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ABSTRACT -

W introduce a new three-stage process for calculating
the zeros of a polynomal wth conplex coefficients. The algor-
ithmis simlar in spirit to the two-stage algorithms studied
by Traub in a series of papers, The algorithm is restriction
free, that is, it converges for any distribution of zeros. A
proof of global convergence is given

Zeros are calculated in roughly increasing order
of magnitude to avoid deflation Instability. Shifting is
incorporated in a natural and stable way to break equinodularity
and speed convergence. The three stages use no shift, a fixed
shift, and a variable shift, respectively,

Tc obtain additional insight we recast the problem
and algorithm I Nt0 matrix form  The third stage is inverse
iteration with the conpanion matrix, followed by generalized,

Rayleigh iteration,
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A program inplementing the algorithm was witten
in a dialect of ALGOL 60 and run on Stanford University's
| BM 360/67. The program has been extensively tested and
testing is continuing. For polynomals wth conplex
coefficients and of degrees ranging from 20 to 50, the time
required to calculate all zeros averages 8n° milliseconds.

Timng information and a nunerical exanple are
provided. A description of the inplenmentation, an analysis
of the effects of finite-precision arithnetic, an ALGOL 60
program the results of extensive testing, and a second
program which clusters the zeros and provides a posteriori

error bounds will appear el sewhere.
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1. 1 NTRODUCTI ON
W introduce a three-stage algorithm for calculating

the zeros of" a polynomal P,

(1.1)

S

P(z) = . (z-py)
1=1
The condition a_ =1 1s for convenience only. The coefficients
are in general conplex. The algorithm involves iteration in
the complex plane, Elsewhere we shall analyze the appropriate
anal ogue for polynomals wth real coefficients (and conplex

conjugate zeros) which uses only real arithmetic,,



The zeros are calculated one at a tine and zeros
of multiplicity mare found mtinmes. The zeros are found in
roughly increasing order of magnitude to avoid the
instability arising from deflation with a large zero
(Wlkinson [l0]).

The algorithmis simlar in spirit to the two-stage
al gorithns proposed by Traub [6], [7],[8]. In [6] Traub
gives a class of always convergent algorithms for calculating
the largest zero. An instance of the class of algorithns
given in[6] follows. Notation has been nodified to agree
with the notation of this paper.

Let

(1.2)

G(Hl)(z) = zG()‘)(z) - a“)P(z), A=0,1,...,L-1

wher e oM is the leading coefficient of G“)(z). Let z, be

arbitrary and |et
(1.3) Zigg = %4 - R(L)(zi)

wher e

R (2) = a(®p(z) /(D (1)
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|f P(z) has a largest zero and if L is sufficiently large and
fixed, then this iteration converges to the largest zero,
The appropriate nodification of this algorithm for

the case of a pair of conplex conjugate zeros was announced

in [7].
In [{8] Traub gives the following algorithm for cal-

culating the smallest zero. Let
(1.4)

H(O)(z) = P (2),

a1 (5 - %-I:H(}‘)(z) - %%ﬁo_mz)} ,  A=0,1,...,I-.
Let z, be arbitrary and |et
(1.5) Zyiq = Zy - V(L)(zi),
wher e
vB(a) - B<L)P(z)/H(L)(z),
and gl L) is the leading coefficient of +4 L)(z). If' P(z) has

a smallest zero and if L is sufficiently large and fixed, then

the iteration converges to the snallest zero.




The inplenentation by Jenkins and Traub of a genera
pol ynom al sol ver based on two-stage algorithns is described
in [3]. Separate procedures are used depending on whether
there are one or two smallest zeros. |f there are nore than
two distinct smallest zeros, a process of "double translation*'
described in Section 6 of [3]is used to break up the
equi nodul arity.

The two-stage algorithm inplemented in [3] has the
followng desirable characteristics:

1. The mathematical algorithm is restriction-free,
that is, it converges for any distribution of zeros.

2. Zeros are calculated in roughly increasing order of

- nmodul us; this avoids the instability which occurs

when the polynomal is deflated wth a [arge zero.

