
cs -109

A COMfUTER SYSTEM FOR WRITING AND TESTING
TRANSFORMATIONAL GRAMMARS'.

FINAL REPORT

JOYCE FRIEDMAN

PRINCIPAL INVESTIGATOR

This research was supported in part by the United

States Air Force Electronic Systems Division, under

Contract F196828-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT

30 SEPTEMBER 1968

cs - 1Gy

AF - 38

A COMPUTER SYSTEM FOR WRITING AND TESTING

TRANSFORMATIONAL GRAMMARS

Final Report

Joyce Friedman*

principal-investigator

This research was supported in part by the
United States Air Force Electronic Systems
Division, under Contract Fl96828-C-0035.

30 September 1968

*present address: Computer and Communication Sciences Department,
University of Michigan, Ann Arbor, Michigan.

L--

L

i-

L

L

t
L

For the past two years the Computational Linguistics Project in

the Computer Science Department at Stanford University has been engaged

in research leading to computer programs for accepting and manipulating

transformational grammars corresponding to a version of the theory based

on Chomsky's Aspects of the Theory of Syntax, M.I.T. Press, 1965. These

programs have been combined into a computer system for transformational

grammar which accepts a transformational grammar in a natural format,

and carries out the complete generation of sentences, from phrase struc-

ture generation, through lexical insertion and transformation. These

programs are the first to handle complete sentence generation. The sys-

tem has been made available on a limited basis to linguists writing

transformational grammars, and has proved valuable.

In order to construct the computer system, it was necessary to do

considerable preliminary work in formalizing and making more precise

the linguistic notions involved,, Thus, in addition to the value of the

programs per se, the project has made some interesting contributions to

linguistic theory, particularly in the areas of formal definition of

grammars, lexical insertion, and traffic rules for transformations.

The results obtained are described in reports which have been issued

during the-course of the pro:?3. To summarize these results the ab-

stracts of the more important papers are included here. The bibliography

attached to this report contains a complete list of all current reports

-produced by the project, Reports that became obsolete as the project

developed have been omitted,

L.

AF - 21

cs - 84 January 1968

A Computer System for Transformational Grammar

bY

Joyce Friedman

c-

Abstract

-

-

L

A comprehensive system for transformational grammar has been designed

and is being implemented on the IBM 36G/67 computer. The system deals

with the transformational model of syntax, along the lines of Chomsky's

Aspects of the Theory of Syntax.- - The major innovations include a full

and formal description of the syntax of a transformational grammar, a

directed random phrase structure generator, a lexical insertion algo-

rithm, and a simple problem-oriented programming language in which,the

algorithm for application of transformations can be expressed, In this

paper we present the system as a whole, first discussing the philosophy

underlying the development of the system, then outlining the system and

-discussing its more important special features. References are given

to papers which consider particular aspects of the system in detail,

AF - 14

cs - 79
October 1967

i

360 OS., Fortran IV Free Field

Input-Output Package

bY

Robert W. Doran

Abstract

Programmers dealing with aspects of natural language processing

have a difficult task in choosing a computer language which enables

them to program easily, produce efficient code and accept as data

freely written sentences with words of arbitrary length., List proces-

sing languages such as LISP are reasonably easy to program in but do

not execute very quickly. Other, formula oriented, languages like

FORTRAN are not provided with free field input,

The Computational Linguistics group at Stanford University Computer

Science Department is writing a system for testing transformational

grammars. As these grammars are generally large and complicated it is

important to make the system as efficient as possible, so we are using

FORTRAN IV (G.S. on IBM 360-65) as our language. To enable us to handle

free field input we have developed a subroutine package which we describe

here in the hope that it will be useful to others embarking on natural

language tasks,,

The package consists of two main programs, free field reader, free

field writer, with a number of utility routines and constant COMMON blocks.

3

AF - 24

cs - 95
February 1968
(Revised May 1968)

A Formal Svntax for Transformational Grammar

Joyce Friedman and Robert W.*Doran

Abstract

A formal definition of a descriptive metasyntax for transformational

grammar is given using a modified Backus Naur Form as the metalanguage.

