CS 110

ALGOL W (REVISED)

LANGUAGE DESCRIPTION
ERROR MESSAGES

NUMBER REPRESENTATION

DECK SET-UP

GRAMMATICAL DESCRIPTION

pp. 1 to 65
pp- 66 to 75
pp. 76 to 89
pp. 90 to 91

pp- 92 to 103

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

SEPTEMBER 1969

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R. Bauer

Sheldon Becker

Susan L. Graham
Edwin Satterthwaite

"A Contribution to the Devel opnent
of ALGOL" by N klaus Wrth and ¢+ A R
Hoarel) was the basis for a conpiler de-
vel oped for the I1BM 360 at Stanford Univer-
sity. This report is a description of the
i npl emented | anguage, ALGOL W Historical
background and the goals of the |anguage

may be found in the Wrth and Hoare paper.

) Wrth, Niklaus and Hoare, C. A R, "A
Contribution to the Devel opnent of ALGOL",
Comm. ACM 9, 6(June 1966), pp. 413-431.

2

CONTENTS

TERM NOLOGY, NOTATION AND BASIC DEFINITIONS...*6

1.1, Notation . . . o it ce L 6

1.2 Definitions . & ciiiiiiiiionsoonooerennenenieroonnes 6

SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. e 9
2.1, Basic Synmbolscoviiiiiiiin, Cereereseenes 9

2.2, SyNtacCtiC Entities. . .eeeovrvoosanorenen neennnens 10
IDENTIFIERS :+ ¢ vvvvnvanan et es et e e 11
VALUES AND TUPES. ¢t vvvroventnsnanenonnnnnss e reeeeeenee s 14
L.1. Numbersooooiiiiiiiiiinnn N 15

4.2, Logical ValUeS ...oovivuneiiiiiininonsnensncnnnss 16

4.3, Bit SEOUEBNCES . +rcvenonmecnnonvonnecesnensesonnos 16

Lo SEIingS « ¢ vevieeiiteniniieineeioiineinooonnnnas 17

L.5. References e e e e 18
DECLARATTIONS - ¢ o e o e v s s v e aasasaossonenssaseossnnoonesunsoosses 18
5.1. Sinple Variable Declarations . . «coivvivviieennan. 18

5.2, Array Declarations ..oveee viiiiens sennn v ae saeen . 20

5.3. Procedure Declarations et ety 21

5.4" Record Class Declarationsceoovvvnseennes vee25
EXPRESSTONS + oo vt cnenssoncocesonsosancenncansosenesonoenans 25
6.1. Variablesc.coiiiiiiiiiinn sederveenceaaas 27

6.2. Function DESIignators ..voeevoniioneoneenunenosand 28

CONTENTS (cont.)

6.3. Arithmetic Expressions 29
6.4. Logical EXPressionsc.cooiniiiniin.. 33
6.5. Bit Expressions 35
6.6. String Expressions 36
6.7. Reference EXpressionso... 37
6.8. Precedence of Qperators38
7. STATENENTS . . o .39

7.1, Blocks. ... 39
7.2. Assignment Statements e 40
7.3. Procedure Statements 4o
7.4. Goto Statements 44
759 |f Statements 45
7.6. Case Statements 46
7.7. lterative Statenents F At
7.8. Standard Procedures 49

7.8.1. The Input/Qutput System........ 50

7.8.2. Read Statenents 52

7.8.3. Wite Statements 53

7.8.4. Control Statements 54

8. STANDARD FUNCTI ONS AND PREDECIARED |DENTIFIERS 55

8.1. Standard Transfer Functions59
8.2. Standard Functions of Analysis 5T

8.4.Predeclared Variables 59
8.5. Exceptional Conditions 60
APPENDI X

CHARACTER ENCODING cesecet et iesesseaennnnn 65

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by
a formal metdlanguage. This metalanguage makes use of, the notation and

definitions explained below. The structure of the language ALGOL W

Is determined by:

(1) v, the set of basic constituents of the language,
(2) u, the set of syntactic entities,- and
(3) P, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
<A = x

where <& is a member of U, x is any possible sequence of basic con-
stituents and syntactic entities, simply to be called a “sequence”.

The form
< n=x|y| .| 2

Is used as an abbreviation for the set of syntactic rules

<A> =X
<A> =
<A i1:= 2

1.2. Definitions

1. A seguence X is said to directly produce a sequence y if and

6

only if there exist (possibly enpty) sequences u and w, so that
either (i) for some <& in U, X = bW,y = uw, and <& 1:=
visarulein®;or (ii) x=uw, y =uvwand vis a "coment"

(see bel ow).

2. A sequence x is said to produce a sequence y if and only if
there exists an ordered set of sequences s[0], s(1], ..., s[n],
so that x = s[0], s[n] = y, and s[i-1] directly produces s{i] for

all i =1, ..., n

3. A sequence‘x'is said to be an ALGOL Wprogramif and only if
its constituents are menbers of the set 'If, and x can be produced

from the syntactic entity <program>.

The sets V -and U are defined through enuneration of their nenbers
in Section 2 of this Report (cf. also 4.4.). The syntactic rules are
gi ven throughout the sequel of the Report. To provide explanations
for the nmeaning of ALGOL W programs, the letter sequences denoting
syntactic entities have been chosen to be English words describing
approximately the nature of that syntactic entity or construct. \Were
words which have appeared in this manner are used el sewhere in the
text, they refer to the corresponding syntactic definition. Al ong
with these letter sequences the symbol T may occur. It is understood
that this symbol nust be replaced by any one of a finite set of English
words (or word pairs). Unless otherwi se specified in the particular
section, all occurrences of the synbol T within one syntactic rule

nmust be replaced consistently, and the replacing words are

i nt eger | ogi cal

real bi t

| ong real string
conpl ex reference
| ong conpl ex

For exanple, the production
<T term> ::= <T factor> (ef. 6.3.1.)

corresponds to

<i nteger term> ::= <integer factor>
<real term> ::- <real factor>

<long real term> :v= <long real factor:,
<conpl ex term> : *- <compiex factor>

<l ong conpl ex term>::= <long conplex factor>

The production

<, primry> ::= |ong <7, primary> (cf. 6.3.1.and
table for long
corresponds to 6.5.2.7.)
<long real primry> ::= long <real primry?2
<long real primry> :+= long <integer prinary>
<long conpl ex primary> ::= Zlong <conplex prinary>

Tt is recognized that typographical entities exist of |ower order
than basic synbols, called characters. The accepted characters are
those of the |IBM System 30 EBCDIC code.

The synbol coment foilowed by any sequence of characters not
containing semcolons, followed by a semicolon, is called a comment.

A comment has no effect on tke neaning of a program and is ignored

during execution of the program An identifier (cf. 3.1)imediately

8

fol lowing the basic synbol end is also regarded as a coment.

The execution of a program can be considered as a sequence of
units of action. The sequence of these unirs of action is defined as
the eval uation of expressions and the execution of statements as de-
noted by the program In the definition of the inplenented |anguage
the evaluation or execution of certain constructs is either (1) de-
fined by System 360 operations, e.g., reai arithmetic, or (2) left
“undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASI C SYMBOLS AND SYNTACTIC ENTI TI ES

2.1. Basic Synbols

AlBlclop]E|F|o|H || s|k|L]|M|N]|]O]P]
elr|slrlulviw|x|y]|z]

olxr]2|s3|s]s|6]7]|8]9]

true | false | " | null |#]]

integer | real | conplex | logical | bits |string |
reference | long real | Long conplex | array |

procedure | record |~

s 15 =1 -1 (1)1 vegin | end | if | then | else |
case |of | + | - | = | /| * | div | rem| shr | shl | is |
abs]longlshortlandlgg_lﬂlllzl—w=|<|
<=|>|>=1:]

:= | goto | go to | for | step | until | do [while |
comment | value | result

Al underlined words, which we call 'reserved words”, are repre-
sented by the same words in capital letters in an actual program wth

nc intervening blanks

Adj acent reserved words,

no blanks and nust be separated by at |east one blank space

identifiers (cf. 3.1)and nunmbers mnust include

O herwi se

bl anks have no neaning and can be used freely to inprove the read-

ability of the program

2.2. Syntactic Entities

(with corresponding section nunbers)

<actual paraneter |ist>
<actual paraneter>

<bit factor>

<bit primary>

<bit secondary>

<bit sequence>

<bit ternp

<block body>

<block head>

<block>

<bound pair list>
<bound pair>

<case clause>

<case statenent>
<control identifier>
<decl ar ati on>

<digit>

<di mensi on specification>
<eh‘pty>
<equal ity operator>
<expression |ist>
<field list>

see page 34

<for clause>
<for list>
<formal array paraneter>
<formal parameter |ist>

<formal paraneter segnent>

1.3
T3
6.5
6.5
6.5
4.3
6.5
7.1
7.1
7.1
5.2
5.2
6

7.6
3.1
5

3.1
5.3

6.4
6.7
5.4
7.7
7.7
5.3
5.3

5.3 §

10

<formal type>

<go to statement>
<hex digit>
<identifier list>
<identifier>

<if clause>

<if statenent>

<i magi nary nunber>

<i ncrenent >

<initial value>
<iterative statenent>
<label definition>
<label identifier>
<letter>

<limt>

<l ogi cal el enment>

<l ogi cal factor>
<logical primary>
<logical ternp
<logical val ue>
<lower bound>

<nul | reference>
<procedure declaration>
<procedur e headi ng>
<procedure identifier>
<procedure statement>
<progr an»

5.3
7.4
4.3
3.1
3.1

Te5
4.1
77
77
77
7.1
3.1
3.1
17
6.4
6.4
6.4
6.4
4,2
5.2
4.5
5.3
5.3
3.1
7.3

<proper procedure body7 5.2 | <subscript list>
<substring designator>

<proper procedure . .
P pdecrimtiom 5,2 <J array declaration>
“| <7 array designator>

< i on> . -
record class declaration 5.k <T array identifier>

assi gnnent statenent 3

~ W oun oo
v R RN oR

<record class i dentifier> 31| o

<r ecoT?SfLaSS i dentifier 5.1 | <7 expression list> 6

<record designator> 6.7 <J expression> 6

<relation> 6.4 | <T factor> 6.3
<rel ational operator> 6.y | < field designator> 6.1
<scal e factor> 41| <F field identifier> 3.1
<sigm> y.1 | < function designator> 6.2
<sinple bit expressior> 6.5 <T function identifier> 3,1

6. | <¥ function procedure body> 5.3
<J function procedure

<sinmple logical expression>
<sinmple reference

expressiomn> 6.7 declaration> 5.3
<sinpl e statenent> 7 <T left part> 7.2
<sinple string expressiom> 6.6 | < number> b1
<sinple T expression> 6.3 <T primry3 6.3
<sinple T variable 6.1 <<Z!'r stuetf;;‘ay desi gnat or > gg
<sinple type> 5.1 | < variable> 6.1
<sinple variable <J variable identifier> 3.1

declaratiomn> 5.1 | <unscal ed real> 4.1
<statenment list> 7.6 | <upper bound> 5.2
<statement> 7 <while clause> 7.7
<string primry=> 6.6
<string> L.
<subarray designator list> 7,3
<subscript> 6.1

3. | DENTIFI ERS

3.1. Syntax
<identifier> :: = <letter> | <identifier> <letter> |<identifier> <digit>
‘<Y variabl e identifier> ::= <identifier3

11

<identifier>
<procedure identifier> ::= <identifier>

<T array identifier3 ::

<T function identifier> ::= <identifier>
<record class identifier> ::= <identifier>
<T field identifier> ::= <identifier>

<l abel identifier> ::= <identifier>

<control identifier> ::= <identifier>

<letter> = A|B|c|D|E|F|e|H|I]|]T|K]|L]|M]|
N|jo|lrp|Q|R|s|T|U|V]|w|[x]|Y]|z
<digit>::= o|1]2]|3|us]|5]6]7]8]9

<identifier list> ::= <identifier> | <identifier list> 6 <identifier>

3.2. Senmantics
Variables, arrays, procedures, record classes and record fields
are said to be quantities. Identifiers serve to identify quantities,
or they stand as labels, formal parameters or control identifiers.
Identifiers have no inherent neaning, and can be chosen freely in the
reference language. In an actual program a reserved word cannot be
used as an identifier
Every identifier used in a programnust be defined. This is
achi eved through
(a) a declaration (cf. Section 5),if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
Tvariable identifier, T array identifier, T procedure identifier
T function identifier, record class identifier or T field iden-
tifier, where the synbol 7 stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label definition (ef.7.1.), if the identifier stands as a

12

label. It is then said to be a |abel identifier

(c) its occurrence in a formal parameter list (cf. 53). 1t is then
said to be a formal paraneter

(d) its occurrence following the symbol for in a for clause (cf. 7.7)
It is then said to be a control identifier;

(e) its inplicit declaration in the |anguage. Standard procedures,
standard functions, and predefined variables (cf. 7.8 and 8)may be

considered to be declared in a block containing the program

The recognition of the definition of a given identifier is

determned by the follow ng rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1)enbracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a
procedure heading (cf. 53)or a for clause (cf. 7.7.) i s considered

to be a bl ock.

