CS 113

THE IMPACT OF STORAGE MANAGEMENT
ON PLEX PROCESSING LANGUAGE IMPLEMENTATION

BY
WILFRED J. HANSEN

TECHNICAL REPORT NO. CS II3
JULY 1969

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

THE IMPACT OF STORAGE MANAGEMENT
ON PLEX PROCESSING LANGUAGE IMPLEMENTATION

Wilfred J. Hansen®

STANFORD GRAPHICS PROJECT
Professor William F. Miller,
Principal Investigator

July 1969

Computer Science Department
Stanford University

“*Present address: Applied Mathematics Division, Argonne National Laboratory

This work was supported in part by National Science Foundation Grant GP-7615.

Abstract

A plex processing systemis inplemented within a set of environments whose

relationships are vital to the systems tine/space efficiency:

Data Environnent
Stack Structures
Data Structures

Subroutine Environnent
Routine Linkage
Variabl e Binding

--. Storage Managenent Rnvironnent

Menory Organization for Allocation

Storage Control

This paper discusses these environments and their relationships in detail
For each environnent there is some discussion of alternative inplenmentation
t echni ques, the dependence of the inplenmentation on the hardware, and the
dependence of the environment on the |anguage design. In particular, two
| anguage features are shown to affect substantially the environment design
variable length plexes and 'release’ of active plexes. Storage managenent
is conplicated by the requirement for variable length plexes, but they can
substantially reduce menory requirements. If inactive plexes are released
a garbage collector can be avoi ded; but considerable tedious programm ng
may be required to maintain the status of each plex.

Many plex processing systens store nunbers in strange formats and
conpile arithmetic operations as subroutine calls, thus handicapping the

conputer on the only operations it does well. Careful coordination of the

system environnments can permt direct nuneric conputation, that is, a single
instruction for each arithmetic operation. This paper considers with each
environnent, the requirenments for direct nuneric conputation.

To explore the techniques discussed, a collection of environnents
called Swym was inplenented. This system pernits variable length plexes and
conpact lists. The latter is a list representation requiring |less space than
chained lists because pointers to the elements are stored in consecutive
words. In Swym a list can be partly conpact and partly chained. The gar-
bage collector converts chained lists into conpact |ists when possible.
swym has careful provision for direct nuneric conputation, but no conpiler
has been built. To illustrate Swym, an interpreter was inplenented for a
smal | |anguage sinilar to LISP 1.5. Details of Swymand the | anguage are in

a series of appendices.

TABLE OF CONTENTS

Page

PREFACE e e iv
INTRODUCTION . . . o L o o o o o o s s s e s e e s e 1
Sywm and STUTTER« .« . « « .« o« . .. 3

Plex Processing Language Inplenentation 6
Environnents of a System Inplementation 9

Data Environnmento 11
.1 The Stack 11

l.2 Data Structures. e e e e e 14

[1* Modul ar Progr\érrm ng and the Subroutine Environnent « « « « o o & 27
.1 Routine Linkage e e e e e s 33
1.2 Variable Binding 37

IIl. Storage Managenent s e e e e 48
I11.1 Merory Oganization for Allocation « « ¢ ¢ ¢ o & 50
[I11.2 Storage Control. 53
Fixed-Release o 6 s s o s e 54

Fixed-No-Release o ¢ o s « & . 56

Vari abl e-Non-Rel ocating 57
Variable-Relocating 59

Herarchical, .. 63

Basi c swym Garbage Collector Algorithm. 65

CONCLUSI ON. . . v v o o o e e 73
Sunmary of Swym Environments 74

Inplications for Hardware Design 75

BIBLIOGRAPHY . . .« o o o o o o 77

APPENDI CES
A

Details of Swym Structures
Al Free Storage Structures
A2 Stack Structures
Swym Macros

B.1 LISP . The Basic LISP Qperations
B.2 Atom. Qperations on Atom Fields
B.3 Freest . Free Storage Creation
B. 4 Stack . Stack Mnipulation
B.5 Bit . Naned-Bit Cperations
B.6 Link . Subroutine Linkage
B.7 Control . Flow of Control

B.8 Misc . Mscellaneous
READ Routines and Syntax.
C.1 The Syntax

c.2 Internal Routines
c.3 CSSWYM Fi el ds used by READ Routines
c.4 Flow Charts .

