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ABSTRACT

In generating sentences by means of a transformational grammar,

it is necessary to analyze trees, testing for the presence or absence
. .

of various structures. This analysis occurs at two stages in the

generation process -- during insertion of lexical items (more precisely,

in testing contextual features), and during the transformation process,

when individual transformations are being tested for applicability.

In this paper we describe a formal system for the definition of

tree structure of sentences. The system consists of a formal language

for partial or complete definition of the tree structure of a sentence,
--,

plus an algorithm for comparison of such a definition with a tree. It

represents a significant generalization of Chomsky's notion of "proper

analysis", and is flexible enough to be used within any transformational

grammar which we have seen.
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Introduction

The notion of analysis described here is an outgrowth of a project

which had as its primary goal the biting of a computer system to aid

transformational grammarians [310 ..Early in this project we realized that
certain aspects of transformational grammar theory had never received the

sort of formalization necessary for computer applications; this paper is

essentially a description of our attempt to correct this situation in one such

i

area. It should be noted that rigorous formalization is not simply an

ad hoc matter in order to be able to use the computer; questions of the- -

L relative simplicity of grammars are realistically answerable only when
--.

L
the grammars have been placed in a precise system of notation, and, more

important, a transformational generative grammar cannot be said to have

1
succeeded in defining a language unless it is possible to generate

sentences by using the grammar without any appeal to intuition.

L
L

In the first part of this paper we.,@,efine  our notion of a structural

description of a sentence, and define the conditions under which a sentence

may be said to be analyzable as such a structural description; later we

b
discuss our implementation of these concepts, in particular the algorithm

which determines in what order the various possible analyses of a sentence

L are produced.

L Underlying concepts

We begin the discussion of structural description by explaining some

underlying concepts and giving definitions of certain key terms. This

is in line with one of the major goals of our project, namely uniformity,

L clarity, and precision of expression.

L A transformational- generative grammar is a device for generating

\
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sentences in a language. Note that this is a characterization rather than

a definition; the only definition of transformational grammar given in this

paper will be in terms of its three components: phrase structure,

..transformations, and lexicon.

The phrase structure component is a phrase structure grammar. One

may commence with a sentence symbol (the letter S) and expand it by means

of the grammar into a base tree which has the node labeled S as its top

(root) node. In this tree, each nonterminal node (node with branches

below it) corresponds to some phrase-structure rule in the sense that its

label is the lefthand side of the rule and the labels of the nodes

immediately below it are the symbols of the righthand side of the rule in

the same left-to-right order. The labels of terminal nodes of the tree

are terminal symbols of the grammar; the list of labels of terminal nodes,

taken from left to right, is the terminal string of the tree. Nonterminal

nodes of the tree are labeled with nonterminal symbols of the grammar.

The nodes immediately beneath a given node are its daughters, and the

given node immediately dominates them; a node dominates its daughters,

the daughters of its daughters, etc. A tree node may have an associated

complex symbol (see below); this complex symbol is not a daughter of the

node, but is rather an adjunct to the label of the node. This tree is

: also known as the constituent structure of the sentence.

The transformational component contains transformations and a state-

ment of the order in which these transformations are to be applied. A

transformation consists primarily of a structural description and a

structural change; it essentially makes the statement: "If the tree

currently has this (given) structure, then change its structure in this

manner."

2



L The lexical component contains a list of vocabulary words, each

1. of which has an associated complex symbol. A complex symbol is a

collection of feature specifications which describe both the inherent

I characteristics of the word (e.ga., Noun or Verb, +HUMAN or -HUMAN

(or neither), etc.) (inherent features), and the sort of sentence

environment into which it can be inserted (contextual features).

Lexical insertion attaches vocabulary words to the terminal nodes of

a tree in positions where all of their feature specifications are met.
.

It inserts their complex symbols into the tree at the same time.

L
Since both the contextual feature and the structural description of

a transformation ask the question "Does the tree we are working with have

t

I

this structure?", they can be treated in the same manner for most purposes.

We will say in both cases that the sentence tree is analyzable as the

structural description if the answer to the above question is affirmativt.

The process of answering the question is analysis; a matching of nodes in

the sentence tree with their counterparts in the structural description

will be an analysis of the sentence tree as the structural description.