Step 2. Qherwise, if that block is a procedure body and if the
given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Qtherwise, if that block is preceded by a for clause
and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Q herwi se, these rules are applied considering the smallest

bl ock enbracing the block which has previously been considered.

13

If either step 1 or step 2 could lead to nore than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a con-
trol identifier is the set of statements in which occurrences of an
identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Exanpl es
|
PERSON
ELDERSI BLI NG
x15, X20, x25

-4.. VALUES AND TYPES

Constants and variables (cf. 6.1)are said to possess a val ue.
The value of a constant is determned by the denotation of the con-
stant. In the language, all constants (except references) have a
reference denotation (cf. L.1.-k.k.). Tke value of a variable is the
one nost recently assigned to that variable. A value is (recursively)
defined as either a sinple value or a structured value (an ordered set
of one or nore values). Every value is said to be of a certain type.
The follow ng types of sinple values are distinguished:

integer: the value is a 3 bit integer,
real: the value is a 3 bit floating point nunber,
long real: the value is a 64 bit floating point nunber,

conplex: the value is a complex number conposed of two
nunbers of type real,

14

tamgnp | ex: the value is a conplex nunmber conposed of two
long real nunbers,

logical : the value is a logical value,
. bits: the value is a linear sequence of 32 hits,

string: the value is a linear sequence of at most 256 char -
acters,

reference; the value is a reference to a record.

The following types of structured values are distinguished:'

array: the value is an ordered set of values, all of identi-
cal sinple type

record: the value is an 'ordered set of sinple values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may pot iyield a. value, in which case it is
called a proper procedure. The value of a function procedure is de-
fined as the value which results from the execution of the procedure
body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
characters. This, however, does not inply that the value of the de-
noted constant is a sequence of characters, nor that it has the pro-
perties of a sequence of characters, except, of course, in the case

of strings.

4L .1. Nunbers
4.1.1. syntax
<l ong compiex nunber> ::= <conpl ex number>L

<conpl ex nunber > <i magi nary number>
<i magi nary number> = <real number>I | <integer number>I

15

<long real nunber> : : = <real number>L | <i nt eger number>L
<real number> : := <unscaled real > | <unscal ed real > <scale factor> |
<integer number> <scale factor> | <scale factor>
<unscal ed real> ::= <integer nunber> . <integer nunber>
*<jinteger nunber> | <integer number>.

<scale factor> : := ‘<integer nunber> | '<sign> <i nteger nunber>
<integer nunber> : := <digit> | <i nteger nunber> <digit>
<sign> ::= + I -

4,1.2. Semantics

Nunbers are interpreted according to the conventional decimal
notation. A scale factor denotes an integral power of 10 which is
nultiplied by the unscaled real or integer nunber preceding it. Each
nunber has a uniquely defined type. (Note that all < number>s are

unsi gned.)

4.1.3. Exanples

1 .5 11
0100 1'3 0.671
3 . 1416 6.02486'+23 1IL

2.7182818284590452353602871L 2.3'-6

L.2. Logi cal Val ues e

-h.2.1.syntax

true, | false

<l ogi cal value> :

43.Bit Sequences

4.3.1. syntax

<bit sequence> ; := $ <hex digit> | <bit sequence> <hex digit>
<hex digit> ::=0 |1 |23 |4 |5]6]|7|8]9]|alB]
C|Dp|E|F

16

Note that 2 |... | F correspends to 2, | ... |15,

4.%3.2. Semantics

The nunber of bits in a bit sequence is 3 or 8hex digits. The
bit sequence is always represented by a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in en the

left.

4.3.3. Exanples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111
#9 = 0000 0000 0000 0000 0000 0000 0000 1001
4.4, Strings

L.4.1. syntax

<string> ::= "<sequence of characters>"

4.42. Semantics

Strings consist of any sequence of (at noat 256)charactersac-’
cepted by the System 360 enclosed by ", the string quote. If the
string quote appears in the sequence of c.har acters it nust be imme-
diately followed by a second string quote which is then ignored. The
nunber of characters in astring is said te be the length of the

string.
4.4.3. Examples

" JOHN'
"t is the string of length 1 censiating of the string
quot e.

17

k.5, References
4,5.1. Syntax
<null reference ::= null

4.5.2. Semantics
The reference value null fails to designate a record; if a refer-

ence expression occurring in a field designator (cf. 6.1)has this

value; then the field designator is undefined.

5. DECLARATI ONS

Decl arations serve to associate identifiers with the quantities
used in the program to attribute certain permanent properties to
_ these quantities (e.g. type, structure), and to determne their scope.
The quantities declared by declarations are sinple variables, arrays,
procedures and record classes.

Upon exit froma block, all quantities declared or defined wthin

that block |ose their value and significance (cf. 7.1.2. and 7.k.2.).

Syntax:

<declaratior> ::= <sinple variable declaration> | <J array
declaration> | <procedure declaration> |
<record class declaration>

5.1. Simple Vari abl e Decl arations

5.1.1. Syntax

<simple vari abl e declaration> ::= <sinple type> <identifier list>
<simple type> ::= integer| real | long real | conplex | long
complex | logical | bits | bits (32) |

18

string | string (<integer nunber>) | reference
(<record class identifier list>)
<record class identifier list> ::= <record class identifeﬁ>|

<record class identifier list> |
<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a
variable which is declared to be of the indicated type. A variable is
called a sinple variable, if its value is sinple (cf. Section 4).If
a variable is declared to be of a certain type, then this inplies that
only val ues which are assignment conpatible with this type (cf. 7.2.2,)
can be assigned to it. It is understood that the value of a variable
is equal to the value of the expression nost recently assigned to it.

A variable of type bits is always of length 32 whether or not
the declaration specification is included

A variable of type string has a length equal to the unsigned
integer in the declaration specification. |f the sinple type is
given only as string, the length of the variable is 16characters.

A variable of type reference may refer only to records of the
record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Exanples

integer I, J, X, M N
real X, Y, Z

| ong conplex C
| ogical L
bits G H

19

string. (10) S, T
reference (PERSON) JACK-; JILL

5.2. Array Declarations

5.2.1. Syntax

<T array declaration> ::= <simple type> _array <identifier list3
(<bound pair 1ist>)
<bound pair list> ::= <bound pair> |<bound pair 1ist>,<bound
pair>
<bound pair> ::= <lower bound> : <upper bound>
<lower bound> ::
<upper bound> ::

<integer expressior>

<integer expressiort>

5.2.2. Semantics
Each identifier of the identifier list of an array declaration is
associated with a variable which is declared to beof type Array.

variable of type array is an ordered set of variables whose type'is the

the number of .entries in the bound pair list,
Every element of an array. is identified by a list of indices.

The indices are the integers between and including the values of the
lower bound and the upper bound. Every expression in the bound pair
list is evaluated exactly once upon entry to the block in which the
declaration occurs. The bound pair expressions can depend only on
variables and procedures global to the block in which the declaration
occurs. In order to be valid, for every bound pair, the value of the

upper bound must not be less than the value of the lower bound.

5.2.3. Examples

antegary H (1: :100)

20

real array A, B{l::M, lL::N
string (12) array STREET, TOM, CITY (J::K + 1)

5.%. Procedure Declarations

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaratioﬁ>[
<T function procedure declaration>
<proper procedure declaration> ::= procedure <procedure heading> ;
<proper procedure body>
<J function procedure declaration> ::= <sinple type> procedure

<procedure heading>;
<J function procedure body>
<proper procedure body> ::= <statement>
<T function procedure body> :3= <J expression> | <bl ock body>
<7 expression> end
<procedure heading> ::= <identifier> | <identifiex> (<fornal
paranmeter' list>)
<formal paranmeter list> ::= <formal paraneter segment> |
<formal paranmeter list> ; <formal -
parameter segnent9

<formal parameter segnent> ::= <formal type> <identifier list> |
<formal array paraneter>
<formal type> ::= <sinple type> | <sinple type> value | <sinple

“type> result | <sinple type> value result |

<sinpl e type> pracedure | procedure
<formal array paraneter> ::= <sinple type> array <identifier
lists (<dinension specification>)
<di mensi on specification> ::= * | <di nension specification> , *

5.3.2. Semantics
A procedure declaration associates the procedure body with the
identifier imrediately follow ng the synbol procedure. The principal
21

part of the procedure declaration is the procedure body. Other parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. Aproper procedure
is activated by a procedure statement (cf. 7.3.), a function procedure
by a function designator (cf. 6.2.). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal. parameters.

5.3.2.1. Type specification of formal parameters. All formal para-
meters of a formal parameter segment are of the same indicated type,
The type must be such that the replacement of the formal parameter by
the actual. parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a
formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the symbols hegin and end
if it is not already enclosed by these symbols;
(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after
the first begin of the procedure body, with a simple
type as indicated in the formal type, and with an iden-
tifier different from any identifier valid at the place
of the declaration. ’

(b) throughout the procedure body, every occurrence of the

22

formal paraneter identifier is replaced by the identifier
defined in step 2a;

(3) If the formal type contains the synbol value, an assignnent
statement (cf. 7.2.) followed by a semcolon is inserted
after the declarations of the procedure body. Its left part
contains the identifier defined in step 2a, and its expression
consists of the formal parameter identifier. The synbol
value is then del eted,

(4) I'f the formal type contains the symbol result, an assignment
statement preceded by a semcolon is inserted before the synbol
end which termnates a proper procedure body. In the case
of a function procedure, an assignment statenent preceded
by a semcolon is inserted after the final expression
of the function procedure body. Its left part contains the
formal paraneter identifier, and its expression consists of
the identifier defined in step 2a. The synbol result is

t hen del et ed.

5.3.2.3. Specification of array dinensions. The number of ™"¥"'g
appearing in the formal array specification is the dimension of the

array paraneter

5.3.3. Exanples
procedure | NCREMENT, X := X+l

real _procedure MAX (real value X Y);

if X< Ythen Y else X

23

procedure COPY (real array U,V (*,%); integer value A B);

for I := 1 untill A do
for 3 :=1until B d&U(Z,J) := V(I,J)

real procedure HORNER (ieal areag A (*); v.al ue N;
real value X);
begin real S; S :=0;
for I := 0 until Ndo S := S * X + A(1);
S

end

long real procedure SUM (integer K, N long real X);
begin long real Y, Y :=0; K:=N

while K> = 1 do

begin Y := Y +X K:=K-1
end,

Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);
begin reference (PERSON) P, M
P := YOUNGESTOFFSFRING (FATHER (FATHER (R)));
while (P - = null) and. (- MALE (P)) or
(P = FATHER (R)) do
P := ELDERSIBLING (P);
M : = YOUNGESTOFFSPRING (MOTHER (MOTHER (R))):
while (M- =null) and (- MALE (1)) do
M := ELDERSIBLING (M);
I f nulPthen=M el se
i f nullMthen P else
if AGE(P)< AGE(M then P else M

end

el

5.4. Record O ass Declarations

5.4.1. Synt ax
<record class declaration> ::= record <identifier> (<field |ist>)
<field list> ::= <sinple variable declaration> | <field list> ;

<sinmple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of sinple variable declar-
ations which define the fields and their sinple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class

5.%.3. Exanpl es
record NCDE (reference (NODE) LEFT, R GHT)
record PERSON (string NAME, integer AGE, |ogical MALE

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

El DERSI BLI NG

6. EXPRESSI ONS

Expressions are rules which specify how new val ues are conputed
from existing ones. These new values are obtained by performng the
operations indicated by the operators on the values of the operands,
The operands are either constants, variables or function designators,

or other expressions, enclosed by parentheses if necessary. The eval u-

ation of operands other than constants may involve smaller units of

25

action such as the evaluation of other expressions or the execution
of statenents. The value of an expression between parentheses is
obtained by evaluating that expression. |f an operator has two operands
then these operands may be evaluated in any order with the exception
of the logical operators discussed in 6422 Several sinple types
of expressions are distinguished. Their structure is defined by the
following rules, in which the synbol T has to be replaced consistently
as described in Section 1, and where the triplets To’ Tlf TE have to
be either all three replaced by the same one of the words

| ogi ca

bi t

string

reference

or by any conbination of words as indicated by the follow ng table

whi ch yields T, given T, and I,

T

2
1 integer real complex
integer | integer real conpl ex
real | real real conpl ex
- conpl ex conpl ex conpl ex conpl ex
T H n n H H T T .
0 has the quality "long" if either both 1 and 0 have that quality,
or if one hasthe quality and the other is "integer".
Syntax:
<J expression> = <sinple T expression> | <case clause>
(<T expression | i st >)
<J, expression> ::= <ifclause> <J, expression> el se
<, expressi on>

26

<T expression list> :

.= <T expression>

<I0 expression list> ::= <:rl expression list> , <T2 expressi on>
<if clause> ::= if <logical expression> then
<case clause> ::= case <integer expression> of

The construction

<if clause> <Tl

expression> el se <, expressi on>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the expression following the if clause is

selected; if the value i

s false, the expression following else is se-

lected. If Tl and 72 are sinple type string, both string expressions

nmust have the same length. The construction

<case clause> (< expression |ist>)

causes the sel ection of

expression list is equal

t he expression whose ordinal number in the

to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current val

of sone expression in th

ue of this expression must be the ordinal number

e expression list. IfTis sinple type string,

all the string expressions nust have the same |ength.