EVAL and the STUTTER Interpreter
D.1 Defining Functions to the Interpreter
D.2 STUTTER Variable Binding
D.3 STUTTER Interpreter Internal Routines
Swym Garbage Collector
E. The Conpl ete Garbage Collector Algorithm
E 2 Garbage Collector Internal Routines
E.3 Information Stored in CSSWM

[
'..J 0

0.

STUTTER Functions

F.1l Basic Routines
F.2 Input Routines
F.3 Output Routines «

F. 4 STUTTER ocoeexnn.

F.5 Uility Routines

M scel | aneous Swym Routines

swm - STUTTER Initial Free Storage

H.1l Character Ghjects
H.2 Subroutine Qojects L
B3--. Special Structures .

Swym Register Assignments

Swym - STUTTER Qutput and Error Messages

J.1 Normal Qutput.
J.2 Read Errors .

Je3 Conputation Errors .

Jok ABEND - Abnormal Terminations .

Proposed Instructions for the IBM/360 .

Denonstration of the Correctness of the Swym Garbage ..

Col lection Al gorithm
Description of Control Section CSSWYM .

Adding Routines to Swym - STUTTER .

N. | Adding Assenbled Routines
N. 2 Conpi ling Functions for Swym

N.3 Defining Routines to be Interpreted

S W- Control Sections

MNEMONIC INDEX

165
167
168
171
172
174
176
179
179
179
179

183
184

184
184
186
187
188
196

225
229
229
230
232
23k
236

PREFACE

Plex processing is an effective technique for attacking graphical
problenms. The Stanford Gaphics Project conducted project Swym to exam ne
current techniques and devel op new techniques. An inportant result is that
pl ex processing cannot be viewed as sinply another high-level |anguage
facility. Instead, it nust be viewed as having an inpact on the nost vital
components of a l|anguage inplenmentation. Introduction of plex processing
into a language has far-reaching repercussions in the design of inplementations
of that [anguage.

Many graphics projects have based their inplenentations on plex pro-
cessing. An early effort was Sutherland s Sketchpad thesis reported in
[suth 63] and [John 63]. More recent are [vDam 67] and the interactive dis-
play project at General Mtors [Joyc 67]. A review of several systens inple-
ment ations useful for graphics is [Gay 67].

This paper can be considered as an outline for a course entitled 'Semantics
of Plex Processing Languages.' Know edge of Fortran and assenbly |anguage woul d
be prerequisite and the course woul d cover six |anguages in detail: ALGOL
[R&R 64] - the arithmetic nother, LISP [Mcar 62] - the plex father, and their
of fspring - ALGALW [BBG 68], GEDANKEN [Reyn 691, PL/I [1 BM é8b], and

" Swym/STUTTER (this paper and appendices). As far as possible, the course
shoul d ignore the syntax of the |anguages since there exists a superabundance
of literature on that field. Instead the course should cover the fundamental
semantics of data structures and program control.

The aut hor woul d have preferred to continue making additions to Swym
rather than wite it up. There cane a point, however, where the goals of the
project had been net and further effort would not add useful infornation.

This paper, especially the appendices, represents a systemin an arrested
state of development. This is not because there are conceptual difficulties in

Y

maki ng STUTTER a practical programm ng system but rather because there do
not appear to be any such difficulties. Sawym serves its purpose: it is a
framework within which systens can be inplemented

The body of the paper is an abstract discussion of |anguage inplenentation
and storage managenent. The appendices give conplete details of the Swym
system while the bibliography indicates previous work in inplenmenting storage
management. Unfortunately, some of the papers referenced, especially
in section 111.2, describe programming | anguages with no description of the
‘inplenentation details being discussed in this paper. In such cases, the
i mpl enentation details have been ferreted out in private comrnication.

Bi bl i ographic references are in the form
[name yr]

where nane is four reasonably mmenonic characters fromthe author's nane
and yr is the year the work was published. If the information was a private
communi cation, the year is coded 'pc'.