Syntax constraints and interpretation are added in English. The under-

lying model is that presented by Chomsky in Aspects of the Theory of

Syntax. Definitions are given for the basic concepts of tree, analysis,

restriction, complex symbol, and structural change, as well as for the

major components of a transformational grammar, phrase structure, lexicon,

and transformations. The syntax was developed as a specification of

input formats for the computer system for transformational grammar de-

scribed in [63. It includes as a subcase a fairly standard treatment

of transformational grammar, but has been generalized in many respects,

AF - 15
cs - 80

Directed Random Generation of Sentences

October 1967

bY

Joyce Friedman

Abstract

The problem of producing sentences of a transformational grammar

by using a random generator to create phrase structure trees for input

to the lexical insertion and transformational phases is discussed. A

purely random generator will. produce base trees which will be blocked

by the transformations, and which are frequently too long to be of

practical interest. A solution is offered in the form of a computer
-

program which allows the user to constrain and direct the generation

by the simple but powerful device of restricted subtrees. The program

is a directed random generator which accepts as input a subtree with

restrictions and produces around it a tree which satisfies the restric-

tions and is ready for the next phase of the grammar. The underlying

linguistic model is that of Noam Chomsky, as presented in Aspects of the

Theory of Syntax. The program is written in Fortran IV for the IBM

360/67 and is part of the Stanford Transformational Grammar Testing

System. It is currently being used with several partial grammars of

English.

AF - 34 September 1968

Analysis in Transformational Grammar

bY

Joyce Friedman and Theodore S. Martner

Abstract

In generating sentences by means of a transformational grammar,

it is necessary to analyze intermediate trees, testing for the presence

or absence of various structures. This analysis occurs at two stages

in the generation process -- during insertion of lexical items (more

precisely, in testing contextual features), and during the transforma-

- tion process, when individual transformations are being tested for

applicability.

In this paper we describe a formal system for the definition of

tree structure of sentences. The system consists of a formal language

for partial or complete definition of the tree structure of a sentence,

plus an algorithm for comparison of such a definition with a tree,

It represents a significant generalization of Chomsky's notion of

"proper analysis," and is flexible enough to be used within any trans-

formational grammar which we have seen.

6L-

I -

I -

AF - 25
cs - 103

June 1968

Lexical Insertion in Transformation Grammar

bY

Joyce Friedman and Thomas H. Bredt

Abstract

L

L

L

i

L

L

L-

L

i

In this paper, we describe the lexical insertion process for

generative

of many of

notions of

transformational grammars. We also give detailed descriptions

the concepts in transformational theory. These include the

complex symbol, syntactic feature (particularly contextual

feature), redundancy rule, tests for pairs of complex symbols, and

change operations that may be applied to complex symbols., Because of

our general interpretation of redundancy rules, we define a new complex

symbol test known as compatibility. This test replaces the old notion

of nondistinctness. The form of a lexicon suitable for use with a '

generative grammar is specified.

In lexical insertion, vocabulary words and associated complex

symbols are selected from a lexicon and inserted at lexical category

nodes-in the tree. Complex- symbols-are lists of syntactic features,

The compatibility of a pair of complex symbols and the analysis procedure

used for contextual features are basic in determining suitable items for

insertion. Contextual features (subcategorization and selectional) have

much in common with the structual description for a transformation and

L

L

7

we use the same analysis procedure for both. A problem encountered in

the insertion of a complex symbol that contains selectional features is

side effects. We define the notion of side effects and describe how

these effects are to be treated.

The development of the structure of the lexicon and the lexical

insertion algorithm has been aided by a system of computer programs that

enable the linguist to study transformational grammar. In the course

of this development, a computer program to perform lexical insertion was

written. Results obtained using this program with fragments of trans-

formational grammar are presented. The paper concludes with suggestions

for extensions of this work and a discussion of interpretations of trans-

formational theory that do not fit immediately into our framework,

8

AF - 35 September 1968

I 1

L

L

i

A Control Language for Transformational Grammar

bY

Joyce Friedman and Bary W. Pollack

Abstract

Various orders of application of transformations have been considered

in transformational grammar, ranging from unordered to cyclical orders

involving notions of Yowest sentence' and of numerical indices on depth

of embedding. The general theory of transformational grammar does not

yet offer a uniform set of 'traffic rulestt which are accepted by most

linguists. Thus, in designing a model of transformational grammar, it

seems advisable to allow the specification of the order and point of

application of transformations to be a proper part of the grammar.

In this paper we present a simple control language designed to be

used by linguists for this specification.

In the control language the user has the ability to:

1. Group transformations into ordered sets and apply transformations

either individually or by transformation set.

2. Specify the order.in which the transformation sets are to be

considered.

3. Specify the subtrees in which a transformation set is to be

applied.

4. Allow the order of application to depend on which transformations

have previously modified the tree.

5. Apply a transformation set either once or repeatedly.

9

In addition, since the control language has been implemented as

part of a computer system, the behavior of the transformations may be

monitored giving additional information on their operation.

