CS -2

A CONTROL LANGUAGE FOR TRANSFORMATIONAL GRAMMAR

BY

Joyce Friedman and Bary W. Pollack

This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F196828-C-0035.

STANFORD UNIVERS ITY COMPUTER SCIENCE DEPARTMENT
COMPUTAT IONAL LINGUISTICS PROJECT
AUGUST 1968

AF - 35

cs - 112

A CONTROL LANGUAGE FOR TRANSFORVATI ONAL GRAMMAR

by

Joyce Friedman* and Bary W Pollack

L

r— o—

r---<‘

This research was supported in part by the United States Air Force
! Electronic Systems Division, under Contract F 196828-C-0035, at
L Stanford University.
E
-

* Present address: Conputer and Communication Sciences Departnent
University of Mchigan, Ann Arbor, M chigan

r r

-

{
L

e e e

r—

~ o o

r—

r—

ABSTRACT

Various orders of application of transformations have been consi dered
in transformational grammar, ranging from unorder to cyclical orders
involving notions of '"lowest sentence'* and of nunerical indices on depth
of enbedding. The general theory of transformational grammar does not
yet offer a uniformset of '"traffic rules" which are accepted by nost
l'inguists. Thus, in designing a model of transformational grammar,
it seems advisable to allow the specification of the order and point
of application of transformations to be a proper part of the grammar.

In thi;mpaper we present a sinple control |anguage designed to

be used by linguists for this specification.

In the control |anguage the user has the ability to
1. Goup transformations into ordered sets and apply transformations
either individually or by transformation set.

2. Specify the order in which the transformation sets are to be

consi dered,

3. Specify the subtrees in which a transformation set is to be

appl i ed.

4. Alow the order of application to depend on which

transformations have previously modified the tree

5. Apply a transformation set either once or repeatedly.

In addition, since the control |anguage has been inplenmented as

part of a conputer system the behavior of the transformations may be

monitored giving additional information on their operation.
L. In this paper we present the control |anguage and exanples of its
use. Discussion of the conputer inplenentation will be found in

m Pol | ack [1].

L{

r— r— r—

- — r—

— e T

The need for a language to express '"traffic rules”

The transformational conponent of a granmar consists primarily of
a set of transformations; but it nmust also contain what Fillnore [2]
has cal led "traffic rules' @which specify the order in which the
transformations are to be applied. These rules may be considered
either as part of linguistic theory -- in which case there is one set
of rules which applies to all granmmars, or they may be considered as a
proper part of a granmar. In this paper we take the position that the
traffic rules, or "control programi”, of a granmmar are a part of the
t ransf or mat i onal conponent. In doing so we do not Wi sh to maintain
anything at all about the possibility that a universal set of traffic
rules will someday be found. Qur position reflects the fact that at the
present tinme linguists disagree on what the traffic rules are. Spo we
start fromthe premse that each grammar contains its own set of traffic
rules, and we define a |anguage in which these rules can be expressed

The suggestion that the netatheory of grammars contains sone conpl ex
schene for "traffic laws'" within a grammar, and a control unit which
directs the order of application of rules, occurs in Lees [3] as one of
three alternative plans for rule ordering. The |anguage proposed in
this paper may be viewed as a proposal for Lees' '"conplex scheme®.

The control |anguage which we present was devel oped for a conputer
program whi ch accepts and mani pul ates transformati on grammars -- we
required some decision as to the order of application of transfornmations
None of the specific plans which have been proposed seemto have any

general acceptance. Thus we felt that our programs would be nore

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

]

r

useful if the specification of the traffic rules were a user option.
The programs may be used to investigate order of application of rules
as one of the open enpirical questions about granmars.

W hope that the control |anguage will also be of interest per se,
i ndependently of the prograns.

The control |anguage operates by taking advantage of mechanisns
which nmust already be in any system of transformational grammar. For
exanpl e, the "IN-construct", used to determne the subtree for which a
transformation is to be invoked, itself uses a transformation in this
determination. Likew se, there is no provision for placing special
indices on the sentence tree, but instead feature specifications, already
in the system are used. The decision to stay wthin the devices already
avai | abl e causes some difficulty in expressing some of the proposed
cycling orders, as is apparent in Exanple 3 below. However, the
alternative would be to program special devices specific to the various
proposals in the literature, which we prefer not to do until sonme genera
| deas can be abstracted from them

The purpose of the control programis to determne in what order

and at what point a transformation is invoked. Thus, in the famliar
control sequence: apply the cyclic transformations to the |owest
sentence, the control program nust select the |owest sentence subtree
and then invoke the transformations in order for that subtree.

In this presentation of the control |anguage we first discuss the
transformation conponent as it relates to the control program then
what is nmeant by invoking a transformation -- this will be primarily a

di scussion of the nmeaning of the parameters of a transformation. Then

we shall di scuss the control |anguage itself and show how it providesa

!
|

step-by-step selection both of the transformation to be invoked and the
tree node which is to be the top of the subtree treated by the analysis

al gorithm

— r—

r—

r— r—

i
.

r— r—

— =

— r— r— -

r— r—

r—

r—

r—

The transformational conponent of a granmar

The system with which we are working contains a formal metasyntactic
description of transformational granmar. The netasyntax is described
in[4]. In this paper we will cite the formal descriptions, but will
in every case also spell themout in English. \& can use the syntax

to show the position of the control program wthin the grammar:

0.01 transformational grammar ::= phrase structure |exicon

transformations $END

8.01 transformations ::= TRANSFORMATIONS 1list[transformation]

CP control program . $END

(Numbering here corresponds to the full syntax given in Appendix A)

The interpretation of these rules is:

a transformional grammar consists of a phrase, structure

followed by a lexicon followed by a set of transformations followed

by the termnator $END.

transformations, the transfornmational conmponent with which we

are here concerned, consists of the identifier TRANSFORMATI ONS

followed by a list of transformations, followed by the identifier cp

and a control program termnated by a period. The transformational

L

cormponent is terninated by $END.

The inportant point here is that the control programis a proper

e

part of transformations. It is needed to provide the ordering for the

transformati ons.

—

[dentification of a transformation

The control program nust be able to refer to individual transfor-

mations and to recognize whether or not they are optional, and if and

how they are to be repeated. The information specific to a single trans-

formation isprovided in the identification which is the first part of

a transformation.

8.02 transformation ::= TRANS identification SD structural

r—— -

description opt{SC structural change .]

A transformation consists of the phrase TRANS, fol | owed by an

identification, followed by the phrase SD and the structural description,

followed optionally by the phrase SC, a structural change, and a period.

r— r— r—

(The reason for allowing the structural change to be optional wll be

seen below in the discussion of the IN-construct.)

—

8.03 identification ::= opt [integer] transformation nane

opt [list [parameter]] opt [keywords].

—

The identification of a transformation consists of an optional

—

bnteger, followed y the transformation name, followed optionally by a
(-
|
e

(
C

— r— e

— r—— r— r— rr— r- r—

r—

list of paraneters and optionally by keywords. The integer is for ex-

ternal identification only; within the granmar a transformation is

referred to by its transformation nane.