The author is indebted to all those who have taken their time to explain

and discuss the intricacies of various plex processing inplementations, notably

*the 'systemdidlers’ at the Stanford Artificial Intelligence Laboratory and the

Conput er Based Laboratory. Thanks are due to Dr. J. Reynolds, creator of
CgoENT, for discussion of that system and |anguage inplenentation in general.
F.L. Mrris acted as an invaluable sounding board for descriptions of the

evolving Swym system A special debt is owed my adviser, Dr. Wlliam Mller,

for his advice and encouragenent.

| NTRODUCTI ON

The term "plex" may have been first proposed in [Ross 61]. D.T. Ross
invented the termto mean a structure conposed of 'n-conponent elenents
just as a binary tree is conposed of 2-component el enents. |t has becone
more common, though, to use the term plex to mean 'n-conponent elenent'
and to call a structure of these a 'plex structure." One main characteristic
of plex processing is the pointer - a data itemthat encodes the |ocation
of some other data item NMbst commonly, a pointer is the address of a plex
in memory. In short:

plex - one ormore data fields of conputer menory, usually

consecutive

pointer data coding the location of other data (usually
a pointer is the address of a plex.)

plex structure - a group of plexes connected in the sense that starting
from one or nore of the plexes, all other plexes can
be reached by neans of pointers, either directly or
through a sequence of pointers.

pl ex process - a program using plexes to represent a substantia
anmount of its data. (An alnmost equivalent and nore
determinate definition is: any programthat requires
storage nanagenent beyond a stack.)

A list is an inportant special case of a plex structure. Basically, it
is an ordered set of plexes. Normally a list is realized with 2-plexes in
this way: the first conponent of each 2-plex points at an el enent of the
ordered set of plexes; the second conponent points at the next 2-plex in the
list. Usually, the second conponent of the |ast 2-plex points at sone
standard list termnator. Lists were treated nathematically by John MCarthy
[Mcar 60] and inplemented in the plex processing |language LISP 1.5 [Mcar 62].

[Knth 68] includes a conplete discussion of plex data structure inplenentation.

Q her good reviews of the literature on plex inplementations are in [Schr 67]
and [Lang 68]. The nmost promising work is reported in [Ross 671, [Hawk 671,
and [Styg 67]. The last two are part of the anbitious SDC LISP 2 for the 360,
described in the SDC TM - 3417 series.

Wien plexes are created and destroyed during execution of the program

some storage management technique nust keep track of the occupied and un-

occupi ed nenory. Some storage managenent schenes require a garbage collector.

This is a routine that processes all nenmory, identifies the occupied and un-
occupied areas of nmenory, and mekes the latter available for reallocation.
Al'though this is a time consuning process, other storage nanagement techniques
may i nvol ve extensive bookkeepi ng.

Satisfactory conputer |anguages nust also provide nunerical computation
In plex systens nunbers nust be distinguished frompointers. Oten this nmeans
that numerical operators nust retrieve their arguments from plex structure;
and this sometines requires several nmenory accesses and one or nore shifts.
Since plex languages usually pernit nore than one type of nunber, the
operators nust also test the types of the argunents. But lengthy access
sequences and type-testing can seriously slow down a numeric calcul ation.
Solving this problem requires some form of conpilation process and a
declaration structure in the language. The conpiler can then determne
at conpile time the types of operators and conpile the appropriate machine
instructions. The problem of directly accessing numbers that is, direct

nuneric conputation - requires that the stack and menory be pernmtted to

contain arbitrary bit pattern numbers. This neans, for exanple, that a
garbage collector cannot assume that all words on the stack are pointers
nor can it distinguish pointers fromother information on the basis of a

bit in the word

Swm and STUTTER

To exam ne plex processing fromthe practical level, Swym - a general
pl ex processing menory mnanagement system - was inplemented. As an illustra-
tion of the capabilities of this system‘ an interpreter for a small LISP-like
| anguage called STUTTER was al so inplemented.

The central focus of the Swym project was a particular plex structure
called a conpact list. This formof list can reduce nenory requirements by
up to half; essentially conpact lists do not always require the second pointer
in the 2-plex for lists. The details of conpact lists are in the section on
Swym data structures (1.2) and in the Appendices.