3. The final stage is an iterative process and thus
has the desirable stability features of iterative
processes.

4., Few critical decisions have to be made by the program
which inplements the algorithm

5. The algorithmis fast except for polynomals wth

many nearly equi modul ar zeros.
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The three-stage algorithm introduced in this paper
enjoys the first three characteristics, inprovedfourth and
fifth characteristics and a new characteristic.

ke The nunber of critical decisions is further reduced,
5* The algorithmis fast for all distribution of zeros,
6. Shifting is incorporated in the algorithmitself
in a natural and stable way, Shifting breaks equi-
modul arity and speeds convergence.

We sunmmarize the contents -of this paper,, The main
properties of fixed and variable-shift H polynomals are
given in Sections 2 and 3 and the mathematical algorithmis
stated in Section 4. dobal convergence for an arbitrary
distribution of zeros is proven in Section 5 and the quadratic
character of the convergence is established in Section 6.

In Section 7 we recast the problem and al gorithm
in matrix formand prove that Stage Three may be viewed as an
efficient process for carrying out inverse powering using
a conpanion matrix with shifted eigenvalues and generalized
Rayleigh iteration. Athough we are dealing with the case of
a non-Hermtean matrix with nonlinear elenentary divisors, the process
does mt suffer from the customary (Ostrowski [5])slow convergence

In Section8 we prove that the third stage is
preci sely equivalent t0 Newt on- Raphson iteration applied to

a sequence of rational functions converging to a linear




polynomal. It is a Newon-Raphson iteration even though

no differentiation is perforned.

Qur focus in this paper is on the mathematica
algorithm and its properties., Timng information and a nurmeri cal
exanple are provided. A description of the implementation, an
analysis of the effects of finite-precision arithnetic, an
ALGOL 60 program the results of extensive testing, and a second
program which clusters the zeros and provides a posteriori
error bounds will appear elsewhere.- In Section 9 we do discuss
a number of inportant points pertaining to stability and
decisions to be nmade by the inplementing program In the final

section we give a snmall numerical exanple.




2. FIXED-SHFT H POLYNOM ALS

W introduce fixed-shift H polynomals and prove a
nunber of their properties. Let 1(%)(z) be a polynomal of
degree at most n - 1. Let s be a conplex number with
p(s) # o. Define the sequence
(2.1)

g(M1) (5) :E%E[Hm(z) _ Plé;%?—)—P(z) 1 A=z o0,1,...

The H(“)(z) are polynomals of degree at nost n - 1.
Def i ne

(2.2) p,(z) = HZ)

P4
pi.

The properties of H(x)(z) rfo11ow from the follow ng |emma

which is easily proven by induction

LEMVA.  Assune

19 (2) = i e{%)p, (2).
i=1

Then for all 2,

(2.3) 1M (2) - ‘Z o{%) (py-8) e, (2).

i=1
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. 0 -
Note that the assunption about H ) (2) 15 equival ent

to assumng that the partial fraction expansion of
H(O)(z)/P(z) has only linear terms. V& will ensure this by

t aki ng LO)(Z) = pr(z). A matrix formulation of this is given

in Section 7.
W define
'H"(M(z) H(M(Z)
§L ef) (py-e) 7
12

Thus H“‘)(z) i's H(7\)(z) divided by its leading coefficient.

Qur interest in H polynomals is due to the follow ng theorem
-whi ch follows from (2.3).

THEOREM  Assume (©) c; # Bt s be such that

lpy-s| < lpy-sls i =2,...,5. Then for all finite z,

(2.4) 11m T (2) = (2).

Ao

Cbserve that (2.4) may- be witten as

P(z)
(2.5) %i“:oz T N (g = pq-

(The zero labelled p; depends on the choice of s.)
The rate of convergence depends on max[|e,-s|/|p,-s]]. Thi's

suggests that s be changed to be the best available approxina-
tion to p,. This leads to the idea of 'variable-shift H

pol ynom al s.



