zeros of a polynomial with complex coefficients. The algor-

ithm ts similar in spirit to the two-stage algorithms studied

by Traub in a series of papers, The algorithm is restriction

free, that is, it converges for any distribution of zeros. A

proof of global convergence is given.

Zeros are calculated in roughly increasing order

of magnitude P;G avoid deflation Instability. Shifting is

incorporated in a natural and stable way to break equimodularity

and speed convergence. The three stages use no shift, a fixed

;'5 'P. r: I?& and a variable shift, respectively,

Tc obtain additional insight we recast the problem

and 3LPgorithm into matrix  form. The third stage is inverse

iteration with the companion matrix, followed by generalized,

Rayleigh iteration,



ii

A program implementing the algorithm was written

in a dialect of ALGOL 60 and run on Stanford University%

IBM 360/67. The program has been extensively tested and

testing is continuing. For polynomials with complex

coefficients and of degrees ranging from 20 to 50, the time

required to calculate all zeros averages 8n
2 milliseconds.

Timing information and a numerical example are

provided. A description of the implementation, an analysis

of the effects of finite-precision arithmetic, an ALGOL 60

program, the results of extensive testing, and a second

program which clusters the zeros and provides a posteriori

error bounds will appear elsewhere.
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1. INTRODUCTION

We introduce a three-stage algorithm for calculating

the zeros of" a polynomial P,

n

P(z) .=
c

a znwii ' ao = 1, an f 0,
i=O

J

P(z) = mi

TT CZ-P$ l

i=l

7%~ eond-jtj.on -^,l.
aO

=T 1 Ps for convenience only. The coefficients

are In general complex. The algorithm involves iteration in

the ::omplex plane, Elsewhere we shall analyze the appropriate

analogue for polynomials with real coefficients (and complex

conjugate zeros) which uses only real arithmetic,,
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The zeros are calculated one at a time and zeros

of multiplicity m are found m times. The zeros are found in

roughly increasing order of magnitude to avoid the

instability arising from deflation with a large zero

(Wilkinson [lo]).

The algorithm is similar in spirit to the two-stage

algorithms proposed by Traub [-61, [7'], [S]. In [6] Traub

gives a class of always convergent algorithms for calculating

the largest zero. An instance of the class of algorithms

given in [6] follows. Notation has been modified to agree

with the notation of this paper.

Let

G (O)(z) = P'(z),

(1.2)

G(h+l)(z) 04=zG (Z)‘a (h) P(z), A = O,l,...,L-1

where cx 0 is the leading coefficient of G (l)(z). Let z. be

arbitrary and let

0.3)

where

z~+~ = zi - R

R (L) (z) = a (L)P(z)/G(L)(z).
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If P(z) has a largest zero and if L is sufficiently large and

fixed, then this iteration converges to the largest zero,

The appropriate modification of thEs algorithm for

the case of a pair of complex conjugate zeros was announced

In [8] Traub gives the following algorithm for cal-

culating the smallest zero. Let

(1.4) *

(0)H z( > = P'(z),

f&A+‘)(z) ’=-
Z

_ H(h+o) p(z)
P(0)

I
9 A = q!l,..*,L-1,

Let z. be arbitrary and let

0.5) Zi+l = zi - v 04 ( 1Zf 9

where

- dL)(Z) f @(L)p(Z),jj-$L+z),

and !3 ( L) is the leading coefficient of H ( L) (z). If' P(z) has

a smallest zero and if L is sufficiently large and fixed, then

the _",.teration  converges to the smallest zero.
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1.

2.

39

4.

5.

The implementation by Jenkins and Traub of a general

polynomial solver based on two-stage algorithms is described

in [3]. Separate procedures are used depending on whether

there are one or two smallest zeros. If there are more than

two distinct smallest zeros, a process of "double translation*'

described in Section 6 of [3] is used to break up the

equimodularity.