In this paper we present the control language and examples of its

use, Discussion of the computer implementation will be found in

Pollack [ll.

10

AF - 33
cs - 108 September 1968

Computer Experiments in Transformational Grammar

bY

Joyce Friedman, Lorraine Klevansky,

Theodore S. Martner, Barbara H. Partee,

and Elizabeth C. Traugott

Abstract

The papers in this volume describe computer runs with six different

transformational grammars, in each case using the computer system for

transformational grammar described in ~~-84 (January 1968). They are

collected here as examples which we hope will encourage other linguists

to use the system.

The motivation for the first three projects described was primarily

to test the system. The remaining papers describe experiments by

linguists using the system as a tool in their own research.

In some of the papers there are occasional remarks which indicate

a misunderstanding of the system. Editorial notes have been added to

clarify these points. Otherwise, the papers are presented without

I c,

i

alteration.

11

AF - 36 September 1968

Programmers Manual for a Computer Svstem

for Transformational Grammar

bY

Joyce Friedman, Thomas H. Bredt,

Robert W. Doran, Theodore S. Martner,

and Bary W. Pollack

Abstract

This Manual is written by and for programmers. Its purpose is to

make the code of the computer system for transformational grammar more

readily understandable to programmers who wish to maintain and use the

system, or to modify and extend it. Section 2 is a short outline of the

subroutine structure of the system. It is followed in Section 3 by more

detailed descriptions of the subroutines. Sections 4 and 5 are listings

of the COMMON blocks and BLOCK DATA statements, respectively, Section 6

discusses possible extensions to the system.

The programs are written in FORTRAN IV for the IBM 360/67 and were

compiled under FORTRAN H, OPT=2, under O.S. There are approximately

9000 lines of FORTRAN code; the compiled code, with storage areas, re-

quires approximately 300,000 bytes of storage.

The inputs to the system consist of

1. a grammar (described by the formal syntax of AF-95),

2. a one-line driver for the MAIN program,

36 input trees or skeletons.

12

AF - 3

AF - 4

AF - 8

AF - 9

AF - 10

I L

AF - 13
,
i

L

AF - 14
cs - 79

AF - 15
cs - 80

AF - 20
c

L

L

AF - 21
cs - 84

AF - 24
cs - 95

AF - 25
cs - 103

AF - 33
cs --lo8

L

L

i

Bibliography

Reports of the Computational Linguistics Project

Programming lexical grapho-morphic analysis.
(Sept 1966).

Joyce Friedman

A new method for storing grammars and its application to
checking trees. Alan C. Tucker (Dee 1966).

The Tucker parser. Alan C. Tucker (Apr 1967).

Design of the programmer interface for a transformational
grammar programming system. Robert W. Doran (May 1967).

The applicability of computational linguistics.
Joyce Friedman (May 1967).

AF test grammar. Olasope 0: Oyelaran (Sept 1967).

360 O.S. Fortran IV free field input-output package,
Robert W. Doran (Ott 1967).

Directed random generation of sentences. Joyce Friedman
(Ott 1967).

Linear representation of tree structure I: basic concepts;
isotone notations. William J, Meyers (Nov 1967).

A computer system for transformational grammar.
(Jan 1968).

Joyce Friedman

A formal syntax for transformational grammar.
and Robert W. Doran (Mar 1968).

Joyce Friedman

Lexical insertion in transformational grammar., Joyce Friedman
and Thomas H. Bredt (June 1968).

Computer experiments in transformational grammar. Joyce Friedman
(Ed.) (Sept 1968)
I: Fragment from Aspects (Joyce Friedman)
II: Traugott's grammar of Alfredian prose (Joyce Friedman)
III: The IBM core grammar (Joyce Friedman and Theodore S.

Martner)
IV: Old English grammar I (Elizabeth C. Traugott)
v: UCLA AFESP case grammar I (Barbara H. Partee)
VI: UCLA AFESP case grammar II (Barbara H. Partee)
VII: A transformational grammar for Swahili (Lorraine

Klevansky).

AF - 34 Analysis in transformational grammar.
Theodore S. Martner (Sept 1968).

Joyce Friedman and

AF - 35 A control language for transformational grammar.
Friedman and Bary W. Pollack (Sept 1968).

Joyce

AF - 36 Programmers manual for a computer system for transformational
grammar. Joyce Friedman, Thomas H. Bredt, Robert W, Doran,
Theodore S. Martner, Bary W. Pollack (Sept 1968).

i

L
L
t

I
Y

14