3. VAR ABLE-SH FT H PCQLYNOM ALS

Let H(O)(z) be a polynomal of degree at nost n - 1.

Let s, be a conplex nunber with p(sy) # 0. Define the sequence

(AN,
H M (s
H(%+1)<Z) - zégx'[%(x)(z) - —?TEXT—— P(Z)l,

(3.1)
P(sy)
Sy1 T S T T

s)y

A=o0,1,..., |If p(s,) =0, termnate the calculation. The

)
H(M (z) are polynonial's of degree at most n - 1. 'here should
be no confusion from using the same synbol for the sequences
generated by (2.1) and (3.1). The following lema is easily

verified |

1=1
Then for all »,
H(x)(Z) = C§X)P1(Z),
1=1
(3.2) Al
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W defer the investigation of the convergence of

the variable-shift process to Section 5.
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4, THE ALGOR THM

V& notivate the three-stage algorithm described
below. In Stage One, we calculate a sequence of fixed-shift
H polynomals with s = 0. This is the no-shift process, The
purpose is to nake the smaller zeros stand out. (See
Section 9.) |If there is a snallest zero, we obtain con-
vergence according to the theorem of Section 2 and the
fixed-shift calculation of Stage Two is not necessary.

However, rather than testing for convergence of
the no-shift H sequence, we termnate Stage One after a snall
number of steps and enter Stage Two where we calculate a
sequence of fixed-shift H polynomals using a conmplex nunber s
-whose nmadulus is less than the smallest zero and whose anpli -
tude is randonly chosen. (See Section g9). There are only
a finite nunber of points on the circle |z| = |s] which are
equi distant fromtw or nore zeros. According to (2.5) the

sequence

will converge to the zero closest to s, provided there is such
a zero. As soon as {tx} passes a. convergence test (see
Section 9), we are ready to enter Stage Three. Let the test be
passed when A = L. Then s - P(s)/ﬁ(L) (s) should be close to p,
and this is the starting value of the shift for Stage Three.

These shifts should converge very rapidly to p, (see Sections

5 and 6).
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The algorithm is used to calculate a
zero of p. After each zero is found, the polynom al
1s deflated and then the algorithmis applied to
the deflated polynonmial,, Hence P represents either the original.
pol ynom al or a polynomal obtained by deflation.
Stage One. No-Shift Process .

10 (2) = mz),

(4.1)

H(”l)(z) = %-[H“‘)(z) - gé%\%)@lP(Z)]. , A = 0,1,...,M-1.

Stage Two. Fi xed-Shift Process.

Take 8 to be a positive number such that

B < min|p,| and let s be such that [s| =8 and such that

(4.2 ls-py | < Is-pyl,  1=2,....0.
Let

(4.3)

(A1) () - 1 [H(M(z) Eﬁ;_)_g_s_)_ P(z):l , A = M,M+1,...,L-1.

Z -5 P(s
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Stage Three. Variable-Shift Process.

and | et

(4.4)

Take
S. =8 - P(s) s
L .I'—Ist(S)
()
H (s.)
H(x+1)(z) :=Zjéx H(x)(z) - _ﬁrE;Tl_ pP(z) |,
P
800y = 8y - ﬁ(%ii%zs - A= L,I+1,... .
A

There are a nunber of iterative processes used in

the algorithm In each of the three stages there is an

iteration
vector of

as vector

producing a sequence of polynomals. Regarding the
coefficients as basic, we refer to these iterations

iterations. In Stage Three we conpute a sequence

of shifts,

W refer to this as a scalar iteration.
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5. PROOF OF GLOBAL CONVERGENCE
V& investigate the convergence of the three-stage
algorithm W begin by investigating the convergence of the

variabl e-shift process defined by (4.4).