8.04 paraneter ::= group nunmber or optionality or repetition

There are three types of paraneters: the group nunber (a roman

nuneral) identifies the transformation as part of a group. The group

nunber may be used to refer to all of the transformations in the group

Optionality (OB or OP) has the usual interpretation, obligatory
or optional. Repetition includes four possibilities (AC, AACC, ACAC
and AAC --\ﬁhich are nore general than those which have previously been
considered and will be discussed in detail below.

Although the list of parameters is optional, each transformation
is in fact specified for group nunber, optionality and repetition, since
for each there is a null option. If no group nunber is specified, it
will be taken to be the sane as that of the previous transformation

(or I for the first transformation). The null option for optionality

is obligatory (OB) and for repetition AC.

I nvoking a transformation

By invoking a transformation we nean (in the sinplest case of an
B AC transformation) that the analysis algorithmwll be applied to

determne if the structural description is net, and that if so, the

structural change will be applied. However, this description is not

yet conplete, for the analysis algorithmis not always to be applied to

the full sentence tree. It is certainly necessary to be able to specify

r r— r— r- r M rrOorre

r‘l-o—v

~—

—

that the analysis algorithmis to be applied to a specific subtree.
Therefore, we nodify the definition above to state that in invoking a

transformation, the analysis algorithmw | be applied to a specified

subtree.

Optionality and repetition

V¢ have defined above what it neans to invoke a transformation
with optionality OB and repetition AC. In the tables bel ow we
extend the definition to cover the full range of cases for these para-
neters; in each case a single specification of the subtree is inplicitly
assuned.

The repetition parameter has four possible values, wth menonics
conposed of the letters A (for "analyze") and C (for "change").
These menonics AC, ACAC, AACC, AAC were invented because the phrases
"cyclic", "noncyclic", "iterative", "recursive" etc. have by now had so

many different interpretations that confusion can easily arise.

—

r—

Repetition To invoke the transformation
AC The analysis algorithmis applied to find the

first match for the structural description;
the structural change is then carried out if
one is found.

ACAC The process just described for ACis repeated
until no further match is found

AACC The analysis algorithmis applied to find all
possible matches for the structural descrip-
tion; the corresponding structural changes are
then carried out.

AAC The analysis algorithmis applied to find all
possible matches for the structural descrip-
tion; one of these is selected at random and
the appropriate structural change applied.

Table I

Invoking an obligatory (OB) transformation

In the case of a control program which nust run without human in-
tervention, the natural way to decide in optional cases is by random
choices; if the program interacts with an on-line user then the decisions
in optional cases may be nade by the user. (CQur inplementation of the
control language is in an off-line environment; therefore a random
choice is made. This is a characteristic of the inplenentation, not of
the control |anguage, which could be used in either type of environnent.)

Table Il shows the process of invoking an optional (OP) transformation.

— - r— r—rrrr~oee

r— r— r— r—

Repetition To invoke the transformation
AC Decide. |If yes, proceed as for OB case
ACAC (o) Decide. If yes, proceed as for OB AC

case. Repeat (fromg) until either a negative
decision is reached, or no match is found.

AACC The analysis algorithmis applied to find
all possible matches for the structura
description. For each, a decision is nade
and if yes the corresponding change is applied.

AAC Decide. |If yes, proceed as for OB case.

Table |1

Invoking an optional (OP) transformation

The repetition paranmeter AAC

The tabl es above define the neaning of the four possible repetition
parameters. Sone discussion is nowin order to defend our choice of
values for repetition. AC, ACAC and AACC are all cases which are
comonly found in the literature, although some argunents have been given
to show that ACAC is unnecessary. The case AAC is new and is suggested
by difficulties found in the literature. Consider for exanple, the WH-
Attraction transformation of Rosenbaum and Lochak [5], which we give

here in their notation:l/

;/In the notation of our system WHAttraction would be witten
TRANS 10 WHA "WH-ATTRACTION" | OB AAC .
SD# % ART S/< L NP % 6 (* < PREP NP/< WH % > >, NP/< WH % >) % > % #.
SC 6 ALESE | L.

Al variables are replaced by % . Substructures are indicated by angle
brackets. (A,B) is a choice. * is any one node. A full description
of the format of structural description is given in [6].

9

10 WHAT WH- Attraction B
PREP+[WH X]NP

4 U ART [NP W Y]S Z #

[X1
1 2 3 L5 6 7 8 9 ===
1 2 3 6+ 5 p 7 8 9

The structural description above contains a choice; but notice that if
the sentence is analyzable as the upper choice, then it is also analyzable
as the lower one, The intention is that in the case where both structura
descriptions-can be matched, either one of the analyses is acceptable.
This is precisely what the AAC paraneter specifies. The sane situation
arises for their Question transformation.

V¥ have also found the paraneter AAC useful in the WH Question
transformation of Traugott's grammar of O d English [7]. There the
problem is somewhat nore difficult, since nore than one elenent at a

time may be questioned. The desired solution was achieved by the following

pair of transformations:

TRANS WHA "WH-QUESTION® AACC OP.
SD % 1. Q@ $2 NP %.
SC WH ALESE 2, ERASE 1.

TRANS WHA2 “WH-QUESTION® AAC OB.
SD % 1 Q@ % 2 Np % .
SC WH ALESE 2, ERASE 1.

10

e

—r— o

The first of these transformations optionally inserts WH as the

left sister of zero or nore NP's in the sentence. If at |east one

VWH is inserted the Qis erased so that WHA2 will fail. If no WHis

inserted by the first transfornatiom then the OB transformati on WHA2

will insert exactly one WH as left sister of a randomy selected NP .
The possibility of creating a special parameter so that this case

could be handled by a single transformation was considered but was re-

jected since it seemed too special

Keywor ds

The optional list of keywords which appears in the transformtion

identification is sinply a technical device used to bypass applications
of the analysis algorithm.é/ Wienever a node is to be specified as the
top of a search by the analysis algorithmit is first verified that al
of the keywords are domnated by that node; if they are not, the analysis
is assumed to have been tested and to have failed.

This conpletes the discussion of what is neant by invoking a trans-
formation for a specified top node. W now discuss the specification

of the top node for an analysis.

1/ This device was first used by Friedman in the SYNN programs at

M TRE [8]; it was al so used by IBM[5].

11

e

Specifying the top node for an anal ysis

The analysis algorithm which determnes if the sentence tree
mat ches the structural descriptionof a transformation is described
in [6]. Before the analysis algorithmis applied, the control program
must have determned both the transformation to be invoked and the top

node of the subtree in which it is to be invoked.

Default option for top node

The sentence synmbol (S) plays a special role in the specification
of the top node. Unless the control program specifically calls for a top
node which has some other |abel (which may be done using the IN construct
described below), the top node will always be a sentence symbol

To illustrate this specification of top node, consider first a

very sinple control program consisting of one instruction
(L) TRANL

This program sinply consists of the transformation nane TRAN1 . |t is

interpreted to mean that the transformation TRAN1 is to be invoked.
Each time it is invoked the top node is (by default) a sentence synbol
The termnation of the top node proceeds as follows:

1. Alist is made of all the sentence symbols in the tree (see
Diagram 1); this is the list of "marked S's". (If there are none, the
program termnates.)