The two-stage algorithm implemented in [3] has the

following desirable characteristics:

The mathematical algorithm is restriction-free,

that is, it converges for any distribution of zeros.

Zeros are calculated in roughly increasing order of

modulus; this avoids the instability which occurs

when the polynomial is deflated with a large zero.

The final stage is an iterative process and thus

has the desirable stability features of iterative

processes.

Few critical decisions have to be made by the program

which implements the algorithm.

The algorithm is fast except for polynomials with

many nearly equimodular zeros.
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The three-stage algorithm introduced in this paper

enjoys the first three characteristics, improvedfourth and

fifth characteristics and a new characteristic.

4r

5’

6.

The number of critical decisions is further reduced,

The algorithm is fast for all distribution of zeros,

Shifting is incorporated in the algorithm itself

in a natural and stable way, Shifting breaks equi-

modularity and speeds convergence.

We summarize the contents -of this paper,, The main

properties of fixed and variable-shift H polynomials are

given in Sections 2 and 3 and the mathematical algorithm is

stated in Section 4, Global convergence for an arbitrary

distribution of zeros is proven in Section 5 and the quadratic

character of the convergence is established in Section 6.

In Section 7 we recast the problem and algorithm

in matrix form and prove that Stage Three may be vIewed as an

efficient process for carrying out inverse powering using

a companion matrix with shifted eigenvalues and generalized

Rayleigh iteration. Although we are dealing with the case of

a non-Hermitean matrix with nonlinear elementary divisors, the process

does r& suffer from the customary (Ostrowski [5])slow convergence.

In SectIon 8 we prove that the third stage is

precisely equivalent to Newton-Raphson iteration applied to

a sequence of rational functions converging to a linear



polynomial. It is a Newton-Raphson iteration even though

no differentiation is performed.

Our focus in this paper 1s on the mathematical

algorithm and its properties., Timing information and a numerical

example are provided. A description of the implementatfon,  an

analysis of the effects of finite-precision arithmetic, an

ALGOL 60 program, the results of extensive testing, and a second

program which clusters the zeros and provides a posteriori

error bounds will appear elsewhere.- In Section 9 we do discuss

a number'of important points pertaining to stability and

decisions to be made by the implementing program, In the final

section we give a small numerical example.
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2. FIXED-SHIFT H POLYNOMIALS

We introduce fixed-shift H polynomials and prove a

number of their properties. Let H(')(z) be a polynomial of

degree at most n - 1. Let s be a complex number with

P(s) # 0. Define the sequence

(2.1)

H(l+l)(z) = 'z - H
04
P(s 1") P(z)1 , ')\ = O,l,... .

The H0) (z) are polynomials of degree at most n - 1.

Define

The properties of H(h)(z) foil ow from the following lemma

which is easily proven by induction.

LEMMA. Assume

(0)H z=( ) c~O),i(z).
i=l

Then for all h,

(2.3) (h)H z=( )
(0)

ci (P I-S)-h.PI(Z).

i=l
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Note that the assumption about H(O)(z) is equivalent

to assuming that the partial fraction expansion of

H(')(z)/P(z) has only linear terms. We will ensure this by

taking H (z) = P'(z).(0) A matrix formulation of this is given

in Section 7.

We define

H
04

(z) = . H

(M(
4

e

?
(0)

(P

-A

L 9

I-‘)

i=l

Thus F(')(z) is H(h) (z) divided by its leading coefficient.

Our interest in H polynomials is due to the following theorem

-which follows from (2.3).

THEOREM. (0)Assume cl f 0.Let s be such that

Ipl-sI < lpi-s& i = 2,...,j.  Then for all finite z,

(2.4) 1imX 04
h+rn

(z) = P,(z).

Observe that (2& may- be written as

(2.5)
p(z)

;ymz - $Tqj- = Pl'

(The zero labelled  pl depends on the choice of s.)