LEMVA: Assume

1. |s; -py | < 4R, where R = miil | py=py |
11. c:{L) # 0,
L
TR LRI
b BRI
i=2 '™
Then s, - Py

PROOF. W defer to the end of this proof the
demonstration that the iteration is always defined. W show

first that if the iteration is defined, it converges. W

know by (3.2) that

HM (2) - i M, (2)
1=1
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Sone al gebraic manipulation leads to

. (N) (N _ ﬁé (AN) 4(2)
8141 -P1 ;i; [%1 :f 45 Ty 94

(5.2) - 1=2 ,

A i (MF L(n)
1 + r d
i=2[i I

wher e
S, -p ()
r(.}\) A 1 ’ d()\) _ Ci
i S5-Py i Cll?\f
Let
EIVERCY T
BNl A

We prove convergence by showing there exists a 7 such that
for alt x> L, T < 7 < L. The proof is by induction
Observe that

1) s p-pq

Y - Pl
1 sti

Hence




2 —
L= & (L)
| - )J Shiand
2
. 1 Let
By hypothesis D < X e
2D
L
(53) TL = T.tﬁL- .
Then T < 7 < 1.
Assune now that Tp,Tp.q,...,Ty 9 <
fort = L,I4+1,...,N,
'St"pll < lSL_pl | < 3R,
lst’pil 2 'pl-pil - Ist'pll > 2R
Thus
(5.4) |r§t)l <1, t =L,L+l,...,\

Cbserve that

Hence

(5.5)

< T, < 1.
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From (5.2), (5.3), (5.4),(5.5) it follows-that T, < 7 <1

for » > L which conpletes the proof of convergence.
W now show that the sequence {s)\} I's always

wel | defined for N > L.

ii o{M (p,-5,) TR, (55)

rML)(g) = 2=
i Cg?\) ('91‘37\)—1

i=1

1+ i »dy‘) [r§”]2 ]

1=2

= Pl(sl) ‘J_‘
SRS

1=2

P,(sy) # 0 by hypothesis i and the contraction argument. Si nce,

as we have seen,

), VT | <

i=2

ﬁ(”l)(s)\) # 0 and the iteration is well defined. This com

pl etes the proof of the lemma.
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VW now investigate the convergence of the three-
stage algorithm defined in Section 4. The major result of the

paper is given by the follow ng

THEOREM  For all L sufficiently large and fixed, 8y 7 Py-
PROCE.  Since HO (2) = P (2),

1
H9) (z) = ZmiPi(z) ,
i=1 -

and it follows from(2.3), with s = 0, that

H(M)(z) =»§E nﬁp;MPi(z).

i=1
Then
H(L)(Z) - i mipj—-M(pi_s)"(L-M)Pi (Z)
i=1
Jd,
= }J (L)P (z

W have (‘%’1) # 0. Furthernore

}E 3(L _imi le P1-8 LfM
my\ Py Py-S

=1 1=2

Recall that | py-s | < | py-s |.
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Fix M Then by choosing L sufficiently large we can nake
of{P))
oL I

1= %y

as small as desired. Choose L so that

(5.6) D, < %
and

2D,
(5.7) |S-p1’ -]_jlj'z < 4R

-The condition of (5.7) ensures that |s -p,| < 3R. All the

hypot heses of the |lemma now hold and the conclusion follows.
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6. RATE OF CONVERGENCE
Let

|s -p |
(6.1) o(h) = Ll !%

S0 P2

In the last section we proved the existence of a number T

such that for A > 0,

(6.2) |SL+X+l—p1| _ T
' ISpnPel

A < T <1,
wher e T = QDL/(I—DL). W defined R = ﬂ}n|p1-pil. The rate

of convergence of our algorithmis governed by the follow ng

THEOREM Let the hypotheses of the |enma of the

previous section hold. Then

(6.3) c(n) ¢ & p(A-1)/2

PROOF. From (5.2),

<L P§L+x)dgL+x) ji d$L+%)
LA eripr === L, 500

s -p =
(6.4) L+A+1 ;2 - 1=2

1=2

Lo ) [T g

1=2

(s1477P2
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One may verify that for all »and i > 1,

(L+0) A 1 2
lr]‘ ' < T 3 |S7\+L_pil _<_ R. 3

and

i=2

Substituting these bounds into (6.4) establishes the theorem

Thus the process is second order with an error
constant C(A) which approaches zero. This nmay be contrasted with
t he conventional Newton-Raphson iteration in which there is

no control over the error constant.