2. No special order is guaranteed for the marked S's.

3. Find the first marked S which domnates all the keywords

of TRAN1 .

12

4. Invoke TRAN1 using this S as top node.
5. Then, wthout repetition of any marked S, repeat this process

until all marked S's have been used.

This conpletes the application of the control program (1).

UXl6 VPl9 #21
ol ke
P.R\ES18

For this tree the list of "marked S's is:

{Sl le}

The list of "marked S's" in D agramT73 (belowis:

{sl 8, SB}

Marked Sentence Synbol s

Diagram 1

13

—

r-— r

-

I nvoki ng groups of transfornations

W have seen above a program which invokes the single transfor-
mation TRAN1 . W now show how groups of transformations nay be in-
voked

The sinplest way to invoke nore than one transformation is to

invoke a group of transformations by group nunber:

(2) I
The control program(2) will invoke all of the transformations which
have group -nunber Il. The identical effect is achieved by contro

program (3), where the transformations of group Il are listed by name:

(3) TRANS ; TRANG; TRANT

and no other transformations belong to group II.
The determnation of the top node is done one transformation at

atim. Thus if there are two sentence synbols s, and S,» the order

1
of application will be:

I nvoke TRANS at 8.3
| nvoke TRANS at SPY
| nvoke TRAN6 at sl;
| nvoke TRAN6 at 855

| nvoke TRAN7 at sl;

| nvoke TRANT7 at S..

1k

The | N-construct

The sinple specification of top node described above is of course

L i nadequate in many cases. It nust be possible to select as top node
sentence synbols with special characteristics; such as |owest sentence,
L next-to-lowest sentence, top sentence, and so on. The facility for
doing this is provided by the IN-construct. The basic idea of the IN-
-

construct is that the analysis algorithmitself can be used to determ ne

the specification of top nodes.

The form of the IN-construct is given by:

9.06 IN-instruction ::= IN transformation name (integer)

DO < control progranp

The transformati on name which occurs here may be the nane of a special

transformation which is invoked only for this purpose. (In th'is case
it need not have a structural change.)

As an exanple, consider the control program

- r—r

(&) IN LOWESTS (1) DO < TRANL >
where the transformation IOWESTS is given by:

TRANS O LOWESTS |11.

SD 1 S—/<#%s<#%#>%#> , WHERE 1 DOM # .

The structural description of LOWESTS will be nmatched if the tree
contains an S which donminates a boundary symbol (#) , but which

L does not (-) doninate another S which domi nates boundary synbols.

L 15

(This corresponds exactly to the definition of |owest sentence given in
Rosenbaum and Lochak [5].) The integer 1 can now be used to refer to
this lowest snetence. Notice that LOWESTS has been given the group
nunber Il -- this is chosen to be different fromall other group
nunbers in the transformations so that LOWESTS wi Il never be invoked
except in the IN-construct.

The control program (4) operates as follows:

First, LOWESTS is invoked (with top node determned as in the
case of the control program (1) above). If the analysis is successful
the node designated by 1 is taken as the sole marked S for applica-
tion of the sub-control program TRAN1 . After this sub-control program
is conpleted, LOANFSTS is again invoked. For each repetetion a new | owest
sentence nmust be found to correspond to the integer 1 . |f a new | owest
sentence is found, the sub-control programis repeated. The control
program (4) termnates when no new |owest sentence is found

Notice that the application of TRANL may change the tree so that
sentence synbols which did not previously satisfy LOWESTS now do so.

Wien the IN-construct is applied to a group of transfornmations

as in;
(5) IN TRAN1(1) DO < TRAN2; TRAN3: TRAN4 >

The single top node determ ned by TRAN1 is used for the subsequent
three transformations. Note that the effect is not necessarily the

sane as the sequence of instructions

16

s &rvyc@zrmﬂd

(6) I N TRAN1(1) DO < TRAN2 >;
| N TRAN1(1) DO < TRAN3 >;

| N TRAN1(1) DO < TRANk >

In (5) TRAN1 is invoked once, and the node corresponding to the integer
1 is taken as the top node for the three subsequent transfornations,
even though after TRAN2 the structural description of TRAN1 may no

| onger be satisfied by the tree. Thus the IN-construct allows us to
select a top node on the basis of the tree structure at a particul ar

time, and to continue to use this top node although the tree structure

changes.

17

Example 1. The IBM Core G anmar

Wth the instructions which have been discussed so far we are able
to construct a control program which corresponds t0 the |BM Core G ammar
of Rosenbaum and Lochak [5, pages 28-32]. V& first g ote from the
reference the description of the pattern cycling:

The transformational conponent of the Core G ammar contains
an ordered set of cyclic and post-cyclic transformational rules.

The cyclic rules apply to a |OWest sentence. A | owest sentence

is an S boundary and X is a variable whi ch does not contain #.
In the diagram (73), S, neets the conditions of a lowest S .

. 3
L (73) - s
| #7 A /B\ c #
-
E SQ

) # A B ¢ #
- E/\S
I #/AC&#

- The cyclical transformational rules apply in sequence to
- | onest S's. Consider, for instance, the followi ng set

of cyclic rules in which the symbol X is a variable ranging
over any structure at all.

(74) a. # A X #
1 2 3 L >
B 1 p 3 &
- b # X #
1 2 3 >
- p o2 g

Applying cyclically, the rules in (74) operate on S in
t he P-marker given in(73) produci ng, sequentially, 3
the P-markers (75) and (76).

(75) S

A B ¢

4\

E
S5

. 4 TN,

(76) S

As the result of the application of the rules in (74), Sy
now meets the conditions of a lowest S and the cyclic
rules apply again yielding the P-markers(77) and(78).

19

(77)

Jd

—d d ed d

(78)

20

After this cycle SI now meets the conditions of the

| owest S and the cyclic rules apply once again yielding
(79) and (80).

(79) s

This application of the rules |eaves a P-nmarker in which
no S qualifiesas a lowest S . Hence, the transfor-
mational cycle is term nated.

The P-marker produced by the rules of the transfor-
mational cycle is the input to the post-cyclic trans-
formational rules. A possible rule mght be that in (81),
which deletes every assistant of C in (80), thus generating
the derived P-marker (82).

21

(81) X ¢ ¥
L 1 2 3 ===
|_ p 3
L (82) .Sl
l
A
[-, E 5
\
B
L |
E
- The post-cyclic rules are ordered. The derivation is terminated
after the applicability of the last post-cyclic rule has been
tested.

The sinple transformational conponent used in this exanple coul d

be witten in our system as:

- TRANSFORMATI ONS
. TRANS 0 LOWESTS |11.
SD 18—/ <#%s<#%#>%#>, WHERE 1 DOM #.
- "CYCLI C TRANSFORMATI ONS"
TRANSAI .
) SD # 2 A% #.
L SC ERASE 2.
TRANSBI .
- sD 1 # % 3 #.