6.1. Variables

6.1.1. Syntax

<sinple 7 variable> :

;= variable identifier> | J field designator>
<J array designator>

<J variable> ::= <simple T vari abl e>

<string variable> :

<subscript list> ::=

. = <substring designator>
< field designator>
< array designator> :

.= < Tfield identifier> (<reference expression>)
;= <7Tarray identifier> (<subscript |ist>)
<subscript> | <subscript list> <subscript>

<subscript> ::= <integer expression>

27

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript nmust lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The sinple type of the field designator
is defined by the declaration of that field identifier in the record
class designated by the reference expression of the field designator

(cf. 5.4).

6.1.3. Exanples

X A(T) M(I+J, | -J)
FATHER (JACK) MOTHER (FATHER (JILL))

6.2. Function Designators

6.2.1. Syntax

<T function designator> ::= <¥ function identifier> | < function
identifier> (<actual parameter [|ist>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a
process performed in the follow ng steps

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual paraneters of the latter

Steps 2, 3, 4, As specified in 7.3.2.

28

Step 5. The copy of the function procedure body, nodified as indicated
in steps 2-4, is executed. Execution of the expression which constitutes
or is part of the nodified procedure body consists of evaluation of that
expression, and the resulting value is the value of the function desig-
nator. The sinple type of the function designator is the sinple type

in the corresponding function procedure declaration.

6.2.3, Exanples .

MAX (x %% 2, Y *x 2)

SM (1, 100, H(1))

SuM (I, M, SUM (J, N, A(I,J)))
YOUNGESTUNCLE (JI LL)

SUM (I, 10, x(1) * Y(1))
HORNER (X, 10, 2.7)

6.3. Arithnetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the synbol 7
nmust be systematically replaced by one of the followng words (or
word pairs):

I nt eger

real

| ong real
conpl ex

| ong conpl ex

The rules governing the replacenent of the synbols TO, Tl and T2 are
given in 6,3.2,

<simple T expression> ::= <Tterm> | + <JTterm> | - <T term>

29

<sinple T, expression> ::= <sinple T, expression> + <T, ternp |
<sinmpl e T, expression> - <J, ternp

<J term> ::= <T factor>
<:ro term> [= <rlterm>*<rgfactor>
Ty term> 1= I term>/ <J, factor>

<integer term> div <integer factor> |
<integer term> rem <integer factor>

< factor> ::= I, pri mary> | <, factor> ** <integer prinary>
abi<trl primary>

Iﬂd’l pri mary>

<integer term> ::

T, primary> ::
<, primry> ::

I, primary> ::= short d’l prinmary>

<T primary> ::= < variable> | < function designator> |
(< expression>) | < nunber>

<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for conputing a nunber.

According to its sinple type it is called an integer expression,
real expression, long real expression, conplex expression, or |ong

conpl ex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional neanings
of addition, subtraction, multiplication and division. |n the relevant
syntactic rules of 6.3.1. the synmbols Ty T, and s have to be repl aced
by any conbination of words according to the follow ng table which

i ndi cat es Ty for any conbination of T and T

Qperators + | -

integer real complex

integer integer real complex

real real real complex

complex complex complex complex

30

T, has the quality "long" if both T, and T, have the quality

"long", or if one has the quality "long" and the other is "integer".

Qperator *
T .
Tl 2 | integer real conpl ex
I nt eger I nt eger | ong real | ong conpl ex
real | ong real | ong real | ong conpl ex
complex | long conplex long conplex long conplex

Tl or 12 having the quality “long” does not affect the type of

the result.
Operator /
T .
Tl 2 . integer real complex
I nt eger | ong real real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

T, has the quality "long" if both Tl and 7, have the quality
"long", or if one has the quality "long" and the other is "integer"

or if both are "integer".
6.3.2.2. The operator "-" standing as the first symbol of a sinple

expression denotes the nonadic operation of sign inversion. The type
of the result is the type of the operand. The operator "+" standing
as the first synbol of a sinple expression denotes the monadic opera-

4

tion of identity.
6.3.2.3. The operator div is mathematically defined (for B # 0) as

Adiv B=SGN (AxB)x D (abs A abs B) (cf. 6.3.2.6.)

31

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);
if A < 0 then -1 else 1;

integer_procedure D (integer value A, B);
if AC B then O else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as
AremB=A- (A div B) x B

6.3.2.5. The operator ** denotes exponentiation of the first operand
to the power of the second operand. In the relevant syntactic rule of
6.5,'.1. the symbols TO and 3’1 are to be replaced by any of the follow-

ing combinations of words:

TO Tl
long real integer
real real
complex complex

7o has the quality "long" if T, does or if T, is "integer".
6.3.2.6. The monadic operator abs_yields the absolute value or modulus

of the operand. "In the relevant syntactic rule of 6.3.1. the symbols T

0
and 3‘1 have to be replaced by any of the following combinations of words:

To | Ty
integer integer
real real
real complex

If Tl has the quality "long", then so does 3’0.

32

6.3.2.7. Precision of arithmetic. If the result of an arithmetic
operation is of simple type real, complex, long real or long complex
then it is the mathematically understood result of the operation per-
formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols TO and Tl‘
must be replaced by any of the following combinations of words (or

word pairs) :

" Operator long

:ro :I'l
long real real
long real integer

long complex | complex

Operator short

T I T
real long real
complex long complex

6.3.3. Examples

-C + A1) *B(1)
EXP (-X/(2 * SIGMA)) /S@T (2 * SIGMA)

6.4. Logical Expressions

6.4.1. Synﬁza.’kt
In the following rules for <relation> the symbols J'o and J’l must

either be identically replaced by any one of the following words:

33

bit
string
reference

or by any of the words from:

complex

long complex
real

long real
integer

and the symbols 3'2 or T, must be identically replaced by string or

3
must be replaced by any of real, long real, integer.

<simple logical expressior> ::= <logical element>| <relation>
<logical element> ::= <logical term>| <logical element> or
<logical term>

<logical term> ::= <logical factor> | <logical term> and
<logical factor>

<logical factor> ::= <logical primary> |- <logical primary>

<logical value>| <logical variable |

<logical function designator> |

<logical primary> ::

(<logical expressior>)
<relatiorn> ::= <simple TO expression> <equality operator>
<simple T, expression>| <logical element3
<equality operator> <logical element> |

<simple reference expression> is
<record class identifier> |
<simple 3‘,_ expression> <relational operator>
<simple T, expression>
<relational operator> ::=<|<=|>=|>
<equality operator> ::==| — =
6.4.2. Semantics

A logical expression is a rule for computing a logical value.

34

6.4.2.1. The relational operators represent algebraic ordering for
arithnetic arguments and EBCDIC ordering for string arguments. If two
strings of unequal length are conpared, the shorter string is extended
to the right by characters |less than any possible string character.

The relational operators yield the logical value true if the relation

is satisfied for the values of the two operands; false otherwise. Two
references are equal if and only if they are both null or both refer

to the same record. Two strings are equal if and only if they have

the same length and the same ordered sequence of characters. The operator
is yields the logical value true if the reference expression designates a
record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators - (not), and, and or, operating on |ogical

val ues, are defined by the follow ng equival ences:

- X if Xthen false else true
Xand Y if Xthen Y else false
XoryY if X_then true else Y

6.4.3. Exanples

PorQ

(X <Y) and (Y <2)
YOUNGESTOFFSPRI NG (JACK) = = null
FATHER (JILL) is PERSON -

6.5. Bit Expressions

6.5.1. Syntax

<sinple hit expression> ::= <bit term> | <sinple bit expression>
or <bit term>

<bit term> ::= <bit factor> | <bit term> and <bit factor>
<vit factor> ::= <bit secondary> | - <bit secondary>
<bit secondary> ::= <bit primary> | <vit secondary> shl_

<integer primry> | <bit secondary> shr

<integer primry>
<bit primary> ::= <bit sequence> | <bit variabl e> | <bit PAGE 35

function designator> | (<bit expression>)

6.5.2. Semantics
A bit expression is a rule for conputing a bit sequence.
The operators and, or, and - produce a result of type hits, every

bit being dependent on the corresponding bit(s) in the operand(s) as

follows:
X Y Xand Y
0 0 0
0 1 0
1 0 0
1 1 1

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the nunber of bit positions
indicated by the absolute value of the integer primary. Vacated bit
positions to the right or left respectively are assigned the bit

value 0

6.5.3. Exanpl es

Gand Hor #8
Gand - (Hor § shr 8

6.6. String Expressions

6.6.1. Synt ax

<sinple string expression> ::= <string primry>
<string primary> ::= <string> | <string variabl e> | <string
function designator> | (<string expression>)
<substring designator> ::= <sinple string variabl e>
(<integer expressior>l <integer nunber>)

36

6.6.2. Semanti cs

A string expression is a rule for conputing a string (sequence of

, Characters).

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the W selects the starting character of the sequence. The
val ue of the expression indicates the position in the string variable.
The value nust be greater than or equal to 0 and less than the declared
length of the string variable. The first character of the string has
position 0. The integer nunber following the § indicates the length
of the selected sequence and is the length of the string expression

- The sum of the integer expression and the integer nunber nust be |ess

than or equal to the declared length of the string variable.

6.6.3. Exanple

string (10) S
s (4U3)
S (I+Jwl)

string (10) array T (1: :m,2: :n);
T (4,6) (385)

6.7. Reference Expressions

6.7.1. Syntax

-<sinple reference expression) ::= <null reference | <reference
variabl e> | <reference function
desi gnator> | <record designator> |

(<reference expression>)

37

<record designator> ::= <record class identifier> | <record
class identifier> (<expression |ist>)
<expression list> ::= < expression> | <expression |ist>,
< expression>

6.7.2. Semantics

A reference expression is a rulefor conputing a reference to a
record.

The value of a record designator is the reference to a newy
created record belonging to the designated record class. If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record, The entries
in the expression list are taken in the same order as the fields in
the record class declaration, and the sinple types of the expressions nust
be assignment conpatible with the sinple types of the record fields

(cf. 7.2.2.).

6.7.3. Exanple

PERSON ("CARQL'", 0, false, JACK, JILL, null, YOUNGESTOFFSPRI NG
(JACK))

6.8. Precedence of QOperators

The syntax of 6.3.1., 6.4.1., and 65.1. inplies the follow ng
hi erarchy of operator precedences:

long, short, abs
shl, shr, %
-

*, /, div, rem and

38

Exanpl e

A=Band C is equivalent to A= (Band Q

7. STATEMENTS

A statement denotes a unit of action. By the execution of a
statement is nmeant the performance of this unit of action,which may
consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statenents.

Synt ax:
<program> ::= <block> .
<statement> ::= <sinple statement> | <iterative statement> |

<if statement> | <case statement>
<block> | <T assignnent statement> |
<empty> | <procedure statenment> |

<sinple statenent>

]

<goto st atenent>

7.1. Bl ocks

7.1.1. Syntax

<bl oc& ::= <block body> <statenent> end

<bl ock body> <bl ock head> | <bl ock body> <st at ement >; |
<bl ock body> <| abel definition>

begin | <block head> <declaration> ;

<bl ock head>
<| abel definition> ::= <identifier> :

7.1.2. Semantics
Every block introduces a new level of nomenclature. This is

realized by execution of the block in the follow ng steps:

39

Step 1. If an identifier, say A defined in the block head or
in a label definition of the block body is already defined at
the place from which the block is entered, then every occurrence
of that identifier, A wthin the block except for occurrence in
array bound expressions is systematically replaced by anot her
identifier, say APRIME, which is defined neither within the

bl ock nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are eval uated.

Step 3. Execution of the statements contained in the block body
begins with the execution of the first statement following the
bl ock head.

After execution of the last statement of the block body (unless
it is a goto statenent) a block exit occurs, and the statenent follow
ing the entire block is executed.

7.1.3. Exanple

begin real U
Uu:=x; XxX:=Y: Y:=1z; z :=1uU
end

7.2.- Assignnent Statenents

7.2.1. Syntax

In the followi ng rules the synbols 7_ and Zrl must be replaced by

0
words as indicated in Section 1, subject to the restriction that the

type Tl i s assignnment conpatible with the type TO as defined in 7.2.2.

Lo

s assignnment statement> ::= T left part> <, expressi on>
T, left part> I, assi gnnment
st at ement >

< left part> ::= < variable> :=

7.2.2. Semantics

The execution of a sinple assignment statenent

T, assi gnnent statenment> ::= ol left part> I expressi on>
causes the assignnment of the value of the expression to the variable.
If a shorter string is to be assigned to a |onger one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a multiple assignnent statenent

(<IO assi gnnent statenent> ::= <, left part>'di assi gnnent
st at enent >)

the assignnents are performed fromright to left. For each left part
variable, the sinple type of the expression or assignnent variable inmediately
to the right nust be assignnent conpatible with the sinple type of that
vari abl e.
A sinple type T, is said to be assignment conpatible with a sinple
type T, i f either
(1) the two types are identical (except that if Ty and 7, are
string, the length of the 7, variable nmust be greater than
or equal to the length of the 7, expression or assignnent), or
(2) 7, is real or Jong real, and Tl is integer, real or |ong

0
real or

0
long real, conplex or |ong conplex.

