
r

cs 110

ALGOL W (REVISED)

LANGUAGE DESCRIPTION pp. 1 to 65

ERROR MESSAGES pp. 66 to 75

NUMBER REPRESENTATION pp. 76 to 89

DECK SET-UP pp. 90 to 91

GRAMMATICAL DESCRIPTION pp. 92 to 103

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

SEPTEMBER 1969

\
T I T

I~.‘

. .-.
a ,

:

. _‘”
I

ALGOL W

LANGUAGE DESCRIPTION

Henry R. Bauer

Sheldon Becker

Susan L. Graham

Edwin Satterthwaite

"A Contribution to the Development

of ALGOL" by Niklaus Wirth and CV A. R.

Hoarel) was the basis for a compiler de-

veloped for the IBM 360 at Stanford Univer-

sity. This report is a description of the

implemented language, ALGOL W. Historical

background and the goals of the language

may be found in the Wirth and Hoare paper.

Wirth, Niklaus and Hoare, C. A. R., "A
Contribution to the Development of ALGOL",
Comm. ACM 9, 6(June 1966), pp. 413-431.

2

mm., ,‘..P. I ’ -iL ’ .,*L.

CONTENTS

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS... J 0 m l 0o.o l *6

101. Notation00.....0..00"".."~..>.*...... 6

1.2. Definitions5.......0..00.00.......~~v..~0....6

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. 0.o.. l w.0.....p

2.1. Basic Symbols . ..U..............0.....+...........,9

2 :2. Syntactic Entities.~YJ~..-...O~.~.~J...~-.........10

4. VALUES AND ~~~ES........................~.~.,,..~"....~.~...~l4

4.1. Numbers .~.OJ..O~...O..l..*i~.~..."~.~.~~ ,.......15

4.2. Logical Values ..oo..o..... ".l.....OO..J..>U "..,"I 16

4.3. Bit Sequences . ..~.."o.....*e."I....~ ..*o.,d".OO. 16

4.4. StringsJ"..J~..OOOO..".~....O.....~ “OOUY..~.17

4.5, References g~.U.S.. I~.*O....U..""Y.~.*.~".~.,~~.. 18

5 -rL, Simple Variable Declarations"*.*."I..e"..a. “18

5.2. Array Declarations .."...(I o......o I...J * au Y...O ' 020

5*3* Procedure Declarations ..r..0.....0.uU.,*0.~.~."~21

5.4” Record Class Declarations .~.P~U.00..s03..VU.....25

6.1. Variables 0.~,,..0...YU...1..0U”~“.~~...~...~....~27

6.2. Eunction Designators .U.YO..U...O...a..."".G .o....28

3

C O N T E N T S (c o n t . >

6.3. Arithmetic Expressions2 9

6.4. Logical Expressions 33

6.5. Bit Expressions 35

6.6. String Expressions 36

6.7. Reference Expressions37

6.8. Precedence of Operators ..3 8

7. STATEMENTS .39

7.1.

7.2.

7.3.

7.4 .

7.59

7.6 .

7.7*

7.8 .

Blocks .39

Assignment StatementsA 0

Procedure Statements 42

Goto Statements 44

If Statements . 45

Case Statements . 46

Iterative Statements ...*..** 47

Standard Procedures . 49

7.8 .1 . The Input/Output System 50

7.8 .2 . Read Statements52

7 .8 .3 . Write Statements53

7 .8 .4 . Control Statements5 4

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS5 5

8.1. Standard Transfer Functions5 5

8.2. Standard Functions of Analysis5 7

4

.

, .

I

,

8.3. Time Function 59

8.4. Predeclared Variables 59

8.5. Exceptional Conditions ..6 0

APPENDIX

1. CHARACTER ENCODINGe.................... 65

I 1. T-OLOGY, 'N(rrATION AND MSIC DEFINITIONS

The Reference Language is a phrase structure language, defined by

a formal met&language. This meta&nguage makes use of, the notation and

definitions explained below. The structure of the language AJGOL W

is determined by:

(1) Y, thk set of basic constituents of the language,

(2) u, the set of syntactic entities,- and

(3) P, the set of syntactic rules, or productiork.

1 .l. Notation

A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

where <A> is a member of u, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a “sequence”.

The form

is used as an abbreviation for the set of syntactic rules

UD : : = x

ub : : = y

l . ..e

<p3 ::= 2

1.2. Definitions

1. A seqtlence x is said to directly produce a sequence y if and

6

only if there exist (possibly empty) sequences u and w, so that

either (i) for some w in kl,, x = ew,.;y =, uvw, and <A, 1:~

v is a rule in 63; or (ii) x = uw, y = uvw and v is a "comment"
) ' .

(see below).

2. A sequence x is said to produce a sequence y if and only if. .

there exists an ordered set of sequences s[O], a[& .*. , s[n],

so that x = s[O], s[n] = y, and s[i-1] directly produces s[i] for

all i = 1, . . . , n.

30 A sequence'x is said to be an ALGOL W program if and only if

its constituents are members of the set 'If, and x can be produced

from the syntact.ic entity <progra+

The sets If -and 1(are defined through enumeration of their members

.

in Section 2 of this Report (cf. also 4.4 .),. The syntactic rules are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words which have appeared in this manner are used elsewhere in the

text, they refer to the corresp>onding syntactic definition. Along

with these letter sequences the symbol y may occur. It is understood

that this symbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol T within one syntactic rule

must be replaced consistently, and the replacing words are

7

integer

real

long real

complex

long complex

logical

bit

string

reference

For example, the production

<Y term ::= <J factor> (cf. 6 . 3 . 1 .)

corresponds to

<integer term Y .a-u Y--

<real ter& : : .-

<long real term ;:-:

<complex term . . -. *-

<long complex term : :--

The production

<JO primary> : :

corresponds to

<long real primary>

<long real primary>

<integer factor>

<real factor>

<long real factor:,

<complex factor>

<long complex factor>

I long CT1 primarp (cf. 6.3.1. and
table for long
6.3.2.7.) -

s I-
O u- Lox <real primary2
" *2 .z long <integer primary>

<long complex primary> :;= long <complex primary>

Tt is recognized that typographical entities exist of lower order

than basic symbols, tailed characters. The accepted characters are

those of the IBM System $c! EBC3.ZC zode.

The symbol comment foilowed by any sequence of characters not

containing semicolons, followed by a semic7olon, is called a comment.

A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.1.) immediately

8

following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these unlrJ#; of action 1s defined as

the evaluation of expressions and the execution of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs is either (1) de-

fined by System 360 operations, e.g., reai arithmetic, or (2) left

' undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

01~1~1314151617181

true I false I U I null I # I y I

integer I real I complex I logical

reference

procedure

) I I; :
case 1 of

abs 1 long- -

I bits 1 string

NIOIPI

long real 1 long complex I array I

record 1 '

- I (I ! I begin I -end I if I then I else I

+ 1 - 1 * 1 ,I 1 *+ 1 div 1 rem I shr I shl

7-7, (T-1 -z--I <T

1 g I

<= 1>1>=1:: 1

” -v - I goto I go to I z I step I until I do I while I-m -
comment I value I result

All underlined words, which we call 'reserved words”, are repre-

sented by the same words in capital letters in an actual program, with
,.

nc ,interveriLng blanks
9

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include

no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list> 7.3

<actual parameter> 7.3

CDit factor> 6.5

Coit primary> 6.5

Coit secondary> 6.5

CDit sequence> 4.3

CDit term> 6.5

Colock body> 7.1

_ Colock head> 7 .1

&lock> 7.1

CDound pair list> 5*2

&ound pair> 5*2

<case clause> 6

<case statement> 7*6

<control identifier> 3.1

<declaration> 5

<digit> 3.1

<dimension specification> 5.3.
<empty> see page 34

<equality operator> 6.4

<expression list> 6.7

<field list> 5.4

<for clause> 7.7

<for list> 7*7

<formal array parameter> 5.3

<formal parameter list> 5.3

<formal parameter segment> 5.3

<formal type>

10

<go to statement>

sex digit>

<identifier list>

<identifier>

<if clause>

<if statement>

<imaginary number>

<increment>

<initial value>

<iterative statement>

<label definition>

<label identifier>

<letter>

<limit>

<logical element>

<logical factor>

<logical primary>

<logical term>

<logical value>

Uower bound>

<null reference>

<procedure declaration>

<procedure heading>

<procedure identifier>

<procedure statement>

<program>

5.3

7*4

4.3

3-l

3.1

6

7.5

4.1

7*7

7.7

7*7

7*1

3-l

3.1

787

6.4

6.4

6.4

6.4

4.2

5*2

4*5

5-3

5.3

3*1

7.3

7

<proper procedure body7

<proper procedure # ,

deckratio

<record class declaration>

<record class identifier>

<record class identifier
list>

<record designator>

<relatio*

<relational operator>

<scale factor>

CsigrP

<simple bit expressio,a

<simple logical expression>

<simple reference
expressi

<simple statement>

<simple string expressi

<simple 9.expressioO

<simple .? variable

<simple type>

<simple variable
declaratioD

<statement 1isD

<statementi

<str!ng primary=>

<strin@

<subarray designator list>

<subscripti

30 IDENTIFIERS

3A Syntax

5.1

6.7
6.4

6.4

4 .1

4.1

6.5
6.4

6.7

7
6.6

6.3
6.1

5.1

5.1

7.6

7

6.6

4.4.

L3

6.1

<subscript listi
<substring designator>
.g array declaration>
<f array desfgnator>

<J array identifier>

<T assignment statement3

<J expression list>’

<T expressiom

<3 factor>

<T field designator>

4' field identifier>

c?T function designator>

<I function identifier>

<T function procedure body7

<T function procedure
declaratiom

<T left part>

-3' number>

<J primary3

<T subarray designator>
a terrrP
CT' variable>
'<rkariable identifier>

<unscaled rea>

<upper bound>

<while clause>

6.1
6.6
5.2
6.1

3-l

7e2

6

6

693

6.1

3.1

6.2

3.1

5.3

6.1
3.1

4 .1

5*2

787

<identifier> : : = <letter3 1 <identifier> <letter> I <identifier3 <digitSI
‘<I variable identifiefi ::= <identifier3

11

CT array identifier3 : := <identifier>

<procedure identifier> : := <identifier>

CT function identifier> : :2 <identifier>

<record class identifier> : := <identifier>

<I field identifier> ::= <identifier>

I <label identifier> : := <identifier>

<control identifier> i ;= <identifier>

<letter> : : = AlBlClDlElFlGlHlIlJlKlLlMl

<digit> ::= 01~1213141516171819
<identifier list> : ;= <identifier> 1 <identifier list> , <identifier>

3.2. Semantics

Variables, arrays, procedures, record classes and record fields

are said to be quantities. Identifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined. This is

achieved through

(>a a declaration (cf. Section 5), if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

7' variable identifier, ? array identifier, 7' procedure identifier,

J function identifier, record class identifier or 7' field iden-

tifier, where the symbol 7 stands for the appropriate word re-

flecting the type of the declared quantity;

(>b a label definition (cf: 7.1.), if the identifier stands as a

12

label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then

said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7.).

It is then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables (cf. 7.8 and 8) may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier is

determined by the following rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 5.3.) or a for clause (cf. 7.7 .) is considered

to be a block.

Step 2. Otherwise, if that block is a procedure body and if the

given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

13

If either step 1 or step 2 could lead to more than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a con-

trol identifier is the set of statements in which occurrences of an

identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Examples

I

PERSON

ELDERSIBLING

x15, x20, x25

-4.. VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.

The value of a constant is determined by the denotation of the con-

stant. In the language, al.1 constants (except references)‘have a

reference denotation (cf. 4.1.&k). The value of a variable is the

one most recently assigned to that variable. A value is (recursively)

defined as either -a simple value or a structured value (an ordered set

of one or more values). Every value is said to be of a certain type.