The rate of convergence depends on max[lpl-sl/lpI-sl  1. This

suggests that s be changed to be the best available approxima-

tion to pl. This leads to the idea of 'variable-shift H

polynomials.
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3. VARIABLE-SHIFT H POLYNOMIALS

Let EI (O)(z) be a polynomial of degree at most n - 1.

Let so be a complex number with P(s,) f 0. Define the sequence

H('+'+,) = 1z-s h

H0) ( 1
- & P(z) ,

h 1

h = OJ,... c If E'(s$ = 0, terminate the calculation. The

H (h) (z) are polynomials of degree at most n - 1. There should

be no eonfusion from using the same symbol for the sequences

generated by (2.1) and (3.1). The following lemma is easily

verifki .

LEMMA. Let

(0)H z=( ) ciO)P,(z).

Then for all h,

0)H z=( 1
i=l

(3.2) A-l'
0)

ci = ic(O) g (ppt) -l.

t=o



--
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We defer the investigation of the convergence of

the variable-shift process to Section 5.
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4. THE ALGORITHM

We motivate the three-stage algorithm described

below. In Stage One, we calculate a sequence of fixed-shift

H polynomials with s = 0. This is the no-shift process, The

purpose is to make the smaller zeros stand out. (See

Section 9.) If there is a smallest zero, we obtain con-

vergence according to the theorem of Section 2 an&the

fixed-shift calculation of Stage Two is not necessary.

Howeve!r, rather than testing for convergence of

the no-shift H sequence, we terminate Stage One after a small

number of steps and enter Stage Two where we calculate a

sequence of fixed-shift H polynomials using a complex number s

-whose madulus is less than the smallest zero and whose ampli-

tude is randomly chosen. (See Section 9). There are only

a finite number of points on the circle Izl = Isi which are

equidistant from two or more zeros. According to (2.5) the

sequence

p(s)5 = s - f$qs)

will converge to the zero closest to s, provided there is such

a zero. As soon as (t,)

Section g), we are ready

passed when A = L. Then

and this is the starting

passes a. convergence test (Bee

to enter Stage Three. Let the test be

S - P(s)/dL) (s) should be close to pl

value of the shift for Stage Three.

These shifts should converge very rapidly to pl (see Sections

5 and 6).
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The algorithm is used to calculate a

zero of P, After each zero is found, the polynomial

iS deflated and then the algorithm is applied to

the deflated polynomial,, Hence P represents either the original.

polynomial or a polynomial obtained by deflation.

Stage One. No-Shift Process .e

H(')(z) = P?(z),

_ @‘(O)
P(0) P(z) 1 9 h = O,,l,...,M-1.

Stage Two. Fixed-Shift Process.

positive number such that

such that IsI = 6 and such that

Take B to be a

B 5 minIpi and let s be

(4.2) Is-P-1 I <

Let -

Is-p&, i = 2 ,..., 3.

H(+)(z) 04H z( )
H 0) ( 1
$T$- p(z) 1 9 h = M,M+l,. 0. ,L-l D



Stage Three. Variable-Shift Process.

Take

and let

H(h+l)(z) = ’
z-s h

- 13 -

9 A
( )

= L,L+l,... .
%

There are a number of iterative processes used in

the algorithm. In each of the three stages there is an

iteration producPng a sequence of polynomials. Regarding the

vector of coefficients as basic, we refer to these iterations

as vector iterations. In Stage Three we compute a sequence

of shifts, We refer to this as a scalar iteration.
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5. PROOF OF GLOBAL CONVERGENCE

We investigate the convergence of the three-stage

algorithm. We begin by investigating the convergence of the

variable-shift process defined by (4.4).

LEMMA: Assume

i.

ii.

IsL-pl 1 < 3% where R = min 1 pl-pI 1 J
i -

m
Cl fo9

iii. DL =t

i=2

I m
ci I
I,oj1

1
< 3 l

Then sA + pl.