(3) 7. is conplex or long conplex, and T is integer, real,

In the case of a reference, the reference to be assigned must refer
to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration.

L3

7.3,

7.2.3. Exanples

AGE(JACK) := 28
Y + abs z
I+X+C
X—=Y

0

z
X
C :
P

Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier> |<procedure
identifier> (<actual parameter |ist>)
<actual paraneter |ist> ::= <actual paranmeter> | <actual
paranmeter |ist> , <actual paraneter>
<actual parameter> ::= <J expression> | <statement> | <I subarray
desi gnator> | <procedure identifier> |
<& function identifier>

<T subarray designator> ::= <J array identifier> | < array
identifier> (<subarray designator
list>)

<subarray designator list> ::= <subscript> | * | <subarray

desi gnator list>,<subscript> |
<subarray designator list> *

7.3.2. Semantics

The execution of a procedure statenent is equivalent to a process

performed in the follow ng steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statement, and of
the actual parameters of the latter. The procedure statement is

repl aced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is perforned as specifiedby

4o

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an
undefined order as follows: If the copy is an expression
different froma variable, then it is enclosed by a pair of

parentheses, or if it is a statement it is enclosed by the synbols

begi n and end.

Step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal paraneter is replaced by the copy
of the corresponding actual parameter (cf. 7.3.2.1.). In order
for the process to be defined, these replacenents nust lead to

correct ALGOL W expressions and statenents

Step 5. The copy of the procedure body, nodified as indicated in

steps 2-4,is executed.

7.3.2.1. Actual -formal correspondence. The correspondence between
the actual parameters and the formal paraneters is established as
follows: The actual paranmeter list of the procedure statenent (or
of the function designator) nust have the sane nunber of entries as
the formal paraneter |ist of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two lists

in the same order

7.3.2.2. Formal specifications. |If a formal parameter is specified by
value, then the sinple type of the actual parameter nust be assignment

conpatible with the formal type. If it is specified as result,.then the
formal type nust be assignnent conpatible with the sinple type of the

actual paraneter. If it is specified by value result, both the above

43

conditions nust be satisfied. In all other cases, the types nust be

identical. If an actual parameter is a statenent, then the specification

of its corresponding formal paraneter nust be grocedure.

7.3.2.3, Subarray designators. A conplete array may be passed to a
procedure by specifying the name of the array if the nunber of subscripts
of the actual parameter equals the nunber of subscripts of the
corresponding formal parameter. If the actual array paraneter has
more subscripts than the corresponding formal paraneter, enough subscripts
must be specified by integer expressions so that the nunber of *'s appearing
in the subarray designator equals the number of subscripts of the
corresponding formal parameter. The subscript positions of the fornal
array designator are matched with the positions with *'s in the subarray
designator in the order they appear.

7.3.3. Exanples

| NCREMENT
CoPY (AL B, M N
| NNERPRODUCT (I P, N, A(I,*), B(*,J))

7.4, Goto Statnents

7.4.1. Syntax

<goto Statement> ::= goto <label identifier> | go to (1 abel
identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands as a

| abel .

44

A goto statement determines that execution of the text be contin-
ued after the label definition of the label identifier. The ident ifi-

cation of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently acti-
vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

7.5. |If Statements

7.5.1. Syntax

<if statement> ::= <if clause> <statement> |<if clause>
<simple statement> else <statement>

<if clause> : := if <logical expression> then

T.5.2. Semantics
The execution of if statements causes certain statements to be
executed or skipped depending on the values of specified logical ex=-

pressions . An if statement of the form
<if clause <statement>
is executed in the following steps:
Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement
following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

45

An if statenment of the form

<if clause> <sinple statenment> else <statenent>

is executed in the follow ng steps:

- 7T.6.

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the sinple state-

ment following the if clause is executed. CQherw se the state-

ment followi ng else is executed.

7.5.3. Exanples

= Y then goto L

if X
if X<YthenU:=Xelseif Y<zthen U:=YelseV:=12

Bdsat ement s

7.6.1. Syntax

<case statenment> ::= <-ase clause> begin <statenment |ists end
<statement list> '::= <statenment> | <statement list> ; <statenent>
<case clause> ::= case <integer expressiom> 0of

7.6.2. Semantics

The execution of a case statement proceeds in the follow ng

st eps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statenment whose ordinal nunber in the statenent |ist
is equal to the value obtained in Step 1 is executed. In order
that the case statement be defined, the current value of the ex-

pression in the case clause nust be the ordinal nunber of sone

46

7.7.

statenent of the statement 1list.

7.6.5. Exanples

case 1 of

begin X:= X +Y;
Y =Y+ z
l =27 +X

end

case j of

begin H(I) := -H();
begin H(1-1) :=H(I-1) + H1); | :=1-1 end;
begin H(I-1) :=H(I-1) x H1); | :=1-1 end;
begin E(H(I-1)) := H(1); | := 1-2 end

end

I[terative Statenents

7.7 l Syntax

<iterative statement> ::: <for clause> <g¢* “ement> | <while
clause> <statement>
<for clause> ;:= for <identifier> := <initial value>

step <increment> until <limit> do | for

<identifier> := <initial value> until <linmit>
do | for <identifier> := <for list> do

<fer list> : := <integer expression> | <for list> , <integer

expressi on>

<initial wvalue> ::= <integer expression>

<increment> ::= <integer expressicn>

<limit> ::= <integer expressior>

<whi | @ clause> ::= while <logical expression> do

7.7.2. Semantics

The iterative statenent serves to express that a statenent be

T

executed repeatedly depending on certain conditions specified by a
for clause or a while clause. The statenment following the for clause
or the while clause always acts as a block, whether it has the form of
a block or not. The value of the control identifier (the identifier

followng for) cannot be changed by assignment within the controlled

st atement .

(a) An iterative statement of the form

for <identifier> := El step E2 until £3 do <statement>
is exactly equivalent to the block

begin <statement-O>; <statement-1> . . . ; <statenent-|>;
; <statenment-N> end

inthe 7™ statement every occurrence of the control identifier
is replaced by the value of the expression (El + | x E2).
The index N of the last statement is determned by
N < (E3-E1) / B2 < 1. |If N< 0, then it is understood that
the sequence is enpty. The expressions El, E2, and E3 are
eval uated exactly once, nanmely before execution of <statenent-O.

Therefore they can not depend on the control identifier.

(b) An iterative statement of the form

for <identifier> := E until E3 do <statenent>
is exactly equivalent to the iterative statenent

for <identifier> := El step 1 until E3 do <statenent>

(c) An iterative statement of the form

for <identifier>:=H, E2, . . . , EN do <statement>

is exactly equivalent to the block

48

begin <statenent-|>; <statement-2> . . . <statement-1>; . . .
<statenent-N> end

th

when in the | statement every occurrence of the control identifier

is replaced by the value of the expression El.

(d) An iterative statement of the form
while E do <statement>

Is exactly equivalent to

begi n
L: if E then

begi n <statement> ; goto L end

end
where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

7.7 Exanpl es

3.
for V:=1step 1 until NI do S:=85+AUYV)

ile (3>0) and (ATY(J) ==9) do J := J-I

for I ==X, X+ 1, X+ 3, X+ 7do P(1)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of
comuni cation wth-the input/output system These standard procedures
differ from explicitly declared procedures in that the nunber and type
of actual parameters need not be identical in every procedure statenent
in which the standard procedure identifier appears. In the follow ng

descriptions, each 7. is to be replaced by any one of

k9

I nt eger string (<integer nunber>)

real | ogi ca
long real bits
complex

toognp | e x

7.8.1. The Input/Qutput System

AIGOL Wprovides a single legible input streamand a single legible
output stream These streans are conceived as sequences of records, each
record consisting of a character sequence of fixed length. The input
stream has the logical properties of a sequence of cards in a card reader
records consist of 80 characters. The output stream has the |ogica
properties of a sequence of lines on a line printer; records consist
of 132 characters, and the records are grouped into |ogical pages.

Each page consists of not |ess than one nor nore than 60 |ines

Input records may be transmtted as strings wthout analysis.
Alternatively, it is possible to invoke a procedure which will scan the
sequence of records for data items to be interpreted as nunbers, bit
sequences, strings, or logical values. |If such analysis is specified,
data items may be reference denotations of the corresponding constants
(cf. Section 4). In addition, the following forms of arithnmetic expressions
are acceptable data itenms, and the corresponding sinple types are those

determned by the rules for expressions (cf. 6.3.):

(1) <sign> <7 nunber>
where : T is one of integer, real, long real, conplex, |ong

conpl ex

50

(2) I, nunber > <si gn> I, nunber >
<sign> <IO nunber > <sign> <Tl number >
where : T is one of integer, real, long real, and
7 is one of complex, long conplex.
Data itens are separated by one or nore blanks. Scanning for data itens
initially begins with the first character of the input stream after
the initial scan, it normally begins with the character follow ng the
one which termnated the nost recent previous scan. Leading blanks are
ignored. The scan is termnated by the first blank follow ng the data
item In the process, new records are fetched as necessary; character
position 80 of one record is considered to be inmediately followed by
character position 1 of the next record. There exist procedures to
-cause the scanning process to begin with the first character of a record,
i f scanning would not otherwi se start there, a new record is fetched.
Qutput itens are assenbled into records by an editing procedure.
Itenms are automatically converted to character sequences and placed

in fields according to the sinple type of each item as described bel ow

Sinple Type Field Description

i nt eger right justified in a field containing
the nunber of characters specified by
the current value of [INTFIELDSIZE
(initialized to 14, cf. 8.5.) and fol |l oned
by 2 bl anks

real right justified in a field of 14 characters
and followed by 2 blanks

51

| ong real right justified in a field of 22 characters
and followed by 2 blanks

conpl ex two adjacent real fields

| ong conpl ex two adjacent long real fields

| ogi cal right justified in a field of 6 characters
foll owed by 2 bl anks

string placed in a field exactly the length of
the string

bits sane as real

The. first field transnitted begins the output stream thereafter, each
field is normally placed imediately following the nost recent previously
transmtted field. If, however, the field corresponding to an item
cannot be placed entirely within a non-enpty record, that itemis nmade the
first field of the next record. In addition, there exist procedures to
cause the field corresponding to an itemto begin a new record. Each

page group is automatically termnated after 60 records; procedures

are provided for causing earlier termnation.
7.8.2. Read Statenents

Inplicit declaration headings:

procedur e READ (Tl result X;5. . . ; T result X);
procedur e READON (Tl resul t X500 .57 resul t Xn);

(where n > = 1)

Both READ and READON designate free field input procedures. |nput
records are scanned as described in 7.8.1. Values on input records are
read, matched with the variables of the actual paranmeter list in order

of appearance, and assigned to the corresponding variables. The sinple

52

type of each data item nust be assignnment conpatible with the sinple
type of the corresponding variable. For each READ statenent, scanning
for the first data itemis caused to begin with the first character of
a record; for a READON statement, Scanning continues from the previous
point of termination as determined by prior use of READ, READON, or
IOCONTROL (cf. 7.8.1.).

Inplicit declaration heading:

procedur e READCARD (string(80) result X, X)3

n
(where n > = 1)

READCARD designates a procedure transmtting 80 character input

records without analysis. For each variable of the actual parameter |ist,

t he scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), @l 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning is set to begin at the first character of the next sequential

record.
7.8.3. Wite Statenents

Inplicit declaration headings:

procedure WRITE (Il value X5 . . . ; 7 value xn);
procedur e WRITEON (Tl value XI; . . . ; T value Xn);

(where n > = 1)

WRI TE and WRITEON designate output procedures wth automatic fornat

conversion. Values of expressions of the actual parameter list are converted

to character fields which are assenbled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

>3

to the first value is caused to begin an output record; for a WRITEON

statenment, assenbly continues from the previous point of termnation.
7.8.4. Control Statenents

Inplicit declaration heading:

procedure | OCONTROL (integer value Xl, . ’Xn);
(where n > = 1)
| OCONTROL designates a procedure which affects the state of the
i nput/output system Argument values with defined effect are listed below,
other values currently have no effect but are explicitly nade available

for local use or future expansion.

Val ue Action (cf. 7.8.1.)
1 Subsequent input scanning is set to begin
with the first character of a record.
2 Subsequent output assenbly is set to begin
with the first field of a record.
3 Subsequent output assenbly is set to begin

with the first field of a record which, in
turn, is caused to begin a new output page.

7.8.5. Exanples

READ (X, A(1))

READCARD (S, LINE(10|80))
WRI TE ("AVERAGE =", SUM/N)
WRITEON (X(1,J))

| OCOONTROL (2)

54

8. STANDARD FUNCTI ONS AND PREDECURED | DENTI FI ERS

The ALGOL W environment includes declarations and initialization of
certain procedures and variabl es which suppl ement the language facilities
previously described. Such declarations and initialization are considered
to be included in a block which encloses each ALGOL W program (with
termnating period elimnated). The corresponding identifiers are said

to be predeclared.