The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

real: the value is a 32 bit floating point number,
.

long real: the value is a 64 bit floating point number,

complex: the value is a cclmplex number composed of two
numbers of type real,

14

c o m p l e x :long the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,

I bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:'

array: the value is an ordered set of values, all of identi-
cal simple type,

record: the value is an ,ordered set of simple values.

A procedure may yield a value, in which case it is said to be a

function

called a

fined as

procedure, or it may pot yield (2~ @tie, in which case it is

proper procedure. The value of a function procedure is de-

the value which results from the execution of the procedure

body (cf. ".b..--./.

Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the de-

noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings.

4 .l. Numbers

4 . 1 . 1 . s y n t a x

<long compiex number> : := <complex number>L

<complex number> : := <imaginary number>

<imaginary number> : : = <real number>1 1 <integer number>1

15

<long real number> : : = <real number>L 1 <integer number>L

<real number> : := <unscaled real> 1 <unscaled real> <scale factor>

<integer number> <scale factor> 1 <scale factor>

<unscaled real> ::= <integer number> 9 <integer number> 1

*<integer number> 1 <integer niunber> l

<scale factor> : := ‘<integer number> 1 'Gig0 <integer number>

<integer number> : := <digiti I <integer number> <digit>

Csigr3 ::= + 1 -

4.~2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined type.

unsigned.)
-

4.1.3. Examples

1 -5

0100 1’3

3 0 1416 6.02486 1 +23

2.718281828459045235360287L

4.2. Logical Values l

- 4.2.~ s y n t a x

<logical value> : := true,

(Note that all CT number>s are

11

0.671

1IL

2.3’-6

I false

4.3. Bit Sequences

4.3.1. syntax

<bit sequence> ; := # <hex digit> 1 <bit sequence> <hex digit>

<hex digi e ::=Oll12131415]61718l9~AlBl

CblElF

16

Note that 2 1 . . . 1 F correrponds to .210 1 . . . 1 15,,.

4.3.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex dig&t&. The

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in en the

left.

4 .3 .3 . Examples

#4F = 0000

f9I- = 0000

0000 0000 0000 0000 0000 0100 1111

0000 0000 0000 0000 0000 0000 1001

4.4. Strings

4.4.1. syntax

<strin@3 : := "<sequence of characters>"

4.42. Semantics

Strings consist of any sequence of (at moat 256) chesactess Bc-

cepted by the System 360 enclosed by ", the string quote. If the

string quote appears in the sequence of characters it must be imme-
0

diately followed by a second string quote which is then ignored. The

number of characters in a string is said ts be the length of the

string.

4 .4 .3 . Examples

"JOHN"

'w'~ is the string of length 1 censiating of the string

quote.

17

I 4.5.1. Syntax

References

<null reference : := nW

4.5.2. Semantics

The reference value null fails to designate a record; if a refer-

ence expression occurring in a field designator (cf. 6.1.) has this

value; then the field designator is undefined.

5* DECLARATIONS

Declarations serve to associate identifiers with the quantities

used in the program, to attribute certain permanent properties to

- these quantities (e.g. type, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,

procedures and record classes.

Upon exit from a block, all quantities declared or defined within I

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).

syntax:

<declaratiom : := <simple variable declaratioo 1 <J array

declaratiorD -1 <procedure declaratioo I

<record class declaratioti

5 -1. Simple Variable Declarations

5.1.1. Syntax

<simple variable declaratiqrl, : := <simple type> <identifier list>

<simple type : := integer 1 real I long real 1 complex I long

COE&C 1 logical 1 bits I bits (32) I

18

R!q

: : ‘3 ,.

1
’

’ *

string I string (<integer number>) 1 reference

(<record class identifier list>)

<record class identifier list> ::= <record class identifer> 1

<record class identifier list> ,

<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a

variable which is declared to be of the indicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable is declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It is understood that the value of a variable

is equal to the value of the expression most recently assigned to it.

A variable of type bits is always of length 32 whether or not

the declaration specification is included.

A variable of type string has a length equal to the unsigned

integer in the declaration specification. If the simple type is '

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the

record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, K, M, N

real X, Y, Z

long complex C

logical L

bits G, H

19

strinq (10) S, T ’

reference (PERSON) JACK-; JILL

5.2. Array Declarations

5.2.1. Syntax

<?' array declaratioo ::= <simple type array <identifier list3

(<bound pair listi)

<bound pair list> ::= <bound pair> [<bound pair listi,<bound

pair3

ibound pair> ::= <lower bouncB :: <upper bound>

<lower bound> : :E <integer expressiorD

<upper bound> ::= <integer expressiorb

5.2.2. Semantics

Each identifier of the identifier list of an array declaration is
-

associated with a variable which is declared to be oftype array.A

variable of type any&y is an ordered set of variables whose'type'is the

@nple type preceding the symbol ‘array + (. The dimension of the amay ia

the norpber of.entries in the bound pair list,

Every element of an array. is identified by a list of indices.

The indices are the integers between and including the values of the

lower bound and the upper bound. Every expression in the bound pair

list is evaluated exactly once upon entry to the block in which the

declaration occurs. The bound paiE c.qressions can depend only on

variables and procedures global to the block in which the declaration

occllm l In order to be valid, for every bound pair, the value of the

upper b-d must not be lesa than the value of the lower bound.

5.2.3. Examples

a r r a y H (1 : : LOO)integer

20

P

real array A, B~[l::M, l::Nj

string (12) array STREET, TOWN, CITY (J::K + I.)

,. -
,) .;i. Procedure Declarations

5.3.1. Syntax

<procedure declaratioo ::= <proper procedure declaratio* 1

<y function procedure declaration>

<proper procedure declaratiom ::= procedure <procedure headin@ ;

<proper procedure bodp

<J function procedure declaration> ::= <simple type> procedure

<procedure headin@;

<g function procedure bodp

<proper procedure body3 : := <statementi

<T function procedure bodp :1= <g expressiom 1 <block body7

<T expressio- end- -
<procedure headin@ : := <identifier> 1 <i.dentifie:> (<formal

parameter' list+

<formal parameter list> : ;= <formal parameter segmene 1

<formal parameter listi ; <formal'

parameter segment9

<formal parameter segment> : := <formal type> <identifier listi 1

<formal array parameter>

<formal type> : := <simple type> 1 <simple type> val3e 1 <simple

- type result I <simple type> value result I

<simple type procedure 1 procedure- -
<formal array parameter> : := <simple type array <identifier

lists (<dimension specification>)

<dimension specificatioo ::= * I <dimension specification> , *

5.3.2. Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

21

part of the procedure declaration is the procedure body. Other past8

/ of the block in whose heading the procedure is declared con then c&uI~
I , .

this procedure body to be executed or evaluated. A proper procedwe

is activated by a procedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2,). Associated with the procedure

body is a heading containing the procedure identifier ad possibly 8

list of formal. parameters.

5.3.2.1. Type specification of formal parameters. All formal pare-

meters of a formal parameter segment are of the same indicated type,

The type must be such that the replacement of the formal parameter by

the actual. parameter of this specified type leads to correct ALGOL W

- expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a

formal type is explained by the following rule, which is applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols begin and end

if it is not already enclosed by these symbols;

(2) For every formal parameter whose formal type contains the

symbol vtilue or result (or both),

(1a a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a simple

type as indicated in the formal type, and with an iden-

tifier different from any identifier valid at the place

of the declaration.
,

(b) throughout the procedure body, every occurrence of th@

22

formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon is inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expression

consists of the formal parameter identifier. The symbol

value is then deleted;

(4) If the formal type contains the symbol result, an assignment

statement preceded by a semicolon is inserted before the symbol

end which terminates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon is inserted after the final expression

of the function procedure body. Its left part contains the

formal parameter identifier, and its expression cbnsists of

the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of rr*"rl~

appearing in the formal array specification is the dimension of the

array parameter.

5.393. Examples

procedure INCREMENT; X := X+1

real procedure MAX (real value X, Y);- -

if X < Y then Y else X

23

procedure COPY (real array U, V (*,*); integer value A, B);

real

long

for I := 1 until A &- -
for 3- - := 1 until B & U(i,J) := V(I,J)

procedure HORNER (real array A (*>;i n t e g e r v a l u e N ;

real value X);- -
begin real S; S := 0;

for I := 0 untP1 N do S := S * X + A(1);

S

end

real procedure- - SUM (integer K, N; long real X);

begin long real Y; Y := 0; K := N;

while K> = 1 &

begin Y := Y +X; K := K - 1

end;

Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

P a- Y~~NGEsT~F~sPRING (FATHER (FATHER (R)));D-

while (P- - 1 = null) and. (7 MALE (P)) or- -Y
(P = FATHER (R)) doL-
P := ELDERSIBLING (P);

M := YourmsTowsm~G (MOTHER (MOTHER (R)));

while (M 1 =null) and (1 MALE (M)) do

M := ELDERSIBLINZM);

i f P =null then M else
i f M =null then P else- -
if AGE(P) < AGE(M) then P else ML- -I-

end

24

5.4. Record Class Declarations

5.4.1. Syntax

<record class declaration> ::;;: record <identifier> (<field list>)

<field list> ::= <simple variable declaration> 1 <field list> ;

<simple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record class declaration is a sequence of simple variable declar-

ations which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (N~IE) I;EFT, RIG HT)

record PERSON (string NAME; integer AGE; logical MALE;

reference (PERSON) FATFJER, MOTHER, Y~uNGEST~PPSPRING,

EIDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

fram existing ones. These new values are obtained by performing the

operations indicated by the operators on the values of the operands,

The operands are either constants, variables or function designators,

or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of

action such as the evaluation of other expressions or the execution

of statements. The value of an expression between parentheses is

obtained by evaluating that expression. If an operator has two operands,

then these operands may be evaluated in any order with3he exception

of the logical operators discussed in 6.4.2.2. Several simple types

of expressions are distinguished. Their structure is defined by the

following rules, in which the symbol 3 has to be replaced consistently

as ,described in Section 1, and where the triplets 7' 7'0' 19 J 2 have to

be either all three replaced by the same one of the words

logical

bit

string

- reference

or by any combination of words as indicated by the following table,

which yields To given ?l and T2:

integer l integer real complex

real 1 real real complex

-complex complex complex complex

zr
0

has the quality "long" if either both '
1

and J2 have that quality,

or if one has the quality and the other is "integer".

&ntax:

c7 expression> ::= <simple 7 expression> 1 <case clause>

(G expression list>)

q, expression> ::= <if da.use> ql expression> else

(7, expression>

26

<7 expression list> ::= <J expression>

<To expression list> ::= G1 expression list> , q2 expression>

<if clause> ::= if Uogical expression> then

<case clause> ::= case <integer expression> of-

The construction

<if clause> q, expressioti else q, expression>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the expression following the if clause is

selected; if the value is false, the expression following else is se-

lected. If yl and T2 are simple type string, both string expressions

must have the same length. The construction

<case clause> (3 expression list>)

causes the selection of the expression whose ordinal nuriber in the

expression list is equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

of some expression in the expression list. IfZfis simple type string,

all the string expressions must have the same length.

6.1. Variables

6.1.1: Syntax

<simple 3 variable> ::= d variable identifier> 1 a field designator> 1

<r array designator>

4 variable> ::= Csimple 7 variable>

<string variable> ::= <substring designator>

CT field designator> ::= < Ifield identifier> (<reference expression>)

CT array designator> ::= <Tarray identifier> (<subscript list>)

<subscript list> ::= <subscript> I <subscript list>, <subscript>

<subscript> ::= <integer expression>

27

6.1 .2 . Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.).

-

6.1 .3 . Examples

X A(I) M(I+J, I-J)

FATHER (JACK) MoTHER(FATHER(JILL))

6.2. Function Designators

6.2.~ Syntax

<T function designator> : := ,<J function identifier> 1 <[r function

identifier> (<actual parameter list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

steps 2, 3, 4, As specified in 7.32.

