
cs - 112

* . .

A CONTROL  lANGUAGE FOR TRANSFORMATIONAL  GRAMMAR

BY

Joyce Friedman and Bary W. Pollack

This research  was supported  in part ‘by the United  States Air Force

Electronic  Systems  Division,  under Contract F196828-C-0035.

.

STANFORD UNIVERS ITY COMPUTER SCIENCE DEPARTMENT

COMPUTATIONAL  LINGUISTICS PROJECT

AUGUST  1968

,



v- -

AF 35
cs - 112

A CONTROL LANGUAGE FOR TRANSFORMATIONAL GRAMMAR

,

L

I
i

--m.
bY

Joyce Friedman* and Bary W. Pollack

This research was supported in part by the United States Air Force
Electronic Systems Division,
Stanford University.

under Contract F 196828-C-0035,  at

r
t
L

* Present address: Computer and Communication Sciences Department
University of Michigan, Ann Arbor, Michigan

i

i



ABSTRACT

4Ii
Ii

I
L

I
t

i
L

i
L

i -
i

f

L
i
i

I
I
L

Various orders of application of transformations have been considered

in transformational grammar, ranging from unorder to cyclical orders

involving notions of '"lowest sentence'* and of numerical indices on depth

of embedding. The general theory of transformational grammar does not

yet offer a uniform set of '"traffic rules" which are accepted by most

linguists. Thus, in designing a model of transformational grammar,

it seems advisable to allow the specification of the order and point

of application of transformations to be a proper part of the grammar.
-=.

In this paper we present a simple control language designed to

be used by linguists for this specification.

In the control language the user has the ability to:

1. Group transformations into ordered sets and apply transformations

either individually or by transformation set.

2. Specify the order in which the transformation sets are to be

considered,

3* Specify the subtrees in which a transformation set is to be

applied.

4. Allow the order of application to depend on which

transformations have previously modified the tree.

5* Apply a transformation set either once or repeatedly.

In addition, since the control language has been implemented as

part of a computer system, the behavior of the transformations may be

i
f
I-



I
L

monitored giving additional information on their operation.

In this paper we present the control language and examples of its

use. Discussion of the computer implementation will be found in. .

Pollack El].

ii



IL, *

I
I
L
t
L
L
I*
I
L
i
I
L
L
L
L
1
L
L

The need for a language to express '"traffic rulest"

The transformational component of a grammar consists primarily of

a set of transformations; but it must also contain what Fillmore [2]

has called "traffic rules'@ which specify the order in which the

transformations are to be applied. These rules may be considered

either as part of linguistic theory -- in which case there is one set

of rules which applies to all grammars, or they may be considered as a

proper part of a grammar. In this paper we take the position that the

traffic rules, or "control program'", of a grammar are a part of the
--,

transformational component. In doing so we do not wish to ma‘intain

anything at all about the possibility that a universal set of traffic

rules will someday be found. Our position reflects the fact that at the

present time linguists disagree on what the traffic rules are. So we

start from the premise that each grammar contains its own set of traffic

rules, and we define a language in which these rules can be expressed,

The suggestion that the metatheory of grammars contains some complex

scheme for "traffic laws'" within a grammar, and a control unit which

directs the order of application of rules, occurs in Lees [3] as one of

three alternative plans for rule ordering. The language proposed in

this paper may be viewed as a proposal for Lees' '"complex schemeth.

The control language which we present was developed for a computer

program which accepts and manipulates transformation grarrmars -- we

required some decision as to the order of application of transformations.

None of the specific plans which have been proposed seem to have any

general acceptance. Thus we felt that our programs would be more

1



useful if the specification of the traffic rules were a user option.

The programs may be used to investigate order of application of rules

as one of the open empirical questions about grammars.I.

We hope that the control language will also be of interest per se,

independently of the programs.

The control language operates by taking advantage of mechanisms

which must already be in any system of transformational grammar. For

example, the "IN-construct", used to determine the subtree for which a

transformation is to be invoked, itself uses a transformation in this

determination. Likewise, there is no provision for placing special-C,

indices on the sentence tree, but instead feature specifications, already

in the system, are used. The decision to stay within the devices already

available causes some difficulty in expressing some of the proposed

cycling orders, as is apparent in Example 3 below. However, the

alternative would be to program special devices specific to the various

proposals in the literature, which we prefer not to do until some general

ideas can be abstracted from them.

The purpose of the control program is to determine in what order

and at what point a transformation is invoked. Thus, in the familiar

control sequence: apply the cyclic transformations to the lowest

sentence, the control program must select the lowest sentence subtree

and then invoke the transformations in order for that subtree.

In this presentation of the control language we first discuss the

transformation component as it relates to the control program, then

what is meant by invoking a transformation -- this will be primarily a

discussion of the meaning of the parameters of a transformation. Then

2



L
ii
E
L

L
1
L
L

we shall discuss the control language itself and show how it provides a

step-by-step selection both of the transformation to be invoked and the

tree node which is to be the top of the subtree treated by the analysis. .

algorithm,

L
1i

i



1
c

c;
L

The transformational component of a grammar

i

The system with which we are working contains a formal metasyntactic

description of transformational grammar. The metasyntax is described

L
;I
c

in [4]. In this paper we will cite the formal descriptions, but will

in every case also spell them out in English. We can use the syntax

to show the position of the control program within the grammar:

0.01 transformational grammar ::= phrase structure lexicon

L

f

transformations $END

L --,

I
e

8.01 transformations ::= TRANSFORMATIONS list[transformation]

CP control program . $END

L (Numbering here corresponds to the full syntax given in Appendix A.)

9 The interpretation of these rules is:

t

a transformaional grammar

i

L
followed by a lexicon followed

by the terminator $END.

consists of a phrase, structure

by a set of transformations followed

i
L

transformations, the transformational component with which we

are here concerned, consists of the identifier TRANSFORMATIONS

followed by a list of transformations, followed by the identifier CP

I

4



i
and a control program terminated by a period. The transformational

component is terminated by $END.

The important point here is that the control program is a proper
. .

part of transformations. It is needed to provide the ordering for the

I transformations.

Identification of a transformation
.

L --
The control program must be able to refer to individual transfor-

- - -

mations and to recognize whether or not they are optional, and if and

how they are to be repeated. The information specific to a single trans-

formation is“'provided in the identification which is the first part of

L a transformation.

!
8.02 transformation ::= TRANS identification SD structural

description opt[SC structural change .]

A transformation consists of the phrase TRAM, followed by an

!
L

identification, followed by the phrase SD and the structural description,

followed optionally by the phrase SC , a structural change, and a period.

(The reason for allowing the structural change to be optional will be

seen below in the discussion of the IN-construct.)

.
8.03 identification : := opt [integer] transformation name

opt [list [parameter]] opt [keywords].

i,
i

The identification of a transformation consists of an optional

binteger, followed y the transformation name, followed optionally by a



t

i

f
L

;I
t

i

i

list of parameters and optionally by keywords. The integer is for ex-

ternal identification only; within the grammar a transformation is

referred to by its transformation name.
. .

8.04 parameter ::= group number or optionality or repetition

There are three types of parameters: the group number (a roman

numeral) identifies the transformation as part of a group. The group

number may be used to refer to all of the transformations in the group.

Optionality (OB or OR) has the usual interpretation, obligatory

or optional. Repetition includes four possibilities (AC, AACC, ACAC
--.

and AAC) -- which are more general than those which have previously been

considered and will be discussed in detail below.