8.1. Standard Transfer F-unctions

Certain functions for conversion of vaiues from one sinple type
to another are provided. These functions are predeclared; the
corresponding inplicit declaration headings are listed bel ow

i nteger procedure TRUNCATE (real value X);

comment the integer i such that
lij<=1x] <l|il+ 1 and i¥Xx > = 0
i nteger procedure ENTIER (real value X);

comment the integer i such that
i<=X<i+1;
integer procedure ROUND (real value X);

comment the value of the integer expression
if X < 0 then TRUNCATE(X-0.5) el se TRUNCATE (X+0.5) ;
real procedure ROUNDTOREAL (long real value X);

-comment the properly rounded value of X ;
real procedure REALPART (conplex value Z);

conment the real conponent of Z ;
long real procedure LONGREALPART (long conplex value Z);

real procedure | MAGPART (conplex value Z);

coment the imaginary conmponent of Z ;
long real procedure LONGIMAGPART (| ong conpl ex val ue Z);

25

conpl ex procedure |MAG (real value X)
comment the conpl ex nunber 0 + Xi ;
| ong conpl ex procedure LONG MAG (long real value X)
| ogi cal procedure ODD (integer value N); o
conment the |ogical value
Nrem2 =1;
bits procedure BITSTRING (integer value N);
comment two's conplenment representation of N ;
i nteger procedure NUMBER (bits value X)
comment integer with tmo's_zgﬁg]enent representation X ;
i nteger procedure DECCDE (string(l) value S)
comment nuneric code for the-character S (cf. Appendix 1) ;
string(l) procedure CODE (integer value N);
comment character with numeric code (cf. Appendix 1) given by
abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)
w blank

Each-exponent is unbiased. Decinal exponents represent powers of 10;

hexadeci nal exponents represent powers of 16. Each mantissa (except 0)
represents a normelized fraction less than one. |eading zeroes are not

suppressed

56

string(12) procedure BASE10 (real value X);
comment string encoding of X with format
FEE+DDDDDDD 5
string(12) procedure BASE16 (real value X);
conmment string encoding of X with format

wFBBHAAAAAA

string(20) procedur e IONGBASELO (| qng real value X);
comment string encoding of X with format
,s+EE+DDDDDDDDDDDDDDD
string(20) procedure LONGBASE16 (laong real value X);
conmment string encoding of X with format
o HBBHAAAAAAAAAAAAAA. ¢
string(12) procedure INTBASE1O (integer value N);

conmment string encoding of N with format

I_‘-I_-DDDDDDDDDD ;

string(12) procedure |NTBASE16 (integer value N);

conmment unsi gned,

two's conplenent string encoding of N with format

u_n_.uAAAAAAAA 5

8.2. Standard Functions of

Anal ysi s

The following functions of analysis are provided in the system

environment. |n some cases,
argunents outside of the al
functions are predeclared;

are listed bel ow

they are partial functions; action for

lowed domain is described in 8.5, 1hese

the corresponding inplicit declaration headings

pealcedure SORT (real value- X);
conment the positive square root of X

domain : X>=

0

long real procedure LONGSQRT (lLong real value X);
conment the positive square root of X

domain : X > =

03

o1

conpl ex procedure COVPLEXSQRT (conpl ex vaI_ueZ);
comment principal square root of Z;
long conpl ex procedure LONGCOMPLEXSQRT (|ong conplex value Z);
comment principal square root of Z ;
real procedure EXP (real value X);
comment e *x X |
domain : X < 174.67 ;
long real procedure LONGEXP (long real value X);
comment e ** X,
domain : X < 174.67 ;
real procedure IN (real value X);
conment |ogarithmof X to the-base e,
domain : X >0 ;
long real procedure LONGLN (real value X);
conment |ogarithmof X to the base e,

domain : X >0 ;
real procedure LOG (real value X);
comment |ogarithmof X to the base 10,
domain : X >0 ;
|l ong real procedure LONGLOG (long real value X);

comrent |ogarithmof X to the base 10,
domain : X >0 ;
real procedure SIN (real value X);
comrent sine of X (radians),
domain : -823550 < x < 823550 ;
long real procedure LONGSIN (long real value X);
comrent sine of X (radians),
domain : -3,537'+15 < X < 3,537'+15
real procedure COS (real value X);
comment cosine of X (radians)
domain : -823550 < x < 823550 ;
long real procedure LONGCOS (lLong real value X);
comment cosine of X (radians),
domain @ -3.537'+15 < X < 3.537'+15 ;

58

real procedure ARCTAN (real value X);
conment arctangent (radians) of X
range : -m/2 < ARCTAN(X) < m/2 ;
long real procedure LONGARCTAN (long real value X);
conment arctangent (radians) of X
range : -m/2 < LONGARCTAN(X) < n/2 ;

8.3. Tinme Function

The ALGOL W environnment includes a clock which measures el apsed
tine since the beginning of program execution. The resolution of that
clock is 1/60 second. A predeclared function is provided for reading

the clock.

i nteger procedure TIME (integer value N);

comment returns elapsed tinme, in hundredths of a nminute if N=0,
in sixtieths of a second otherw se;

8.4. Predeclared Vari abl es

The following variables are to be considered declared and initialized
by assignment in the conceptual block enclosing the entire ALGOL W program
The values indicated for real and long real quantities are to be understood
as decimal approximations to the actual machine-format val ues provided.

i nteger | NTFI ELDSI ZE;
coment initialized to 14 ,
controls output field size for integers (cf. 7.8.1.);
i nt eger MAXI NTEGER,
comrent initialized to 2147483647 |
the maximum positive integer allowed by the inplementation;

59

real EPSILON,
conment initialized to 9.536743 '-07
the largest positive real number ¢ provided by the

i mpl enentation such that

l1+e=13
long real LONGEPSILON
comrent initialized to 2.22044604925031"'~16L ,
the largest positive long real number e provided by
the inplenmentation such that
l+e=1;
long real MAXRFAL;
comment initialized to 7.23700557733226'+75L
the largest positive long real nunmber provided by the
i mpl enent ati on;
long real PI;

comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL Wto allow
detection and control of certain exceptional conditions arising in
the evaluation of arithnetic expressions and standard functions.

Inplicit declarations:

record EXCEPTION (logical XCPNOTED, integer XCPLIMT, XCPACTION,
| ogi cal XCPMARK; string(64) XCPMSG ;
reference (EXCEPTION)
OVFL, UNFL, DI VZERQ,
| NTOVFL, | NTDI VZERQ,
SQRTERR, EXPERR, INLOGERR, S| NCOSERR ;

60

Associated with each exceptional condition which can be processed
is a predeclared reference variable to which references to records of
the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The association between conditions and

reference variables is as follows:

Ref erence Variable Condi tions

OVFL real, long real," conplex, long
conpl ex (exponent) overflow

UNFL real, long real, conplex, long
- conpl ex (exponent) underflow

Dl VZERO real, long real, conplex, long
conpl ex division by zero

| NTOVFL i nteger overflow

| NTDI VZERO integer division by zero

SQRTERR negative argument for SQRT, LONGSQRT

EXPERR argunent of EXP, IONGEXP out of
domain (cf. 8.2.)

INLOGERR argunent of LN, LOG LONGLN,
LONGIOG out of domain (cf. 8.2.)

SI NCOSERR argument of SIN, COS, LONGSIN,

LONGCOS out of dommin (cf. 8.2.)

Wien one of the conditions |isted above is detected, the corresponding
reference variable is interrogated, and one of the alternatives described
bel ow i s chosen.

If the value of the reference variable interrogated is null, the
condition is ignored and execution of the AIGOL W program continues.

In such situations, a value of 0 is returned as the value of a standard

61

function. For other conditions the result is that provided by the
under | yi ng | BM System/360 hardwarey‘ In determining such a result, it

is to be noted that in those cases in which the detection of exceptional
conditions can be inhibited at the hardware level, nanely integer overflow
and exponent underflow, detection is so inhibited when the corresponding
reference is NULL.

If the value of the reference variable interrogated is not NULL,
the fields of the record designated by that reference are interrogated,
and processing action is that described by the algorithm gi ven\bel oW in
the formof an extended ALGOL W procedure. Identifiers in |ower case
represent quantities which transcend the ALGOL W |anguage; they are
expl ai ned subsequently.

procedur e PROCESSEXCEPTI ON (reference(EXCEPTION) val ue CONDI TION);
begi n
XCPNOTED(CONDI TION) @ = true,
XCPLIMIT (CONDITION) := XCPLIMT(CONDITIQN) - 1;
if (XCPLIMIT(CONDITION) < 0) or XCPMARK(CONDI TION) then
WRITE ("%%x* EXCEPTI ON NEAR CARD nnnn - ", XCPMSG{ CONDI TION));
if XCPLIMT(CONDITION) < O then endexecution else
if integercondition then
resultant := default else
if XCPACTION(CONDITION) = 1 then adjustnent else
if XCPACTION(CONDITION) = 2 then QL else
def aul t

end PROCESSEXCEPTI ON

resul t ant

This procedure is invoked with the value of the reference variable
appropriate to the condition as actual paraneter. The significance of

the special identifiers used is as follows:

g/IBM System/360 Principles of Operation, |BM Systems Library, Form A22-6821

62

nnnn

endexecution

i ntegercondition

def aul t

resul t ant

adj ust ment

4

approxi mate |ine number of the source code

whi ch was being executed when the exceptional
condition was detected

procedure to termnate execution of the ALGOL W
program

| ogical value which is true if, and only if,

the condition being processed is integer overflow
or integer division by zero

result of the operation or function provided

by the ALGOL Wsystemprior to invocation of

the exception processing procedure; this is
defined by the hardware? for arithmetic
operations and is the value 0 for standard
functions

value to be returned as the result of the
arithmetic evaluation or standard function

I nvocation

adjusted result of the operation according to
the follow ng table

Condi tion Adj ust nment
exponent overflow, if default < 0 then
division by zero -MAXREAL el se MAXREAL
exponent underfl ow 0oL

argument X out of domain for

SQRT, LONGSQRT SQRT(abs X), LONGSQRT(abs X)
EXP, LONGEXP MAXREAL

IN, LONGIN -MAXREAL

LOG LONGLOG -MAXREAL

SI'N, LONGSIN OL

COS, LONGCOS oL

5 IBM System/360 Principles of Operation, |IBM Systens Library, Form A22-6821

63

The reference variable UNFL is initialized by the systemto NULL.
All other reference variables listed above are initialized to references
to a special record which is accessible only by the system Interrogation
of this record by the procedure described above has the effect of causing
the ALGOL W programto be termnated with a nessage indicating the type

of exception. Any other attenpt to access any field of this record will

result in a reference error.

64

APPENDI X 1 - CHARACTER ENCODI NGS

The following table presents the correspondence between printable
string characters and their (EBCDIC) integer encodings. This encoding
establishes the ordering relation on characters and thus on strings.
Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character
64 space 129 (a) 193 A 2o O
T4 (£) 130 (b) 9% B 241 1
75 ‘ 131 (C) 195 ¢C 242 2
76 < 132 (d) 196 D 243 3
7 (133 (e) 197 E 2k 4
78 + 134 (f) 198 F 2k5 5

79 135 (g) 19 G 2k 6
80 & 136 (h) 200 H o7 7
(") 137 (i) 201 | 248 8
91 $ 145 (3) 209 J 249 9
92 * 146 (k) 210 K ’
93) 7 (1) 211 L
oL s 48 (m 212 M
B 9 (n) 213 N
96 150 (0) 214 0
o/ 151 (P 215 P

07, 152 (q) 216 Q

108 % 153 (r) 217 R

109 162 (9) 226 S

110 > 163 (t) 227 T

111 ? 164 (u) 228 U

122 : 165 (v) 229 VvV

123, 166 (w) 230 W

124 @ 167 (%) 231 X

125 : 168 (y) 232 vy

126 = 169 (z) 233 2

127 "

65

ALGOL W

ERROR MESSAGES

by

Henry R, Bauer
Sheldon Becker
Susan L. Graham

66

ALGOL W ERROR MESSAGES

PASS ONE MESSAGES

Al Pass One nessages appear on the first page follow ng the program

listing. The nmessage format is
CARD NO, (nunber) -- (message)

The (nunber) corresponds to the card nunber on which the error

was found. The (message) is one of those listed bel ow

| NCORRECT SPECI FTN syntactic entity of a declaration is
incorrect, e.g. variable string length.
| NCORRECT CONSTANT syntax error in nunber or bitstring.
M SSING END an END needed to close bl ock.
- M SSING BEG N an attenpt to close outer block
before end of code.
M SSI NG)) is needed.
| LLEGAL CHARACTER a character, not in a string, is
unr ecogni zabl e.
M SSING FI NAL . program nust be terminated by a period.
STRING LNGTH ERRCR string is of 0 length or length
greater than 256,
BI TS LENGTH ERRCR bits constant denotes no bits or
nore than 32 bits.
M SSI NG ((s needed.
TABLE OVERFLOWN termnating error - a conpile tine

tabl e has exceeded its bounds.

67

TOO Mawy ERRORS the maxi mum nwdber of errors for Pass
One records has been reached. Com
pilation continues but messages for
succeeding errors detected by Pass
One are suppressed.

| D LENGTH > 256 nmore than 256 characters in' identifier.
See alse di scussion of PROGRAM CHECK in I V.