28

Step 5. The copy of the function procedure body, modified as indicated

in steps 2-4, is executed. Execution of the expression which constitutes

or is part of the modified procedure body consists of evaluation of that

expression, and the resulting value is the value of the function desig-

nator. The simple type of the function designator is the simple type

in the corresponding function procedure declaration.

6.2.3. Examples .

MAX (x * 2, Y H 2)
S& (I, 100, H(1))

SUM (I, M, SUM (J, N, A&J)))

YOUNGESTUNCLE (JILL)

SUM (I, 10, x(1) * Y(1))

HORNER (X, 10, 2.7)

- 6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol 3

must be systematically replaced by one of the following words (or

word pairs):

integer

real

long real

complex

long complex

The rules governing the replacement of the symbols To, Jl and y2 are

given in 6.3.2.

<simpler expression> ::= <gterm> I + <Jterm> 1 - <9 tere

29

<simple To eqression> : := <simple Tl expression> + CT2 term> 1

<simple Y1 expression> - Q2 term>

CT term> ::= e factor>

Cfo term> ::= a1 term> * C, factor>

cTo ten0 ::= al term,/ a2 factor>

<integer term> ::= <integer terrrD div <integer factor> 1

<integer temn> rem <integer factor>

Go factor> ::= a0 primary> 1 al factor> * <integer primary>

a0 primary> ::= abs ~7'~ primary>

Go primary> ::= long al primary>

Go primary> ::= short a1 primary>

CT primary> ::= c7 variable> 1 9 function designator> I

(B expression>) I <7 number>

<integer primary> ::= <control identifier>

6.3.2. Semantics

-
An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -) *, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the relevant

syntactic rules of 6.3.1. the symbols To, T1 and T2 have to be replaced

by any combination of words according to the following table which

indicates To for any combination of Jl and T2.

Operators + 1 -

To has the quality "long" if both rl and J2 have the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

integer

real

complex

31 or Y2

the result.

integer real complex

integer long real long complex

long real long real long complex

long complex long complex long complex

having the quality “long” -does not affect the type of

Operator /

-

integer

real

complex

long real real complex

real real complex

complex complex complex

Jo has the quality "long" if both rl and J2 have the quality

"long", or if one has the quality "long" and the other is "integer",

or if both are "integer".

6.3 .2 .2 . The operator "J' standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type

of the result is the type of the operand. The operator "+" standing

as the first symbol of a simple expression denotes the monadic opera-

tion- of identity.

6.3 .2 .3 . The operator div is mathematically defined (for B f 0) as

A div B = SGN (A X B\ X D (abs A, abs B) (cf. 6.3.2.6.)

31

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A;;B);

if A C B then 0 else D(A-B, B) + 1

6.3 .2 .4 . The operator rem (remainder) is mathematical&y defined as

A rem B = A - (A

6.32.5 a The operator Jt3c denotes exponentiation of the first operand

to the power of the second operand. In the relevant syntactic rule of '

6.3;1. the symbols To and rl are to be replaced by any of the follow-

ing combinations of words:

long real
real

complex

integer

real

complex

To has the quality "long" if T, does or if J, is " integer".

6&2.6. The monadic operator abs yields the absolute value or modulus

of the operand. ‘In the relevant syntactic rule of 6.3.1. the symbols 7'G

and Zfl have to be replaced by any of the following combinations of words:

*0 I
I

int,eger integer
re'kl. real

real complex

If rl has the quality "long", then so does rO.

32

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or lone; complex

then it is the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.
,

In the relevant syntactic rules of 6.3.1. the symbols To and rl

must be replaced by any of the following combinations of words (or

word pairs) :

’ Operator ,lorq

long real

long real

real
integer

long complex I complex

Operator short

6.3.3. Examples

-C + A(1) -* $(I)

EXP (-X/(2 * SIGMA))

6.4. Logical tipressions

6A.l. Synt&

/ SqPT (2 * SIGMA)

In the following rules for <relation> the symbols To and Tl must

either be identically replaced by any one of the following words:

33

bit

string

reference

or by any of the words from:

complex

long complex

real

long real

integer

and the symbols Zf2 or T'
3

must be identicaUy replaced by string or

must be replaced by any of real, long real, integer.

<simple logical expressioti : := <logical elementi I <relation>
<logical element> : := <logical terx0 I <logical element> or

<logical terti
<logical term : := <logicti factor> 1 <logical term and

<logical factor>
<logica l factor> : := < log ica l primarp I 7<logical primary3

<logical primarp : := <logical value> I <logical variable I

<logical function designator> I

(<logical expressio*)
<relatiorD : := <simple Jg expressio* <equality operator>

<simple J1 expressi0r-D 1 <logical element3
<equality operator> <logical element> 1

<simple reference expression> is

<record class identifier> 1

<simple 3, expressior0 <relational operator>

<simple JL expressi
3

< r e l a t i o n a l o p e r a t o r > ::= < I < = 1 > = 1 >

<equality operator> ::= = 1 1=

6.4.2. Semantics

A logical expression is a rule for computing a logical v&ue.

34

6.4.2.1. The relational operators represent algebraic ordering for

arithmetic arguments and EBCDIC ordering for string arguments. If two

strings of unequal length are compared, the shorter string is extended

to the right by characters less than any possible string character.

, The relational operators yield the logical value true if the relation

is satisfied for the values of the two operands; false otherwise. Two

references are equal if and only if they are both null or both refer

to the same record. Two strings are equal if and only if they have

the same length and the same ordered sequence of characters. The operator

is yields the logical value true if the reference expression designates a

record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators 1 (not), and, and or, operating on logical

values, are defined by the following equivalences:

IX if X then false else true- - - - -
X and Y if X then Y else false- -
X or Y if X then true else Y- - - -

6.4.3. Examples

(X < Y) and (Y < Z)

YOUNGESTOFFSPRING (JACK) 1 = null

FATHER (JILL) is PERSON -

6.5. Bit Expressions

6.5.1. Syntax

<simple bit expression> ::= <bit term> I <simple bit expression>

or <bit terr0

CDit term> ::= <bit factor> I <bit term> and <bit factor>

Coit factor> ::= CDit secondary> I 1CDi.t secondary>

CDit secondary> ::= <bit primary> I <bit secondary> shl

<integer primary> I <bit secondary> shr

<integer primary>

<bit primary> ::= <bit sequence> I <bit variable> I <bit PAGE 35
function designator> \ (<bit expression>)

’
.

_I,

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and 1 produce a result of type bits, every

bit being dependent on the corresponding bit(s) in the operand(s) as

0

0

0

1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions

0

1

1

1 ,

indicated by the absolute value of the integer primary. Vacated bit
-

positions to the right or left respectively are assigned the bit

value 0.

6.5.3. Examples

G and H or #38w -
G and 1 (H or G) shr 8

6.6. String Expressions

-6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> I <string variable> I <string

function designator> I (<string expression>)

<substring designator> ::= <simple string variable>

(<integer expressioDl <integer number>)

36

6.6.2. Semantics

A string expression is a rule for computing a string (sequence of

, characters).

6.6.2.1. A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expression

preceding the @ selects the starting character of the sequence. The

value of the expression indicates the position in the string variable.

The value must be greater than or equal to 0 and less than the declared

length of the string variable. The first character of the string has

position 0. The integer number following the 1 indicates the length

of the selected sequence and is the length of the string expression,

_ The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6@6.3. Example

string (10) S;

s (413)

S (I+JIl)

6.70

string (10) array T (1: :m,2: :n);

T (4,6) (315) . -

Reference Expressions

6.7.1. Syntax

-<simple reference expression) ::= <null reference 1 <reference

variable> 1 <reference function

designator> 1 <record designator> 1

(<reference expressiol?))

37

<record designator> ::= <record class identifier> 1 eecord

class identifier> (<expression list>)

<expression list> ::= <7 expression> 1 <expression list>,

c7 expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a

record.

The value

created record

of a record designator is the reference to a newly

belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record, The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types of the expressions must

be assignment compatible with the simple types of the record fields

(cf. 7 .2 .2 .) .

6.7.3. Example

PERSON ("CAROL'", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(JAW)

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following

hierarchy of operator precedences:

long, short, abs- -
shl, shr, *m-

1

*, I, div, rem, andm--

38

C, < =, =, i =, > =, >, is

Example

A =BandC is equivalent to A = (B and C)

7* STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action,which may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

Syntax:

<prograIrD : := <blocI .

<statementi : :r <simple statementi 1 <iterative statement> 1

<if statement> 1 <case statement>

<simple statement> : := <blocl2> 1 <J assignment statement> 1

<emptp 1 <procedure statement> 1

<goto statement>

7.1. Blocks

7.1.1. Syntax

- <bloc& : := <block bodp <statement> end

<block bodp :: = <block

<block

<block head> : := begin

<label definitiom ::=

hea& 1 <block bodp <statement>; I

bodp <label definitioe

I <block head> <declaratioD ;

<identifier> :

7.12. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

Step 1. If an identifier, say A, defined in the block head or

in a label definition of the block body is already defined at

the place from which the block is entered, then every occurrence

of that identifier, A, within the block except for occurrence in

array bound expressions is systematically replaced by another

identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3.' Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless

it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

7.1.3. Example

begin real U;- -
u := x; x := Y; Y := z; z := u

end

7.2~ Assignment Statements -

7.2.1. Syntax

In the following rules the symbols To and yl must be replaced by

words as indicated in Section 1, subject to the restriction that the

type yl is assignment compatible with the type To as defined in 7.2.2.

40

Go assignment statement> ::= a, left part> a1 expression> I

Go left part> Gl assignment

statement>

U' left part> ::= CT variable> :=

7 .2 .2 . Semantics

The execution of a simple assignment statement

<7, assignment statement> ::= Go left part> CT1 expression>:

causes the assignment of the value of the expression to the variable.

If a shorter string is to be assigned to a longer one, the shorter

string is first extended to the right with blanks until the lengths are

equal. In a multiple assignment statement

(J<O
assignment statement> ::= a0 left part> Gl assignment

statement>)

the assignments are performed from right to left. For each left part

variable, the simple type of the expression or assignment variable immediately

to the right must be assignment compatible with the simple type of that

variable.

A simple type Tl is said to be assignment compatible with a simple

wee Jo if either

(1) the two types are identical (except that if TO and Tl are

string, the length of the Jo variable must be greater than

or equal to the length of the Tl expression or assignment), or

(2) To is real or long real, and T1 is integer, real or long- -

real or

(3) Jo is complex or long complex, and Tl is integer, real,

long real, complex or long complex.- -

In the case of a reference, the reference to be assigned must refer

to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration.

7.2.3. Examples

z := AGE(JACK) := 28

X := Y + abs Z

C :=I+X+C

P := X7=Y

7839 Procedure Statements

7.3 .1 . Syntax

<procedure statement> ::= <procedure identifier> I <procedure

identifier> (<actual parameter list>)

<actual parameter list> ::= <actual parameter> I <actual

parameter list> , <actual parameter>

<actual parameter> ::= CT expression> I <statement> I G subarray

designator> I <procedure identifier> I

a function identifier>

0 subarray designator> ::= 6 array identifier> I Q array

identifier> (<subarray designator

list>)

<subarray designator list> ::= <subscript> I * I <subarray

designator list>,<subscript> 1

<subarray designator list>,*

7.32. Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier is given by the procedure statement, and of

the actual parameters of the latter. The procedure statement is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by

42

step 1 0f 7.1.2.

Step 3. The copies of the actual parameters are treated in an

undefined order as follows: If the copy is an expression

different from a variable, then it is enclosed by a

parentheses, or if it is a statement it is enclosed

begin and end.

pair of

by the symbols

Step 4. In the copy of the procedure body every occurrence of an

identifier identifying a formal parameter is replaced by the copy

of the corresponding actual parameter (cf. 7.3.2.1.). In order

for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, is executed.