PROOF. We defer to the end of this proof the

demonstration that the iteration is always defined. We show

first that if the iteration is defined, it converges. We

know by (3.2) that

0)H z=( 1 p,(z) 9
i=l

h-l
(A)ci ( L)= ci TT (

-1
P-pt) J 7QL .

t=L'
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Some algebraic manipulation leads to

(5.2)

where

0)
ri

1+
L
i=2

YPl
=

'A-Pi 9

I sh+l-PlJ
,Ish-p11=  TA'

We prove convergence by showing there exists a 7L such that

for all'h 2 L, T,, 2 ~~ < 1. The proof is by induction.

Observe that

Hence

I (’ L)
ri

Iyp1 I
I =,ppy-r(l.
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T, <
t

I dlL) I + f I diL) I
2 2 =

t
l - ) I (L)d, I

1
By hypothesis DL < 3

(5.3)

Then TL L ctL < 1.

Assume now

fort = L,&+l,...,h,

Iy-P1 I

IQ-PI I

. Let

2D,

2DL
TL =iTy

that TL,TL+l,-.'Th-l 5 "L < 1. Hence

( !sL-Pl I < 3RY

> IPy-PII
-

- Ist-p☺ > $R l

Thus

(5.4)

Observe that

I 'it)1 < 1, t = L,L+l,...,A.

0)di (bl)@-‘)= Pi i l

Hence

(5.5)
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From (5.2), (5% (5.41, (5.5) it follows-that T,, 5 rcL < 1

for 3 -2 L which completes the proof of convergence.

We now show that the sequence {sh) is always

well defined for h ZL.

= Plbh)
i=2

i

l+

Pl(sA) # 0 by hypothesis i and the contraction a,rgument. Since,

as we have seen,

rP+qs,) # 0 and the iteration is well ,defined. This com-

pletes the proof of the lemma.
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We now investigate the convergence of the three-

stage algorithm defined in Section 4. The major result of the

paper is given by the following

THEOREM. For all L sufficiently large and fixed, s,, -+ pl.

PROOF. Since H(0) (z) = P'(z), _

(0)H z=( ) mp+) J

and it follbws from (2.3),  with s = 0, that

Then

(L)H z=( ) -(L-M)p (z)
i

4
=
z c$L)P,(z).
i=l

(L)We have cl f 01 Furthermore

Recall that 1 pl-s 1 < I pi-s I.
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Fix M. Then by choosing L sufficiently large we can make

as small as desired.

(5.6)

and

(5.7)

DL =

i=2

I (L)
ci I

-7-T1

Choose L so that

I Ps-1
2DT

I*<@  l

-The condition of (5.7) ensures that IsL-pll, < $R. All the

hypotheses of the lemma now hold and the conclusion follows.
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6. RATE OF CONVERGENCE

(6.1)

Let

C(h) =

In the last section we proved the existence of a number zL

such that for A > 8,-

62)
ISIAh+1-4~
&&-P11

= T,, 5 yL < 1,

where crL = 2DL/(1-DL). We defined R = minlpl-p& The rate
i

of convergence of our algorithm is governed by the following

THEOREM. Let the hypotheses of the lemma of.the

previous section hold. Then

(6.3)

(6.4)

2 h&1)/2
cod 5 R TL l

PROOF. From (5X),

(L+h)d(L+h)ri i
+ d(L+h)

i

=

L A - - - - - - - -
1=2 SL+h-Pi

1 -k t2,[riL")I diLfh) '

=



-21 -

One ma.y verify that for all h and i > 1,

IptL+h) 1 < A 1 2
i - TL’ lsh+L-pII 5 R ’

and

t
IdyAj ‘5 TrL1 h(h-1)/2 .

i=2

Substituting these bounds into (6.4) establishes the theorem.

Thus the process is second order with an error

constant C(A) which approaches zero. This may be contrasted with

the conventional Newton-Ra.phson iteration in which there is

no control over the error constant.