COROLLARY. Let the hypotheses of the |lemm of the

previous section hold. Then for » > 0,

n = 103-2" - (A%++2) ).

PROOF.  For »
it follows upon substituting (6.3) into (6.1).

1 this follows from(6.2), For » > 1
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7. VARIABLE-SH FT | TERATION | S GENERALI ZED
RAYLEIGH | TERATI ON

W now give a matrix interpretation of our algorithm
W show that in a matrix'fornulation the vector iteration of
the third stage is inverse powering with a matrix whose eigen-
val ues have been shifted,while the scalar iteration is gener-

al i zed Rayleigh iteration.

Let
0 0 0 -8,
1 0 -an 4
0 1 0 .9

A =
1 -al

be the conpanion matrix of P. Let

n:_l
HM (z) = > h:(lk)zn-l-i
. 1=0

and

VT 2 ), )y,
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Let

Def i ne
Bi = (Pin-l’ . -~:pio):

(1:---,Pg_l )

0
e
1

One may easily verify that for the eigenvalue p,, the right
and | eft eigenvectors are p, and gl, respectively.

- One may verify that the initial condition
1) (z) = P (2)

s equivalent to

D(O) = i migi s

i=1

the fixed-shift recurrence

| (O
(7.1) H(7\+1) (z) = Z%[H()\)(Z) - E-P—(ég.s_)_ P(Z)]
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IS equivalent to

(7.2) n™1) (a1

while the variable-shift recurrence is equivalent to
(7.3) nM) = (a7

Equations (7.2) and (7.3) exhibit the processes as inverse
powering with a matrix whose eigenval ues have been shifted,

This is alsg called inverse iteration (Welandt [9]). W

show t hat

—(7.4) S = s
A1 N T ED

IS equivalent to

(7. = Sy
where .
s = (1,660
Now (7.4) nmay be witten as
5,80 (5,) - n§Me(s
(7.6) St H(A+1)(sx)
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Observe that

(7.7) R (g ) = [ TROHD)

From (7.1),

P (1) H(?‘)(_Sk)
6 =" FET -
Hence.
S%H(x+1)(sx\ - hé%+1)P(sx) 7\HD‘H)(s?\) + H(%)(sk)

_ [S(x)]TAh(x+1).

Substituting this result together with ('7.7) into (7.6) com- ,
pletes the proof.

W sumarize this result in a

THEOREM  The variabl e-shift recurrence

g(M1) () :=§g§;' 7N (z) - T p(z) |,

P(S%)
Sa+1 = Sa T ﬁ(%+1)(sx)
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s equivalent to

I_1(A+1) _ (A_S%I)—IE(A) ,

[S(x)]TAh(x+1)

Sa+1 = @}thhmw1)

cbserve that h™ 5 p and [s M7 | a. Hence (7.5)
is a generalized Rayleigh iteration (W/IKkinson [11, p.179],
Cstrowski [5]) appropriate for non-Hernitean matrices.

However we are in a very favorable position as
compared W th the usual situation when inverse iteration and
general i zed Rayleigh iteration are applied.

1. No calculation has to be perforned to determne

the left eigenvector. It is sinply [s(M 1T,

2. Miltiple eigenvalues of a conpanion matrix inply
nonlinear elementary divisors. |n general this

|l eads to (GOstrowski [51) Iinear convergence. In

our case nmultiple zeros do not affect the rate of

convergence (itis still quadratic) and require no
special attention.