SC ERASE 1, ERASE 3.

"POST-CYCLIC TRANSFCORVATI ON'
TRANS C 1.
SD % 2 C %.
SC ERASE 2.
CP '*CONTROL PROGRAM
IN LOAESTS(I) DO < | >; 11
$END "END OF TRANSFORVMATI ONS'

When LOWESTS is invoked for (73) the top nodes 8, and S, wll fail

to yield a successful analysis. 85 will qualify as a lowest S .

Transformation A produces (75); transformation B then produces (76).

LOWESTS i s then invoked again for each of 8, which fails and then
for S, which this time is successfully analyzed as a |owest S .
Transformation A produces (77), transformation B produces (78),
LOVESTS is again invoked for S3 and fails. It is invoked again for

S, and succeeds because S1 is nowthe lowest S. Transfornation A
produces (79) and transformation B produces (80). Then LOAESTS

is invoked for 82 and S, and fails both times. LOWESTS is finally

3
invoked for each of the three S's but no successful analysis is found.
Hence the execution of the first instruction termnates.
The second instruction causes each of the transformations of
group Il (in this case there is only one) to be invoked once for each

of the Ss in the tree. Each tine transformation Cis invoked, one

occurrence of Cis deleted. The result is (82).

23

5w w"“""“

rT

Order of instructions in a control program

In the exanpl e above it was sufficient to do the instructions in
order without any branching in the“ program The instructions are sinply
carried out in the order listed. It is clear, however, that one woul d
like to be able to choose the next instruction on the basis of what has
happened so far in the application of the control program This

facility is provided by if-instructions, go-instructions and |abels.

CO-instructions and |abels

The sinplest change in the linear flow of control is provided by
allowing transfer to a labeled instruction. Any instruction in the control
program can be |abeled by preceding it with a word (i.e., any sequence of
letters and digits beginning with a letter) followed by a ":* . Control

can be transfered to the instruction |abeled say D01 by a go-instruction

QGOr0 boi. Thus, in the control program

FIRST: TRAN1; TRAN2; GOTOFI RST; TRAN3

The order of execution is TRAN1, TRAN2, TRAN1, TRAN2, TRAN1, .
This programis not reconmended because it contains an infinite |oop,

but go-instructions can be combined with if-instructions to create

sensi bl e prograns.

Condi tional instructions

The formof a conditional instruction of if-instruction is given by:

9.07 i f-instruction ::= IF instruction THEN go-instruction

opt [EILSE go-instruction]
2l

or

| F TRAN2 THEN GOTO EMB ELSE GOTO CONJ

where EMB and CONJ are | abels and TRAN1 and TRAN2 are
transformation nanes.

The instruction between the IF and the THEN may be of any type.
Wth each type of instruction there is an associated value. The sinplest

case is an instruction which is a transformation nane: the value is

true, if the transformation has been invoked and it applies (that is, the

transformation's structural description is met); the value is false

ot herw se.

Table I'll bel ow gives the val ue corresponding to each instruction
type. (Sone of these types have not yet been introduced.) The
interpretation of an IF-instruction is that first the instruction
(between the IF and the THEN) is perforned. |If the resulting value
is true the GO-instruction after the THEN is performed, otherw se the
G instruction after the ELSE is performed. (Just as in ALGOL.)

In using an IF-instruction it is inportant to note that in

| F T1 THEN T2

TL wll first be invoked for all of the current s's, and if it is
successful at |east once then T2 will be invoked for all current S's.
Normal |y what is wanted is not the above, but conditional application

within a given S. This can be achieved by using the IF-instruction

25

within an INconstruct, for exanmple
IN NEXTS(1) DO < |F T1L THEN T2 >

where the structural description for NEXTS is sinply
SD $1 S %.

In this case the sentences will be considered one at a time, and the
invocation of T2 in a particular sentence will be conditional on

the previous success of T1 in that sentence.

A note on tree-pruning

Ross' "tree-pruning'" [9] is an exanple of a general convention for
grammars Whi ch one might want to test in a conputer systemfor transfor-
mational grammar. One way to handle tree-pruning is to include in the
| anguage an instruction which gives the list of node names for which it
applies, as has been done by Goss [10]. |f tree-pruning were to becone
general |y accepted we woul d probably follow Goss' treatment of it. In
the present systemthe tree-pruning convention can be sinulated by
C onstructing tree-pruning transformations, and inserting their calls at
appropriate points in the control program probably as conditional

instructions as:

| F T1 THEN TREEPRUNEL

.26

Exanple 2. A grammar of Swahili

In "A transformational grammar of Swahili" [11], Kl evansky uses a

control program in which each transformation is called by transformation

name. The transformations QNANI, QNINl and QLINI are optional;
conditional instructions are used to insure that at nmost one of them will

be successfully applied.

CP I NSERTKU; FI XNEGCOP;
PREAGV;
NEGSUB;
RE;l; REL2;
ANPRE1; ANPRE2,
PREAGAV; FIXCOP;
IF QNANI THEN GOTO E;
| F QNINI THENGOTO E;

| F QLINI THEN GOTO E;

|
—

r

—

Exanpl e 3. Zwicky's proposal for control of cycling

Zwicky [12] has considered the followi ng nethod of control of
cycling:
a. Instances of S in a base tree are indexed as follows:

(1) Any instance of S that does not domnate an S
receives the index 1 .

(2) Any instance of S that dominates other instances
of S receives the index ™1 if (a) every dom nated

S is indexed, and (b) the maxinmum index of a dom nated
S is N

b. o the N° pass through the rules all subtrees dom nated
by an S with index N are operated upon, and no other
subtrees are operated upon.

This control programcan be expressed only with difficulty in our
control language. The problemis that we have no conveni ent way of
marking indices. The following programis an inelegant but accurate
expression of Zw cky's scheme -- it uses inherent features
INDEX1,..., INDEXN to mark indices. The maxi mum possible depth of
a tree must be known beforehand; the program bel ow works only up to
depth L .

Four transformations are used to insert indices;, four nore are
used in IN-constructs. Transformations INDEX1, |NDEX4 insert

feature specifications which correspond to the indices above:

28

L
L

r— r

— r

—

—

i nteger

TRANS | NDEX1

SD % 18 %, WHERE 1 NDOM S .

SC |+ INDEX1| MERGEF 1 .

TRANS | NDEX2

SD % 18 / < % S|+ I NDEX1| % >
SC |+ INDEX2| MERGEF 1 .

TRANS INDEX3

SD %18/ < % s|+ INDEX2| %> .

SC |+ | NDEX31 MERGEF 1 , |+ I NDEX21 ERASEF 1 .

TRANS | NDEX4

SD % 18/ < % S|+ INDEX31 % > .

SC |+ | NDEX41 MERGEF 1, |+ | NDEX3 + INDEX2|EBASEF 1.