COROLLARY. Let the hygotheses of the lemma of the

previous section hold. Then for h > 0,

I rlsL+h-Pl  I L 3RTL  9

n = +[3.$ - (h2+h+2)].

PROOF. For h = 1 this follows from (6.2), For A > 1

it follows upon substituting (6.3,) into (6.1).
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7. VARIABLE-SHIFT ITERATION IS GENERALIZED

RAYLEIGH ITERATION

We now give a matrix interpretation of our algorithm.

We show that in a matrix'formulation the vector iteration of

, the third stage is inverse powering with a matrix whose eigen-

values have been shifted,while the scalar iteration is gener-

alized Rayleigh iteration.

Let

A =

.

e . 0

. . e

e . e

. . .

. . 0

c . e

be the companion matrix of P. Let

0-

0

0

-an

'-an -1

-an-2

-a 1

(A)H z=( 1
(A)zn-l-i

hi

and

[h(h+T = o.+)
n-l J'W.9



-23 -

Let

n-l
P,(z) = gy =

c
n-l-j

i PijZ *
j=O

Define

T
ill = (PiL+1 ,...,P,O),

T
21 = 0

n-i
,*a*, pi l

)

One may easily verify that for the eigenvalue pi, the right

and left eige,nvectors are Q and qT
-iy respectively.

One may verify that the initial condition

)-= P'(z)

is equivalent to

(0)h =- "i& J
i=l

the fixed-shift recurrence

(7.1) - H(A+l) (z) =



is equivalent to

(7.2)

while the variable-shift recurrence is equivalent to

(7.3) h(h+‘) =
(A+$)

-‘hb)
a

-

Equations (7.2) and (7.3) exhibit the processes as inverse

powering with a matrix whose eigenvalues have been shifted,

This is alsg called inverse iteration (Wielandt [g]). We

show that

-(7.4)

is equivalent to

(7.5)

where _

(7.6)

5+1 =
[g(?) ,Tkh(h+l)
1 s(h)IThTA+l)- -

[p,T = .
(l sh9 y-*.9 q-1) .-

Now (7.4) may be written as

s ,('+')(s
A A

) - h('+')P(s
0 h )

Sh+l = H('+')(s$
.
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Observe that

(7.7) @+l)(s,) = [~b+~h(~+') .

From (7.1),

hi’+,) H(74 ( 1%
= - -q-J- a

Hence.

s H(‘+‘)(S
A \A4

_ hop(S,)
0

= shH(h+1) (sh) + H(h+s,)

= [s(A) ]T(Ah(h+l)  -h(h)) + [s(l) ,Th(h)- -
-

= Ls(h) ]TAh(h+l) .-

Substituting this result together with ('7.7) into (7.6) corn-- ,

pletes the proof.

We summarize this result in a

THEOREM. The variable-shift recurrence

H(h+l)(Z) = ’z-s A
p(q)

%+l = % - j$A+l) ,( )Sh
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is equivalent to

h(‘+‘) = (A-s& _-‘h(‘) 9-

Cs(‘) ITAhh+‘)- -
%+1 =

[
s(h),Th(h+l) O
- -

Observe that h 0) + gl and [s 0) ]T T
- - -+ 9.y Hence (7.5)

is a generalized Rayleigh  iteration (Wilkinson [ll, p. 1791,

Ostrowski [5]) appropriate for non-Hermitean matrices.

However we are in a very favorable position as

Tompared with the usual situation when inverse iteration and

generalized Rayleigh iteration are applied.

1.

2,

5.
4.

No calculation has to be performed to determine

the left eigenvector. It is simply [sW ]T a

Multiple eigenvalues of a companion matrix imply

nonlinear elementary divisors. In general this

leads to (Ostrowski [5]) linear convergence. In

our case multiple zeros do not affect the rate of

convergence (itis still quadratic) and require no

special attention.

The inverse iteration is carried out explicitly.