3. The inverse iteration is carried out explicitly.

4. The initial vector h(®) and all succeeding vectors

D_(M lie in the subspace spanned by the eigenvectors
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of A Furthernore the Q(M cannot be deficient
in the eigenvector corresponding to the eigenval ue
bei ng cal cul at ed.

5. Qur process is globally convergent to one of the
smal | est eigenvalues of A and hence deflation is
carried out under favorable conditions.

Bauer and sSamelson [2] have suggested an iteration
which is related to stage Three of our algorithm  Performance
of an anal ogous process on a sequence of polynomals of

decreasing degree | eads to Bauer's [1] Treppeniteration.
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8. NEWTON-RAPHSON | TERATI ON
W show that the formula

P(s}\)

S - S -
ML= PN T M)

T
SA
I's precisely a Newton-Raphson. iteration performed on a cer-
tain rational function. The word precisely in the previous

sentence is to enphasize that the iteration is not merely of

Newton-Raphson type. W prove the follow ng

THEOREM  The formul a

S —_
ML = T ﬁ-(7\+1)(

Is identical wth

M1 = A [w()\)(s?\) ]! ’

(N) P(z)
W = 7-%7— :
(z) 70
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PROOF. Let

Hence
(A)
A1) 1 A H )
mh (z) = Z-8, mA :Nv lm.ﬂm..ﬂll F(z)

may be written as

yOH) (o) s
ana
<Ay+HVAmyv _ H<AyVAmyV~ﬁ
Furthermore
smy+yv _ <AyVAmyv
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P(s,) P(sx)héx+1)
S)\"’l = S?\ - ﬁ'(?\"‘l)(s_)\) - S?\ H(}\"‘l)(s?\)
V(M(s)\)

This permts us to regard variable shift iteration in
the following manner. \We are perform ng Newt on- Raphson itera-
-tion on a sequence of rational functions P(zL@ﬂ”)(z).For A
sufficiently Ilarge, P(z)/H(k)(z)i s as close as desired to a
| inear polynom al whose zero i's py- This shows why the process

Is so powerful.
Note that no differentiation is perforned in our

cal cul ation of the sequence {sx}' The division by z -5, has

the effect of differentiation.
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9. | MPLEMENTATION OF THE ALGOR THM

The program inplementing the algorithm a discussion
of how the program nakes its decisions, stability of the
algorithmin finite precision arithnetic, the results of
extensive testing, and a program which clusters the zeros and
provides a posteriori error bounds wll appear elsewhere.

Here we confine ourselves to a few observations.

The termnation of Stage One, that is, the choice
of M is not crucial. |Indeed Stage- One is not necessary from
theoretical considerations. The function of Stage One is to
accentuate the smaller zeros. Nunerical experinentation
indicates thdt this makes the decision to termnate Stage Two
-nore reliable. In the inplementation, Mis set at 5, a nunber
arrived at by nunerical experience.

The follow ng three major decisions have to be
made by the program

1. Selection of the shift s.
2. Termnation of Stage Two; that is, the choice of I,.
3. Termnation of Stage Three.
Ve indicate how these three decisions are nade.
1. Selection of s.
This parameter is chosen so that [s| = g,

B < min|pl|, i =1,2,...,5 and so that

(9.1) | s=py | < | s=py |, l =2,...,3.
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A lower bound on the noduli of the zeros due to Cauchy
(Marden [4, p.98, ex. 1]) is given by the unique positive

zero, B, of the polynom al

2% + | a4 2l la, 1 1z -1la,|.

This nunber is easily calculated by New on-Raphson iteration.
The value of s is then chosen by using random numbers from a
uniform distribution to pick a point-on the circle of radius
B. It is highly probable that the s so chosen wll be

closest to just one of the zeros of P and hence the condition
(9.1) is satisfied. If the condition is not satisfied, the test
described bel ow may not be passed in which case a new val ue

of s is chosen. (bserve that s need not be closest to the
smal | est zero of P. It is easy to show that it wll be

closest to a zero whose nodulus is at nost three tines the
modul us of the smallest zero. Hence we guarantee that we wll
never perform a deflation using a zero which is large conpared
to other zeros of P. Thus we avoid a situation (WIKkinson [10]

which could lead to serious instability.