II. PASS TWO MESSAGES

The format of Pass Two error nmessages is

(message), CARD NUMBER IS (number). CURRENT SYMBQL IS (incomng
symbol)

|f a $sTack card is included anywhere in the source deck, the

- synTax ERROR nessage is fol | owed by

STACK CONTAINS:
(beginning of file)
<synbol - | >

<symbol-n> (top of stack)

The synbol names may differ somewhat from the metasynbols of
the syntax.

1f any Pass One or Pass Two errors occur, conpilation is term-
nated-at the end of Pass Two.
INCCRRECT SIMPLE TYPE <number> <sinmple type> of entity is inproper

as used. Number indicates explana-
tion on list of sinple type errors.

68

ARRAY USED | NCORRECTLY

| DENTI FI ER MUST BE RECORD
CLASS ID .

M SMATCHED PARAMIER

MULTI PLY- DEFI NED SYMBCOL <i den-

tifier>

UNDEFI NED SYMBCOL <identifier>

| NCORRECT NUMBER OF ACTUAL
PARAMETERS

| NCORRECT DI MENSI ON

DATA AREA EXCEEDED
| NCORRECT NUMBER OF FI ELDS

| NCOVPATI BLE STRING LENGTH

| NCOVPATI BLE REFERENCES
BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO
RECORD CLASS

EXPRESSI ON M SSING IN
PROCEDURE BODY

a variabl e nust be used here.

reference declaration is incorrect,

formal paraneter does not correspond
to actual paraneter

synbol defined nmore than once in a
bl ock

synbol is not declared or defined.

the nunber of actual parameters to

a procedure does not equal the nunber
of formal paraneters declared for

the procedure.

the array has appeared previously
with a different nunber of dinensions

too many declarations in the bl ock.

the nunber of fields specified in a

record designator does not equal the
nunber of fields the declaration of

the record indicates.

| ength of assigned string is greater
than length of string assigned to.

record class bindings are inconsistent.
bl ocks are nested nore than 7 |evels.

reference nmust be bound to a record
cl ass.

body of typed procedure nust end
with an expression

69

RESULT PARAMETER MUST BE
<T VAR>

PROCEDURE READ LACKS SIMPLE
TYPE

<SYMBOL-1> UNREIATED TO
<SYMBOL-2>

SYNTAX ERRCR

the actual paraneter corresponding
to a result formal paraneter nust
be a <T VARIABLE>.

proper procedure ends with an
expressi on

the symbol at the top of the stack
(<SYMBOL-1>) shoul d not be fol | owed
by the incom ng symbol (<SYMBOL-2>).

construction violates the rules of
the granmmar. The input string is
ski pped until the next END, ";",
BEG N, or the end of the program
More than one error nessage may be
generated for a single syntax error

Bnple Mype r s

25. Upper and |ower bounds nust be integer.

29. Upper and |ower bounds nust be integer.

32, Sinple type of procedure and sinple type of expression in
procedure body do not agree.

71. Substring index nust be integer.

73. Sinple variable preceding '(' nust be string.

74. Substring length nust be integer.

76. Field index nust be reference or record class identifier
77. Array subscript nust be integer.

81. Array subscript nust be integer.

84. Actual paraneters and forma
88. Actual paraneters and formal

paraneters do not agree
paraneters do not agree

93. Expressions in if expression do not agree

ok. Expressions in case expression do not agree

95. Expression in if clause nust be |ogical.

70

98.
99.

101.
102.

103.
106.
107.
108.

109.
110.

112.
117.
118.

110.

120.
121.
123.
125.

126.

130.
134.
135.
136.
148.
181.
182.
188.

190.
191.
193.
195.
197.

Expressions in case expression do not agree.

Expression in case clause nust be integer.

Argunents of = or —=do not agree.

Argunments of relational operators must be integer, real, or

long real.

Argurment before is nust be reference.

Argunment of unary + must be arithnetic.

Argunment of unary - must be arithnetic.

Argunments of + nust be arithnetic.

Argunents of - nust be arithnetic.

Argunents of or nust be both |ogical or both bits.

Record field must be assignnent conpatible with declaration.

Argunments of * nust be arithnetic.

Argurments of / nust be arithmetic.

Argunents of div nust be integer.

Argurments of rem nust be integer.

Argunents of and nust be both |ogical or both bits.

Argument of — nust be logical or bits.

Exponent or shift quantity nust be integer; eqression to be
shifted nust be bits.

Shift quantity nust be integer; expression to be shifted nust be
bits.

Actual paraneter of standard function has incorrect sinple type.

Argunent of long nust be integer, real, or conplex.

Argument of short nust be Long real or long conplex.

Argunent of abs nust be arithnetic.

Record field nust be assignment conpatible with declaration.

Expression is not assignment conpatible wth variable.

Result of assignnent cannot be assigned to variable.

Limt expression in for clause nust be integer.

Expression in for list nust be integer.

Assignment to for variable nust be integer.

Expression in for list nust be integer.

Step elenment nust be integer.
Expression in while clause nust be |ogical.

71

[11. PASS THREE ERROR MESSAGES

The form of Pass Three error nessages is

***xx% (nessage)
*%%% NEAR CARD (nunber)

The nunber indicates the nunber of the card near which the error

occurred. The nessage may be

PROGRAM SEGVENT OVERFLOW

COWI LER STACK OVERFLOW
CONSTANT PO NTER TABLE TOO IARGE

BLOCKS NESTED TQO DEEPLY

DATA SEGMENT OVERFLOW

TOO MANY PROCEDURES

CARD TABIE OVERFLOW

V. RUN TIME ERROR MESSAGES

the amount of code generated for a
procedure exceeds 8192 bytes.

constructs nested too deeply.

t 00 many literals appear in a
procedure

parameters in procedure call are nested
too deeply; procedure calls in block
nested too deeply.

too many variables declared in the
bl ock.

the program contains too nmany procedure
declarations; the nunber of procedures
al l oned depends on the size of each
procedure and cannot exceed 52.

density of information on (non-blank
and non-comment) source cards is too |ow.

The formof run error nessages is

RUN ERROR NEAR CARD (numnber)
SUBSTRI NG | NDEXI NG
CASE SELECTION | NDEXI NG

ARRAY SUBSCRI PTI NG

- (message)
substring selected not within named string.

index of case statenent or case expression
is less than 1 or greater than nunber of cases.

array subscript not wthin declared bounds.

T2

LOAER BOUND> UPPERBOUND

ARRAY TOO LARGE

ASSI GNMENT TO NAME PARAMETER

DATA AREA OVERFLOW

| ower bound is greater than upper
bound in array declaration.

The (n-1) dimensional array obtained
by deleting the right-nost bound-

pair of the array being declared has
too many elements The maxi num nunber
of elements allowed in this (n-I)

di mensional array is given bel ow
according to the declared type of

the array

maxi mum # of

el ements in
first (n-1)
type di nensi ons
legical, string 32767
integer, real 8191
bits, reference 8191
long real, conplex 4095
| ong conpl ex 20k7

assignment to a formal name paraneter
whose corresponding actual paraneter
IS an expression, a literal, contro
identifier., or procedure name.

storage available for program execu-
tion has been exceeded.

ACTUAL-FORMAL PARAMETER M SMATCH the nunber of actual parameters in

N FORVAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

a formal procedure call is different
from the nunber of formal paraneters
in the called procedure, or the
parameters are not assignnent

compatible.

no nore storage exists for records.

>

LENGTH OF STRI NG | NPUT string read is not assignnent conpatible
with corresponding declared string

LOG CAL [NPUT quantity corresponding to |ogical
quantity is not true or false.

" NUMERI CAL | NPUT nunerical input not assignment conpatible
with specified quantity.

REFERENCE | NPUT reference quantities cannot be read.

READER ECF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to
address .a record, or a reference bound
to two or nore record classes was used
to address a record class to which it
was not currently pointing.

LI NE ESTI MATE EXCEEDED line estimte on %AIGOL card is
exceeded

TI ME ESTI MATE EXCEEDED time estimate on %AIGOL card is
exceeded

|/ O ERRCR see consul tant.

PROGRAM CHECK #nn see consul tant.

Counts of certain exceptional conditions detected during program
conpilation or execution are maintained.' |f any of these are non-zero
they are listed after the post-conpilation or post-execution elapsed

time message in the followng format:
nnnn PROGRAM CHECK NO xx

The nunber of times the condition was detected (nmodulo 10000) is
given by nnnn; the nature of the condition is indicated by xx according

to the following table:

T4

08
09
12
13
15

i nteger overflow

integer division by zero
real exponent overflow
real exponent underflow
real division by zero

This counting is inhibited for integer overflow and exponent

underfl ow whenever the value of the corresponding reference variable

is null (cf. IANGUAGE pescr PTiov, Section 8.5.).

V. OTHER

PRG PSW
COWI LER ERRCR

| NSUFFI CI ENT
STORAGE

see consultant
see consultant

insufficient nmenory available to conplete conpilation.

75

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W

by

George E. Forsythe

76

The followng notes are intended to give the

student of Conputer Science 136 sonme orientation

into how nunbers are represented in the |BM System/360
conputers. Because we are using Al gol W, some refer-
ences are made to that |anguage. However, very little
of what is said here depends on the peculiarities of
Al gol w, and this exposition is nmostly applicable to
Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point nunbers and
full-word integers of PL/1. Users of shorter or

| onger integers or decimal arithmetic in PL/1 will

need nmore orientation.

77

on IBM's system 360, the following units of information storage
are used:
a) the bit., asingle 0 or 1
b) the hyte, a group of eight consecutive bits
¢) the (short) word, a group of four consecutive bytes--
i.e., 32 consecutive hits
d the long word, a group of two consecutive short words--
i.e., eight bytes or é hits.
For number representation in Algel Wthe words and |ong words are
the main units of interest,

| NTEGERS.

Integers are stored in (short) words, O the % bits of a short
word, one is reserved tor the sign (0 for +and 1 for -), |eaving
31 bits to represent tie magnitude, A positive or zero integer is
- stored in a binary (base 2) representation, Thus 21, (the subscript
neans base 10) is stored as
0000 0000 0000 0000 0000 0000 0001 0101 .

sign bit
To confirmthis, note that .
1 I
21:0x250+Mﬂ+o><zb+lx24+Ox23+1x22+ox2 +1lxe’,

The largest integer that can be stored in a word is
250 + 229+ ... +210 +2 = 251 -1 = (21}471¥8561¥7>10 .
1 .
Any attenpt to create or store an integer |arger than 27t 1 will

produce erroneous results, and (unfortunately) the user will not always
be warned of the error (cee below,)

To save space in writing Words on paper, each group of four hits
inaword is frequently converted to a single base-16 (hexadecinal)
digit, according to the followng code:

78

0

base 2 base 16 base 2 base 16

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A B, ¢, D, B, F are used as base-16 representations of' the decimal
nunmbers 10, 11, 12; 13, 14, 15 respectively. Neverthel ess, integers are
stored as hase-2 nunbers.
Using hexadecimal notation, the decinmal nunber 21 iS represented
by
00000015, .

Not e t hat 156 is the base-16 representation of 21y,
Negative integers are stored in what is called the "two'S complement

form'. For exanple, -1 is stored as

1111 1111 1111 1111 1111 1111 1111 1111

= FFFFFFFF . .
Also, -21 is stored as

1111 1111 1111 121 1111 1111 110 1011

= FFFFFFEB .
The representation for -21 is obtained fromthat for +21 by changing
every 0 to 1 and every 1 to 0, and then adding + 1 in base-2 arithmetic
to the result. Simlarly for any negative integers. Every negative
integer has 1 as its sign bit. The snallest integer storable in
System/350 1is 271 = 2147483648 , and is represented by 8°°°°°°°16 :
Another way to think of the representation of negative nunbers is
to consider a 32-place binary accumulating register (the base-2 equival ent
of the-deciml accunulating register in a desk calculating machine),
|f one starts with all zeros in this register, one gets the representation
for -1 by subtracting 1. The process requires a “borrow to propagate
to the left all the way across the register, leaving all ones, just as
on a decimal accunulator this would leave all nines. Continued sub-
traction will give the representations for -2, -3, ...

79

From the point of view of an accunulator we can also see what
happens when we create a positive nunber |arger than 231 -1. For
exanple, if we add 1 to 231-1, the resulting carry will go all the
way into the sign bit, leaving a sign bit of 1 with all other digits
zero. But this is the representation of 2L Thus the attenpt to
produce positive nunmbers in the range from 21 to approxi mately 252
will yield a negative sign bit. Consequently, positive integers that
"overflow' into this range are sensed as negative by System/360. The
mechani sns of AIGOL Wfor detecting integer overflow (not described in
this docunent) can be used to detect additions, subtractions, or
mul tiplications that produce integers outside the range from 221 to
211 6o-called integer overflow). Attenpts to divide an integer by 0
will yield an error message and an irrelevant quotient and renainder.

The behavi or of System/360 on integer overflow is quite different
fromthe Burroughs B5500. In the latter nachine, any integer that
overflows is replaced by a rounded floating-point number. There are
advantages to either approach to integer overflow, depending on the
application.