Structural description

We have defined the formats for writing transformational grammars

t

L
in our system in a modification of the Backus-Naur form (BNF) used to de-

.
fine computer programming languages [5]. In BNF, the definition of a

structural description and a contextual feature description are:

structural description ::= structural analysis opt[ ,WHERE restriction].

contextual feature description ::= ( structure opt[ ,WHFXE restriction] >

structural analysis ::= list[ term ]

: : =term opt[ integer ] structure or opt[ integer ] choice or skip
*

3
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structure ::= element opt [ complex symbol ]

opt[ opt[ 7 ] opt [ / ] (structural analysis) ]

element ::= node or * or

choice ::= ( clist[ structural analysis

skip ::= $

I >

This definition can be thought of as a procedure for checking whether

a string of characters is one of the underlined items. The - may be: :-

read "is a" . The operator opt[ ] means that whatever is between the

brackets may or may not be present. The notation A or B is obvious.

The operator list[ ] means that one or more of whatever is between the

-=.
brackets should be present; for example, list[A or B ] could be

A or B or A A or A B or A B B A A etc. The operator clist [ I1

resembles list[ ], but separate occurrences of whatever is between

the brackets are separated by commas; for example, clist[ A or B ]

could be A or B or A,A or A,B or A,A,B,A,B etc. All other

symbols which are not underlined mean themselves. There are four items

left undefined by the above; these are restriction, which will be discussed

later, complex symbol, which is defined in [4], integer, which is any

positive integer, and node, which may be any string of letters and

digits starting with a letter or may be a boundary symbol ( # ).

I For example, $ l(EN,ING) 2(HAVE,BE) $ . is a structural description which

is the structural analysis $ l(EN,ING) 2(HAVE,BE) $ followed by a

l ;
this structural analysis is a list of the terms $ ) l(EN,ING) J

2(~V-W@ > $ ; the first and last of these terms are skips, each of

which is the symbol& while the second and third are the choices (ENJNG)

1 "clist" is pronounced see-list, and is a noun of the same type as "herd".

4
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and (HAVE,BE) preceded by the integers 1 and 2; each choice consists

of a ( followed by a clist of structural analyses EN,ING and ‘HAVE,BE

followed by a ) j each structural analysis here is a list of exactly

one term, which is a structure without any preceding integer; each of

these structures is an element without any of the optional items, and

each element is a node.

The above description has not in any way explained the meaning of

these items; it has simply defined how to write them., The meaning of

structural description and contextual feature description can be best

explained in terms of analyzability and analysis, since their purpose is

precisely-to test trees for analyzability and to provide analyses of

trees. Although a structural description contains a structural analysis

and a contextual feature description contains a structure, the recursive-

ness of their definitions makes them very similar. The difference stems

from the fact that when transformations are being applied the position

of the top node of the current tree is known, while during lexical

insertion only the terminal node at which insertion is being attempted

is known. For this reason, the contextual feature must specify the label

of a node somewhere above the insertion node which can serve as tree top.

In the following discussion, whenever a structural description is referred

to, we will mean either a structural description or a contextual feature

description.

Analyzability

We will define analyzability in two phases; first we will consider

a structural analysis or structure without any associated restriction,

and then we will consider how the presence of a restriction modifies the

I
L
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definition.

If a structural description is simply a list of elements,

analyzability is similar to Chomsky's notion of "proper analysis" [l].

A tree is analyzable as a structural description of this form if a

one-to-one match of certain tree nodes with all of the structural

description elements can be found such that:

1. Each terminal node in the tree is, or is dominated by, exactly

one node in the match.

2. Left-to-right order of elements corresponds to left-to-right

order of matching tree nodes.

3a. For each element which is a node, the label of the matching tree

node is the same as the node.

3b. For each element which is a , the matching tree node is the

node at which lexicon insertion is currently being attempted.

(Note that a * will

label.)

thus match any one tree node, regardless of its

A complex symbol following an element requires that a corresponding

I a

L
L
1
L
I
L

complex symbol be attached to the matching tree node. "Corresponding"

has a different meaning for lexicon insertion than for transformations;

in the case of lexicon insertion the test is compatibility (roughly, no

conflicting feature specifications; see [4] for a precise,definition),

while for transformations the test is inclusion (that is, the complex

symbol in the tree contains every feature specification of the one

in the structural description).