The initial vector h (0) and all succeeding vectors

h 0) lie in the subspace spanned by the eigenvectors
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of A. Furthermore the h 0) cannot be deficient-

in the eigenvector corresponding'to the eigenvalue

being calculated.

5. Our process is globa.lly convergent to one of the

smallest eigenvalues of A a.nd hence deflation is

carried out under favorable conditions.

Bauer and Samelson [2] have suggested an iteration

which is related to Sta.ge Three of our algorithm. Performance

of an analogous process on a sequence of polynomials of

decreasing degree leads to Bauer's [l] Treppeniteration.
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8. NEWTON-ljAPH$ON ITERATION

We show that the formula

%+1 = % - $h+l)(s
A

)

is precisely a Newton-Raphson.iteration  performed on a cer-

tain rational function. The word precisely in the previous

sentence is to emphasize that the iteration is not merely of

Newton-Raphgon type. We prove the following

THEOREM. The formula

%+l = Sh - ++l)(
Y+l 1

is identical with

W (A) ( )Sh
%+1 = % -

[W%,) 1' ,

where -

0)w z=( ) p(z)
Ho(z)’



c
-
>’

z
d
-
N
c

c-
9
;4(w
-
r”w

II
N
’ P

9”
il

I x I
II

II
c-

>,--
Pm-

X
w-

+

NZ

N

.
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p(s,) P(sA)hbhC1'

%+1 = 5 - j++1)
=

( 1Sh
5 -

V0) ( 15
=
% + kh) (Sh) 1’

TJ$is permits us to regard variable shift iteration in

the followin'g  manner. We are performing Newton-Raphson itera-

-tion on a sequence of rational functions P(z)/H(~'(Z).  For A

sufficiently large, P(z)/H (qz) is as close as desired to a

linear polynomial whose zero i's pl. This shows why the process

is so powerful.

Note that no differentiation is performed in our

calculation of the sequence {sA}. The division by z -s,, has

the effect of differentiation.
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9* IMPLEMENTATION OF THE ALGORITHM

The program implementing the algorithm, a discussion

of how the program makes its decisions, stability of the

algorithm in finite precision arithmetic, the results of

extensive testing, and a program which clusters the zeros and

provides a posteriori error bounds will appear elsewhere.

Here we confine ourselves to a few observations.

The termination of Stage One, that is, the choice

of M, is nomt crucial. Indeed Stage- One is not necessary from

theoretical considerations. The function of Stage One is to

accentuate the smaller zeros. Numerical experimentation

indicates that this makes the decision to terminate Stage Two

-more reliable. In the implementation, M is set at 5, a number

arrived at by numerical experience.

The following three major decisions have to be

made by the program:

1. Selection of the shift s.

2. Termination of Stage Two; that is, the choice of I,.

30 Termination of Stage Three.

We indicate how these three decisions are made.

1. Selection of s.

This parameter is chosen so that IsI = @,

@ ( minlp& i = 1,2,...,3  and so that

(9.1) I S-P1 I < I S-PI I 7 i = 2,...,j.
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A lower bound on the moduli of the zeros due to Cauchy

(Marden [4, p* 98, ex. l]) is given by the unique positive

zero, 6, of the polynomial

z" + 1 alI znF1 + O.e + janWl 1 z - Ian I 6

This number is easily calculated by Newton-Raphson iteration.

The value of s is then chosen by using random numbers from a

uniform distribution to pick a point-on the circle of radius

L It is highly probable that the s so chosen will be

closest to j'ust one of the zeros of P and hence the condition

(9.1) is satisfied. If the condition is not satisfied, the test

described below may not be passed in which case a new value

of s is chosen. Observe that s need not be closest to the

smallest zero of P. It is easy to show that it will be

closest to a zero whose modulus is at most three times the

modulus of the smallest zero. Hence we guarantee that we will

never perform a deflation using a zero which is large compared

to other zeros of P. Thus we avoid a situation (Wilkinson [lo]

which could lead to serious instability.