The conpact I| st was derived fromand suited for the needs of LISP 1.5.
Consequently, STUTTER is simlar to that |anguage and has the same basic

operations, (though new nanmes, the LISP 1.5 nanes are in parenthesis):

fst (CAR) argunent nust be a list; fst returns the first elenent
of that Iist;
r st (CDR) argument nust be a list; rst returns the rest of that

list after the first element; if the list has only one elenent,
rst returns an atom

tak2 (CONS) there nust be two argunents, both pointers; tak2 takes
2 words fromfree storage and tacks the 2 argunents together so

first is fst of result and second is the rst;

atom (ATOM) predicate - true if argument is an atom false other-
W se;
eq (EQ) predicate - true if both arguments point at the same

plex; false otherw se;

rplf (RPLACA) there nust be two arguments and the first nust be a
list; the first pointer in that list is replaced with a pointer

at the second argunent.

Unlike many LISP inplenmentations, an interrupt results if fst or rst is taken

of an atom Like LISP, the menonics _ffst, frst, rfrrst, ete., can be defined

(lending credibility to the nane STUTTER). As indicated above, tak2 always
makes a 2-plex. STUTTER relies on the swym garbage collector to nmake conpact
lists where possible.

Super - parentheses are an inportant feature of the STUTTER input syntax.
Represented by the characters '<' and '>', a pai r of super-parentheses can be
substituted for any pair of normal parentheses (of which there are many in
LISP and STUTTER input). Wen the input routine finds the right super-
parenthesis (>) matching a left super-parenthesis (<), the enclosed ordinary
parentheses are forced to balance, either by creating right parentheses or
by ignoring characters. |f characters are added or deleted, an error nessage
IS printed.

swym has been carefully designed to permt direct numeric conputation.
Special care was taken in several areas: the stack and free storage permt
thirty-two bit nunbers, and the value of a STUTTER atomis directly
accessible, given the address of the atom. The subroutine |inkage nechanism
and the storage managenent techniques also take into account the possible

presence of nunbers.

Swym was progranmmed for an IBM360 under 08/360. This was not only
because of the wide availability of the 360, but al so because it was some-
thing of a challenge to adapt the 360 for efficient pl ex processing. The
Stanford 360 is a nmodel 67 with 32 bit addressing and paging facilities.

Sswym was designed to test these facilities on a plex processing system but
the operating systemdid not support them and noreover, Swym was

moved to SIAC. Nonetheless, the |essons |earned from Swym may have inportant
inplications for machine design, as is discussed in the conclusion. Details

of Swym and STUTTER are in the Appendi ces.

Pl ex Processing Language Implementation

Several interesting |anguages have been designed primarily for plex
processing. The *best known exanples are LISP [MCar 62], SN@BPL [Farb 64],
L6 [Know 66], and the earlier |PL-V [ﬁéwl 64] and COM T [Yngv 62]. An
excel l ent review of such |anguages is in [Bobr 68]. The pronise shown by
these |anguages has led to nmany attenpts to define and inplement plex
processing facilities for existing high-level |anguages, For instance:
_ SLIP [Weiz 63], records for Algol [Hoar 66, Wth 66], and the 'based variabl e’
feature in PL/L [IBM 68b]. Unfortunately, adding a plex processing feature
is very unlike adding a new function (say SINE) or even a whole new arithnetic
(say conplex). Pl ex processing not only requires appropriate additions
to the conpiler or interpreter, but can also require extensive revision of
the code conpiled for all other features. The major problemis that plex
processing requires some form of storage nmanagenent, either by the user,
or by the system This paper surveys the problens encountered if a system
s to manage storage. These problenms are encountered in the very basic
areas of data representation, subroutine |inkage, and storage management
itself.