Transformations FI RST, SECOND,

TRANS FIRST .

SD % 1 S |+ INDEX1| % .
SC |+ INDEX1| ERASEF 1 .

TRANS SECOND
SD % 1 S |+ INDEXe| % .

SC |+ INDEX21 ERASEF 1 .

TRANS THI RD
SD % 1 S |+ INDEX3| % .

SC |+ INDEX3| ERASEF 1 .

TRANS FOURTH
SD % 1 S |+ INDEX4| % .

SC |+ | NDEX41 ERASEF 1 .

29

FOURTH wi | |

1 with the appropriately indexed S's.

associ ate the

If Il is the group nunber for the enbedding transformations, the control

program can then be expressed as:

INDEX1; | NDEX2; INDEX3; INDEXL;
INFIRST(I) DO< Il >
IN SECONX(1) DO < Il >;
INTHRXI) DO < Il >
IN FOURTH(1) DO < Il >.

Note that the indices are erased when used; this will prevent themfrom
interfering with other tests on features.

If we apply this to Zwicky's exanple:

#5s, #

T

NP VP

i dein ing
man S2 man is eager for to # S

NP VP NP VP

the man is tall t he S), # man goes

NP VP
the man is tall

the effect is as follows:

30

I NDEX1 nerges the feature specification + INDEXL into the conplex

synbol s associated with S, and 5), -

| NDEX2 nerges the feature specification + |NDEX2 into the conpl ex

synbol's for 8; and 83

| NDEX3 succeeds for sl only. It nerges the feature specification

+ INDEX3 into the conplex synbol and erases the feature ¥ I NDEX2 .

| NDEX4 fails.

After these first four transformations the tree is (schematically):

S, . ..[+ INDEX3]
S, m\ SN INDEX2]

wg .. [+ INDEX1]

The remaining instructions will now invoke the enbedding transfor-
mtions for 8,5, S, S5 and S, , as desired, and will delete all
occurrences of the index features.

31

FIAG-instructions

FLAG instructions provide a neans for remembering

1

—
transfornations and which groups have value true), In general, whenever
a transformation name or group nunmber appears the corresponding transfor-
L mation or group is invoked and some value is produced. If the transfor-

whi ch transformations and whi ch groups have applied (i.e., which

mation or group appears within an IF-instruction this value may be tested,

but the value is then discarded. The same holds true for the instructicns

r-~r

within a RFT-instruction; the value is determned, the RPT-instruction
- is termnated or is continued, and the value is discarded. In order to

te able to change the course of execution of the control program by

(-

remenbering which transformations and which groups have the vaive true

one FLAGs the appropriate transformations and groups.

—

The formof a FLAGinstruction is given by

r—

flag instruction = flag name transformation |i st

. flag name ;= FIAG opt [integer,
] transformation list ::= transfornation element or < sclist

L [transformati on elementl >

transformation el ement ::= transformation nane or group nunber
-

Fl ags are considered to be variables which nay take on the val ues

w true and false. These variables are nunbered from zero up. (Wthin

the inplenentation of the control |anguage ten flags nunbered from
zero to nine are provided.) Two type of FLAGinstructions exist: those

with an integer follow ng FLAG and those wi thout. FLAGinstructions

—

without an integer are taken to refer to FLAG 0.

- 20

r- r— r— r—

The FLAG instruction is interpreted as:

1. Discard any previous value or definition this flag may have

had.

2. Define the named flag as consisting of the named transformations

and/ or groups.

3. Set the flag's value to false

A flag's value remains false until one of the transformations which it
represents or some transformation in one of the groups it represents is
I nvoked. Thgn if the invoked transformation's structural description is
met (and any structural changes are nmade) the flag's value is changed to
true. The flag's value will remain true until the flag is redefined.

For exanple, a flag (say Flag 5) which represents the transformations

TRAN1, TRAN2 and TRAN3 might be defined by:
FIAG 5 < TRAN1 ; TRAN2 ; TRAN3 >

Flag 5is set to false at the tine this instruction is executed.

Thereafter, ‘if.any of the above three transformations are invoked and do

~apply (that is, if any of the three transformations are invoked and their

structural descriptions are met) Flag 5will be set to true. Flag 5wl
retain the value true until it is redefined. (If Flag 5is redefined as
TRAN1, TRAN2 and TRAN3 then its value is just reset to false.)

A flag which represents every transformation in group Il and the

transformation TRANk might be defined by:

FIAG 3 < IT ; TRANL >

33

A 4

L

— T — o —

—

—

-

Flag 3is set to false when this instruction is executed. Thereafter,

if any transformation in group Il or if TRANd is invoked and does apply

Flag 3will be set to true.

A flag which only represents the transformation TRANS is defined by:

FIAG 2 TRAN5

The value of a flag may be tested at any time through the use of

an IF-instruction. For exanple,

| F FLAG 7 THEN GOTO LABL3 ELSE GOTO LABL4

If Flag 7has value true then a transfer to IABL3 will be made; if

Flag 7has value false then a transfer to LABL4 will occur instead.

34

r

The RET-instruction

In order to repetitively invoke a transformation, group of trans-
formations or control program one-may use a RFT-instruction. Two forms
of RPT-instructions are provided: the first specifies a fixed maxi num
nunber of tinmes the following instructions are to be executed; the
second will continue to cycle through the instructions until each has
the value fal se.

The form of the RPT-instruction is:

RPT opt [integer] < control program>

A RPT-instruction wWith an integer is interpreted as follows:

1. Set the RPT counter to the value of the integer.

2. Execute each el ement of the control programin the angul ar

brackets in the normal manner.

3. If at least one of the elenments had the value true, then
decrease the RPT counter by one and if it is still greater than
zero, go back to step 2.

4. If no element of the control program had the value true (or if

the RPT counter has a value less than 1) termnate the RET-

instruction.

For exanpl e:

RPT 5 < TRAN1 ; TRAN2 ; III >

wll repeat the sequence: invoke transformation TRAN1, invoke transfor-
mation TRAN2, invoke every transformation in group I1l, until either
35 i

none of them apply or five iterations of the sequence have occurred.

An exanple of a RPT-instruction W thout an integer is:
RFT<I|| ; TRAN3 >

This instruction will invoke every transformation in group Il and then

i nvoke transformation TRAN3 and repeat until none of the transformations
in group Il apply and TRAN3 does not apply. Then the REP-instruction
wll termnate. Note that it is possible to create infinite |oops with
RPT-instructions.

RPT-instructions may include any arbitrary control program and in

particular they may include other REP-instructions, So,
RPT L < |1l ; RPT <IV > ; TRANA >

will invoke the transformations in group Ill, then invoke all transforma-
tions in group IV repetitively until none apply, then invoke transformation
TRANL, and this sequence will be repeated at nmost four tines.

It is occasionally the case that transformations cannot be explicitly
ordered. The following exanple is taken from Menzel, et. al. [13].