7.3.2.1. Actual-formal correspondence. The correspondence between

the actual parameters and the formal parameters is established as

follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of entries as

the formal parameter list of the procedure declaration heading. The

correspondence is obtained by taking the entries of these two lists

in the same order.

7.3 .2 .2 . Formal specifications. If a formal parameter is specified by

value, then the simple type of the actual parameter must be assignment

compatible with the formal type. If it is specified as result,.then the

formal type must be assignment compatible with the simple type of the

actual parameter. If it is specified by value result, both the above

43

conditions must be satisfied. In all other cases, the types must be

identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be Focedure.

7.3.2.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of subscripts

of the actual parameter equals the number of subscripts of the

corresponding formal parameter. If the actual array parameter has

more subscripts than the corresponding formal parameter, enough subscripts

must be specified by integer expressions so that the number of *'s appearing

in the subarray designator equals the number of subscripts of the

corresponding formal parameter. The subscript positions of the formal

array designator are matched with the positions with *'s in the subarray

designator in the order they appear.

7.3.3. Examples

INCREMENT

COPY (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

7.4. Goto Statments

7.4 .1 . Syntax

<got0 statement> ::= goto <label identifier> I go to (label-w
identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands as a

label.

44

A goto statement determines that execution of the text be contW

ued after the label definition of the label identifier. The ident if I*

cation of that label definition is accomplished in the followiw step@:

Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

7.5’ If Statements

7.5.1. Syntax

< i f statement= : := <if clause> <statement> 1 <if clause>

<simple statement> else <statement>

<if clause> : := -if <logical expression> then

7.5 2. Semant its

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical e%-

pressions l An if statement of the form

<if clause <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement

following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

45

An if statement of the form

<if clause> <simple statement> else <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the simple state-

ment following the if clause is executed. Otherwise the state-

'ment following else is executed.

7.5 -39 Examples

if X = Y then goto L

if X < Y then U := X else if Y < 2 then U := Y else V := 2- -

- 7.6. StatementsCase

7.6.1. Syntax

<case statement> : := <cease clause begin <statement lists end

<statement list> I::= <statement> 1 <statement listi ; <statement>

<case clause ::= case <integer expressi of

7.6.2. Semantics
J'

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list

is equal to the value obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

46

statement of the statement list‘%

, 7.6.3, Examples

begin X := X + Y;

Y := Y + z;

Z := z +x

end

case j of

begin H(I) := -H(I);

begin H(I-1) := H(I-1) + H(1); I := I-l end;

begin H(I-1) := H(I-1) x H(1); I := I-1 nd;

begin H(H(I-1)) := H(1); I ::- I-2 end -

end

7e7* Iterative Statements

<iterative statement> ::r <for clause> Q,'. "JementY 1 <while

clause <statemen'->

<for clause> ::= for <identifier> := <initial value?

step <increment> until C1irni.D do 1 for

<identifier> := <initial value> until <limit>

do / for <identifier> := <for lis'c9 do

<fC-r Zis-L.> : := <integer expressior3 1 <for list9 9 <integer

expression>

<initial value> : := <integer expressioti

<iticreinenti :;= <integer expressiG2

<iimit> ; ",= <integer expressi

<while clause ," ,"= while <logical expressiom do

The iterative statement serves to express that a statement be

47

executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier (the identifier

following for) cannot be changed by assignment within the controlled

statement.

(a) An iterative statement of the form

for <identifier> := El step E2 until E3 do <statement>

. is exactly equivalent to the block

begin <statement-O>; <statement-l> . . . ; <statement-I>;

. . . ; <statement-N> end

in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression (El + I x E2).

The index N of the last statement is determined by

N < (E3-El) / E2 < N+l. If N < 0, then it is understood that

the sequence is empty. The expressions El, E2, and E3 are

evaluated exactly once, namely before execution of <statement-O>.

Therefore they can not depend on the control identifier.

(b) An iterative statement of the form

for Identifier> := El until E3 do <statement>

is exactly equivalent to the iterative statement

for <identifier> := El step 1 until E3 do <statement>

(c) An iterative statement of the form

for <identifier> := El, E2, . . . , EN do <statement>

is exactly equivalent to the block

48

when

begin <statement-l>;

<statement-N> end

in the Ith statement

<statement-2> . . . <statement-I> ; . . .

every occurrence of the control identifier

is replaced by the value of the expression EI.

(d) An iterative statement of the form

while E do <statement>- e

is exactly equivalent to

begin

L: if E thens -
begin <statement> ; goto L ehd- *m

end

where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

7.7*3* Examples

for V := 1 step 1 until N-l do S := S + A(U,V)

while (J > 0) and (CITY(J) 1= S) do J := J-l

for I := x, X + 1, X + 3, X + 7 do P(1)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of

communication with-the

differ from explicitly

input/output system. These

declared procedures in that

standard procedures

the number and type

of actual parameters need not be identical in every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each yi is to be replaced by any one of

49

integer string (<integer number>)

real logical

long real- -
comnlex

bits

c o m p l e xlong

7.8.1. The Input/Output System

ALGOL W provides a single legible input stream and a single legible

output stream. These streams are conceived as sequences of records, each

record consisting of a character sequence of fixed length. The input

stream has the logical properties of a sequence of cards in a card reader;

records consist of 80 characters. The output stream has the logical

properties of a sequence of lines on a line printer; records consist

of 132 characters, and the records are grouped into logical pages.

Each page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.

Alternatively, it is possible to invoke a procedure which will scan the

sequence of records for data items to be interpreted as numbers, bit

sequences, strings, or logical values. If such analysis is specified,

data items may be reference denotations of the corresponding constants

(cf. Section 4). In addition, the following forms of arithmetic expressions

are acceptable data items, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> Q number>

where : T is one of integer, real, long real, complex, long

complex;

50

y9l. . \ . “‘. . ,”

(2) Go number> <sign> a1 number>

<sign> CT0 number> <sign> Gl number>

where : Jo is one of integer, real, long real, and

Jl is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for data items

initially begins with the first character of the input stream; after

the initial scan, it normally begins with the character following the

one which terminated the most recent previous scan. Leading blanks are

ignored. The scan is terminated by the first blank following the data

item. In the process, new records are fetched as necessary; character

position 80 of one record is considered to be immediately followed by

character position 1 of the next record. There exist procedures to

-cause the scanning process to begin with the first character of a record;

if scanning would not otherwise start there, a new record is fetched.

Output items are assembled into records by an editing procedure.

. Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

Simple Type Field Description

integer

real

right justified in a field containing

the number of characters specified by

the current value of INTFIELDSIZE

(initialized to 14, cf. 8.5.) and followed

by 2 blanks

right justified in a field of 14 characters

and followed by 2 blanks

51

. . .

long real right justified in a field of 22 characters

and followed by 2 blanks

complex two adjacen t real fields

long complex two adjacent long real fields

logical right justified in a field of 6 characters

followed by 2 blanks

string placed in a field exactly the length of

the string

bits same as real

The.first field transmitted begins the output stream; thereafter, each

field is normally placed immediately following the most recent previously

transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item is made the

first field of the next record. In addition, there exist procedures to

cause the field corresponding to an item to begin a new record. Each

page group is automatically terminated after 60 records; procedures

are provided for causing earlier termination.

7.8.2. Read Statements

Implicit declaration headings:

procedure RFAD (T1 result Xl; . . . ; Jn result X,>;

procedure READON (?'l result Xl; . . . ; Jn result Xn);

(where n > = 1)

Both READ and READON designate free field input procedures. Input

records are scanned as described in 7.8.~ Values on input records are

read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simple

52

type of each data item must be assignment compatible with the simple

type of the corresponding variable. For each READ statement, scanning

for the first data item is caused to begin with the first character of

a record; for a READON statement, scanning continues from the previous

point of termination as determined by prior use of READ, READON, or

IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(80) result Xl, X,);

(where n > = 1) _

RFADCAELD designates a procedure transmitting 80 character input

records without analysis. For each variable of the actual parameter list,

the scanning.process is set to begin at the first character of a record

(by fetching a new record if necessary), all 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning is set to begin at the first character of the next sequential

record.

7.8.3. Write Statements

Implicit declaration headings:

procedure WRITE (Tl value Xl; . . . ; Tn value X,>;

procedure WRITEON (Yl value Xl; . . . ; Jn value X,);

(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format

conversion. Values of expressions of the actual parameter list are converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

53

to the first value is caused to begin an output record; for a WRITEON

statement, assembly continues from the previous point of termination.

7.8.4. Control Statements

Implicit declaration heading:

procedure IOCONTROL (integer value X
1� l ** t ⌧,1;

(where n > = 1)

IOCONTROL designates a procedure which affects the state of the

input/output system. Argument values with defined effect are listed below;

other values currently have no effect but are explicitly made available

for local use or future expansion.

Value Action (cf. 7.8.1.)

1 Subsequent input scanning is set to begin

with the first character of a record.

2 Subsequent output assembly is set to begin

with the first field of a record.

3 Subsequent output assembly is set to begin

with the first field of a record which, in

turn, is caused to begin a new output page.

7.8.5. Examples

IiiFJm (x, A(1) >

READCARD (S, LINE(lOl80))

WRITE ("AVERAGE =", SUM/N)

WRITEON (X(l,J))

IOCONTROL (2)

54

8. STANDARD FUNCTIONS AND PREDECURED IDENTIFIERS

The ALGOL W environment includes declarations and initialization of

certain procedures and variables which supplement the langllage facilities

previously described. Such declarations and initialization are considered

to be included in a block which encloses each ALGOL W program (with

terminating period eliminated). The corresponding identifiers are said

to be predeclared.

8.1. Standard Transfer F-unctions

Certain functions for conversion of vaiues from one simple type

to another are provided. These functions are predeclared; the

corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);- -
comment the integer i such that

I Ii < = 1x1 < Ii\ + 1 and i*X > = 0

integer procedure ENTIER (real value X);- -

comment the integer i such that

i<=X<i+l;

integer procedure ROUND (real value X);- -

comment the vail;e of the integer expression

if X < 0 then TRUNCATE(X-0.5) else TRLFJCATE

real procedure ROLTiIYTOREAL (long real value X);--e
-comment the properly rounded value of X ;

real procedure REALPART (complex value Z);

comment the real component of Z ;

(x+0.> > ;

long real procedure LONGREALPART (long complex value Z);- -
real procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;

long real procedure i,ONGIMAGPART (long complex value Z);- -

55

L 4
,-:,.i., .A.

i ’

- ,

complex procedure IMAG (real value X);- -
comment the complex number 0 + Xi ;

long complex procedure LONGIMAG (long real value X);- -
logical procedure ODD (integer value N);

comment the logical value

N rem 2 = 1 ;

bits procedure BITSTRING (integer value N);

comment two's complement representation of N ;

integer procedure NUMBER (bits value X);PP
comment integer with two's complement representation X ;

integer procedure DECODE (string(l) value S);

comment numeric code for the-character S (cf. Appendix 1) ;

string(l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype
-

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)

4-l blank

Each-exponent is unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16. Each mantissa (except 0)

represents a normalized fraction less than one. Leading zeroes are not

suppressed.