Although the list of parameters is optional,

I, is in fact specified for group number, optionality and repetition, since

each transformation

i

I
L

I
L

t

t

i
i

i
i

for each there is a null option. If no group number is specified, it

will be taken to be the same as that of the previous transformation

( or I for the first transformation). The null option for optionality

is obligatory (OB) and for repetition AC .,

Invoking a transformation

By invoking a transformation we mean (in the simplest case of an

OB AC transformation) that the analysis algorithm will be applied to

determine if the structural description is met, and that if so, the

structural change will be applied. However, this description is not

yet complete, for the analysis algorithm is not always to be applied to

the full sentence tree. It is certainly necessary to be able to specify

L
6



L
L

iL
I
I

I
L

i
L

that the analysis algorithm is to be applied to a specific subtree.

Therefore, we modify the definition above to state that in invoking a

transformation, the analysis algorithm will be applied to a specified
. .

subtree.

Optionality and repetition

We have defined above what it means to invoke a transformation

with optionality OB and repetition AC 0 In the tables below we

extend the definition to cover the full range of cases for these para-

meters; in each case a single specification of the subtree is implicitly

assumed. --.

The repetition parameter has four possible values, with mnemonics

composed of the letters A (for "analyze") and C (for "change").

These mnemonics AC, ACAC, AACC, AK were invented because the phrases

"cyclic", "noncyclic", "iterative", "recursive" etc. have by now had so

many different interpretations that confusion can easily arise.



L
L

I
L

t
t

L
L
L
L

Repetition

AC

ACAC

AACC

To invoke the transformation

The analysis algorithm is applied to find the

first match for the structural description;

the structural change is then carried out if

one is found.

The process just described for AC is repeated

until no further match is found.

The analysis algorithm is applied to find allI
possible matches for the structural descrip-

tion; the corresponding structural changes are

then carried out.

The analysis algorithm is applied to find all

possible matches for the structural descrip-

tion; one of these is selected at random and

the appropriate structural change applied.

Table I

Invoking an obligatory (OB) transformation

L

f
L
I
L

I
t

I
I
L

In the case of a control program which must run without human in-

tervention, the natural way to decide in optional cases is by random

choices; if the program interacts with an on-line user then the decisions

in optional cases may be made by the user. (Our implementation of the

control language is in an off-line environment; therefore a random

choice is made. This is a characteristic of the implementation, not of

the control language, which could be used in either type of environment.)

Table II shows the process of invoking an optional (OP) transformation.

e 8



L
L

i;;I
I
t
L

!
L

i
L
I

t

e

f
L
t
L

i
L

f
I

L

i
i

Repetition To invoke the transformation

AC Decide. If yes, proceed as for OB case.

ACAC (~1 Decide. If yes, proceed as for OB AC

case. Repeat (from cu) until either a negative

decision is reached, or no match is found.

AACC

AAC

The analysis algorithm is applied to find

all possible matches for the structural

description. For each, a decision is made

and if yes the corresponding change is applied.

Decide. If yes., proceed as for OB case.

Table II

Invoking an optional (OP) transformation

The repetition parameter AAC

The tables above define the meaning of the four possible repetition

parameters. Some discussion is now in order to defend our choice of

values for repetition. AC, ACAC and AACC are all cases which are

commonly found in the literature, although some arguments have been given

to show that ACAC is unnecessary. The case AAC is new and is suggested

by difficulties found in the literature. Consider for example, the WH-

Attraction transformation of Rosenbaum and Lochak [5], which we give

here in their notation:-/1

%n the notation of our system, WH-Attraction would be written:

TRANS 10 WHA '%'I+ATTRACTION"  I OB AAC .

SD#$ART S/<4NPk  6 ( * < PREP NP/< WH $ > >, NP/< W $ >) $ > $#.

SC 6 ALESE I 4. .,

All variables are replaced by k . Substructures are indicated by angle
brackets. (A,B) is a choice. * is any one node. A full description
of the format of structural description is given in [6].

9



L

t

L
L
t

L
L
I

.

10 WHAT WH-Attraction OB

# U ART m w y1, 2 #

1 2 3 4 5 6 7 8 y ===>

1 2 3 6+4 5 P 7 8 9

The structural description above contains a choice; but notice that if

the sentence is analyzable as the upper choice, then it is also analyzable

as the lower one, The intention is that in the case where both structural

descriptions can be matched, either one of the analyses is acceptable.
-v.

This is precisely what the AAC parameter specifies. The same situation

arises for their Question transformation.

We have also found the parameter AAC useful in the WH-Question

transformation of Traugott's grammar of Old English [7]. There the

problem is somewhat more difficult, since more than one element at a

time may be questioned. The desired solution was achieved by the following

pair of transformations:

TRANS WHA "WH-QUESTIONI" AACC OP.

SD $lQk 2NP$

SC WH ADESE 2, ERASE 1.

TRANS WHA2 ""MLQUESTION'"

SD $lQ$2 Np $ .

SC WH ALESE 2, ERASE 1.

.

AM OB.

10



1.:

L
1
L
1
I
L
1
L
L
L
1
1
1
L
c
L
i
i

The first of these transformations optionally inserts WH as the

left sister of zero or more NP's in the sentence. If at least one

WH is inserted the Q is erased so that WHA2 will fail. If no WH is
. .

inserted by the first transformation, then the OB transformation WHA2

will insert exactly one WH as left sister of a randomly selected NP .

The possibility of creating a special parameter so that this case

could be handled by a single transformation was considered but was re-

jected since it seemed too special.

Keywords

The optional list of keywords which appears in the transformation

identification is simply a technical device used to bypass applications

1/of the analysis algorithm.- Whenever a node is to be specified as the

top of a search by the analysis algorithm it is first verified that all

of the keywords are dominated by that node; if they are not, the analysis

is assumed to have been tested and to have failed.

This completes the discussion of what is meant by invoking a trans-

formation for a specified top node. We now discuss the specification

of the top node for an analysis.

u This device was first used by Friedman in the SYNN programs at
MITRE 181; it was also used by IBM [5].

11



L
L
L
L

Specifying the top node for an analysis

The analysis algorithm which determines if the sentence tree

matches the structural descriptionof a transformation is described

in [6]. Before the analysis algorithm is applied, the control program

must have determined both the transformation to be invoked and the top

node of the subtree in which it is to be invoked.

Default option for top node

The sentence symbol (S) plays a special role in the specification

of the top node. Unless the control program specifically calls for a top

node which has some other label (which may be done using the IN-construct

described below), the top node will always be a sentence symbol.

To illustrate this specification of top node, consider first a

very simple control program consisting of one instruction:

01 TBANl

This program simply consists of the transformation name TRANl O It is

L .
interpreted to mean that the transformation TFWNl is to be invoked.

Each time it is invoked the top node is (by default) a sentence symbol.

L The termination of the top node proceeds as follows:

1. A list is made of all the sentence symbols in the tree (see

Diagram 1); this is the list of "marked S's". (If there are none, the

program terminates.)

2. No special order is guaranteed for the marked S's.

L
L

30 Find the first marked S which dominates all the keywords

of TRANl. d
12



,-‘:t.I,
Ii

,’ _r;:!