"The sentence John and Mary ran and will walk tonorrow, and sang and wl|

dance tonorrow respectively. requires a derivation where secondary conjunc-

tion nust precede the (conjunction transformation) schenma, whereas John

saw a novie and ate pizza and will run tonorrow. requires a derivation

where the processes take place in the other order, the schema first
and then secondary conjunction.” The RF& nstruction provides a
nmeans to specify both possibilities. |f the conjunction schema is

called group I and the secondary conjunction transfornations are called

36

group I, then the following instruction will achieve the desired result
RPT < I ; II >

This instruction will invoke all transformations in group | and then
all transformations in group Il an\d then will repeat the process until
no transformations fromeither group apply. The linguist must insure,
however, that the transformations in the two groups interact in such a
way that if for a particular sentence the transformations in group Il

are to apply first, then no transformation in group I wll apply.

37

The STOP-instruction

The STOP-instruction termnates the execution of a control program

| STOP-instructions nmay appear at any point. In our inplenentation of the
control language a STOP-instruction forces an output of the final tree,

- lists the transformations which have applied in the order in which

; they were invoked and reports how many instructions were executed.

-

A STOP-instruction need not appear within a control program --

when the terminal period of the control programis encountered the sane

effect is achieved.

— -

38

— — r— —

I

— - — r— r— r—

Determ ning the value of an instruction

Each instruction of the control |anguage has a value: true or false.

These values are summarized in Table Il below In general, a value of
true neans that some change has been made to the tree (although not
necessarily).

The sinplest instruction is the nane of a transformation. Such an
instruction has value true if the structural description of the

transformation is met at least once in the current tree and is false

otherwise. If the transformation has a structural change, then a true
val ue implies that this change has been nade at |east once.

Group nunbers denote sets of transformations. The value of a group
nunber is true if at |east one of the transformations in its set has
value true and is false otherw se

Transformations and group nunbers nmay be grouped together into a

transformation |ist by enclosing themin angul ar brackets (see the syntax

in Appendi x B). Transformation |ists may be used as the instruction

part of an IF-instruction, for exanple. The value of a transformation

list is true if any transformation or group number within the list is

true and is false otherw se

Control lists are lists of control instructions; their values are

determined simlarly to transformation lists: if any instruction wthin

the list has value true then the control list also has value true, and

the value is false otherw se

CO-instructions, TRACE-instructions and STOP-instructions have no
values. Wthin the conputer inplenentation of the control |anguage these

instructions are given the value false

39

r—rc— r— r— r— r—

r— —

REP-instructions take the value of the control program within them

if any instruction within the RPT-instruction iS true then the value of
t he RPT-instruction is true, and it is false otherw se.
An IN-instruction takes the value true if the transformati on naned

after the INis true and is false otherwise. Note that this is equivalent
to saying that an INinstruction takes the value true if the list of
instructions following the DO is executed at |east once.

The FLAG instruction has no value unless it is used within an
|F-instruction. Then the value of the FLAGinstruction is the value of

the flag denoted (see above).

The value of a control programis true if any instruction within

the control program has value true and is false otherw se.

40

—

r— r— — r—

TRANSFORVATI ON - ELEMENTS

transformation nane
true 1T the structural description of the transfornmation is net
false if the structural description is not net

group nunber -
true if any transformation within the group is true
false if all transformations within the group are false

transformation |ist
true if any transformation or group nunber within the angul ar
brackets is true
false if all transformations and group nunbers within the
angul ar brackets are false

CONTROL ELEMENTS

repeat instruction
true if any -instruction within the angular brackets is true
false if all instructions within the angular brackets are false

in instruction
true if the transformation following the IN is true

alse if the transformation following the IN is false

if instruction
true if any instruction between the IF and the THEN is true
false if all instructions between the IF and the THEN are fal se

flag instruction
has no value unless it is between the IF and THEN of an
| F-instruction, then
true if the denoted flag currently has value true
false if the denoted flag currently has val ue fal se

go instruction
has no val ue

trace instruction
has no val ue

stop instruction
has no val ue

control program
true 1f any transformation el enment or control element within
the list Ts true
false if all transformation el ements and control elenents
within the Tist are false

TABLE 11

Deternm nation of the value of an instruction

41

Moni toring the application of transformations

Thus far the description of the control |anguage has included
only instructions which actually contribute to the determination of the
output of the transformational component in the linguistic sense. The
control |anguage has been inplemented as part of a conputer system for
transformational grammar; it therefore also contains instructions which
moni tor the application of transformations and control the amount and

type of conputer output which is produced.

Trace instructions

The sinplest monitoring instruction is the trace-instruction TREE

which causes the tree to be output. For exanple, if the control program

for the IBM Core Granmar is changed to:
IN LOWESTS(1) DO < | ; TREE > ; ||

the tree will beoutput after group | has been invoked for a |owest S .
The results in the extended exanple given above will be that trees
(76), (78) and (80) are output. (Tree (82), the final result, is
automatically output wthout special instructions.) If we had w shed
to see only the final result(80) of the cyclic transformations, we

could have witten:

IN LONESTS(l) DO< | >; TREE Il

In testing a transformational grammar, one frequently is nore
interested in sone transformations than in others. The |anguage provides

instructions which will-enable transformations and groups of

42

r

r . r— r— o

transformations to be "traced", so that nmore information is provided on

their operation. The trace-instruction TRACE is followed by a

transformation nane or a group nunber and by a trace-specification which

must be BEFORE TEST or AFTER FAILURE or AFTER SUCCESS or AFTER CHANGE
The trace begins when the TRACE is encountered and it is termnated at
a corresponding UNTRACE. \enever a transformation which is being
traced is to be invoked, the corresponding trace-specification is
exam ned and the sentence tree is output at the appropriate point in
the invocation process.

TRACE @EFCRE TEST will output the current tree after invoking the
named transformation and after satisfying all specified keywords but
before testing the structural description

TRACE AFTER SUCCESS will output the current tree after invoking the
named transfromation and finding the structural description (and keywords)
met .

TRACE AFTER FAILURE will output the current tree after invoking the
named transformation and finding the keywords met but the structura
description not net.

TRACE AFTER CHANGE wi Il output the current tree after invoking the
naned transformation and making the structural change (if one is
specified).

Any nunber of transformations nay be traced at one tine, and any
conbi nation of trace types may be on for a given transformation at one

time. For exanple,

TRACE TRANS AFTER SUCCESS

43

.
L
L
i
L

r

— r <

will force an output of the current tree each time TRANS is invoked and
its structural description is satisfied The output will be made just

before making the structural change specified wthin TRANS,

TRACE< | ;TRANG > BEFORE TEST ;
TRACE | AFTER CHANGE

will force an output of the current tree each time a transformation in
group | is invoked and each time transformation TRAN6 is invoked. The
output will occur just after the appropriate keywords are found but before

the structural description is tested. In addition, each tine a
transformation in group | applies the current tree will again be output.

This output will occur just after the structural change has been nade.

44

o

ACKNOWLEDGEMENT
We wish to thank Thomas H. Bredt,.Robert W Doran, Theodore S. Martner

and Barbara H Ppartee for ideas which have been incorporated in the

control |anguage.