A skip (the $ symbol) matches not a single node, but any string

of adjacent terminal nodes. It may match a string of zero nodes, in

which case it is said to be null. The "rangk'af a skip is defined in

6
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terms of the elements on either side; it is the set of tree nodes which

dominate (or equal) the nodes matching the skip and do not dominate

the nodes matched by these elements. In other words, the range of a

skip is precisely those tree nodes which would have to be deleted if the

skip were not present in order to have the analysis of the tree as the

structural description

The matching of a

depends on whether the

analysis, or more

it is regarded as

it is analyszable

than one. If there is only one structural analysis,

be the same as before.

choice is somewhat more complex. The procedure

clist within the choice has only one structural

optional; that is, the tree is analyzable either if

as a similar structural description without the

parentheses of the choice, or if it is analyzable as a similar structural

description without any of the choice being present. If there is more

than one structural analysis in the clist, a tree is analyzable if it

is analyzable as a similar structural description with some one of

the structural analyses in place of the choice. (Note that the only

requirement here is that at least one structural analysis will work;

if several different ones could be analyzably substituted; it merely

means that the tree is analyzable as this structural description in

several ways.)

A structural analysis within angle brackets following an element

represents a "subanalysis". The analysis of the whole tree as the

structural description is unchanged, but in order that the tree be

analyzable, there is a further requirement on analyzability of the

subtree headed by the node matched to the head element of the angle-

bracketed structural analysis. The exact requirement depends on the

presence of the optional modifiers 1 and / . If only a / is

7



present, this sub-tree must be analyzable in the usual sense, with the minor

exception that the top node of the subtree is not allowed to match any

element in the structural analysis. If neither modifier is present,

the subtree must be analyzable in the above sense, with the further

restriction that any element in the structural analysis must match a

tree node which is immediately dominated by the top node of the subtree.

In the case of contextual features, this corresponds to Chomsky's notion

of strict local subcategorization [2]. If a 1 modifier is present,

it means that the sub-tree must not be analyzable in the sense defined

above.

Integers do not directly enter into the analysis process. They

are used to permit reference to tree nodes in a restriction or a struc-

tural change. An integer preceding a structure refers to the tree node

which matches the element heading that structure. An integer preceding

a choice is handled exactly as if it had been written at the beginning

of every structural analysis in the clist of the choice. Note that

complex symbols are not numbered directly; the integer attaches to the

tree node and will refer to the complex symbol associated with that node in

any context which requires a complex symbol.

Restrictions

If a structural description or contextual feature description

has an associated restriction, analysis proceeds exactly as above,

except that the analysis of the tree must also meet the restriction in

order for the tree to be analyzable. The BNF format for restriction is:



.

restriction ::= booleancombination[ condition ]

condition ::= unary condition or binary condition

unary condition ::= unary relation integer

binary condition ::= integer binary tree relation node designator or

integer binary complex relation complex symbol designator

node designator ::= integer or node

complex symbol designator ::= complex symbol or integer

where booleancombination[ condition ] means any Boolean combination of

conditions which can be expressed using the connectives I , & , \

(not, and, or) and parentheses.

The conditions now in the system are:

(unary conditions) the match must be to a terminal/tree node; or

null (in the case of an option); also a special condition useful where more

than one analysis is to be found, e.g. that the match in the current analysis

be to a different tree node than in any of the previous successful analyses.

(binary tree conditions) equality of trees (including identity of

corresponding complex symbol); dominance without searching below a sentence

symbol; unrestricted dominance; domination by a specified node.

(binary complex conditions) inclusion of complex symbols; nondis-

tinctness of complex symbols; and compatibility of complex symbols

(see [41).

The restriction on a structural description is tested whenever a

new match is found for a structure with a corresponding integer. If the

restriction fails, the structure does not match. In a conditional struc-

tural change, a restriction may be used to select one of two possible

structural changes (see below).
s
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Analysis Algorithm

In this section we discuss the algorithm used to find a particular

analysis of a tree as a structural description. This algorithm has nothing

to do with the question of analyzability; it merely decides the order

in which several possible analyses are taken if a sentence tree can be

analyzed in more than one way as a particular structural description.