56

string(12) procedure BASE10 (real value X);YP

comment string encoding of X with form&at

U+EE+DDDDDDD ;- -

string(l2) procedure BASE16 (real value X);PF

comment string encoding of X with format

,+BB+AAAAAA ;- -

string(20) procedure LONGBASE (long real value X);YP

comment string encoding of X with format

U+EE+DDDDDDDDDDDDDDD ;- -
string(20) procedure LONGBASE (long real value X);PY

comment string encoding of X with format

U+BB+m-;- -
string(12) procedure INTBASElO (integer value N);

comment string encoding of N with format

,+DDDDDDDDDD ;

string(12) procedure INTBASE16 (integer value N);

comment unsigned, two's complement string encoding of N with format

e;

8.2. Standard Functions of Analysis

The following functions of analysis are provided in the system

environment. In some cases, they are partial functions; action for

arguments outside of the allowed domain is described in 8.5. These

functions are predeclared; the corresponding implicit declaration headings

are listed below:

procedure SQRT (real value X);real - -

comment the positive square root of X,

domain : X>= 0 ;

long real procedure LONGSQRT (long real value X);VP-7
comment the positive square root of X,

domain : X > = 0 ;

57

complex procedure COMPLEXSQRT (complex value Z);

long;

real

10%

real.-

long

-
real

long

real

long

real

low

.

comment principal square root of Z ;

complex procedure LONGCOMPLEXSQRT (long complex value Z);

comment principal square root of Z ;

procedure EXP (real value X);- -
comment e H X ,

domain : x < 174.67 ;

real procedure LONGEXP (long real value X);P-P
comment e Jt* X ,

domain : x < 174.67 ;

procedure LN (real value X);- -
comment logarithm of X to the-base e,

domain : X > 0 ;

real procedure LONGLN (real value X);PP
comment logarithm of X to the base e,

domain : x>o;

procedure LOG (real value X);- -
comment logarithm of X to the base 10,

domain : x>o;

real procedure LONGLOG (long real value X);P-P
comment logarithm of X to the base 10,

domain : X > 0 ;

procedure SIN (real value X);PP
comment sine of X (radians),

domain : -823550 < x < 823550 ;

real procedure LONGSIN (long real value X);P-P
comment sine of X (radians),

domain : -3.537'+15 < x < 3.537'+15 ;

procedure COS (real value X);- -
comment cosine of X (radians)

domain : -823550 < x < 823550 ;

real procedure LONGCOS (long real value X);- - -
comment cosine of X (radians),

domain : -3.537'+15 < x < 3.537'+15 ;

real

low3

procedure ARCTAN (real value X);- -
comment arctangent (radians) of X,

range : -n/2 < ARCTAN < v/2 ;

real procedure LONGARCTAN (long real value X);- - -
comment arctangent (radians) of X,

range : -TT/~ < LONGARCTAN(X) < n/2 ;

8.3. Time Function

The ALGOL W environment includes a clock which measures elapsed

time since the beginning of program execution. The resolution of that

clock is l/60 second. A predeclared function is provided for reading

the clock.

integer procedure TIME (integer value N);

comment returns elapsed time, in hundredths of a minute if N=O,

in sixtieths of a second otherwise;

8.4. Predeclared Variables

The following variables are to be considered declared and initialized

by assignment in the conceptual block enclosing the entire ALGOL W program.

The values indicated for real and long real quantities are to be understood

as decimal approximations to the actual machine-format values provided.

integer INTFIELDSIZE; .

comment initialized to 14 ,

controls output field size for integers (cf. 7.8.1.);

integer MAXINTEGER;

comment initialized to 2147483647 ,

the maximum positive integer allowed by the implementation;

59

real EPSILON;

low

, low

10%

comment initialized to 9.536743 l-07 ,

the largest positive real number E provided by the

implementation such that

l+e=l;

real LONGEPSILON;

comment initialized to 2.22044604925031'-16~ ,

the largest positive long real number e provided by

the implementation such that

l+e=l;

real MAXREAL;

comment initialized to 7.23700557733226'+75L ,

the largest positive long'real number provided by the

implementation;

real PI;

comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL W to allow

detection and control of certain exceptional conditions arising in

the evaluation of arithmetic expressions and standard f'unctions.

Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(64) XCPMSG);

reference(EXCEPTION)

OVFL, UNFL, DIVZERO,

INTOVFL, INTDIVZERO,

SQ,RTERR, EXPERR, LNLOGERR, SINCOSERR ;

60

Associated with each exceptional condition which can be processed

is a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The association between conditions and

reference variables is as follows:

Reference Variable Conditions

OVFL

UNFL

real, long real,' complex, long

complex (exponent) overflow

real, long real, complex, long

- complex (exponent) underflow

DIVZERO

INTOVFL

INTDIVZERO

SQRTERR

EXPERR

LNLOGERR

SINCOSERR

real, long real, complex, long

complex division by zero

integer overflow

integer division by zero

negative argument for SQRT, LONGSQRT

argument of EXP, LONGEXP out of

domain (cf. 8.2.)

argument of LN, LOG, LONGLN,

LCNGLX)G out of domain (cf. 8.2.)

argument of SIN, COS, LONGSIN,

LCNGCOS out of domain (cf. 8.2.)

When one of the conditions listed above is detected, the corresponding

reference variable is interrogated, and one of the alternatives described

below is chosen.

If the value of the reference variable interrogated is null, the

condition is ignored and execution of the AIGOL W program continues.

In such situations, a value of 0 is returned as the value of a standard

61

function. For other conditions the result is that provided by the

underlying IBM System]360 hardwareJ2 . In determining such a result, it

is to be noted that in those cases in which the detection of exceptional

conditions can be inhibited at the hardware level, namely integer overflow

and exponent underflow, detection is so inhibited when the corresponding

reference is NULL.

If the value of the reference variable interrogated is not NULL,

the fields of the record designated by that reference are interrogated,

and processing action is that described by the algorithm given below in
\

the form of an extended ALGOL W procedure. Identifiers in lower case

represent quantities which transcend the ALGOL W language; they are

explained subsequently.

-
procedure PROCESSEXCEPTION (reference(EXCEPTION) value CONDITION);

begin

XCPNOTED(CONDITION) := true;

XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1;

if (XCPLIMIT(C~NDITI~N) < 0) or XCPMARK(CONDITION) then,

WRITE(V+Z-H+ EXCEPTION NEAR CARD nnnn - ", XCPMSG(CONDITION));

if XCPLIMIT(CONDITION) < 0 then endexecution else

if integercondition then

resultant := default else

resultant := if XCPACTION(CONDITION) = 1 then adjustment else

if XCPACTION(CONDITION) = 2 then OL else

default

end PROCESSEXCEPTION

This procedure is invoked with the value of the reference variable

appropriate to the condition as actual parameter. The significance of

the special identifiers used is as follows:

YIBM System/360 Principles of Operation, IBM Systems Library, Form ~22-6821

62

nnnn

endexecution

integercondition

default

resultant

adjustment

z/

approximate line number of the source code

which was being executed when the exceptional

condition was detected

procedure to terminate execution of the ALGOL W

program

logical value which is true if, and only if,

the condition being processed is integer overflow

or integer division by zero

result of the operation or function provided

by the ALGOL W system prior to invocation of

the exception processing procedure; this is

defined by the hardware 2i for arithmetic

operations and-is the value 0 for standard

functions

value to be returned as the result of the

arithmetic evaluation or standard function

invocation

adjusted result of the operation according to

the following table

Condition

exponent overflow,

division by zero

elcponent underflow

Adjustment

if default < 0 then

-MAJREAL else MAXREAL

OL

argument X out

SWT, LONGSQ,RT SQRT(abs X), LONGSQRT(abs X)

EXP, LONGEXP MAXREAL

I.& LONGIN -MAXREAL

LOG, LONGLOG -MAXREAL

SIN, LONGSIN OL

COS, LONGCOS OL

of domain for :

31BM System/360 Principles of Operation, IBM Systems Library, Form ~22-6821

63

The reference variable UNFL is initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which is accessible only by the system. Interrogation

of this record by the procedure described above has the effect of causing

the ALGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result in a reference error.

64

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings. This encoding

*establishes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character.

64

74

75

76

77

78

79
80

90

91

92

93

94

95

96

97
107

108

1.09
110

111

122

123

124

125
126

127

space

w
.

<

(

+

I
&

(>I.

$
*

>

;

1

I

>

$

>

?

.

.

#

@

?

=

tt

129 (1a

130 (b)

131 (>C

132 (4
133 (>e

134 w
135 (Ed
136 o-4
137 (>i

145
.

(J)

146 04

147 0)

148 (>m

149 (>n

150 (>0

151 (P)

152 (9)

153 (>r

162 (>S

163 (t>

164 (>U

165 (1V

166 (>W

167 (>X

168 (Y)

169 (>Z

193 A

194 B_

195 c
196 D

197 E

198 F

199 G
200 H

201 I

209 J

210 K

211 L

212 M

213 N

214 o

215 P

216 Q

217 R

226 s

-7 T
228 u

229 v

230 w

231 x

232 Y

233 z

65

240 0

241 1

242 2

243 3
244 4

245 5
246 6

247 7
248 8

249 9
.

ERROR MESSAGES

Henry R-t Bauer

Sheldon Becker

Susan L. Graham

66

ALGOL W ERROR MESSAGESPM -

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the program

listing. The message format is

CARD NO, (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) is one of those listed below.

INCORRECT SPECIFTN

INCORRECT CONSTANT

syntactic entity of a declaration is

incorrect, e.g. variable string length.

syntax error in number or bitstring.

MISSING END

_ MISSING BEGIN

an END needed to close block.

an attempt to close outer block

MISSING)

ILLEGAL CHARACTER

MISSING FINAL .

before end of code.

) is needed.

a character, not in a string,

unrecognizable.

program must be terminated by

STRING LNGTH ERROR

BITS LENGTH ERROR

MISSING ((is needed.

TABLE OVERFLOW terminating error - a compile time

table has exceeded its bounds.

string is of 0 length or length

greater than 256.

bits constant denotes no bits or

is

a period.

more than 32 bits.

67

TOO MANi ERRORS
.

the maximum r3&&er of errors forpass *

One records has been reached. Com-

pilation continues but messages for

succeeding errors detected by Pass

One are suppressed.

ID LENGTH > 256 more than 256 characters in' identifier.
see a:sc discussion of PR(OGRAM CHECK in IV.

II. PASS TWO MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

symbol)

If a $STACK card is included .anywhere in the source deck, the

- .SYNTAX ERROR message is followed by

STACK CONTAINS:

. (beginning of file)

<symbol-l>

<symbol-rD (top of stack)

The symbol names may differ somewhat from the metasymbols of

the syntax.

‘Lf any Pass One or Pass Two errors occur, compilation is termi-

nated-at the end of Pass Two.

ZNCGRRECT SLWLE TYPE <nwnber> <simple type of entity is improper

as used. Number indicates explana-

tion on list of simple type errors.

68

ARRAY USED INCORRECTLY

IDENTIFIER MUST BE RECORD
CLASS ID '

MISMATCHED PARAMTER

MULTIPLY-DEFINED SYMBOL <iden-
tifier>

UNDEFINED SYMBOL <identifier>

INCORRECT NUMBER OF ACTUAL
PARAMETERS

INCORRECT DIMENSION

DATA AREA EXCEEDED
-

INCORRECT NUMBER OF FIELDS

INCOMPATIBLE STRING LENGTH

INCOMPATIBLE REFERENCES

BLOCKS NESTED TOO DEEP .

REFERENCE MUST REFER TO
RECORD CLASS

EXPRESSION MISSING IN
PROCEDURE BODY

a variable must be used here.

reference declaration is incorrect,

formal parameter does not correspond

to actual parameter.

symbol defined more than once in a

block

symbol is not declared or defined.

the number of actual parameters to

a procedure does not equal the number

of formal parameters declared for

the procedure.

the array has appeared previously

with a different number of dimensions.

too many declarations in the block.

the number of fields specified in a

record designator does not equal the

number of fields the declaration of

the record indicates.

length of assigned string is greater

than length of string assigned to.

record class bindings are inconsistent.

blocks are nested more than 7 levels.

reference must be bound to a record

class.

body of typed procedure must end

with an expression.

m,. .I c:’_.
,

RESULT PARAMETER MUST BE
a vm

the actual parameter corresponding

to a result formal parameter must

be a UVARIABLE>.