45

prm—y

ot

VoDl Fl ED 23 aucust 1968

COWPLETE SYNTAX FCR TRANSFORVATI ONAL GRAMVAR
TRANSFORVATI ONAL GRAMMAR : : = PHRASE STRUCTURE LEXI CON TRANSFORVATI ONS $END

TREE SPECI FI CATION :: = TREE opt[, clist[WORD TREE 1]
TREE ::= NODE optl COMPLEX SYMBOL] opt[{ Iist[TREE]1]
NODE ::= WORD or SENTENCE SYMBOL or BOUNDARYSYNMBOL
SENTENCE.SYMBOL ::= S

BOUNDEY SYMBOL :: = #

STRUCTURAL DESCRI PTION ::= STRUCTURAL ANALYSIS, optl , WHERE RESTRICTION] .
STRUCTURAL- ANALYSI' S ::=-1listl TERM]

TERM ::= opt] INIEGER 1 STRUCTURE or ontl INTEGER] CHO CE or SKIP

STRUCTURE ® ' = ELEMENT optl COMPLEX SYMBOL] optl opt[= J optl / 1 { STRUCTURAL ANALYSIS)]
ELEMENT ::=_NCDE or * or _

CHO CE ::= (clist[STRUCTURAL ANALYSIS 1)

SKIP ::= %

RESTRI CTION :: = booleancombination[CONDI TI ON]
CONDI TION ::= UNARY CONDI TI ON or BI NARY CONDI Tl ON
UNARY CONDI TI ON ::= UNARY RELATI ON | NTEGER

BI NARY CONDI TION :: = | NTEGER BI NARY TREE RELATI ON NODE DESI GNATOR or
| NTEGER BI NARY COVPLEX RELATI ON COMPLEX SYMBOL DESI GNATOR
NODE DESI GNATOR ::=_| NTEGER or NODE

COMPLEX SYMBOL DES|I GNATOR ::z COMPLEX SYMBOL or | NTEGER
UNARY . RELATION ::= TRM or NTRM or NUL or NNUL or DIP or NBIF

BI NARY TREE RELATION ::= EQ or NEQ or DOM or NDOM or DOVS or NDOMS or DOMBY oOr NDOMBY

Bl NARY COMPLEX RELATION ::= INC1 or NINCL or INC2 or NINC2 or CSEQ or NCSEQ or
or NNDST or COWP or NCOW

NDST

VvV XIONIddV

Ly

4.o1 COWPLEX SYMBQOL :: = I 11st[FEATURE SPECI FI CATI ON] I

4,02 FEATURE SPECI Fl CATI ON : VALUE FEATURE

4.03 FEATURE : .= CATEGORY FEATURE or TNHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE
4.04 CATEGORY FEATURE—CITE@PY
4.05 CATEQORY ::= WORD

4.06 | NHERENT FEATURE o= WORD
4.07 RULE FEATURE ::= TRANSFORVATI ON NANME

4.08 CONTEXTUAL FEATURE ::= OG\ITEXTUAL FEATURE LABEL or CONTEXTUAL FEATURE DESCRI PTI ON
4.09 CONTEXTUAL FEATURE DESCRIPTTON : (_STRUCTURE_opt[» WHERE RESTRICITON 1)

4.10 VALUE ::= + or - or * -

5.01 STRUCTURAL CHANGE ::= clist[CHANGE | NSTRUCTI ON]
5.02 ~ CHA NIRSTRUCTION : : = CHANGE—or CONDI TT ONAL _CHANGE
5.03 CONDITIONAL CHANGE ::= IF { RESTRICTION) THEN (STRUCTURAL CHANGE)
optﬁ ELSE (STRUCTURAL CHANGE)]
5.0kL CHANGE ::= UNARY OPERATOR | NTEGER o
TREE DES| GNATOR BINARY TREE OPERATCR | NTEGER or
COMPLEX SYMBUL DESI GNATOR BI'NARY COVPLEX OpERATOR | NTEGER
or COVPLEX SYMBOL DESIGNATOR TERNARY COVPLEX OPERATOR INTGER | NTEGER
5.05 COMPLEX_ SYMBOL DESIGNATOR : - = OOVPLEX SYMBOL Or _INTEGER -
5.06 TREE DESI GNATCR (_TREE) or TNTEGER or NODE
5.07 Bl NARY TREE CPERATCR T= ADLAD or ALADE Or ADLADI Of ALADEI or ADFID or AFIDE or
ADRI'S or ARISE or ADRISI or ARISEl or ADLES or ALESE or ADLES| .. armser
or ADRIA or AR AE or SUBST or SUBSE or SUBSTI or SUBSEI
5.08 Bl NARY COWPLEX OPERATOR ::= ERASEF Or MERGEF or SAVEF
5.09 UNARY OPERATOR ::= ERASE or ERASE1l
5.10 TERNARY COVPLEX OPERATCR ::= MOVEF

gh

OWOOOOO©

6.01
6.02
6.03
6. 04

7.01
7.02
7.03
7.04
7.05
7.06
7.07
7.08
7.03
7.10
7.11
7.12
7.13

§.01
§.02
3.03
8.04
a. 05
8. 06
8.07
8.08

9.01
9.02

©
w
w

.

P OO0 O000
RPoOWo~No o~

PHRASE STRUCTURE ::= PHRASESTRUCTURE list{ PHRASE STRUCTURE RULE 2 S$END
PHRASE STRUCTURE RULE

RULE LEFT ::= NODE

RULE RIGHT ::= MHODE or 1list¢ RULE RIGHT » or (list€ RULE RIGHT ») or (clistf RULE RIGHT ?)

LEXICON ::= LEX|CONPRELEX ! CONLEX!CAL ENTRIES $END

PRELEXICON ::= FEATURE DEFINITIONS opt{ REDUNDANCY RULES ?

FEATURE DEFIHNITIONS

..
.

CATEGORY DEFINITIONS opt€ "IMi

CATEGORY DEFIMITIONS
INHERENT DEFINITIONS

CONTEXTUALDEFINIT] On

.o
H

CATEGORY | i st < CATEGORY FEATURE ¥,

::= INHERENT 1list¢ INHERENT FEATURE 2 .
CONTEXTUAL DEFINITIONS =

:= CONTEXTUAL cl ist{CONTEXTUAL DEF

NITIONS » opt€ CONTEXTUAL DEFINJTIONS 2

HITIAQNY

t:= CONTEXTUAL FEATURE LABEL = CONTEXTUAL FEATURE DESCRI PTION

CONTEXTUAL FEATURE LABEL : := WORD
NDAN U t:= RULES cl ist{ REDUNDANCY RULE ? .
REDUNDANCY RULE ::= COMPLEX SYMBOL => COLPLEX SYMBOL

L

LEXICAL ENTRIES

ENTRIES list¢ LEXICAL ENTRY > .,

LEXICAL ENTRY ::= 1ist€ VOCABULARY WORD 2 1 i st{ COMPLEX SYMBOL ?