2. Termination of Stage Two.

We do not attempt to carry out Stage Two far enough

to assure that the conditions of the Theorem of Section 5 are
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satisfied. (These are only sufficient conditions). Instead

we test for the convergence of the sequence s - P(s) /?t (A) (s).

Bperience has shown that it is efficient to terminate Stage

Two after only a very weak test for convergence has been

passed. Let th = s - P(s) /R (')(S). If th, th+19 tA+* are

defined and

then we terminate Stage Two.

If the test is not passed by the time A reaches a

certain value (which itself is varied depending on how many

shifts have been tried), a new value of s is generated with

modulus p and random amplitude.

Since we are using such a weak convergence test for

the sequence, we must allow for the fact that there will be

cases when Stage Three is star&d prematurely with an sL and

H03 which do not lead to convergence. This causes no dif-

ficulty as we observe below. We emphasize that the generation

of a sequence of values of s is only a contingency. In

practice it is very rare that the first s chosen doesn't

serve, and the largest number of trial shifts required in

the course of extensive testing has been three.
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Termination of Stage Three.

As in [3] we terminate Stage Three when the computed

value of the polynomial at sh is less than or equal to a bound

on the roundoff error in evaluating P(s,). Numerical experience

indicates this is a good stopping criterion for polynomial

zero-finding as it stops the iteration just as the limiting

accuracy has been reached. S%nce we expect rapid convergence

of the third stage we place a limit of ten on the number of

iterations. If convergence is not aehieved when this limit is

reached we return to Stage Two with the value of s used the

last time we were in Stage Two unless the limiting value of

A has been re\ached.

We turn to some other matters. We describe how the process

for computing the H polynomials in either Stage Two or Three is

actually carr-l‘ed out, We describe the Stage Three process, the

Stage Two process being entirely analogous.

Rather, than computing the H polynomials by

(9.2) H(h+1)(z)  1=
z-s 1 9

the "scaled recurrence"

FI(0) (z) =; p (4 9

Ifb++) 1=
c z-s

[ I

p(s;)

A
p(z) - l(A) g

0)
(41



- 35 -

I.

is used. This generates a sequence of manic polynomials and

avoids the overflow and underflow problems' which would occur

if (9.2) were used. The use of (9.3) is equivalent to a

method of scaling used by Traub [69 Section 91.

The computation of H-('+1)(z) by (9.3) requ%res 4n

(in general complex) multiplicatfons  and a.dditions. This may

be reduced to 3n by the following observation.

Let

-Then

(9.4)

P(z) = Qi” wz+J + ~(9

f+‘+‘)(z) = Qi’)(z) -
pb,) 0)Q z.
-(h) *

( )

If P(s,) and R(h) (s h ) are calculated by the usual Horner

recurrence, then Q349 QiA'(z) are generated.as a byproduct.

(h)In Stage Two s is fixed, P(s) and Qp (z) are formed just once9

and only 2n (in ,general complex) multiplications and additions

are required per step.

A discussion of stability will appear elsewhere.

Here we limit ourselves to a few observations. The process

of calculating H-('+')(z) by (9.3) is precisely the deflation

of the polynomial
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(9.5) p(z) -

which has a zero at s,, and whose remaining zeros are near the

zeros of P(z)/(z-p,). Because of the way that s and the s,,

are chosen, these numbers are among the smallest zeros in

modulus of the polynomial given by (9.5), which is a desirable

situation.

We use (9.4) rather than (9.3),  in carrying out the

process. Observe that in (9.4) E(')(z) is calculated as the

sum of a pol$nomial which is near P(z)/(z-p,) and a polynomial

with small coefficients which may be viewed as a correction

-term. This is a favorable situa.tion for the control of

roundof f.