If the user suspects that integers in his program are getting
anywhere near 10Y, he shoul d convert them to doubl e-precision floating-
poi nt nunbers by use of the Algol W operator LONG Conversion to single-
precision floating-point nunbers may |ose sone precision.

The nost inportant thing for a scientific user to renmenber is that
integers in the range 2%t 2211 are stored it hout any approxi nation.
Moreover, operations on integers (adding, subtracting, multiplying) are
done without any error, so long as all intermediate and final results
are integers between 222 and 2211, 1t s perhaps easier to renenber
as safe the interval from-2 x 10° to 2 X 107 , obtained fromthe
useful approxi mation 210 = 103

80

The operations of division wthout remainder (called DIV'in Algol
W and taking the remainder on division (called REMin Algel W al ways
give integer answers, If the divisor is 0, an error nessage is given,

In Algel Wtwo operations on integers give results that are not
stored as integers--nanely / and =,

FLOATI NG POl NT NUMBERS

Numbers in many scientific conputations wll grow in magnitude
wel | beyond the range of integers described above, To provide for
this, System/360 and most scientific computers have a second way to
represent nunbers--the so-called floating-point representation,
The significance of the name "floating-point" is that the radix point
--for exanple, the decimal point in base-10 nunbers--is pernitted to
float to the right or left, thus permtting scaling of numbers by
various powers of the radix, Athough a decimal point that has floated
off to :he left will produce a number writzen |ike 0.001345, the
nuui bers are actually represented in a formcloser to what is often
called scientific notation, here J.,345><10'j .

I n System/360, floating- .int numbers ar= always represented in
base-16 notation; i.e., the re ix or nunber base s 16. This pernits
us to wite nunbers in abbrevi *ed form(as we did with integers earlier).
More inportant, the use of bvase-16 conforms with the hardware arithmetic
processes in which shifting is done four bhits at a time to speed up the
operations. The speed-up is achieved at a slight cost in precision,
as is learned frcxn detailed error anal yses which we cannot go into here,

W first consider the floating-point representation of nunbers by
a single word of 3 bits. This is the so-called _single-precision
or short real number, the number of type REAL in Algol W, The 32 bits
of a word are nunbered frcxn 0 to 31, from left to right, just to identify
them In floating-point representation the left-hand eight bits (bits 0
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the nunber and the exponent of 16 associated with the nunber, The right-
hand 24 bits (bits 8 to 31, equivalent t0 Six hexadecimal digits)

81

represent Si X Significant hexadecimal_digits_(the significand) of the
nunber .,

As with integers, the sign of the nunmber is denoted by bit 0,
with O representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-
negative integer in the range 0,4 to 127,45, inclusive, This In-
teger is called the biased exponent, for reasons now to be explained,
If this integer were taken directly a8the exponent, we woul d have no
negative exponent s, and our range of floating-point number6 could not
i ncl ude such nunber6 es 16'25. It is desirable to have an exponent

range that is approximately symetric about zero. |n System/360 one
obtai n8 the_true exponent of the floating-point nunber by subtracting
és fromthe biased exponent represented by bits 1 to 7. A8 a result,
the actual exponent6 range from-64 to 63.

The 24 bit6 8to 31 of a nunber are regarded a6 six hexadecimal
-digits with a hexadecimal point atthe left-hand end. If the floating-
poi nt number zero is being represented, all the hexadecimal digit8 are
zero, as are all the other bits, Otherwise,atl|east one of the hexa-
decimal digits nust be nonzero. A floating-point number is said to be
normalized if the |eft-hand hexadecimal digit (the most significant
digit) of the significand i S nonzero. In System 360 the floating-point
nwbers are ordinarily normalized, and we will not consider any other
forms.,

W now give the floating-point representations of saae semple
numb:rs. Az we said before, the nunber zero is represented by 32 zero
bits, Le., by eight 0 hexadecimal digits. Thus zero is represented
by the same trords in floating-point orinteger form No other nunber
ha6 this property.

The nunber 1.0 is represented by the word

Sigh bit
0,.100 0001, 0001 0000 oooo 0000 0000 0000, .
bi ased signif icend
exponent

82

To check this, note that the sign is O (representing +). The biased
exponent 1is 1000001, Of 6510, Subt racting -6&10 yield8 1 as the
true exponent. The hexadeci mal significand is 10000016.Putt1‘nga
hexadeci mal point at the left end give6 the hexadeci mal fraction
.100000, . , which equals 1/16. Thus the above word represents

+1/16 times 16* , or 1.0 .

To save witing, the above word is ordinarily witten in the
hexadeci mal form 41100000 . \Wile one gradually learns to recognize
some floating-point numbers in this form, the author knows no easy way
to convert such a hexadecimal word into a real nunber. Onejust ha6
to take the right-hand six hexadecinmal digits, and prefix a hexadeci mal
point. Then one exanine6 the left-hand two-hexadeci mal-digit nunmber
(here 41). |If this is less than 80l6 , the floating-point number is
positive and one gets the true exponent bysubtracting 1‘016 = 61*10'
If the left-hand two-hexadeci mal-digit nunmber is 8016or|arger, t he
-fl oating-point number is negative, and one gets the true exponent by
subtracting Co¢ = 8016 + hol6 = 19,4 and affixing a ninus sign.
Sone facility with hexadecimal arithnmetic is required, if one has to
deal with such nunbers.

In this presentation, We khave considered the radical point to be
at the left of the six significant hexadecimal digits, and regarded
the exponent as biased high by 6., . As an alternative, the reader
may prefer to place the radix point just to the right of the most
significant digit of the significand, and regard the exponent as biased
high by -65,,. This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the
true exponent, The fact that either interpretation (and many others)
are possible shows that really the radical. point is just in the eye of
the behol der, and not in the conputer!

Several exanples of floating-point nunbers are now given in hexa-
decimal notation, with the confirmation left to the reader.

83

deci mal floating-point

0.0 = 00000000
1.0 = 41100000
0,0625 = 40100000
16.0 = 42100000
256.0 = 43100000
-1.0 = €1100000
-16.0 = 2100000
3.5 = 41380000

The largest floating-point nunber is 7FFFFFFF, representing
CFFFFEF x 267 or (1 - 16°%) x 16°2 2 7.23 x 107, (Here 10 and 16
denote decimal nunbers.)

The smal | est positive nornalized fléating-point number is 00100000,
representing

& x16 64

Negatives of these two nunbers can al so be represented, and are
the extremes i N magnitude of representable negative nunbers.

Very few numbers can be exactly represented with six significant
decimal digits. (Exercise: \Wich ones can?) For exanple, 1/3 = 3353334
only approxinmately. In the same way, very few nunber6 can be exactly
represented with six significant nexadecimal digits, (Exercise:

Wii ch ones can?) For exanple, /3 = 555555, ¢ cnly approxi nately.
Moreover, sone numbers that are exactly representable in deciml are
only approximtely representable in hexadecimal; for exanple,

1/10 = .100000,, exact ly; but

1/10 = .19999A, only approxintely.,

Thus round-bff error enters into-the representation of nost
fl oating-point nunbers on system/360, and the round off differs from
that with decimal nunbers,, This can easily give rise to unexpected
results. For example, if the above nunber . 199994, ¢ (2 O.llo) IS
mul tiplied by the integer 100, = 64 . , one gets not A.00000, o =
10.0,, » but instead A.00003,, , as a cumulative effect of the slightly
hi gh approxi mation to 0.1, And A.00003, . rounds to 10.00002,
on conversion to decimal.

The precision of a single-precision hexadeci mal number is roughly
2077, e can think of this as bei ng crudely equivalent to seven sig-

2540 X 10777

0

84

ni fl cant decimal digits,

Not only do errors appear in the representation of nunbers inside
System/360 (or any conputer), but they arise from arithnetic operations
perf ormed on nunbers, For exanple, the product of two floating-point
numbers may have up to 12 significant hexadecimal digits. Wen the
product is stored as a single-precision floating-point nunber, it nust
be rounded to six hexadecimal digits, This introduces an error, even
though the factors mght have been exact,

The story of round off and its effect on arithmetic is a conplex.
and Anteresting one, only Within the current decade have there begun
to appear even partly satisfactory methods to anal yze round off, and
we cannot go into the matter now, Sone idea of this is obtained in
Conput er Sci ence 137.

When an Al gol W progrem assigns deci mal numbers or integer values
to variables of type REAL, these are immediately converted to hexadeci mal

_ floating-point numbers, With (usually) a round-off error. When one
outputs numbers fromthe conputer in Algol w, they are converted to
decimal . Both conversions are done as well as possible, but introduce
changes in the nunbers that the ~rogrammer nust be aware of, And, of
course, all intermediate operarions introduce further round offs and
possi bl e errors. [t iS unthin.able t0 do the anaiysis necessary to
counteract these errors and get the true answer to the problem If the
user wi shes answers uncontaminated by round off, he should use integers
and integer arithnetic, and be prepared to guard against overflow,

Fortunately nost users .can accept an indetermnate amount of
round off in their numbers, provided they have some assurance that
round off is not growing out of control, It is the business ofnunerica
anal ysts to provide al gorithms whose round-off properties are reasonably
under control. This has been well acconplished in some areas, and hardly
at all in others.

DOUBLE PRECI SI ON

The precision of single-precision floating-point nunbers seens

85

very adequate for nost seientific and engi neering purposes,being at the
level of seven decimals, However, a considerabl e nunmber of computations
require still nore precision in the mddl e sanewhere, just inorderto
cane out with ordinary accuracy at the end. As a result, System/360
has provided an easy mechanism for getting a great deal nore precision
in the conputations. For this purpose a double word of 64 bits is used
to storea floating-point number of so-called double precision or long

precision. In this representation, the sign and biased exponent are
found in the first word of the double-word, with precisely the same
interpretation as with single-precision floating-point nunbers, The
second word of the doubl e-word consists of eight hexadecinal digits

immediately following the six found in the first word., There is no
sign or exponent in the second word. Thus a doubl e-word represents

asigned fl oating hexadeci mal. number with 1% significant hexadeci mal
digits, As before, nonzero nunbers are normalized so that the nost

significant digit of the 1k i s nonzero.

Exanpl es:
| ong significand
1.0L = 417100000 00000000
0.1L = 40 199999 99999994

There is a full set of arithnetic operations for both single
and doubl e-preci sion operations. Very crudely, for an exanple, single-
precision multiplication ofsingle-precision factors takes around 4 micro-
seconds, while that for double-precision factors takes around 7 mcro-
seconds. For nodest problems the extra time is completely lost in the
several. seconds of time lost to systens and conpilers, and the use of
double-precision is strongly reconmmended for all scientific computation.
Normally the only possible disadvantage of using long precision is the
doubling in the anount of storage needed. |f one has arrays with tens
of thousands of el enents, the extra storage nay be very costly. Other-
wi se, it should not matter,

Si nce 16'14 = 10'17, t he doubl e-preci sion nunbers are crudely
equivalent in precision to 17 significant decimal digits.

For a nmachine with the speed of the 360/67, a nunber precision of

86

si x hexadeci mal digits (roughly seven decimals) i s considered ‘very low,
while a precision of 14 hexadecimal digits (roughly 17 decimals) is
very adequate .

hardwar e of System/360 provi des the possibility of detecting when
numbers have gone outside the exponent range stated above. The reader
may think that & range from rcighly 1¢7% t o 107
reasonabl e computations. Whiie exponent overflow and exponent underflow
are not very common, they canbe the cause of very elusive errors,

The evaluation of a determinant is a conmon conputation, andfor a matrix
of order 40 is quite rapidly done {(if you know how). |f the matrix

sanould cover all

el enents are of the quite reasonable magnitude 10“3, the magnitude of
the determinant will be no larger than roughly PO“'90 (and probably
much smaller), well below the range of representable floating-point
nunmbers, Such problems are a frequent source of exponent underflow.

We shall not di scuss here the me:hanisms of Algol Wfor detecting
exponent overflow and underflow, for these should be witten up in
another place, Even wi thout these, we see that floating-point nunbers
behave well for nunmbers that are at least 1066
largest integer in the system Hence uge of fioating point nunbers
meets alnost all the problenms raigsed by integer .verflow. And, of
course. it permts the use of a large set of rational numbers, which

do not even enter the integer system

times as large as t he

ALGOL W REALS AND LCI NGREALS

The Algol Wmanual tells how to represent real variables and
numbers to take advantage of both single-and doubl e-precision, The
purpose of this section is to bring this informetion into rapport wth
the hardware representation of numbers. I[f a variable X is declared
REAL, one word is set aside for its values, and it will be stored in
si ngl e-preci sion floating-point form iIf a variable is declared to be
LONG REAL, a double-word is set aside to hold its values, and it will
be stored in double-precision form,

87

If a number is witten in one of the decimal forms without an L
at the end, it will be chopped to single-precision, no matter how many
digits are set down. Thus 3.1415926535891932 will be inmediately
chopped to single-precision in the program and all the superfluous
digits are lost at once. Thus the assignment statenent

XX = 3.1415926535897932
will result in the double-word XX receiving an approximtion to nm
in the nore significant half, and all zeros in the less significant
hal f! Thus one gets a precision of only approximtely seven decimals
for the pain of witing 17, and this may well contaninate all the rest
of the conputation.