2. Termnation of Stage Two.

VW do not attenpt to carry out Stage Two far enough

to assure that the conditions of the Theorem of Section 5 are
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satisfied. (These are only sufficient conditions). Instead

we test for the convergence of the sequence s - P(s) /E(A (s).
Experience has shown that it is efficient to termnate Stage
Two after only a very weak test for convergence has been
passed. Let t, =s - P(s) /ﬁ(”)(s). If 6y, ty,15 typ are
defined and

| thpr-tl < 2 | tppotasn | < 31y, |
then we termnate Stage Two.

I the test is not passed by the time ) reaches a
certain value (which itself is varied depending on how nany
shifts have been tried), a new value of s is generated with
modul us 8 and random anplitude.

Since we are using such a weak convergence test for
the sequence, we nust allow for the fact that there will be
cases when Stage Three is started prematurely with an s; and
H(L) which do not lead to convergence. This causes no dif-
ficulty as we observe below. W enphasize that the generation
of a sequence of values of s is only a contingency. In
practice it is very rare that the first s chosen doesn't
serve, and the largest nunber of trial shifts required in

the course of extensive testing has been three.
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Term nation of Stage Three.

As in [3] we termnate Stage Three when the conputed
value of the polynom al at N Is less than or equal to a bound

on the roundoff error in evaluating P(s Numeri cal experience

?\)'
indicates this is a good stopping criterion for polynom al
zero-finding as it stops the iteration just as the limting

accuracy has been reached. Since we expect rapid convergence

of the third stage we place a limt of ten on the nunber of
iterations. |f convergence is not aehieved when this limt is
reached we return to Stage Two with the value of s used the

last tinme we were in Stage Two unless the limting val ue of

A has Dbeen reached.

W turn to some other matters. W describe how the process
for conputing the H polynomals in either Stage Two or Three is
actual |y carried out, W describe the Stage Three process, the
Stage Two process being entirely anal ogous.

Rat her, than conputing the H polynomals by

(»)
o 1 _ HYV ™ (s,)
(9.2) wMV(z) - z_lsx [H(}\)(Z) ) P[S?\:?\ P(Z)]. ’

the "scaled recurrence”

19z 1 ¢ (a),

F(A+1) _ 1 2) - =(2)
H (z) z-5, [P() m H (Z)]I



1s used. This generates a sequence of monic polynomals and
avoi ds the overflow and underflow problens' which would occur
if (9.2) were used. The use of (9.3) is equivalent to a
met hod of scaling used by Traub [6, Section 9],

The computation of T 1) (z) by (9.3) requires k4n
(in general conplex) multiplications and additions. This may
be reduced to 3n by the follow ng observation,

Let

P(z) = oM (2)(z-s,) + B(s,),

BN (2) = ofM (2) (z-s,) + BN (s)).

- Then
., P(s,)
o B oM@ - V),
A

| f P(s)\) and H(M(s?\) are calculated by the usual Horner
recurrence, then Qp)(z), QP(IM(z) are generated.as a byproduct.
In Stage Two s 1is fixed, P(s) and Ql(f)(z) are formed just once,
and only 2n (in general conplex) nultiplications and additions
are required per step.

A discussion of stability will appear elsewhere.
Here we |imt ourselves to a few observations. The process
of calculating H(Hl)(z) by (9.3) is precisely the deflation

of the pol ynom al




(9.5) P(z) - —

which has a zero at s, and whose remaining zeros are near the

A
zeros of P(Z)/(z-pl). Because of the way that s and the s

A
are chosen, these nunbers are anong the smallest zeros in
modul us of the polynomal given by (9.5), which is a desirable
si tuation.