._

L

Lc,
L
L
L
L
L
L
L
L
L
L
L
L
L
t
L
L

4. Invoke TRANl using this S as top node.

5. Then, without repetition of any marked S , repeat this process

until all marked S's have been used.

This completes the application of the control program (1).

I
PRES18

For this tree the list of "marked S's is:

(d d2)

The list of "marked S's" in Diagram 73 (below is:

cs, s2 s33

Marked Sentence Symbols

Diagram 1

13



L
L
L

*-L
i

L
L
i

f
L

L
i
i

,.
1
i

i

Invoking groups of transformations

We have seen above a program which invokes the single transfor-

mation TRAM . We now show how“groups  of transformations may be in-

voked.

The simplest way to invoke more than one transformation is to

invoke a group of transformations by group number:

(2) II

The control program (2) will invoke all of the transformations which

have group -number II. The identical effect is achieved by control

program (31, where the transformations of group II are listed by name:

(3) TRAN5;  TRAN~; TRAN7

and no other transformations belong to group II.

The determination of the top node is done one transformation at

a time. Thus if there are two sentence symbols Sl and S2, the order

of application will be:

Invoke Tw at Sl;

Invoke TRAIVj at S2;

Invoke TRAN6 at Sl;

Invoke TRAN6 at S2;

Invoke TRAN7 at Sl;

Invoke TRAN‘7 at S2.

i
L

i

/

L 14



C”.-
t
?

t

I

1

I

I

L
L
I
I
L
I
L
L
L
L
I
L
L
L

The IN-construct

The simple specification of top node described above is of course

inadequate in many cases. It must be possible to select as top node

sentence symbols with special characteristics; such as lowest sentence,

next-to-lowest sentence, top sentence, and so on. The facility for

doing this is provided by the IN-construct. The basic idea of the IN-

construct is that the analysis algorithm itself can be used to determine

the specification of top nodes.

The form of the IN-construct is given by:

--.
9.06 IN-instruction ::= IN transformation name (integer)

DO < control program>

The transformation name which occurs here may be the name of a special

transformation which is invoked only for this purpose. (In th'1s case

it need not have a structural change.)

As an example, consider the control program:

(4) IN LOWESTS(1) DO < TFWJl>

where the transformation LOWESTS is given by:

TRANS 0 LaJESTS III.

SD 1 S-+C#$S<#$#>$#>,WHERE~DOM#.

The structural description of LWESTS will be matched if the tree

contains an S which dominates a boundary symbol (#) , but which

does not ( 1 ) dominate another S which dominates boundary symbols.

15



, I
-I

E

, ‘:
r;

t

L

I

L
t
L
L
L
L
L
L
L
L
I
L
I
L
L

(This corresponds exactly to the definition of lowest sentence given in

Rosenbaum and Lochak [5].) The integer 1 can now be used to refer to

this lowest snetence. Notice that LOWESTS has been given the group

number III -- this is chosen to be different from all other group

numbers in the transformations so that LOWESTS will never be invoked

except in the IN-construct.

The control program (4) operates as follows:

First, LOWESTS is invoked (with top node determined as in the

case of the control program (1) above). If the analysis is successful,

the node designated by 1 is taken as the sole marked S for applica-

tion of the sub-control program TRAM . After this sub-control program

is completed, LOWFSTS is again invoked. For each repetetion a new lowest

sentence must be found to correspond to the integer 1 . If a new lowest

sentence is found, the sub-control program is repeated. The control

program (4) terminates when no new lowest sentence is found.

Notice that the application of TRANl may change the tree so that

sentence symbols which did not previously satisfy LOWFSTS now do so.

e When the IN-construct is applied to a group of transformations

as in:

. (5) IN TRANl(1) DO < TRAN2; TRAN3; TRAN4 >

The single top node determined by TRANl is used for the subsequent

three transformations. Note that the effect is not necessarily the

same as the sequence of instructions:

16



I
1.
L
L
L
L
L
L
L
L
L
L
L

6) IN TRANl(1) DO < TM2 a;

IN TRW(l) DO < TRAN3 >;

IN TRANl(1) DO < TRAN4 >.

In (5) TRANl is invoked once, and the node corresponding to the integer

1 is taken as the top node for the three subsequent transformations,

even though after TRAN2 the structural description of TRANl may no

longer be satisfied by the tree. Thus the IN-construct allows us to

select a top node on the basis of the tree structure at a particular

time, and to continue to use this top node although the tree structure

changes. =.

17



Exa,mple 1. The IBM Core Grammar

With the instructions which have been discussed so far we are able

to construct a control program which corresponds to

of Rosenbaum and Lochak [5, pages 28-321.  We first

reference the description of the pattern cycling:

the IBM Core Grammar

quote from the

The transformational component of the Core Grammar contains
an ordered set of cyclic and post-cyclic transformational rules.
The cyclic rules apply to a lowest sentence. A lowest sentence
is an S boundary and
In the diagram (73), S3

X izriable which does not contain #.
meets the conditions of a lowest S .

L
L
L
L
L
L
I
L
L
L

e

,’
The cyclical transformational rules apply in sequence to
lowest Ss. Consider, for instance, the following set
of cyclic rules in which the symbol X is a variable ranging
over any structure at all.

(74) a. # A

1 2

1 P

b. # X

1 2

P 2
d

X #

3 4 ==== >

3 4

#
3 w--mmm-->

P

18



L
L
L
L
L
L
L
t
I
L .
L
L

Applying cyclically,  the rules in (74) operate on S
the P-marker given in (73) producing, sequentially, 3

in

the P-markers  (75) and (76).

(76)

(75)

A

A# A B C #

A
E

s3
I
C

AS the result of the application of the rules in (74), S2
now meets the conditions of a lowest S and the cyclic
rules apply again yielding the P-markers  (77) and (78).

19



t
t
I
L
L
L
L
L
L
t
I_
L
L

(77)

--.
r78)

#A . .

A/
E s2

A
B C

A
E

s3
I
C

20



1,
L
t
L
L
L
L
L
L
L
L
L
L

After this cycle Sl now meets the conditions of the

lowest S and the cyclic rules apply once again yielding
(79) and (80).

(79) S

h#

fLE 2
/

EA

C

I
3

-=. C

(80) Srt
Ii C

E

?;

2

B \

I\
E

s3

k

This application of the rules leaves a P-marker in which
no S qualifiesas a lowest S . Hence, the transfor-
mational cycle is terminated.

The P-marker produced by the rules of the transfor-
mational cycle is the input to the post-cyclic trans-
formational rules. A possible rule might be that in (81),
which deletes every assistant of C
the derived P-marker (82).

in (80)~ thus generating

21



1
L

(81) x c Y

1 2 3 ===>

IL 15 3
. .

sl
IB

A
E

s2

I
B

I
E

L
L

The post-cyclic rules are ordered. The derivation is terminated
after the applicability of the last post-cyclic rule has been
tested.

L The simple transformational component used in this example could

be written in our system as:

TRANSFORMATIONS

TRANS 0 LCWESTS III.

L a SD lS,/<#$S<#$#>$#>,FJHEBElDCM#.

"CYCLIC TRANSFORMATIONS"

L TRANSAI.
.

L
SD # 2 A $ #.

SC ERASE 2.

I TRANSBI.

L
SD 1 # % 3 kbb

L SC ERASE 1, ERASE 3.

L 22

L



: II
‘1*.

t

r1
:,:

L
1l

L

L
I

t

L

L
L
L
L
L
L
L
L
L
L
L

"POST-CYCIJC TRANSFORMATION"

TRANS C II.