The variable-shift stage may be viewed as a non-

stationary iteration. It ha.s the usual desirable stability

properties common to itera.tive processes.



10, NUMERICAL RESULTS

Extensive numerical experimentation, performed on

an IBM 360/67, leads to the timing resultsgiven below,

Additional testing is planned.

For polynomials with real coefficients and of

degrees ranging from 20 to 509 the time required to calculate

all zeros averages 4n 2 milliseconds. Thus a 20th degree

polynomial takes 1.6 seconds, -a 50th degree polynomial takes

10 seconds.

The time for all the real polynomials of degree 20

or greater which were tested ranges from 3n2 to 7n2 milliseconds. .

The polynomials used in the testing range from polynomials with

randomly chosen zeros to polynomials with multiple zeros and

clusters of near equimodular zeros. The fact that the time

required is insensitive to the distribution of zeros is most

encouraging.

The algorithm reported in this paper was not tailored,

for polynomials with real coefficients. Elsewhere we shall

report on an algorithm designed for real coefficients. The

real algorithm cuts the time by a factor of roughly two.

- For polynomials with complex coefficients and of

degrees ranging from 20 to 50, the time required to calculate

all the zeros averages 8n 2 milliseconds.

These figures were obtained from an ALGOL 60 imple-

mentation of the algorithm. A FORTRAN implementation would

be faster.
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For illustra.tion  we exhibit a low degree numerical

example. The purpose of this example is not intended to

prove anything about the efficacy of the algorithm and its

implementation, This has been done through extensive testfng

which will be reported elsewhere,

The example given below has a zero of multiplicity two as

well as three almost equimodular zeros, two of which form a near-

multiple pa!_r,

p(z) = z5 - (13eggg+5i)z4  + (74.gg+55.gg8i)z3

- (l~9.g5g+260.g82i)z2  + (1.95+463.934i)z-

+ (150-199*95Q>

P(z) .= (z-l-i)2(z-4+3i)(z-4-3i)(z-3~~~~-3i).

In calculating each of the zeros below, five no-

shift steps were taken (M = 5). In Table 1 we give the value

of s used in Stage Two, the number of Stage Two steps (L-M),

the value of sL used to start Stage Three and the iterates s
L-r-S

used in Stage Three.8 The program was written in a dialect of

ALGOL 60 and run on Stanford University's IBM 360/67.

Observe that the well-conditioned zero at 4 - 31 is

calculated accurately even though the polynomial has already

been deflated with three ill-conditioned.zeros.
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TABLE 1. A Numerical Exa.mple

Zero (1) s = - -37087 + .1?9o7i, L - M = 2, sL = .ggg$ + 1.00011

3 sL+j

1 ~oooOooooooo426  + .gggggggggg782olj.

Zero (2) s = - .66572 - .093OOli,  L - M = 2, sL = $9975 + l.0005i

3 sL+j

1 .gggggggggg74143 + 1.000000000001g2i

2 .ggggggggggg5742 + l.oooooooooo218oi

Zero (3) s = 1.1968 + .gzol6i> L - M = 4, sL = 4.6023 + 3,o85gi

3 sL+j

1 3.gg42o18ug124o  + 3.oob238o363g2o7i

2 3.ggg4602802234g  + 2.gggg5367186768i

3 3.99939735288312  + 2.999886588791284

4 * 3.gggooo6g46g3gl  + 3.000383503135241

5 3.gg8g2674g82g4o  + ~.000001012817341

6 3.99899965220352  + 2.ggggggi83ol853i

7 3.99899999997589  + 2.gwwm998516i
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Zero (4) s = .267g7 - 2.38811,  I;'- M = 4, sL = 3.8372 - 2.67541

J S
L+3

1 j.gg8616g5624235 - 3.002343341883751

2 4.00000000757741 - 3.00000000435632i

3 4.00000000000000 - 3.000000000000001

ZerQ (5) 4.oooooooooo2411  + 3.ooooooooool484i
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