We use (9.4) rather than (9.3), in carrying out the
process. (hserve that in (9.4) ﬁm(z) Is calculated as the
sum of a polynomial which is near p(z)/(z-p,) and a pol ynonial
with small coefficients which nay be viewed as a correction
-term  This is a favorabl e situation for the control of
roundof .

The variable-shift stage may be viewed as a non-
stationary iteration. It has the usual desirable stability

properties conmon to iterative processes.
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10. NUMERI CAL RESULTS
Extensive nunerical experimentation, perfornmed on

an | BM 360/67, | eads to the timng results given bel ow,
Additional testing is planned.

For polynomals with real coefficients and of
degrees ranging from 20 to 50, the tine required to calcul ate

all zeros averages 4n?

mlliseconds. Thus a 20th degree
pol ynom al takes 1.6 seconds, -a 50th degree polynonial takes
10 seconds.

The time for all the real polynomals of degree 20
or greater which were tested ranges from3n2 to 7n2 m|liseconds
The polynomals used in the testing range from polynomals wth
randonty chosen zeros to polynomals with nultiple zeros and
clusters of near equinodular zeros. The fact that the tine
required is insensitive to the distribution of zeros is nost
encour agi ng.

The algorithmreported in this paper was not tailored,
for polynomals with real coefficients. Elsewhere we shall
report on an algorithm designed for real coefficients. The
real algorithmcuts the time by a factor of roughly two.

" For polynomals wth conplex coefficients and of
degrees ranging fromz2o to 50, the tine required to calculate

2 mlliseconds.

all the zeros averages 8n
These figures were obtained froman ALGOL 60 inple-
nentation of the algorithm A FORTRAN inplenentation would

be faster.
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For 1llustration We exhibit a | ow degree nunerical
exanple. The purpose of this exanple is not intended to
prove anything about the efficacy of the algorithmand its
I npl enentation, This has been done through extensive testfng
which will be reported el sewhere,

The exanple given below has a zero of nultiplicity two as
wel | as three alnost equinodular zeros, two of which form a near-
mul tiple pair.

P(z) = 27 - (13.999+51)z" + (T4.99+55.9981)z3

- (159.959+260.9821)z° + (1.95+463.9341)z

+ (150-199.951),

P(z) = (2-1-1)%(z-4+31) (z-4-31)(2-3.999-31).

In calculating each of the zeros below, five no-
shift steps were taken (M= 5). |In Table 1 we give the value
of s used in Stage Two, the nunber of Stage Two steps (L-M,
the value of s used to start Stage Three and the iterates STt 3
used in Stage Three.8 The program was witten in a dialect of
ALGOL 60 and run on Stanford University's |BM 360/67.

Observe that the well-conditioned zero at 4 -31iis
cal cul ated accurately even though the polynomal has already

been deflated with three 1ll-conditioned. zeros.
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TABLE 1. A Nunerical Example
Zero (1) s = - .37087 + .179071, L - M = 2, sy, = .999% + 1,00011
3 S1+j
1 1.00000000000426 + ,9999999999782011
Zero (2) S = - .66572 - .0930011, L - M = 2, s = .99975 + 1.00051
3 ST+j
1 .999999999974143 + 1.000000000001921
2 .999999999995742 + 1.000000000021801

Zero (3) s = 1.1968 + .920161, L - M = 4, s

~ o0 = W

= 4,6023 4+ 3,08591

L

S1+]
3.99420181191240 + 3.006238036392071
3.99946028022349 + 2.999953671867681
3.99939735288312 + 2.999886588791281
3.99900069469391 + 3.000383503135241
3.99892674982940 + 3.000001012817341
3.99899965220352 + 2.999999183018531
3.99899999997589 + 2.999999999985161




- b0 -

Zero (4) s = 26797 - 2.38811,L -wm= 4, 8; = 3.8372 - 2.67541

J SL+J

1 3.99861695624235 - 3.002343341883751
2 4 ,00000000757741 - 3.000000004356321
3 4 .00000000000000 - 3.000000000000001

Zero (5) 4,00000000002411 + 3.000000000014841
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