SD $ 2 C $. -.

SC ERASE 2.

CP '*CONTROL PROGRAM"

IN LOWESTS(l) DO < I >; II .

$END "END OF TRANSFORMATIONS"

When LOWESTS is invoked for (73) the top nodes Sl and S2 will fail

to yield a successful analysis.--. s3
will qualify as a lowest S .

Transformation A produces (75); transformation B then produces (76).

IOWESTS is then invoked again for each of Sl which fails and then

for S2 which this time is successfully analyzed as a lowest S .

Transformation A produces (77), transformation B produces (78),

LOWESTS is again invoked for S
3

and fails. It is invoked again for

sl and succeeds because S
1

is now the lowest S . Transformation A

produces (79) and transformation B produces (80). Then LOWESTS

is invoked for S
2 and S

3
and fails both times. LOWESTS is finally

invoked for each of the three S's but no successful analysis is found.

Hence the execution of the first instruction terminates.

The second instruction causes each of the transformations of

group II (in this case there is only one) to be invoked once for each

of the S's in the tree. Each time transformation C is invoked, one

occurrence of C is deleted. The result is (82).

23



+..; ;

L
s~:1,

t

I

L
I
L
L
I
L
L
L
L
i
L
I
L
L
L
L

Order of instructions in a control program

In the example above it was sufficient to do the instructions in
. .

order without any branching in the program. The instructions are simply

carried out in the order listed. It is clear, however, that one would

like to be able to choose the next instruction on the basis of what has

happened so far in the application of the control program.

facility is provided by if-instructions, go-instructions and

This

labels.

CO-instructions and labels

The simplest change in the linear flow of control is provided by

allowing transfer to a labeled instruction. Any instruction in the control

program can be labeled by preceding it with a word (i.e., any sequence of

letters and digits beginning with a letter) followed by a 'r:m . Control

can be transfered to the instruction labeled say DO1 by a go-instruction

GOT0 Dol. Thus, in the control program:

FIRST: TRANl; TRAN2; GOTOFIRST; TRAN3

The order of execution is TRANl, TRAN2, TRANI, TRAN2, TRANl, . . . .

This program is not recommended because it contains an infinite loop,

butgo-instructions can be combined with if-instructions to create

sensible programs.

Conditional instructions

The form of a conditional instruction of if-instruction is

9-07 if-instruction ::= IF instruction THEN go-instruction

e opt [ELSE go-instruction]

24

given by:



.L
L or

L
L

IF TFUUYZ'THENGOTO  EMB ELSE GO'IDCONJ

where EMB and CONJ are labels and TRAM and TRAN2 are

transformation names.

L -. The instruction between the IF and the THEN may be of any type.

With each type of instruction there is an associated value. The simplest

L case is an instruction which is a transformation name: the value is
--.

true, if the transformation has been invoked and it applies (that is, the

transformation's structural description is det); the value is false

L
L

otherwise.

Table III below gives the value corresponding to each instruction

type. (Some of these types have not yet been introduced.) The

F
L

interpretation of an IF-instruction is that first the instruction

(between the IF and the THEN ) is performed. If the resulting value

I is true the GO-instruction after the THl3N is performed, otherwise the

GO-instruction after the ELSE is performed. (Just as in AIGOL.)

L In using an IF-instruction it is important to note that in

IF Tl THEN T2

L Tl will first be invoked for all of the current S's, and if it is

successful at least once then T2 will be invoked for all current 9s.

L Normally what is wanted is not the above, but conditional application

within a given S . This can be achieved by using the IF-instruction

L
sI

25

L



L
L

within an IN-construct, for example:

IN NEXTS(1) DO < IF Tl THEN
. .

T2 >

where the structural description for NEXTS is simply

L
L
L
L
I
L
L
L
L
L
L
I
L
L

SD $1 S $.

In this case the sentences will be considered one at a time, and the

invocation of T2 in a particular sentence will be conditional on

the previous success of Tl in that sentence.

--.
A note on tree-pruning

Ross' "tree-pruning'" [9] is an example of a general convention for

gramars which one might want to test in a computer system for transfor-

mational grammar. One way to handle tree-pruning is to include in the

language an instruction which gives the list of node names for which it

applies, as has been done by Gross [lo]. If tree-pruning were to become

generally accepted we would probably follow Gross' treatment of it. In

the present system the tree-pruning convention can be simulated by

c onstructing tree-pruning transformations, and inserting their calls at

appropriate points in the control program, probably as conditional

instructions as:

IF Tl THEN TREEPRUNE



._ j

t

: ‘i
,< :

L
L
L
L
L
L
L
L
L
L
L
L
1
L
L
L
L
L

Example 2. A grammar of Swahili

In "A transformational grammar of Swahili" [ll], Klevansky uses a

control program in which each transformation is called by transformation

name. The transformations QTMNI, QNINI and QLINI are optional;

conditional instructions are used to insure that at most one of them will

be successfully applied.

CP INSERTKU; FIXNEGCOP;

PREAGV;

NEGSUB;
--.

RELl; REL2;

ANPREl; ANPRE2;

PREAGAV; FIXCOP;

IFQNANITHENGOTOE;

IF Q,NINI THENGOTO E;

IF Q&IN1 THEN GOT0 E;

E:.

27



Example 3. Zwicky's proposal for control of cycling

i

i
i

i

i

f
L

/
I

i

i

i

i

i

i

&icky [12] has considered the following method of control of
. .

cycling:

a. Instances of S in a base tree are indexed as follows:
(1) Any instance of S that does not dominate an S
receives the index 1 .
(2) Any instance of S that dominates other instances
of S receives the index N+l if (a) every dominated
S is indexed, and (b) the maximum index of a dominated
S is N.

b. On the Nth pass through the rules all subtrees dominated
by an S with index N are operated upon, and no other
subtrees are operated upon.

This control program can be expressed only with difficulty in our

control language. The problem is that we have no convenient way of

marking indices. The following program is an inelegant but accurate

expression of Zwicky's scheme -- it uses inherent features

INDEXl,..., INDEXN to mark indices. The maximum possible depth of

a tree must be known beforehand; the program below works only up to

depth 4 .

Four transformations are used to insert indices; four more are

used in IN-constructs. Transformations INDEX& . . . . INDEX4 insert

feature specifications which correspond to the indices above:

28



TRANS INDEX1

SD % 1s %, WHERE 1 NDOM S .

SC I+ INDEX11 MEZGEF 1 .

TRANS INDEX2

SD $ 1s / < $ Sl+ INDEX1

SC I+ INDEX21 M33RGEF 1 .

mm3 1m~x3

SD $ 1s / < $ Sl+ INDEX2

. .

%> l

%>.

SC I+ INDEX31 MERGEF 1 , I+ INDEX21 ERASEF 1 .

TRANS INDEX4

SD $ 1S / < $ Sl+ INDEX31 $J > .--.
SC I+ INDEX41 MERGEF 1, I+ INDEX3 + INDEX21 ERASEF 1 .

Transformations FIRST, SECOND, . . . . FOURTH will associate the

integer 1 with the appropriately indexed S's.

TRANS FIRST .

SD $ 1 S I+ INDEX11 $ .

SC I+ INDEXll ERASEF 1 .

TRANS SECOND .

SD % 1 S I+ INDEX21 $ .