If one wants XX to be precise to approximtely full double precision,
one must wite the statement in the form

XX = 3.1415926535897932L .
Wth the declaration REAL X, the statenent
X = 3,1415926535897932L
will result in X having a single-precision approximtion to n, as

- the long representation of m is chopped upon assignnent to X

The reader should now go back and exam ne the specifications of
the types of various arithnmetic expressions, as stated on pages 9, 10,

11 of the Algol WNotes, and on pp. 25, 26 of the Language Definition.
Some of the less expected effects are the following: Suppose we have

decl arati ons

REAL X, Y, z:
LONG REAL XX, YY, ZZ,
INTEGER |, J, K

Then X*Y, I¥*J, and I*X are all-long real.
The assignnent st at enent
XX 1= X 1= Y#Z
will result in XX having a single-precision chopped version of Y*Z in
the nore significant half, and zeros in the less significant word.

Moreover, I¥I is INTEGER but I*2 is LONG REAL.

88

If the reader understands the language Algol W and the preceding
pages on number representation’ he should have a good basis for under-

standing the effects of mathematical algorithms . But he should always
remain wary of what a computer is actually doing to his numbers!

89

APPENDIX

Algol W Deck Set-Up
(Job Card)
//JOBLIB Db DSNAME=SYS2.PROGLIB, DISP=(OLD, PASS)
// EXEC AIGOLW

//ALGOLW.SYSIN DD *

%ALGOL
88 (program)
'< FEOF
8 (data)
9 %EOF
/-x-
§ Optional

§¢ May be repeated

Note: The Stanford ALGOL W system nonitors execution tinme and number

of lines of output for each job. The default limts on these quantities
are 10 seconds execution time and 500 lines of printed output. Aternately,
the programmer may explicitly specify limts on the %AIGOL card.

Col ums 10-29 of that card are scanned for such specification according

to the follow ng syntax:

90

(time linmit) | (time limit), (line linit)
(minutes specification) |

(mnutes specification) : (seconds specification)
(mnutes specification) (unsi gned integer) | (enpty)

(seconds specification) ::= (unsigned integer) | (enpty)

(line limt) .= (unsigned integer) | (enpty)

(limt specification)
(time limt)

n

An enpty field is given the corresponding default value. The program
Is automatically termnated if necessary at the end of the indicated
time. Simlarly, the programis automatically termnated if necessary

after the indicated nunber of Iines have been printed.

91

GRAMMATICAL DESCRIPTION OF ALGOL W

R. Floyd

92

In the grammatical description of ALGOL Won the fol | owing pages,
Roman capital letters, such as A B CD stand for themselves. A script
letter, possibly accented, stands for a defined infinite class of synbol
strings; for exanple, 3, as defined, stands for the class which includes
the symbols A, B, C Z AA AB, . . .,A9, BA,...,B9,...29, AAA
799, ARAA, A Geek letter, such as », stands for a given finite
set of characters.

The symbol | means "or"; if @ is defined as B\c . this means that
a particular inscription is an @ if it isa®Bor if it is aC.

The notation @ , or equi val entiy @)* . means any nunber (including
zero) of inscriptions, one after another, each of which is an @ . For
exanpl e, {AlB}* mans A or B or AA or AB or BA or BB or AAA
o0 A, where A means no inscription at all.

The notation @ neans any nunber (but at |east one) of inscriptions,
one after another, each of which is an @. |t abbreviates a@* . For
exanple, {A|B}" means A or Bor AMAor . . . or BB or AA . etc.

The notation [a] neans an optional occurrence of @ ; it abbreviates
fala}.

Thenot ati on C_I"_/.?. neans @ or @5Q or QA , etc; it abbreviates
afma}” .

The notation ¢ |8 neans @ and/or & ; it abbreviates ¢|3|a3 .

The curly brackets {} are used sinply as parentheses to show the
scope of the above operators.

Al other characters, such as /-, () / < etc., stand for thenselves,

including * and + when they are not raised.

93

16

Descriptive
Nane

letter
digit

i dentifier
synbol
const ant

function val ue

expressi on

sinple statenent
st at enent

bl ock

decl aration

type

procedure heading

program

The Grammar of a Sinple Subset of ALGOL W

Sl

X R Q

Definition

alBlciplE|...|x|¥]z

ol1]2|3]...|8]9
r {8y

Any symbol on the keypunch, except the double quote

§ +[. 5*] l "0'+"

4 (8N

C-1 {slc|#[(e)]

s:=e| L (E)]|a0

x|/} (4]} (<l<el == 1] =)
TO $ |8

S'|IF & THEN S|IF € THEN S' ELSE S|FOR 8:=¢ UNTIL & DO S

BEGI N {#;}7{s;]9: }'s END

—+
T 3, |T PROCEDURE ¥ ;{e|BEGIN{S;} (S;(3:}7e END]

INTEGER | REAL | LOGICAL | STRING(C)

8(7 {VALUE | PROCEDURE}S ", ;)

B-

a6

Descriptive
Nane

letter
digit
identifier
variabl e
synbol

const ant

function val ue
sinple expression

sinple expression
or relation

expressi on

ar gunent

sinple statenent
empty

st at enent

The Grammar of ALGOL W

Definition

AlB|c|DIE| -+« |x|Y]2Z

89

oli|2|3]---
Ar s

{slse) [s@) Yr(ele)) -
Any character on the keypunch, except the double quote

(0671 .6711.6"Y A L10+]-1 6733 TI[L] | TRUE | FALSE
1# {6 |a|B[c|D|E|FY"|"{o]""} | NuLL —

S[(@)]

L

[+]-1[~1{aBs |LoNG[sHORTY (v |c|%| (€)} {#*|sHL|sHR}{*|/|DIV|REM|AND}{+]-|OR)

e’ Ig’”{<|<=|=l>=|>l—‘=}3” leﬂ IS &

¢'|1r &€ THEN € ELSE |CASE € OF (€'}
_'l—
els| sl ({e]*3,) |
._*_.
fv:=1"e| GO TO 8|3[(a ,)]|AlB
The enpty statement; no character at all, or a space.

S'|IF € THEN S|IF € THEN S ELSE S|CASE &€ OF BEGIN S+ END
|WHIIE € DO S|FOR $:=€ {[STEP &] UNTIL el{,e} os

96

Descriptive
Nane

bl ock

decl aration

type
procedure headi ng

program

Definition

BEG N {8;}" {8;]9:}"s Exp

7 8|7 ARRAY J’:(ezze',)IPROCEDURE ;s
|7 PROCEDURE ¥;{€|BEGIN {83} 7(S;]9:} "€ END} | RECORD S(T 3T, ;)

INTEGER | [LONG]{REAL | COMPLEX]} | LOGICAL | BITS[(32)] |STRINGI (C)] | REFERENCE (35

S[({T [VALUE][RESULT]|[T] PROCEDURE}J, |T ARRAY 3", (*1,);)]

B v

The perators and Functions of ALGOL W Their Formats, Meanings

and Type Constraints

Use of Synbols

g, = any ALGOL W expressi on.

@ = val ue of expression €.

ki = kind of data represented by @, correspondi ng to expression 31.

The kinds of data are:

1. N = nuneric
2. L = logical
3. S = string
L. B = bits

S 5. R= reference

d. = domain of «. when k. = N
1 1 1

The dommins are:

1. | = integer
2. R=read
3. C = conplex
They are ordered as follows: | c RcC.

p; = preci sion of-ozi when k, = N.
They are ordered as follows: S < L.
Ifdi:I,thenpi:L. \

Kinds of Argunents Domains of Nuneric Precision of Nuneric

For mat Meani ng and Results Arguments and Results Argunents and Results
€+ &, a + o, N+ NN d,+d, - max(dl,dz)- P;*P, - m_m(pl,pe)
81- &, @ - o, N-N->N d,-d, —>max(dl,d2) P,-P, -—>m1n(pl,p2)
* *
e.,* &, @ X o N*¥N-oM d,*d, - max(dl,de) P *p, = L
81/ 32 ay / o, NN - N dl/d2 - max(dl,d2, R) pl/p2 -emm(pl,pe)
&
T
¥k ’ HK ** *K
€ % e, oy \N N-N d, %1 —>max(dl,R) P;**L - p,
::+ 81 oy +N - N +d) - 4, +pl - Py
© - 81 oy -N - N -dl - dl Py > Py
(0¢]
e, DIV €, TRUNCATE(ozl/oze) IDIVI—I

- * -
e, REM &, ay (al DIVaQ) U IREMI > I
the remmi nder of

e, DIV &, |
ABS €, Iozll ABS N - N ABS d) - min(dl,R) ABS P, » Dy
LONG El oy LONG N -» N LONG 4, —>max(dl,R) LONG pl - L where py=s or d,=I
SHORT &, o SHORT NN SHORT 4 - d; SHORT p; —S where p)=L and d,# |

Kinds of Argunments

Domai ns of Nuneric

Precision of Nuneric

Meani ng and Results Arguments and Results Argunents and Results
o Voo, LORL->L
BOR BB
ogl/\oz2 LANDL L
BAND B> B
NOI‘ozl -~ L->L
-+ B—->B
e =& oy = o, k, = ky - L(where kl=k2) any any
& =& ozl+oz2 k) =ky > L(where kl=k2) any any
g, <& o, <o N<N-L d.,d, < R any
1 2 1 2 S<s oL 1’2
£ <=8 o, <o N<=N->L d,,d, < R any
8 1 2 1-"2 S<=85 oL e -
E >=¢ o, 2o N> N-1L d.,4, S R any
1 2 1 2 N o s ot 1’72
e >¢& o, > N>N->L d.,4d, SR any
1 2 1 2 S>8 T 1’72
d
e, I8 Sy oy bel ongs to the RIS b L
record class Iy
€, SHL 62 oy shifted left B SHL N - B dy = |
o pl aces
€, SHR €, oy shifted right B SHR N —» B dy =
o, pl aces
v.(e.]e.) characters « s(N|N) - S a = =1
et t hr ough 2 2~ %

012+oz5-10f oy

00T

Kinds of Argunments

Domai ns of Numeric

Precision of Numeric

For mat Meani ng and Results Arguments and Results . Argunents and Results

|F e THEN ¢, ELSE & ooy .then o, |F L THEN k, ELSE ky ok | FLTHEN d, ELSE 4, IF L THEN p, ELSE p,
ot herwi se a, where k, =k, =k - max(d;,d,) - min(p,,P,)

CASE ¢ of (el,...,en) o, (1 <o< n) CASE N OF (kl,kz,...,kn) CASE L OF (dl,da,...,dn) CASE L OF (pl, ...,pn)

0

- k where
S

- max(dl,da,...,dn)

_) min(pl’ oo .,pn)

Al the follow ng functions have the format F(el), where F is the function name.

W shall omt reference to the format, accordingly.

Function Meani ng Ki nds Domai ns Preci sion

TRUNCATE The integer i, wth the sane sign
as oy, such that

oy | = 1 < [i] € ey

ENTIER The integer i such that , | N-oN R-1I Any
o - 1<i< oq
ROUND The integer i, with the sane sign

oy such that
o | - 1/2 < |l < log| + 2/2

e
= ROUNDTOREAL ay NoN R - R Lo s
REALPART The real part of a
| MAGPART The imaginary part of o N-N C-R Any - S¥
| MAG ozl*/-—l No>N d1—>C Any — S*
(4 ¢ ®)

*Note : A asterisk on a short precision-result means that prefixing the letters LONG to the function
nane yields a long precision result.

cOT

Function Meaning Ki nds Donai ns Preci si on
SQRT /?q,foralzo NN d; » R Any — s*
(4, € R)
COVPLEXSQRT /?q N - N Any — C Any — S¥%
%
EXP e, for a < 174 .67
LN loge(al), for @ > 0
LOG logy, c(l) for @ >0 NN d; >R Any — S%
SIN sin(a,), for log| < 823550 (@, € ®)
CoS cos(al), for lotll < 823550
ARCTAN tan'l(ozl), in the range
(' TT/E’ 1'['/2)
TIME el apsed time, in units of 1/100 I-1I
mnute if o= 0, otherwise in
units of 1/60 second.
obD oy Is an odd nunber IS L
Bl TSTRI NG The sequence of bits which I53B

represents o in binary.
See manual s for details.

Function Meani ng Ki nds Domai ns Preci sion

NUMBER The integer which oy represents B->1I
in binary.
DECODE The number which is used as a code s(1) 31
for the character o .
CCDE The character for which oy is used | - s(1)
as a code.
BASE10 A string of the form b+12+1234567 N - §(12) d, SR Any

representing @; as a power of ten

tines a. fraction. (b represents a
bl ank space).

LONGBASE1O As above, for b112i125h567890123h5 N - 8(20) dl CR Any
BASE16 A string of the form bb+l2+123456 N - S(12) 4 SR Any
o representing @; as a power of
(@]
b sixteen times a fraction, both in
hexadeci mal .
LONGBASE16 As above, for bb+l12+12345678901234 N - 5(20) d) € R Any
INTBASE1O A string of the form b+1234567890 | - s(12)
representing N in deci mal.
| NTBASEL6 A string of the form bbbbl2345678 | - s(12)

representing «, in hexadeci mal,
using two's conhplement notation.