PROCEDURE READ LACKS SIMPLE proper procedure ends with an
TYPE expression

<SYMBOL-> UNREMTED TO
<SYMBOL-2>

the symbol at the top of the stack

(<SYMBOL-1>) should not be followed

by the incoming symbol (CjyMBOL-2>).

SYNTAX ERROR construction violates the rules of

the grammar. The input string is

skipped until the next END, ";",

BEGIN, or the end of the program.

More than one error message may be

generated for a single syntax error.

E r r o r sSimple Type

25. Upper and lower bounds must be integer.

?9. Upper and lower bounds must be integer.

32. Simple type of procedure and simple type of expression in

71*

73.

74.

76.

77.
81.

84.

88.

93 ?

94.

95*

procedure body do not agree.

Substring index must be integer.

Simple variable preceding '(' must be string.

Substring length must be integer.

Field index must be reference or record class identifier.

Array subscript must be integer.

Array subscript must be integer.

Actual parameters and formal parameters do not agree.

Actual parameters and formal parameters do not agree.

Expressions in if expression do not agree.

Expressions in case expression do not agree.

Expression in if clause must be logical.

70

98. Expressions in case expression do not agree.

99* Expression in case clause must be integer.

101. Arguments of = or -,=do not agree. 1

102. Arguments of relational operators must be integer, real, or

103.

106.

107.

108.

log.

ll,O.

112.

117.

118.

119.

120.

121.

123.

125.

long real.- -
Argument before is must be reference.

Argument of unary + must be arithmetic.

Argument of unary - must be arithmetic.

Arguments of + must be arithmetic.

Arguments of - must be arithmetic.

Arguments of or must be both logical or both bits.

Record field must be assignment compatible with declaration.

Arguments of * must be arithmetic.

Arguments of / must be arithmetic.

Arguments of div must be integer.

Arguments of rem must be integer.

Arguments of and must be both logical or both bits.

Argument of 1 must be logical or bits.

Exponent or shift quantity must

shifted must be bits.

Shift quantity must be integer;

bits.

be integer; eqression to be

126. expression to be shifted must be

130.

134.

135.
136.

Actual parameter of standard function has incorrect simple type.

Argument of long must be integer, real, or complex.

Argument of short must be long real or long complex.- -
Argument of abs must be arithmetic.

Record field must be assignment compatible with declaration.

Expression is not assignment compatible with variable.

Result of assignment cannot be assigned to variable.

Limit expression in for clause must be integer.

Expression in for list must be integer.

Assignment to for variable must be integer.

Expression in for list must be integer.

Step element must be integer.

Expression in while clause must be logical.

148.

181.

182.

188.

190.

491.

1-93.

1-95 l

197.

71

III. PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

w-h+w (message)
H+-H+ NEAR CARD (number)

The number indicates the number of the card near which the error

occurred. The message may be

PROGRAM SEGMENT OVERFLOW

COMPILER STACK OVERFLOW

CONSTANT POINTER TABm TOO URGE

BLOCKS NESTED TOO DEEPLY

DATA SEGMENT OVERFLOW

TOO MANY PROCEDURES

CARD TABLB OVERFLOW

the amount of code generated for a

procedure exceeds 8192 bytes.

constructs nested too deeply.

too many,literals appear in a

procedure.

parameters in procedure call are nested

too deeply; procedure calls in block

nested too deeply.

too many variables declared in the

block.

the program contains too many procedure

declarations; the number of procedures

allowed depends on the size of each

procedure and cannot exceed 52.

density of information on (non-blank

and non-comment) source cards is too low.

IV. RUN TIME ERROR MESSAGES

The form of run error messages is

RUN ERROR NEAR CARD (number) - (message)

SUBSTRING INDEXING substring selected not within named string.

CASE SELFCTION INDEXING index of case statement or case expression

is less than 1 or greater than number of cases.

ARRAY SUBSCRIPTING array subscript not within declared bounds.

72

LOWER BOUND> UPPERBOUND

ARRAY TOO LARGE

ASSIGNMENT TO NAME PARAMETER

lower bound is greater than upper

bound in array declaration.

The (n-l) dimensional array obtained

by deleting the right-most bound-

pair of the array being declared has

too many elements The maximum number

of elements allowed in this (n-l)

dimensional array is given below,

according to the declared type of

the array.

ww

maximum # of
elements in
first (n-l)
dimensions

lcgical, string 32767
integer, real 8191

bits, reference 8191

long real, complex 4095

long complex 2047

assignment to a formal name parameter

whose cor,u,ssponding actual parameter

is an expres3ionj a literal, control

identifier., or procedure name,>

DATA AREA OVERFLOW storage available for program execu-

tion has been exceeded0

MTUAL-FORMAL PARAMETER MISMATCH the number of actual parameters in
IN FORMAL PROCEDURE CALL a formal procedure call is different

from the number of formal parameters

in the called procedure, or the

parameters are not assignment

compatible0

RECORD STORAGE AREA OVERFLOW no more storage exists for records.

73

LEZNGTH OF STRING INPUT string read is not assignment compatible

with corresponding declared string.

LOGICAL INPUT quantity corresponding to logical

quantity is not true or false.

'NUMERICAL INPUT numerical input not assignment compatible

with specified quantity.

REFERENCE INPUT reference quantities cannot be read.

READER EOF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to

addressa record, or a reference bound

to two or more record classes was used

to address a record class to which it

was not currently pointing.

LINE ESTIMATE EXCEEDED line estimate on $ALGOL card is

exceeded.

TIME ESTIMATE EXCEEDED time estimate on $ALGOL card is

exceeded.

I/O ERROR see consultant.

PROGRAMCHECK#nn see consultant.

Counts of certain exceptional conditions detected during program

compilation or execution are maintained.' If any of these are non-zero,

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (modulo 10000) is

given by nnnn; the nature of the condition is indicated by xx according

to the following table:

74

08 integer overflow

09 integer division by zero

12 real exponent overflow

13 real exponent underflow

15 real division by zero

This counting is inhibited for integer overflow and exponent

underflow whenever the value of the corresponding reference variable

is null (cf. LANGUAGE DESCRIPTION, Section 8.5.).

v. OTHER

PRG PSW

COMPILER ERROR

see consultant.

see consultant.

INSUFFICIENT
STORAGE

insufficient memory available to complete compilation.

75

~ ---m-3 2‘. I.,
* I,*

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W c

bY

George E. Forsythe

76

The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360

computers. Because we are using Algol W, some refer-

ences are made to that language. However, very little

of what is said here depends on the peculiarities of

Algol W, and this exposition is mostly applicable to

Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and

full-word integers of PL/l. Users of shorter or

longer integers or decimal arithmetic in PL/l will

need more orientation.

77

On IBM? system 360, t.he following units of information storage

are used:

a) the bit., a single 0 or 1

b) the byte, a group of eight consecutive bits

c) the (short) word, a group of four consecutive bytesb-

Leg, 32 consecutive bits

d) the long word, a group of two consecutive short words-

Lee, eight bytes or 64 bits.

For number representation in Algol W the words and long words are

the main units of interest,

INTEGERS. -

Integers are stored in (Bhort) words, Of the 32 bits of a short

word, one is reserved i’or the sign (0 for -I- and 1 for -), leaving

31 bits to represent tile magnitude, A positive or zero integer is

- stored in a binary (base 2) representation, Thus 2110 (the subscript

means base 10) is stored as

0000 0000 0000 0000 0000 0000 0001 0101 d

sign bit

To confirm this, note that
To + ', + 1 x p4 +0x2 +lx223 1 0

217 0 x 2 ,,,+ox; _ +0x2 +:x2.

The lakgest integer that can be stored in a word is

240 -t 2 29 + 0 . . i-210 +2 = 231 - 1 = (2147483647)lo e

Any attempt to create or store an int*eger larger than 2 31- 1 will

prodxe erroneous results, and (unfortunately) the user will not always

be warned of the error (Eee below,)

To save space in wri-i:Ing words on paper, each group of four bits

in a w.ord is frequently co-Averted to a single base-16 (hexadecimal)

digit, according to the following code:

78

base 2

0000
0001
0010
0011
0100
0101
0110
0111

base 16
I

base 2 base 16

1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Thus A, B, C, D, E, F are used

numbers 10, 11, 12; 13j 14, 15

stored as base-2 numbers.

as base-16 representations of’ the decimal

respectively. Nevertheless, integer8 ape

Using hexadecimal notation, the decimal number 21 is represented

bY
00000015,6 .

Note that 15,6 is the base-16 representation of 2110 d

Negative integers are stored in what is called the "two's cmlement

form". For example, -1 is stored as

1111 1111 1111 1111 1111 1111 1111 1111 ,

= FFFFFFFF16 a

Aho, -21 is stored as

1111 1111 1111 Llll 1111 1111 .LLlO 1011

= FFFFFFEB16 ,

Tne representation for -21 is obtained from that for +21 by changing

every 0 to 1 and every 1 to 0, and then adding + 1 in base-2 arithmetic

to the result. Similarly for any negative integers. Every negative

integer has 1 as its sign bit. The smallest integer storable in

System/360 is ,231 = -2147483648 , and is represented by 80000000~~ .

Another way to think of the representation of negative numbers io

to consider a 320place binary accumulating register (the base-2 equivalent

of the-decimal accumulating register in a desk calculating machine),

If one starts with all zeros in this register, one gets the representation

for -1 by subtracting 1. The process requires a “borrow” to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued sub-

traction will give the representations for -2, -3, .P, .

79

From the point of view of an accumulator we can also see what

happens when we create a positive number larger than 231 -1. For

example, if we add 1 to 23 1-1, the resulting carry will go all the

way into the sign bit, leaving a sign bit of 1 with all other digits

zero. But this is the representation of -231 . Thus the attempt to

produce positive numbers in the range from 23 1 to approximately 232

will yield a negative sign bit. Consequently, positive integers that

"overflow" into this range are sensed as negative by System/360. The

mechanisms of AIGOL W for detecting integer overflow (not described in

this document) can be used to detect additions, subtractions, or

multiplications that produce integers outside the range from -23l to

a (-1 so-called integer overflow). Attempts to divide an integer by 0

will yield an error message and an irrelevant quotient and remainder.

The behavior of System/360 on integer overflow is quite different

from the Burroughs B5500. In the latter machine, any integer that

overflows is replaced by a rounded floating-point number. There are

advantages to either approach to integer overflow, depending on the

application.

If the user suspects that integers in his program are getting

anywhere near 10Y , he should convert them to double-precision floating-

point numbers by use of the Algol W operator LONG. Conversion to single-

precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember is that

integers in the range -23%0 P-1 are stored without any approximation.

Moreover, operations on integers (adding, subtracting, multiplying) are

done without any error, so long as all intermediate and final results

are integers between -231 and 231-l. It is perhaps easier to remember

as safe the interval from -2 x 109 to 2x10 9 , obtained from the

useful approximation 21° I 103 .
.

80

The operations of division without remainder (called DIV'in Algo

W) and taking the remainder on division (called REM in Algo W) always

give integer answers, If the divisor is 0, an error message is given,

In Algol W two operations on integers give results that are not

stored as integers--namely / and ** LI

FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude

well beyond the range of integers described above, To provide for

this, System/360 and most scientific computers have a second way to

represent numbers--the so-called floating-point representation,

The significance of the name "floating-point" is that the radix point

--for example, the decimal point in base-10 numbers--is permitted to

float to the right or left, thus permitting scaling of numbers by

various powers of the radix, Although a decimal point that has floated

off to :he left will produce a number writr,en like 0,0013k52 the

nuuibers are actually represented in a form closer to what is often

called scientific notation, here 1,3ic5x10-~ 0

In System/360, floating- dint numbers SY~ always represented in ,

base-16 notation; iOeO? the rc ix or number base -s 16, This permits- -

us to write numbers in abbrevi 4ed form (as we did with integers earlier).