SC I+ INDEX21 ERASEF 1 .

TRANS THIRD
.

SD 5 1 S I+ INDEX31 $J .

SC I+ INDEX31 ERASEF 1 .

TRANS FOURTH

SD '$ 1 S I+ INDEX41 $ .

SC I+ INDEX41 ERASEF 1 .

29



i:;
E,3::I,

L-

L
1
L
L
L
L
1
L
L
L
L
L
L
L
L
L
L

If II is the group number for the embedding transformations, the control

program can then be expressed as:

INDEXl; INDEX2; INDEX3; INDEX4;

IN FIRST(l) DO < II >;

IN SECOND(l) DO < II >;

IN THIRD(l) DO < II >;

IN FOURTH(l) DO < II >.

-_. Note that the indices are erased when used; this will prevent them from

interfering with other tests on features.

If we apply this to Zwicky's example:
. .

A

VP

/-
is eager for

y<

L?iA

VP

the man is tall
/($ \

the man

A

goes

NP VP

A A
the man is tall

the effect is as follows:

30



“... :
L
I ”

t

t

L
L
L
L
L
1
L
t
L
L
L
L
L
L
i
I

INDEX1 merges the feature specification + INDEXl into the complex

symbols associated with S2 and S4 .

INDEX2 merges the feature sD.ecification + INDEX2 into the complex

symbols for sl and S
3 l

INDEX3 succeeds for Sl only. It merges the feature specification

+ INDEX3 into the complex symbol and erases the feature + INDEX2 .

INDEX4 fails.

After these first four transformations the tree is (schematically):

-v.

%
. ..[+ INDEX31

S.
3

. ..[+ INDEX:!]

I
“4 . ..[+ INDEX11

The remaining instructions will now invoke the embedding transfor-

mations for s2' s4’ s3 and S1 , as desired, and will delete all

occurrences of the index features.

31



FUG-instructions

I

/

i

i

I

i

i

i

L

1
i

FLAG-instructions provide a means for remembering

which transformations and which groups have applied (i.e., which

transformations and which groups have value true), In general, whenever

a transformation name or group number appears the corresponding transfor-

mation or group is invoked and some value is produced. If the transfor-

mation or group appears within an IF-instruction this value may be tested,
-

but the value is then discarded. The same holds true for the instr?lctio:is

within a RFT-instruction; the value is determined, the RPT-instruction

is terminated or is continued, and the value is discarded. In order to

tSe able to change the course of execution of the control program by

remembering which transformations and which groups have the vale true-.

one FLAG's the appropriate transformations and groups.

The form of a FLAG-instruction is given by

flag instruction

flag name

. * -.

. n-

I “-
. n --a

flag name tra,ns.fo;rmation  list

FLU opt [integer,]

transformation list ::=

transformation element ::-

.

transformation element or < sclist
[transformation element] >

transforma<tion name or group number

Flags are considered to be variables which may take on the values

true and false. These variables are numbered from zero up. (Within

the implementation of the control language ten flags numbered from

zero to nine are provided.) Two type of FLAG-instructions exist: those

with an integer following FLAG and those without. FLAG-instructions

without an integer are taken to refer to FLAG 0.
;
I- 32



The FLAG-instruction is interpreted as:

1. Discard any previous value or definition this flag may have

. .
had.

2. Define the named flag as consisting of the named transformations

and/or groups.

3. Set the flag's value to false.

A flag's value remains false until one of the transformations which it

represents or some transformation in one of the groups it represents is

invoked. Then if the invoked transformation's structural description is
--.

met (and any structural changes are made) the flag's value is changed to

true. The flag's value will remain true until the flag is redefined.

For example, a flag (say Flag 5) which represents the transformations

TRANl, TV2 and TRAN3 might be defined by:

FLAG'j<TWl;TRAN2;TRAN3>

Flag 5 is set to false at the time this instruction is executed.

e Thereafter, 'if.any of the above three transformations are invoked and do
.
apply (that is, if any of the three transformations are invoked and their

structural descriptions are met) Flag 5 will be set to true. Flag 5 will
.

retain the value true until it is redefined. (If Flag 5 is redefined as

TRANl, TRAN2 and TRAN3 then its value is just reset to false.)

A flag which represents every transformation in group II and the

transformation TFUN4 might be defined by:

FLAG3<II ;TRAN43

33



ic

L

Flag 3 is set to false when this instruction is executed. Thereafter,

if any transformation in group II or if TRAN4 is invoked and does apply

Flag 3 will be set to true._.

A flag which only represents the transformation TRAN5 is defined by:

!
FLAG2TRAN5

f‘L
L
i

L

The value of a flag may be tested at any time through the use of

-. an IF-instruction. For example,

IF FLAG 7 THEN GOT0 LABL3 ELSE GOT0 LABL4
-m.

If Flag 7 has value true then a transfer to MBL3 will be made; if

Flag 7 has value false then a transfer to LABL4 will occur instead.

34



.sei .*.
L
I,.'
I
L
t
L
L
L
L
I
L
L
L
L
L
L
L
I

The RET-instruction

In order to repetitively invoke a transformation, group of trans-

formations or control program one-may use a RFT-instruction. Two forms

of RPT-instructions are provided: the first specifies a fixed maximum

number of times the following instructions are to be executed; the

second will continue to cycle through the instructions until each has

the value false.

The form of the RPT-instruction is:

RI3 opt [integer] < control program

A REF.-instruction with an integer is interpreted as

>

follows:

1. Set the RPT counter to the value of the integer.

2. Execute each element of the control program in the angular

brackets in the normal manner.

3. If at least one of the elements had the value true, then
-A’

decrease the RPT

zero, go back to

4. If no element of

counter by one and if it is still greater than

step 2.

the control program had the value true (or if

the RPT counter has a value less than 1) terminate the RET-

instruction.

For example:

RPT5<TRAJYl;TRAN2;111>

will repeat the sequence: invoke transformation TRANl, invoke transfor-

mation TRAN2, invoke every transformation in group III, until either

35
w



‘:?
IA’ ,,

L

rL
L
L
L
L
L
t
L
L
L
L
L
I
L
L
L
1

none of them apply or five iterations of the sequence have occurred.

An example of a RPT-instruction without an integer is:

RFT<II ;TRAN3 >

This instruction will invoke every transformation in group II and then

invoke transformation TRAN3 and repeat until none of the transformations

in group II apply and TRAN3 does not apply. Then the REP-instruction

will terminate.. Note that it is possible to create infinite loops with

RPT-instructions.

RPT-instructions may include any arbitrary control program, and in
-m.

particular they may include other REP-instructions, So,

RPT 4< III ; RET <IV >; TRAN4 >

will invoke the transformations in group III, then invoke all transforma-

tions in group IV repetitively until none apply, then invoke transformation

TRAN4, and this sequence will be repeated at most four times.

It is occasionally the case thaA transformations cannot be explicitly

ordered. The following example is taken from Menzel, et. al. [13].

"The sentence John and Mary ran and will walk tomorrow, and sang and will

dance tomorrow respectively. requires a derivation where secondary conjunc-

: tion must precede the (conjunction transformation) schema, whereas iJohn

saw a movie and ate pizza and will run tomorrow. requires a derivation

where the processes take place in the other order, the schema first

and then secondary conjunction." The RF&instruction provides a

means to specify both possibilities. If the conjunction schema is

called group I and the secondary conjunction transformations are called

36



‘$.I
E:i.!