This is particularly important if the transformation specifies that only

one analysis is to be found.

Analysis commences with a tree marker pointing to the top node of the

tree and a structural description marker pointing to the first item in the

--.
structural description. The procedure depends on the nature of this item.

Integers and skips are skipped but remembered. For an element (i.e., the

beginning of a structure), a match is attempted. A * will match any

tree node, a node will match a node with the same label, and a

will match the current lexical insertion node. If there is not a match,

the tree marker is moved to point to the leftmost daughter of the current

node, and matching is attempted again. If no match is found of a

terminal node and no skip preceded the current element, the backup

procedure is entered (see below). If a skip preceded, the tree marker

is moved to the top of the tree branch just right of the current branch,

. and matching is attempted again; in this case, the backup procedure is

entered only if no match can be found for the rightmost terminal node of

the tree.

If a match is found and a complex symbol follows the element, it

will be compared to the complex symbol attached to the matching tree

node for compatibility (in a contextual feature description) or inclusion

10
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(in a structural description). If an integer precedes the element, any

conditions involving this integer are checked. In the case of a binary

condition, no checking is performed until both integers have been

matched. Failure of any of these ‘tests causes analysis to proceed as

if the node had not matched the element.

If the structural description marker is pointing to a choice instead

of an element, the procedure to be followed depends on whether the clist

of the choice contains only one structural analysis (an option), or
. .

more than one (a true choice). For an option, the ( of the choice

is ignored; options affect only the backup procedure. For a true choice,

a more complicated procedure is necessary. First, a list is made of

all elements which could possibly be first in the choice, in left-to-

right order. For example, if the choice were (A, (B)(W), k E, % (W)) 9

this list would be A - B - C - D - E - F - G e The element-matching

procedure is then followed as above, but at each tree node all of the

possible elements are tested for matches and for satisfactory complex

N a t u r a l l y ,symbols and integers. only those elements which are preceded

by skips are tested after a terminal-node failure. When a satisfactory

match has been found between a tree node and some element, analysis

proceeds along the associated structural analysis of the choice, at

. the end of which it continues

If a structural analysis

following the choice.

within angle brackets follows an element

that has been satisfactorily matched, a record is made of relevant

information about the current status of things, and analysis commences

again, using the angle-bracketed structural analysis and the subtree

headed by the node matched to the element. If no / preceded, the tree

11



marker is only allowed to point to immediate daughters of the top node

during this analysis, instead of looking all the way down to terminal

nodes. If a I preceded and the subtree is not analyzable, or if no

1 preceded and the subtree is analyzable, analysis continues following

the angle-bracketed structural analysis; otherwise, analysis proceeds

as if the head element had not matched its tree node.

When a structure has been successfully matched, the tree marker

is moved to point to the top node of the tree branch immediately

to the right of the tree node matching the head element, and analysis

proceeds. The tree is analyzable as the structural description if the

rightmost element not within angle brackets successfully matches a

tree node on the rightmost branch of the tree, or if the rightmost

such element has been successfully matched in any way and a skip

follows it.

The backup procedure is entered when no tree node can be found

which successfully matches the current element or choice. It moves

the structural description marker backward to the left until it

encounters a previously-matched element (in which case it pretends

that this element did not match its tree node and starts forward again),

or the ( of a one-structural analysis choice (in which case it hops

I to the ) of the choice and starts forward), or the lefthand end of the

structural description (in which case the tree is not analyzable as

the structural description).

For certain transformations, all possible analyses of the tree are

required instead of just one. In this case, after each analysis is

found, the backup procedure is entered to find the next one, until it

12



finally claims unanalyzability.

Structural Change
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Because of the close relationship between the structural description. .

and structural change of a transformation, any comparison of our system

with others requires that the whole concept of transformation be con-

sidered at once. For that reason , we now give a description of the

structural change process. The BNF description of the form of a

structural change is:

structural change

change instruction

conditional change

. .=. . clist[ change instruction ]

: : = change or conditional change

. .=. . IF ( restriction > THEN

( structural change ) opt[ ELSE ( structural change > 1

change : : = unary operator integer

or tree designator binary tree operator integer

or complex symbol designatorybinar

integer

or complex symbol designator ternary complex operator

i n t e g e rinteger

tree designator ::= ( tree ) or integer or *node

complex symbol designator -: :- complex symbol or integer

The operators are given by a list in the BNF form and are discussed

below.