In nmost conputer installations, program conpilation is a frequent
event. Like other non-nuneric conputation, conpilers can make advantageous
use of plex processes. For this reason, the concepts and techniques discussed
in this paper apply not only to the code generated to inplement the features
of a language, but also to the features required in the conpiler itself.
This paper assunes that the |anguage being inplenented includes plex
processing and consequently requires storage menagement. |t is also assumed

that the language permts definition of subroutines (procedures) and that

prograns witten in the language wll make substantial use of subroutines
and modul arity. For two reasons, Swym sheds sone |ight upon the functions
required during the execution of a plex processing program First, Swm

is an investigation of plex processing; second -- and |ess obvious --

Swym required construction of plex processes. The garbage collector,

i nput/output routines and the STUTTER interpreter are all exanples of

pl ex processes.

A progranmng system will be used by many programs over an extended
period of time. It is inportant in the design of such a systemto avoid
decisions that will slow execution substantially, expecially when a practica
alternative is available. Usually many decisions nust be based on the trade-
off between menory space and execution speed. Before multiprogramming and
timesharing the answer was to optimze by saving tine at the expense of space
since the menory was there. In nodern systens there is an expense not only
for execution tine, but also for menory space. The ratio between these two
expenses is critical to the choice of an efficient set of alternatives for
a language inplementation. One of the goals of this paper is to point out
the alternatives. A major effort was made to reduce the size of the data
structures as far as possible and to reduce the tinme and space required
for the nost basic system functions

One approach to the definition of execution efficiency is that of the
Ié systens [Know 66]. That |anguage and system is designed for 'lowlevel ness'
Thi s has been defined [Mnch pc] as producing code that is no nore than ten
percent slower than equivalent hand code. STUTTER was designed with a
slightly different criteria in mnd: the principle of 'relative difficulty

of specification.' This principle declares that a language facility shoul d

take proportionately as nuch effort to specify as it does to execute. In
this way the programer can have some feel for how much tine the program
will take sinply from the amount of code he wites

Several problens contribute to slow running of high-level |anguages
with plex processing facilities. Mst of these, however, are inherent,
not in the plex processing facilities, but in the inplenentations. Mny
pl ex processing users see only the interpretive LISP or SN@BPL systens.
Conpi | ed LISP, however, runs nuch faster than when interpreted. SN@BAL |V

- has plexes, and should run faster than sNgBPL |11 (because string
mat chi ng can now be avoided in plex operations). Wile interpreters have
their place, thex are simply too slow to be used on any problem big enough
to justify the use of a conputer. But there exist plex processing systens
that meet these problems adequately. The ALGOLW [BBG 68] system at Stanford
inplenents plexes, yet is so fast a total system that student programs can
be conpiled and executed on a 360 in less than a second. In short, the
presence of storage management facilities need not automatically mean
sl ow execution.

Al'though witten in terns of |anguage inplenentation, this paper is
really directed toward any program that can be more efficiently inplenented
by first inplenenting some tools. These tools mght be any one of,

a) wite a few nmacros

b) wite macros to interface with an existing nenory nmanagement
system |ike Swm

c) design a special purpose |anguage

d) design a full general purpose |anguage
The author believes that the nost useful approach is probably (b), and he
woul d probably design many nore data-specific nmacros than mght anot her

progr amer .

Environments of a System |npl enentation

A programis executed on a conmputer in a set of environnents including
not only the hardware, but also service routines and conventions for data
representation and program linkage. The environments nost directly affected by
the requirement for plex processing can be divided into:

Data Environnent
Stack Structures
Data Structures
Subroutine Environnent
Routine Linkages
Variable Binding
Storage Managenent Environnent
Menory Organization for Allocation
Storage Control
Al of these environments interact with the system storage managenment facility.
Not only nust they be designed to nake storage nanagenent possible, but many
require plexes for their own inplenentation.

The relations between the environnents nust be carefully worked out before
system construction is begun. A hasty decision on one environnent can be
expensive in the inplenentation of sone other. ALGOLW did not provide for
marking pointers on the stack. This eventually required that the garbage
col lector be rewitten. [Baur pc]. Oher decisions in ALGOIW require that a
2-plex occupy sixteen bytes. But if a set of environments is well coordinated,
more than one |anguage can be inplenented within that set of environnents.

This provides for very efficient |inkage between routines witten in two or

nmore | anguages.

Each section bel ow describes one environment of a |anguage inplenentation.