L

IJ

L
L
L
L
I
1
L
L
L
L
L
L
e
b
t
L

.

group II, then the following instruction will achieve the desired result:

RPT<I;II>

This instruction will invoke all transformations in group I and then

all transformations in group II antd then will repeat the process until

no transformations from either group apply. The linguist must insure,

however, that the transformations in the two groups interact in such a

way that if for a particular sentence the transformations in group II

are to apply first, then no transformation in group I will apply.

-.

37



.
1.‘*

t

IL

I

L
fL
1
1
I
L
I
L

“L
L
L
L
L
L
L

The STOP-instruction

The STOP-instruction terminates the execution of a control program.

STOP-instructions may appear at any point. In our implementation of the

control language a STOP-instruction forces an output of the final tree,

lists the transformations which have applied in the order in which

they were invoked and reports how many instructions were executed.

A STOP-instruction need not appear within a control program --

when the terminal period of the control program is encountered the same

effect is achieved.

38



L
L
L
L
L
L

Determining the value of an instruction

Each instruction of the control language has a value: true or false.

These values are summarized in Table III below. In general, a value of

true means that some change has been made to the tree (although not

necessarily).

The simplest instruction is the name of a transformation. Such an

instruction has value true if the structural description of the

transformation is met at least once in the current tree and is false

otherwise. If the transformation has a structural change, then a true

value implie's that this change has been made at least once.

Croup numbers denote sets of transformations. The value of a group

number is true if at least one of the transformations in its set has

value true and is false otherwise.

Transformations and group numbers may be grouped together into a

transformation list by enclosing them in angular brackets (see the syntax

in Appendix B). Transformation lists mav be used as the instruction
-a . ”

part of an IF-instruction, for example. The value of a transformation

list is true if any transformation or group number within the list is

true and is false otherwise.

Control lists are lists of control instructions; their values are

determined similarly to transformation lists: if any instruction within

the list has value true then the control list also has value true, and

the value is false otherwise.

CO-instructions, TRACE-instructions and STOP-instructions have no

values. Within the computer implementation of the control language these

instructions are given the value false.

39



,L
L
1.A 1

L
IL
1: Lf

1
1

REP-instructions take the value of the control program within them:

if any instruction within the RPT-instruction is true then the value of

the RPT-instruction is true, and it is false otherwise.

An IN-instruction takes the value true if the transformation named

after the IN is true and is false otherwise. Note that this is equivalent

to saying that an IN-instruction takes the value true if the list of

instructions following the DO is executed at least once.

The FLAG-instruction has no value unless it is used within an

IF-instruction. Then the value of the FLAG-instruction is the value of

the flag denoted (see above).
-m.

The value of a control program is true if any instruction within

the control program has value true and is false otherwise.-,

40

i
i
L



. - I

E,‘.

L
L
L

TRANSFORMATION ELEMENTS

transformation name
true if the structural description of the transformation is met
false if the structural description is not met

, *

group number
true if

1.

any transformation within the group is true
all transformations within the group arxlsefalse if

transformation list
true if any transformation or group number within the angular

brackets is true
false if all translations and group numbers within the

angular brackets are false

CONTROL ELEMENTSL
L
L

repeat instruction
true if any
false if all

-instruction within the angular brackets is true
instructions within the angular brackets arxlse

-m.

in instruction
true if the
false if the

transformation following the IN is true
transformation following the IN is false

if instruction
true if any
false if alli

instruction between the IF and the THEN is true
instructions between the IF and the THEN are false

flag instruction
has no valueL unless it is between the IF and THEN of an
IF-instruction, then
true if the denoted flag currently has value true
false if the denoted flag currently has value false

L go instruction
has no value

L trace instruction
has no value

stop instruction
has no valueL

control program
true if any transformation element or control element within

the list is true
false if all translation elements and control elements

within the list are false
!c
I

i

TABLE III

Determination of the value of an instructiond

41



_I,.-I
t2

.f..’ ,,

L

L
L
L
t
L
L
L
L
L
L
L
L
L
L
L
I
L

Monitoring the application of transformations

Thus far the description of the control language has included

only instructions which actually contribute to the determination of the

output of the transformational component in the linguistic sense. The

control language has been implemented as part of a computer system for

transformational grammar; it therefore also contains instructions which

monitor the application of transformations and control the amount and

type of computer output which is produced.

Trace instructionsx.
The simplest monitoring instruction is the trace-instruction TREE

which causes the tree to be output. For example, if the control program

for the IBM Core Grammar is changed to:

IN LOWESTS(I) DO C I ; TREE > ; II

the tree will becnAput after group I has been invoked for a lowest S .

The results in the extended example given above will be that trees

(76), (78) and (80) are output. (Tree (82), the final result, is

automatically output without special instructions.) If we had wished

to see only the final result(8C) of the cyclic transformations, we

could have written:

IN LOWESTS(l) DO < I > ; TREE; II

In testing a transformational grammar, one frequently is more

interested in some transformations than in others. The language provides

instructions which will-enable transformations and groups of

42



L
L
L

iL
L
L
L
L
L
!
L
L
L
tL
L.
i
L

transformations to be "traced", so that more information is provided on

their operation. The trace-instruction TRACE is followed by a

transformation name or a group number and by a trace-specification which

must be BEFORE TEST or AFTER FAILURE or AFTER SUCCESS or AFTER CHANGE.

The trace begins when the TRACE is encountered and it is terminated at

a corresponding UNTRACE. Whenever a transformation which is being

traced is to be invoked, the corresponding trace-specification is

examined and the sentence tree is output at the appropriate point in

the invocation process.

TRACE BEFORE TEST will output the current tree after invoking the---.

named transformation and after satisfying all specified keywords but

before testing the structural description.

TRACE AFTER SUCCESS will output the current tree after invoking the

named transfromation and finding the structural description (and kevords)

met.

TRACE AFTER FAILURE will output the current tree after invoking the

named transformation and finding the keywords met but the structural

description not met.

TRACE AFTER CHANGE will output the current tree after invoking the

named transformation and making the structural change (if one is

specified).

Any number of transformations may be traced at one time, and any

combination of trace types may be on for a given transformation at one

time. For example,

TRACE TRAN5 AFTER SUCCESS

43



,J
E..y-.,.

.I
L

L

L

L
t
L
L
L
L
L
L
L
L
I
L
t

I
t

will force an output of the current tree each time TRAN5 is invoked and

its structural description is satisfied. The output will be made just

before making the structural change specified within TRAN5.

TRACE< I ; TRAN6 > BEFORE TEST ;

TRACE I AFTER CHANGE

will force an output of the current tree each time a transformation in

group I is invoked and each time transformation TRAN6  is invoked. The

output will occur just after the appropriate keywords are found but before

the structural description is tested. In addition, each time a

transformation in group I applies the current tree will again be output.

This output will occur just after the structural change has been made.

44



,:E; j.::
I
I
L
L
L
L
L
L
L
L
L
L
L
1
L
L
L
L

ACKNOWLEDGIEMENT

We wish to thank Thomas H. Bredt,..Robert  W. Doran, Theodore S. Martner

and Barbara H. Partee for ideas which have been incorporated in the

control language.