If the current sentence tree is analyzable as a structural des-

cription and the transformation is to be performed, each change

instruction in the clist is performed in the order of occurrence

in the clist. Tree nodes have been matched to integers by the analysis

13
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process; a change modifies the tree structure at the nodes matched to

its integer (s).

The change operators currently in the system are:
. .

(unary operators) erasure of the node, all nodes dominated by it,

and all non-branching nodes dominating it,

(binary tree operators) left and right sister, daughter, and aunt

adjunction, and substitution, with or without erasure of the original

occurrence of the copied node, and optionally with special treatment

of the non-branching nodes which dominate (as in [p]).

(binary complex operators) erasure of, merging of, or erasure of
--.

all but, specified feature specifications in the complex symbol associated

with the node,

(ternary complex operators) merging of specified features from

one node's complex symbol to another's

A conditional change causes the structural change following THEN

to be performed if the restriction is met; otherwise the structural

change following ELSE is performed, if there is one.

The change operators discussed above may be broken down into four

types: erasure, copying, moving and complex symbol manipulation.

Permutations are not given directly, since only one move can be made

at a time. The only transformation of this type that we have seen is

PASSIVE > for which we require three changes (copy, move, erase) to

interchange the subject and object.

The structural change operators include all of those of the

MITBE grammar [ll] as well as those of the IBM core grammar [PI.

The addition of "Chomsky-adjunction" is planned.

14
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Comparisons with other notations

In a transformation, our structural analysis plays essentially the

same role as the "structural description" and "structural analysis"

which were first used by Chomsky. As an example, here is a transformation

from Rosenbaum and Lochak [p]:

60. WHPD2 WH pronoun Deletion 2 OB

X WH + INDEF + (ever) '

1 2 3 4 --- --- >

1 2 fl 4

In our system this would be written

TRANS--'60 WHPR2 "WH PRONOUN DELETION 2" OB II AACC .

SD $ WH INDEF (EVER) 1N I+PRO +SG) $ .

SC ERASE1 1 .

The first line gives the transformation identification and the

conditions of applicability. In this case the transformation number

and name are followed by a comment and by parameters specifying that

the transformation is obligatory (OB) , is in group II, and that it

is to be applied by first finding all possible analyses and then

performing the changes for each of them (AACC) . A full discussion

of the possible parameters is given in [6]. The second line is our

structural description. As can be seen, the details of the

representation are different, the major features are the same. We

chose the $ symbol rather than X, Y, Z to represent variables

because these letters are possible labels for nodes. This decision

reinforces the idea that a variable need not be a constituent. The

standard use of parentheses for options is carried over into our no-
*

tation; in addition, we reflect the use of curly brackets for a choice

15
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by allowing a clist of structural analyses within parentheses. Our

notation for complex symbols resembles standard notation except for the

use of vertical bars in place of square brackets; see [4] for a complete

discussion of complex symbols in the system. The most significant change

is in our use of numbers, since we allow only constituents to be numbered,

and do not require numbering of items which are not referred to in either

the structural change or the restriction. This is a result of our treat-

ment of transformations as changes of position of single constituents rather

than rearrangements of the whole tree. In this we follow the approach

taken in the MITRE grammars [ll]; we have extended the approach to complex

-=.
symbol operations.

Gross [7] and Londe and Schoene [8] have also developed notations

for transformations, in both cases for use with grammar testers. Both

notations differ from ours in form and have less power in the structural

description. For example , Gross does not include complex symbols;

neither allows any equivalent of I ; Londe and Schoene require that

immediate dominance be expressed as a restriction. However, both systems

contain more powerful notations than ours for structural change.

L
Future directions

L
i

L
f
L

L

The analysis algorithm was designed to correspond to the linguistic

theory based on Aspects [2]. Since that time there have been radical

changes in the theory; the change of particular importance for analysis

is the strong notion of general constraints on transformations,

following from the work of Ross [lo]. Thus, if the system is to be

extended and kept current with the theory, the first changes will need

to be in devisi
if

notations and algorithms for the implementation of
,\

16
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general conditions on the applicability of transformations.
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