VOCABULARY WORD

:= WORD

TRANSFORMATIONS : := TRANSFORMATI! ONS 1 is t{ TRANSFORMAT! ON 2 CP QQNTROL PROGRAM . $END

TRANSFORMATE ON : := TRANS | DENT I F 1 CAT! ON SD_STRU QW optf€ SC CHANGE
IDE¥=IFICATION opt (| NTEGER » TRANSFORMAT 10N HAME opt €11 S t(PARAMETER 2>} opt{ KEYWORDS ?

PARAIKETER 1t = GROUP NUMBER or OPTIONALITY OR REPETITION

GROUP HUM3SER : :=1 o
OPTIONALITY

REP T10Hk AC or

r

It or 1l or IV or V or Vi

:t= 0B or OP

ACAC or AACC or AAC

KEYWORDS ::= Tist€ HODE »)
CONTROL PROGRAM ::= sclist¢ opt¢ LABEL : > INSTRUCTION ?»

or Vii

LABEL ::= HORD
JNSTRUCTION ::= RPT INSTRUCTION or [N |USTRUCTION or JF iHSTRUCTION
- or GO t WSTRUCT ! Ci or TRACE | HSTRUCT ION or STOP INSTRUCTION
or T1HRSTRUCTION O r < sclist< INSTRUCTION 2 >
I {ISTRUCTIQN ::= h AT 100 NAME, or GROUP HUMBER
RPT leTRUCTION ::= RPT opt €1 hT‘GER > C CONTROL PROGRAL >

IN FHSTRUCTION ¢ := |

IF FHSTRUCTION
Gu INSTRUCT Lo ::
JRACE INSTRUCTION ::=
TRACE SPECIFICATION :
STOP INSTRUCTION ::=

N_TRANSFORIMATI ON WAME (I NTEGER) DO < CONTROL PKOGRAM >

S

IF JNSTRUCTION THEN—GO |NSTRUCTION- opt€ ELSE GO [WSTRUCTION ?
GO TO LABEL

TRACE T INSTRUCTION T R A C E SPECIFICATION or UNTRACE TINSTRUCTION or

= BEFORE TEST or AFTER FAILURE or
TOP

AFTER SUCCESS or AFTER CHANGE

TREE

r

APPENDI X B

CONTRCL PROGRAM SYNTAX

The syntax given below is purely descriptive (as is the syntax
given in Appendix A). However, the control program syntax has been
translated into a precedence syntax suitable for use by a parser. The
operation of the control programin our inplenmentation is determned by

this translated syntax (see Pollack [1]).

CONTROL- PROGRAM & @ = CONTROL- PROGRAML .

CONTROL- PROGRAM ;@ = SCLI ST [CONTROL- I NSTRUCTI ON]

CONTROL- NSTRUCTION & : = LABEL CONTROL- I NSTRTJCTION OR
CONTROL- | NSTRUCTI ON LABEL
| NSTRUCTI ON

LABEL ::= WORD : LABEL
WORD :

I NSTRUCTI ON ::= CONTROL-EYEMENT OR
TRANSFORVATI ON- ELEMENT OR
CONTRQL- LI ST

CONTRQL- LI ST ::= < SCLIST [INSTRUCTION] >

CONTROL- ELEMENT ::= REPEAT- | NSTRUCTION OR

| NI NSTRUCTION OR
| F-1 NSTRUCTI ON OR
FLAG | NSTRUCTI ON OR
GO I NSTRUCTI ON OR
TRACE- I NSTRUCTI ON OR
STOP- | NSTRUCTI ON
TRANSFORMATI ON- ELEMENT ::= TRANSFORMATI ON- NAME OR
GROUP- NUMBER
RPT | NTEGER < CONTROL- PROGRAML > OR
RPT < CONTROL- PROGRAML >

REPEAT- | NSTRUCTI ON

49

I N-1 NSTRUCTI ON = :

| F-1 NSTRUCTI ON ::

]

FLAG | NSTRUCTI ON ::

FIAG-NAME :: =
GO I NSTRUCTION :: =

TRACE- | NSTRUCTI ON

SPECI FI CATION ::=

STCOP- I NSTRUCTION -

TRANSFORMATI ON- LI ST

| N TRANSFORVATI ON- NAME (| NTEGER)
DO < CONTROL- PROGRAML >

I F I NSTRUCTION THEN GO | NSTRUCTI ON
OFT [ELSE GO I NSTRUCTI ON]

FLAG NAME TRANSFORMATION-LIST

FLAG OPT [I NTEGER]

& TO WRD R

GOT0 WORD

TRACE TRANSFORMATION-LIST SPECI FI CATION COR

UNTRACE TRANSFORVATI ON-LST OR

TREE

BEFORE TEST OR

AFTER SUCCESS R

AFTER FAILURE OR

AFTER CHANGE

STCP R

TRANSFORMATI ON- ELEMENT OR
< SCLIST [TRANSFORMATION-ELEMENT] >

50

REFERENCES
[1] Pollack, B. W The Control Program and Associated Subroutines. m 28,
Conputer Science Departnent, Stanford University (June 1968).

(2] Fillnore, c.J. The Position“of Enbedding Transformations in a G ammar.
Word, 19 (1963), 208-231.

(3] Lees, R.B. A Gammar of English Nominalizations. Supplenent to
International J. Amer. Linguistics, Baltinore (1960).

(4] Friedman, J. and Doran, R. W A Formal Syntax for Transfornational
Gammr. CS-95, AF-2L, Conputer Science Departnent, Stanford
University (March 1968).

[5] Rosenbaum P. and Lochak, Dp. The IBM Core Gamnmar of English.
in Lieberman, D. (Ed.), Specification and Wilization of a
Transformational G anmar, AFCRL-66-270 (1966) .

(6] Friedman; J. and Martner, T. S. Analysis in Transfornational G ammar.
AF-3L, Computer Science Department , Stanford University (Septenber 1968).

(7] Friedman, J. Conputer Experinents in Transformational Gammar I1:
Traugott's Grammar of Alfredian Prose. AF-23, Conputer Science
Departnent , Stanford University (February 1968).

[8] Friedman, J. SYNN, an Experimantal Analysis Program for Transfornmational
Grammars. WP-229, the MITRE Corporation (1965).

[9] Ross, J- R A Proposed Rule of Tree-pruning. NSF-17, Conputation

Laboratory, Harvard University (1966), 1v-i-18.

[10] Gross, L. N. A Conputer Program for Testing Gammars On-Line.
M neogr aphed (1968).

(11] Kl evansky, L. Conputer Experiments in Transformational Gammar VI:
Swahili. AF-32, Conputer Science Department, Stanford University
(June 1968).

[12] Zwicky, A. M. On the Odering of Enbedding Transformations. M meographed
handout, meeting of the Linguistic Society of America (Sunmer 1966).

(13] Menzel, P., gShopen, T., and Partee, B. H Rule Ordering: Prelininary
Report. UCLA Wrking Paper #1 (Cctober 1967).

51