45



0.01 TRANSFORMATIONAL GRAMMAR ::= PHRASE STRUC'IURE LEXICON TRANSFORMATIONS $END

1.01
1.02
1.03

,\ 1.04
1.05

TREE SPECIFICATION ::= TREE opt[-- , clist[ WORD TREE 11
TREE ::= NODE opt[ C@@@TSyMBOL  1 optr[ listmE 133
NmE ::= WORD or SEZJTENCESYMBOL or BOUNDARYSYMBOL
SENTENCE-SYMBOL ::= S
BOUND&Y SYMBOL ::= #

2.01
2.02
2.03
2.o’+
2.05
2.06
2.07

z
3.01
3*02
3-03
3.04

STRUCTURAL DESCRIPTION ::= STRUCTURAL ANALYSIS, optI
STRUCTURAL-ANALYSIS ::=-listl TERM 1
TERM ::= opt[ INTEGER ] STRUCTURE or opt[ INTEGER
STRvcm ::= ElJZMENTop~XSYMBOL]opt[

9

I
t[

WHERE RESTRICTION ] .

CHOICE or SKIP
7xt[ / ~(TRUCTURAL ANALYSIS  )I

-N!? ::= NODE or * or
CHOICE ::= (clist[ STRUCti ANALYSIS I)
SKIP ::= $

RESTRICTION ::= booleancombination[  CONDITION I
CONDITION ::= UNARY CONDITION or BINARY CONDITION
mY CONDITION ::= UNARY RELATION INTEGER
BINARY CONDITION ::= INTEGER BINARY TREZ RELATION NODE DESIGNATOR or

INTEGER BINARY COMPLEX RELATION COMPLEX SYMBOL DESIGNATOR
3.05
3.06
3.07
3.08
3.09

NODE DESIGNATOR ::= INTEGER or @ODE
COMPLEX'SYMBOL DESIGNATOR ::F CO- SYMBOL or INTEGER

\

UNAR~3EIATION ::= TRM or NTRM or NUL or NNUL or DZF or ND-3[F
BINARY TREX RELATION ::= EQ or NEQ or DOM or NDOM or DOMS or NDOMS or DOMBY or ND-Y
BINARY COMPm RELATION ::= INCl or NINCl or INC2 or NINC2 or CSEQ or NCSEQ or NDST

or NNDST or COMP or NCOMP

1 , .

MODIFIED 23 AUGUST 1968

COMPLETE SYNTAX FOR TRANSFORMATIONAL GRAMMAR

z*



r----( -J r : . -
. . 7 . \ \ .

4.m
4.02
4.03
4.04
4.05
4.06
4.07
4.08
4.09
4.10

5.01
5.02
5003

5o04

f
5.05
5.06
5007

5.08
5.09
5.10

COMPLEX SYMBOL ::= 1 list[ FEATURE SPECIFICATION ] 1
FEATURF: SPECIFICATION ::= VALUE FEATURE
FEATURE ::= CATEGORY FEATURE or INHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE
CATEGORY FEATURE ::= CATEGORY
CATEGORY ::= WORD
INHERENT FEATuRfZ ::= WORD
RULE FEATURE ::= TRANSFORMATION NAME
CONTEXTUAL FEATURE ::= CONTEXTUAL FEATURE LABEL or
CONTEXTUAL FEATURE DESCRIPTION ::= ( STRUCTURE opt[ ,
VALUE ::= + or - or *

STRUCTURAL CHANGE ::= clist[ CHANGE INSTRUCTION ]- ~~-IT---------^__C H A N G E -.-- _
A ilTfY7ll\S’l’KUI”I’lUlU : : = CHANGE or CONDITIONAL '3%NY uu

CONTEXTUAL FEATURE DESCRIPTION
WHERE RESTRICTION 1,

CONDITiOfiL CHANGE : := IF(R~TRICTION > THEN (STRUCTUR-*
optp Em

CHANGE ::= UNARY OPERATOR INTEGER or

--.. -.AL CHANGE
I'RUCTURAL CHANGE )]

TREE DESIGNATOR BINARY TREE OPERATOR INTEGER or
--.m..---- I---^- ---- ~~-
CUMYL KK SYMBUL DESIGNATOR BINARY COMPLEX (IPERATOR INTEGER
or COMPLEX SYMBOL DESIGNATOR TERNARY COMPLEX OPERATOR TNT1- SGER Icomux smc' -----.--_~-~

TliTVli’t’2i’DIL lX5lGNATOR ::=~~ COMPLEX SYMBOL or
TREE DESIGNATOR ::= ( TREE ) or INTEGER or NODE
BINARY TREE OPERATOR ::=ADLAD or ALADE or ADLADI or AldDEI

>

:NTEGER

0 r ADFID or AFIDE or
ADRIS or ARISE or ADRISI or ARISE1 or ADLES or ALESE or ADLESI
or ADRIA or ARIAE or SUBST or SUBSE or SUBSTI or SUBSEI

BINARY COMPLEX OPERATOR ::= ERAS&F or MERGEF or SAVEF
UNARY OPERATOR ::= ERASE or ERASE1
TERNARY COMPLEX OPERATOR ::= MOVEF

ALE$EI

.



6.01 PHRASE  STRlJCTURh  ::= PHRASESTRUCTURE  listf PHRASE  STRUCTURE  RUE 1 $Ei\lD
6.02 PHRASE  STRUCTURE  RULE ::= RULE LFFT =: RULF RIGHT .
6.03 RULE LEFT  ::= NODE
6.04 RULE RIGHT ::= NODE or listf RULE RIGHT 1 or ( list4 RULF RIGHT 1 1 or ( clistf RUIF Rla > 1

7.01
7;02
7.03
7.04
7.05
7.06
7.07
7.08
7.03
7.10
7.11
7.12
7.13

LEXICON ::’ LEX I CON PRELEX  I COM LEX I CAL  ENTR I ES $END
PRELEXICOIJ  ::= FEATURE  DEFINITIONS  optf  REDUNDANCY  RULES 1
FEATURE  DEFIIJlTI0;J.S  ::= CATEGORY  DEFI~JITIONS  optf ltJ’ilE2-E  T DFFIiJITIOtJS  1 optf  CO:dTEXTUAL  DFFINITIOI~S f
CATEGORY  DEFltllTIO:JS ::= CATEGORY  l i s t <  CATEGORY  FEATURE*)  .
ItiHEREIfT  DEFINITION ::= INHERENT  listf INHERENT  FEATURE  1 .

8.01
8. 0 2
a.03

& 8.04
a.05
8.06
8.07
8.08

CONTEXTUAL  DEFINITtONS ::= CONTEXTUAL  cl i s t f COidTFXTUAL  DEF I N IT 1015 )
CONTEXTUAL  DEFl N IT I U;\1 ::= COFJTEXTUAL  FEATURE  LABEL  = CONTEXTUAL  FEATUliE  DESCRI  PTION
CO:JTEXTUAL  FEATURE  LABEL  : := ?JORD
RFDU?JDANCY  RULFS  ::= RULES  cl istf PFDUNDANCY  RULF ) .
REDUIJDANCY  RULE ::= CUMPLEX SYMSOL  => COIiPLEX  SYMBOL
LEXICAL  ENTRIES ::= ElJTRlES listf LEXICAL  ENTRY  2 .
LEXICAL  EtJTRY  ::= 1 istf VOCABUL.4RY  !qORD 1 1 i stf COMPLEX  SYbBOl,  >
VOCABULARY  iJORD : := LIORD

TRANSFORMAT  I O!JS : := TRANSFORMTI  0;JS I is tf TRANSFORtlATl  ON > CP CONTROL  PROGRAM  . $END
TRAIJSFOt:t*IATI  ON : := TRAIJS  J PEpiT I F I CAT!  01J SD STRUCTURAL  @E.SCR I PT I Oti optf  SC STR”CT”RqL.  CM
IDEt~TIFICATIO!J::=
PARWETER  -: : =

opt f I P!TEGER  1 TRANSFORbiAT  10% fJA?{E opt f 1 i s t  f PARAMETER  11 opt<  KEYdORDS  1
GROUP  NUMBER  or OPTlOl!ALlTY  OR REPETITION

CROUP NWBFR  : := I or II or III or IV or V or VI or VI I
0 PT I OtJAL I TY ::= OB or OP
REPETITION  ::= AC or ACAC  or ;\ACC or AAC

WORDS  ::= ( listf LdOD&  1 1

. )

.