PiDre important, the use of baseEd conforms with the hardware arithmetic

processes in which shifting is done four bits at a time to speed up the

operations. The speed-up is achieved at a slight cost in precision,

as ri.:, learned frcxn detailed error analyses which we cannot go into here,

We first consider the floating-point representation of numbers by

a single word of 32 bits This is the so-called single-precision

or short real number, the number of type REAL in Algol W, The 32 bits

of a word are numbered frcxn 0 to 3iL9 frolm left to right, just to identify

them, In floating-point representation the left-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digit(s) are devoted to the sign of

the number and the exponent of 16 associated with the number, The right-

hand 24 bits (bits 8 to 31, e&ivalent to six hexadecimal di&ts)

/

81

..-,

I ,. . .
.I

.,
. : I>

,;
.

‘. . .

yepresent six significant hexadecimal digits (the aignificand) of the

number d

As with integers, the sign of the number is denoted by bit 0,

with 0 representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-

negative integer in the range Olo to 12710 9 inclusive, This In-

teger is called the biased exponent, for reasons now to be explained,

If this integer were taken directly a8 the exponent, we would have no

negative exponent 8, and our range of floating-point number6 could not

include such number6 a8 16-25
. It is desirable to have an exponent

range that is approximately symmetric about zero. In System/360 one

obtain8 the true exponent of the floating-point number by subtrscting

64 from the biased exponent represented by bits 1 to 7. A8 a result,

the actual exponent6 range from -64 to 63*
The 24 bit6 8 to 31 of a number are regarded a6 six hexadecimal

-digits with a hexadecimal point at the left-hand end. If the floating-

point nurllber zero is being represented, all the hexadecimal digit8 arc

zero, ac are all the other bits, Otherwise, at least one of the hena-

decimal digits must be nonzero. A floating-point number is eaid to be

normalized if the left-hand hexridecimal digit (the most significant

digit) of the significand is nonzero, In System/360 the floating-point

n!q*lbers are ordinarily normalized, and we will not consider any other

forms0

We nov gi-re the floating-point representations of saae 8am@e

numb3:3c - Ra Tfe said before, the number zero is represented by 32 zero

bits, Le., by eight 0 hexadecimal digits. Thus zero is represented

by the same trords in floating-point or integer form. No other number

ha6 this property.

The number LO is represented by the word

si n bit
k 0,100 0001, ,000l 0000 oooo 0000 0000 oooo, .

biased
exponent

signif icand I

82

To check this, note that the sign is 0 (reprerenting +). The biased

exponent is 10000012 or 6510 o Subtracting 6+,, yield8 1 as the

true exponent. The hexadecimal significand is 100000,6 . Putti@ ca

hexadecimal point at the left end give6 the hexadecimal fraction

.10000016 9 which equals 2416. Thus the above word represents

+ 1416 times 16l , or 1.0 .

To save writing, the above word is ordinarily written in the

hexadecimal form 4llOOOOO . While one gradually learns to recognize

'some floating-point numbers in this form, the author knows no ea$y way

to convert such a hexadecimal word into a real number. he jU6t ha6

to take the right-hand six hexadecimal digits, and prefix a hexadecimal

point. Then one examine6 the left-hand two-hexadecimal-digit number

(here 41). If this is less than SO,, ., the floating-point number is

positive and one gets the true exponent by subtracting 40,6 = a,, l

If the left-hand two-hexadecimal-digit number is 8016 or larger, the

-floating-point number is negative, and one gets the true exponent by

subtracting co16 = 8016 + 40,6 = lg210 and affixing a minus sign.
Some facility with hexadecimal arithmetic is required, if OM has to

deal with such numbers.

In this presentation, we have considered the radical point to be

at the left of the six significant hexadecimal digits, and regarded

the exponent as biased high by alo . As an alternative, the reader

may prefer to place the radix point just to the right of the most

significant digit of the significand, and regard the exponent as biased

high by -65,, l �kis brings the significand closer to usual scient$.fic

notation but, of course, requires a trickier conversion to get the

true exponent, The fact that either interpretation (and many others) *

are possible shows that really the radical. point is just in the eye of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-

decrnzal notation, with the confirmation left to the reader.

83

decimal

0,o
1.0
oeo625

16,o
256.0
-1.0

-16eo
3.5

floating-goint

00000000
41100000
40100000
42100000
43100000
c1100000
c2100000
41380000

The largest floating-point number is TFFFFFFF, representing

.FFFFFF X 163F or (1 - 1606) x 1663 f 723 X 1075. (Here 10 and 16

denote decimal numbers.)

The smallest positive normalized fldating-point number is 00100000,

representing

' x16-64
16

+ 5040 x lo-73

Negatives of these two numbers can also be represented, and are

the ektremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ones can?) For example, l/3 = .333333,,
I

only approximately. In the same way, very few number6 can be exactly

represented with six significant nexadecimal digits, (Exercise:

Which ones can?) For example, J/3 = 35555516 only approximately.

Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

l/l0 = ..lOOOOOlo exactly; but

l/lo = *19999!& only approximately.,

Thus round-bff error enters into-the representation of most- -
floating-point numbers on System/36O, and the round off differs fram

that with decimal numbers,, This can easily give rise to unexpected

results. For example, if the above number * 19999A16 (+ O.llo) is
multiplied by the integer

loo10 - 6416 ' one gets not A.0000016 =

10.010 9 but instead A"OOOO316 , as a cumulative effect of the slightly

high approximation to O.llo . And A.OOOO316 rounds to 10.0000210
on conversion to decimal.

The precision of a single-precision hexadecimal number is roughly

10-L tie can think of this as being crudely equivalent to seven sig-

84

‘.

niflcant decimal digits,

Not only do errors appear in the representation of numbers ineide

Syattm/36O (or any computer), but they arise from arithmetic operations

perf armed on numbers, For example, the product of two floating-p.ofnt

numbers may have up to 12 significant hexadecimal digits. When the

product is stored as a single-precision floating-point number, it must

be rounded to six hexadecimal digits, This introduces an error, even

though the factors might have been exact,

The story of round off aM its effect on arithmetic is a complex.

and Anteresting one, Only within the current decade have there begun

to appear even partly satisfactory methodsto analyze round off, and

we cannot go into the matter now, Some idea of this is obtained in

Computer Science 137*

When an Algol W program assigns decimal numbers or integer values

to variables of type REAL, these are immediately converted to hexadecimal

_ floating-point numbers9 with (usually) a round-off error0 When one

outputs numbers from the computer in Algol W3 they are converted to

decimal. Both conversions are done as well as possible, but introduce

changes in the numbers that the 'Togrammer must be aware of, And, of

course, all intermediate opera" tons introdue flrrther round off8 and

possible errors0 It is unthirLable to do the anaiysis necessary to

counteract these errors and get the true answer to the problem, If the

user wishes answers uncontaminated by round off, he should use integers

and integer arithmetic, and be prepared to guard against overflow,

Fortunately most users -can accept an indeterminate amount of

round off in their numbers, provided they have some assurance that

round off is not growing out of control, It is the business of numerical

analysts to provide algorithms whose round-off properties are reasonably

under control. This has been well accomplished in some areas, and hardly

at all in others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems

85

very adequate for most scientific and engineering purp8e#9beirrg at the

1evGz of reven decimals, However, a considerable number of cmputrrt;ime

require etill more precision in the middle sanewhere, just in order to

I cane out tith ordinary accuracy at the end. As a result, System/360

baa provided an easy mechanism for getting a great deal more precision

in the computations. For this purpose a double word of 61c bits is used

to store a floating-point number of so-called double p.recision or 10%

precision. In this representation, the sign and biased exponent are

found in the first word of the double-word, with precisely the same

interpretation as with single-precision floating-point numbers, The

second word of the double-word consists of eight hexadecimal digits

innnediately following the six found in the first word., There is no

sign or exponent in the second word. Tnus a double-word represents

a signed floating hexadecimal. number with 14 significant hexadecimal

digits, As before, nonzero numbers are normalized so that the most

significant digit of the lb is nonzero,

Examples:

long signtficand

l.OL = 41'100000 oooooooB

O.lL = 40 1yyygy YYYYYYYA

There is a full set of arithmetic operations for both single

and double-precision operations. Very crudely, for an example, single-

precision multiplication of single-precision factors takes around 4 micro-

seconds, while that for double-precision factors takes around 7 micro-

seconds. For modest problems the extra time is ccmpletely lost in the

several. seconds of time lost to systems and compilers, and the use of

double-precision is strongly recommended for all scientific cmutation.

l'?ornkl.ly the only possible disadvantage of using long precision is the

doubling in the amount of storage needed. If one has arrays with tens

of thousands of elements, the extra storage may be very costly. Othcr-

wise, it should not matter,

Since 16
-14 + 1o-l7, the double-precision numbers are crudely

equivalent in precision to 17 significant decimal digits.

For a machine with the speed of the 360/67, a number precision of

86

six hexadecimal digits (roughly de-v-en cWAma&s) is considered ‘very low,

while a precision of 14 hexadecimal digits (roughly 17 decimals) is

very adequate 4

?:,a floating-point arithmetic

hardware of System/360 provides the possibility of detecting when

numbers have gone outside thr= exponent range stated above. The reader

may think that a range frocm rc&hly 1C
=? 9 t o 107” ,&otlld cover all

reasonable ccunputations. Wh~e exponent overflow and exponent underflow

are not very common, they can be the cause of very elusive errors,

The evaluation of a determinant is a common computation, and for a matrix

of order 40 is quite rapidly done (U you know how) If the matrix

elements are of the quite reasonable magnitade 10y32 the magnitude of

the determinant will be no larger than roughly POm90 (and probably

much smaller), well below the range of representable floating-point

numbers, Such problems are a frequent source of exponent underflow.

WC shall not discuss here the me&aAsms of Algal. W for detecting

exponent overflow and underflow, for these should be written up in

another place, Even without these? we see that floating-point numbers

behave well for numbers tha? ape at least 1066 times as large a8 the

largest integer in the system: Hence '!rbe of fioatiwlpoknt numbers

meets almost all the problems ?aLsed by intxgrr LJverflow, And9 of

course,, it permits the use of a larg-p set of rational numbers, which

do not even enter the integer system,

ALGOL W REALS AND LCINGREALS

The Algol W manual tells how to represent real variables and

numbers to take advantage of both single-and double-precision, The

purpose of this section is to bring this rinformation into rapport with

the hardware representation of n*umbers, If a variable X is declared

REAL, one word is set aside for itti values, and it wi19 be stored in

single-precision floating-point form, Xf a variable is declared to be

LCNG REAL, a double-word is set aside to hold its values, and it will

be stored in double-precision form,,

If a number is written in one of the decimal forms without an L

at the end, it will be chopped to single-precision, no matter how many

digits are set down. Thus 3.1415926535891932 will be immediately

chopped to single-precision in the program, and all the superfluous

digits are lost at once.- - Thus the assignment statement

xx := 3.1415g265358g7932

will result in the double-word XX receiving an approximation to TT

in the more significant half, and all zeros in the less significant

half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form

xx := 3.1415926535897932L .

With the declaration REAL X, the statement

X := 3.1415926535897932L

will result in X having a single-precision approximation to n , as

- the long representation of n is chopped upon assignment to X.

The reader should now go back and examine the specifications of

the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and on pp. 25, 26 of the Language Definition.

Some of the less expected effects are the following: Suppose we have

declarations

REAL x, Y, z;

LONG REAL XX, Y-Y, ZZ;

INTEGER I, J, K;

Then X*Y, I*J, and I*X'are all-long real.
The assignment statement

xx := x := Y-w

will result in XX having a single-precision chopped version of Y*Z in

the more significant half, and zeros in the less significant word.

Moreover, I*1 is INTEGER, but I=2 is LONG REAL.

88

If the reader understands the language Algol W and the preceding

pages on nilm’ber representation, he should have a good ‘basis for under-

standing the effects of mathematical algorithms O But he should always

remain wary of what a computer is actsally doing to his numbers!

APPENDIX

Algol W Deck Set-Up

(Job Card)

//J~BIIB DD DSNAME=SY~~.PR~GLIB, DI~P=(oLD,PA~~)

/I EXEC AIGOLW

/IALGOLW.SYSIN DD *

(program)

$EoF

(data)

$EOF

6 Optional

$0 May be repeated

Note: The Stanford ALGOL W system monitors execution time and number

of lines of output for each job. The default limits on these quantities

are 10 seconds execution time and 500 lines of printed output. Alternately,

the programmer may explicitly specify limits on the $AIGOL card.

Columns lo-29 of that card are scanned for such specification according

to the following syntax:

90

(limit specification) ::= (time limit) 1 (t ime limit), (line limit)

(time limit) : := (minutes specification) 1

(minutes specification) : (seconds specification)

(minutes specification) : := (unsigned integer) 1 (empty)

(seconds specification) ::= (unsigned integer) 1 (empty)

(line limit) . .=. . (unsigned integer) 1 (empty)

An empty field is given the corresponding default value. The program

is automatically terminated if necessary at the end of the indicated

time. Similarly, the program is automatically terminated if necessary

after the indicated number of lines have been printed.

91

GRAMMATICAL DESCRIPTCON OF ALGOL W . .

R. Floyd

92

e:: I. . . I,: :

In the grammatical description of ALGOL W on the following pages,

Roman capital letters, such as A B C D, stand for themselves. A script

letter, possibly accented, stands for a defined infinite class of symbol

strings; for example, 9 , as defined, stands for the class which includes

the symbols A, B, C, Z, AA, AB,A9. BA,...,B9,...Z9, AAA,

z99, AA& A Greek letter, such as h , stands for a given finite

set of characters.

The symbol 1 means "or"; if (2 is defined as BlC , this means that

a particular inscription is an a if it is a B or if it is a C .

The notation a* , or equivalentiy (a)" , means any number (including

zero) of inscriptions, one after another, each of which is an a . For

example, bI@* means A or B or AA or AR or BA or BB or AAA

or or A , where A means no inscription at all.

The notation a+ means any number (but at least one) of inscriptions,

one after another, each of which is an CJ . It abbreviates my . For

example, (AIB~+ means A or B or AA or . . . or BB or AAA , etc.

The notation [a] means an optional occurrence of a ; it abbreviates

Cald l

+Thenotation a R means a or m or m , etc; it abbreviates

afm)*- l

The notation a An means a and/or B ; it abbreviates a\Rlm .

The curly brackets (] are used simply as parentheses to show the

scope of the above operators.

All other characters, such as / - , () / < etc., stand for themselves,

including * and + when they are not raised.

93

The Grammar of a Simple Subset of AIGOL W

Descriptive
Name

letter

digit

identifier

symbol

constant

function value

expression

simple statement

statement

block

declaration

wee
procedure heading

program

Symbol Definition

h AIB\CID\E)...\XIYIZI

8 01~1431 l l l 1819

3

cl

C

9 '

e

S’

h b\al”

Any symbol on the keypunch, except the double quote

8 +I: . s*]. 1 "a+"

4 ml 1I IIa
C-l I- c+\-I kl<=1=\>=1>11=1

&=E\q(et;)]\GO TO 9 la

S S'IP & THE3J SlIF 8 THEN S' ELSE SlFOR &=e UNTIL e DO S

B BEGIN (8;}*(S;l8: ,"S END

B T a;lr rm~~K;(el~GINCa;3*lS;19:3$ END]

zr INTEGERIREALILOGICAL~STRING(C)

;ac 8(T{VALuE JPRocEDuml~~ ‘; 1

P B. ,

The Grammar of ALGOL W

Descriptive
Name

- - .- . ^

.-.
Symbol Definition

letter h A~B~CIDIE~+XIYIZ

digit

identifier

variable

symbol a Any character on the keypunch, except the double quote.

constant

%
function value

simple expression

simple expression
or relation

expression

argument

simple statement

empty

C I

e

a

S'

A

{{h+[.b*] 1 .b+] A, [‘[+I-] ~+])[I][L] lTRUElFAIsE
I# {S ~A~B~cJDIEIF)~J"{~I""~+"\NULL

-a".
,

[+I-I[IIIABsILoNGIsHoRT~*CV(C~~~(&))- I~~~HL~sHR){*I/ID~~IREMIANDSI+I-IOR}

&fl (EN{<I<=l=I~l>f-l=}e" le" IS 9

e'lIF e THEN & ELSE elCASE & OF (87)

@I JT W*I,) I

(v:=3+el GO TO 818[(&-)I IAll

The empty statement; no character at all, ,or a space.

statement s S'IIF 45 THEN SlIF 8 THEN S' ELSE SICASE g OF BEGINC END

IWHILE e ~0 SIF~R &=e {[STEP el uNT= elI,~53*)~0 s

c

Descriptive
Name

block

Symbol Definition

B BEGIN c;Q;)* {S;18:)*S END

declaration

-bw

3- sylr ARRAY J+y(e::e’,)lmtoCEDURERC; s II
IT PROCEDURE M; {+3EGIN @;)*{S; l&‘)*e ENIj) lHEcOm &(T 87 ;)

INTEC;ERI[LONG](REAL~COMPLM)ILOGICALIBITS[(~~)])STR~G[(C)] lWWXENCE($)

procedure heading

program

The Operators and Functions of ALGOL W, Their Formats, Meanings

and Type Constraints

Use of Symbols

!i
= any ALGOL W expression.

CY.1
= value of expression &..

1

ki
= kind of data represented by CY~ corresponding to expression 8..

1

The kinds of data are:

1. N = numeric

2. L = logical

3. s = string

4. B = bits

5. R= reference

di = domain of oi when ki = N.

The domains are:

1. I = integer

2. R = real

3. c = complex

They are ordered as follows: I C R C C.

pi = precision of.ai when ki = N.

They are ordered as follows: S < L.

If di = I, then pi = L. I

c

Format Meaning
Kinds of Arguments Domains of Numeric Precision of Numeric

and Results Arguments and Results Arguments and Results

5+ &2 5+ Q2

Cl DIV E2

8, REM E2

ABS e,

LONG El

SHORT El

9 - a2

cYl x o!2

TRUNCATE$/Q~)

cyl- (al DN a2)*

the remainder of
E1DI-V e2

I I5

5

5

cy2'

N+ N+N

N - N+N

N*N+M

N/N + N

N*N+N

'+N + N

-N + N

IDIVI+I

IREMI+I

ABS N+N

LONG N + N

SHORT N+N

dl+d2 + max(dl,d2).

542 --) md5,d2)

dl”d2 + mdd&

dl/d2 + -ddl, d29 R)

dl*I +max(p,R)

+dp dl

-dl + dl

. .

ABS d; + min(dl,R)

LONG dl -tmax(dl,R)

SHORT dl+ dl

Pl+P2 "mj-4PlYP2)

Pl'P2 '"i"(P19P2)

Pljtpz'LL

PJP2 -+mi4PlYP2)

Pl*L+P1
+pl --) P1
'Pl -)Pl

LONG pl +L where pl=s or dl=I

SHORT pl +S where pl=L and dl+ I
8

Format Meaning
Kinds of Arguments

and Results
Domains of Numeric Precision of Numeric
Arguments and Results Arguments and Results

Cl OR E2 5" @2

I&1 NOT CY~

5
= e2

&l &21=

"l< E.2

%
Cl <= E2

Cl >= E2 QI1 >, Q12

"1' E2 Ya2

El IS d2 a1 belongs to the

record class a2

El SHL e2

&l SHR E2

V1CE2 I S)

5
shifted left

a2 places

cul shifted right

~1~ places

characters CY
through 2

a2+ a3 - 1 of QI1

LORL+L
BORB-+B

LAlYDL+-L
BAI!EIB+B

lL-+L
IB+B

kl = k2 + L(where kl=k2)

kl I= k2 + L(where kl=k2)

'N<N-+L
S<S+L

N<=N-+L
S<=S+L

N>=N-+L
N>=S+L

N>N+L
S>SdL

R IS d2 + L

BSHLN+B

BSKRN-+B

S(NIN) + S

any

any

dl’d2 5 R

dpd2 c, R

dpdg c R

dpdg c, R

d2 = I

d2 = I

d2=%=I

any

any

any

any

any

any

Format Meaning
Kinds of Arguments

and Results
Domains of Numeric Precision of Numeric
Arguments and Results . Arguments and Results

IF e, THEN E2 ELSE t:
3

if u1 then cy
2'

IF L THEN k2 ELSE
5
+k IFLTHEN dlEZSE d2 IFLTHENpl ELSE p2

otherwise a!
3

where k =
2 k7

= k + mad dip d2) -in(Pl,P2)

CASE e. of (el,...'bn) Qa (1 SQ,r 4 CASE N OF (kl,k2,...,kn) CASE L OF (dl,dz,...,dn) CASE L OF (PI' "',Pn)
0 + k where -+max(dl,d2,...,d,) +-(P-y-,P,)

5.
=k2= . . . = kn = k

All the following functions have the format F(c& where F is the function name.

We shall omit reference to the format, accordingly.

Function Meaning Kinds Domains Precision

TRUNCATE

ENTIER

ROUND

t-J
F ROUNDTOREIU;

REALPART

IMAGPART

IMAG

The integer i, with the same sign
as a19 such that

la,l - 1 < lil <, IQ,1
The integer i such that I N+N R-1

The integer i, withthe same sign
al, such that

/(y11 - l/2 < lil 5 Ia,I + l/2' J

5

The real part of Q)~

The imaginary part of cul

a1 + JIi

N-N R+R

>

N+N C-R

N-N dl
+C

Cdl c R)

Any

L+S

Any+s*

Any+s*

*Note : A asterisk on a short precision-result meansthat prefixing the letters LONG to the function
name yields a long precision result. f

Functi:,ri fv'ierlning Kinds Domains Precision

SQRT Jq, for a1 > 0-

COMPLEXSQRT

EXP

LN

LOG

SIN

cos

a ARCTAN

TIME

ODD

BITSTRING

eal, for czl < 174&i'

loge(Ql), for a1 > 0

loglo a1 , for Q/1 > 0(1

sin$), for Ia,I < 823550
,

cos(+ for Ic$ < 823550

tan-1 (cY,), in the range

6 d2, +9

elapsed time, in units of l/100
minute if cy1= 0, otherwise in

units of l/60 second.

5 is an odd number

The sequence of bits which
represents cy

1 in binary.

See manuals for details.

N-+N

N+N

) N-+N

I-31

1-L

I+B

Any * s*

Any-d”

Any--G*

Function Meaning Kinds Domains Precision

NUMBER

DECODE

CODE

BASE10

LONGRASElO

BASE16

6

LONGBASE

INTBASElO

INTBAsE16

The integer which cyl represents
in binary.

The number which is used as a code
for the character cwlo

The character for which a1 is used
as a code.

A string of the form b+_12+_1234567
representing cyl as a power of ten

times a. fraction. (b represents a
blank space).

As above, for b++X&2~45678gOl2~4~

A string of the form bb+J2++23456
representing cul as a power of

sixteen times a fraction, both in
hexadecimal.

As above, for bb+~l2+_123456789012~4

A string of the form b+1234567890
representing QC 1 in decimal.

A string of the form bbbb12345678
representing cyl in hexadecimal,
using two's complement notation.

B+I

s(1) 3 I

I + s(1)

N + S(12) %-
CR

N 3 S(20) dl-
CR hY

N -+ S(12) dl c, R hY

N -+ S(20) dl c R

I + s(12)

I + s(12)