9.01
9.02
9.33

CONTROL  PROGRAM  ::t sclistf  opt<  LABEL  : > INSTRUCTION  1

,
9.04
9.05
9.06
9.07
9.08
9.09

.9.10
9.11

= RPT INSTRUCTION  or IN I;ISTRUCTl3iJ  or JF lkJSTR”CTlOj~
or GO I i.JSTE”Ci I O;J or TRACE  I :JSTii”CT IO3 or STOP  INSTRUCTION
or T I iiSTRUCTl  ObJ  o r < sclistf IiiSTWCTION  1 >

LISTRUCT  I Ott : : = JRA>JSFORt ;AT 1014 N&IL or GROUP ijUl.lBER.
RPT I IJSTRUCT  tON : : = EPT opt f I I\‘TEGER’  > < COt!TROL PROGRAIl;  >
IN I:JSTRUCTION  : := I rlj TRA:JSFORI.IATI  0;?1 Id&.lE  ( I tJTEGER > DO < COrJTROL  PkOGRAM  >
IF l~JSTRUCTIO~\I  ::= IF J!JSTRUCTlOfJ  THEiJ m It!ST?<UCTIO$  optf ELSE  GO lidSTRUCTIO!$  1
Go IhSTRUCT  I Oi\l : : = GO TO LABE4
TRACE INSTRUCTION  ::= TRACE  T IkSTkUCTlON T R A C E  SPECIFICATIOIJ  Qr biJTRACE  T ItJSTRUCTlGN  or
TRACE:::= BEFORE  TEST  or AFTER FAILURE  or 4FTER SUCCESS  or AFTER  CHAdGE
STOP  INSTRUCTION  ::= STOP

TREE

,



L APPENDIX B

a.*
CONTROL PROGRAM SYNTAX

. .

The syntax given below is purely descriptive (as is the syntax

given in Appendix A). However, the control program syntax has been

translated into a precedence syntax suitable for use by a parser. The

operation of the control program in our implementation is determined by

L this translated syntax (see Pollack [l]).

L

CONTROL-PROGRAM ::=

CONTROL-PROGRAM ::=

CONTROL-INSTRUCTION ::=

L
L LABEL ::-

L INSTRUCTION ::==

L CONTROL-LIST ::=

CONTROL-ELEMENT ::=

CONTROL-PROGRAM1 .

SCLIST [ CONTROL-INSTRUCTION ]

LABEL CONTROL-INSTRTJCTION OR

CONTROL-INSTRUCTION LABEL

INSTRUCTION

WORD : LABEL

WORD :

CONTROL-ElEMENT OR

TRANSFORMATION-ELEMENT

CONTROL-LIST

< SCLIST [ INSTRUCTION

REPEAT-INSTRUCTION OR

IN-INSTRUCTION OR

IF-INSTRUCTION OR

FLAG-INSTRUCTION OR

GO-INSTRUCTION OR

TRACE-INSTRUCTION OR

STOP-INSTRUCTION

OR

I>

L
TRANSFORMATION-ELEMENT ::- TRANSFORMATION-NAME OR

GROUP-NUMBER

REPEAT-INSTRUCTION ::= RPI INTEGER < CONTROL-PROGRAM1 > OR

L RPT < CONTROL-PROGRAM1 >

s
L 49

L



IN-INSTRUCTION ::=

IF-INSTRUCTION ::=

FLAG-INSTRUCTION ::=

FLAG-NAME ::=

GO-INSTRUCTION ::=

TRACE-INSTRUCTION ::=

SPECIFICATION ::=

STOP-INSTRUCTION ::=

TRANSFORMATION-LIST ::=

IN TRANSFORMATION-NAME ( INTEGER )

DO < CONTROL-PROGRAM1 >

IF INSTRUCTION THEN GO-INSTRUCTION

OH? [ ELSE GO-INSTRUCTION ]

FLAG-NAME TRAXSFORMATION-LIST

FLAG OPT [ INTEGER]

GO TO WORD OR

GOT0 WORD

TRACE TRANSFORMATION-TST SPECIFICATION OR

UNTRACE TRANSFORMATION-LST OR

TREE

BEFORE TEST OR

AFTER SUCCESS

AFTER FAILURE

AFTER CHANGE

STOP OR

.

OR

OR

TRANSFORMATION-ELEMENT OR

< SCLIST [ TRAHSFORMATION-ELMEXT ] >

L
i

t

L
L

50



L
L
L
L
L
L
L
L
IL
I
L
L
L
L
L
L
L
L

REFERENCES

[l] Pollack, B. W. The Control Program and Associated Subroutines. m-28,
Computer Science Department ) Stanford University (June 1968).

[2] Fillmore, C. J. The Position"of  Embedding Transformations in a Grammar.
Word, 19 (1963), 208-231.

131 Lees, R. B. A Grammar of English Nominalizations. Supplement to
International J. Amer. Linguistics, Baltimore (1960).

[4] Friedman, J. and Doran, R. W. A Formal Syntax for Transformational
Grammar. CS-95, ~~-24, Computer Science Department, Stanford
University (March 1968).

[5] Rosenbaum, P. and Lochak, D. The IBM Core Grammar of English.
in Lieberman, D. (Ed.), Specification and Utilization of a
Transformational Grammar, ~~~~~-66-270  (1966).

[6] Friedman; J. and Martner, T. S. Analysis in Transformational Grammar.
AI'-34, Computer Science Department , Stanford University (September 1968).

[7] Friedman, J. Computer Experiments in Transformational Grammar II:
Traugott's  Grammar of Alfredian Prose. AF-23, Computer Science
Department , Stanford University (February 1968).

[83 Friedman, J. SYNN, an Experimantal Analysis Program for Transformational
Grammars. wp-229, the MITRE Corporation (1965).

[91 Ross, J. R. A Proposed Rule of Tree-pruning. NSF-17, Computation
Laboratory ) Harvard University (1966), IV-i-18.

1101 Gross, L. N. A Computer Program for Testing Grammars On-Line.
Mimeographed (1968).

[ll] Klevansky, L. Computer Experiments in Transformational Grammar VI:
Swahili. AF-32, Computer Science Department, Stanford University
(June 1968).

. [12] Zwicky, A. M. On the Ordering of Embedding Transformations. Mimeographed
handout, meeting of the Linguistic Society of America (Summer 1966).

[13] Menzel, P., Shopen, T., and Partee, B. H. Rule Ordering: Preliminary
Report. UCLA Working Paper #l (October 1967).

51