The discussion will center around the effect of the storage managenment

schene on that environment but will also cover alternative inplementations

and the relationship of the environnment ‘both to the | anguage being inpl enented
and to the machine being used. Each section concludes with a discussion of the
relevant features of Swym and STUTTER This serves for conparison and to

iIlustrate one choice of solutions for the problens posed.

10

Data Environnent

Data structures range in conplexity fromthe single bit to organiza-
tions covering large quantities of direct access storage. To a certain
extent, the data structures in a systen are dictated by the needs of the
hi gher level language. But the physical structure of the data may differ
from the logical structure manipulated by the higher |anguage programer.
In any case, the data requires storage space and this must be provided by some
form of menory management nechanism either during conpilation or during
execution. The discussion below separates stack data structures from other data
structures for two reasons. First, the stack is the sinplest form of execution
time nenory nanagenent. Second, a stack is usually included in a system for
program control purposes. In nost |anguages routines exit in the reverse
order of entry, so the stack is the natural analog of the progress of the

program

|.1 The Stack

A stack (sonetimes called a push down list) is a sinple but inportant
system conponent. Anong the advantages of a stack are that few instructions
are required to allocate and release space and there is no possibility of frag-
mentation of space, because there is only one contiguous area of unused space
A stack permts recursive procedures: by allocating tenporary variables and
saving return addresses on the stack, a procedure can call itself directly or
indirectly. Each invocation refers to the correct variables and returns con-
trol correctly. Even if there is no recursion in an entire program a stack
is a flexible and efficient method of storage allocation

There are three basic operations on a stack: addition, deletion, and

reference to itenms; all are-easily inplemented. One pointer to the stack

11

is maintained; additions and deletions move the pointer, while itens are
referenced relative to it. Sonetimes a test is made for the bottom of the
stack when itenms are deleted. Qher systems assune that the programis
correct and that no nore deletes will be-executed than additions. Several
met hods have been inplenmented for ensuring that the steck does not grow beyond
its bounds. The nost common is to sinply test the stack pointer against a
pointer to the end of the stack. A possible hardware nethod is to check the
low order k bits of the stack pointer; if all are zero, the stack is exhausted
This nmethod neans that stacks nust end on certain boundaries; a restriction
that conplicates memory allocation. Wth the PDP-6 hardware stack commands,
a stack pointer includes a count that is decremented when the stack increases
and increnented when itens are deleted. |If the count reaches zero, the stack
i s exhaust ed.

Stack exhaustion poses peculiar problems; one sinple solution is to
term nate execution. In paging systens or systems with nore than one stack,
it may be possible to continue. The difficulty is that the stack is changing
nost rapidly near the top. |If a new page is allocated for the stack, only
one or two words may be used before the stack goes back to the old page. If
.the new page is released, it may need to be reallocated again very shortly
If the new page remains part of the stack, the stack may grow large during
one-portion of a program and eat up valuable space during |ater portions
At the least, paging algorithms must recognize that the bottom of the stack
will not be accessed for a reasonably long time while the top of the stack
must never be paged out.

Wien a conputer inplements a stack in the hardware, it is comon to
keep the top stack itens in faster access menory. The B-5500 had two high

speed stac'k locations; the Atlas had sixteen. In these cases, specia

12

|l ogic can be incorporated to mnimze nenory accesses due to fluctuation of
the stack pointer. \Wen an itemis deleted fromthe top of the stack, the
hardware nust decide whether or not to initiate a menory fetch to load the next
itemof the stack. The answer dependson the expected ordering and frequency
of additions and deletions.

I'n nmost Algol inplenentations, a block of tenporary storage on the
stack is allocated at procedure entry and deleted upon exit. The stack
fluctuates nore rapidly for B-5500 and Euler-like [Wrth65] inplementations:
the top elements of the stack are the inplied operands for an operation and
the result replaces those operands on the stack. Swym pernits an in-between
met hod; stack storage is allocated only when it is needed, not necessarily
for the duration of the routine.

In plex processing systems three classes of itens can be stored on
the stack: pointers, return addresses, and non-relocatable data. These
must be distingui shed because the garbage collector nust find all structures
referenced by pointers on the stack. It is possible to associate type hits
with every word on the stack to identify those that are pointers. But if
those bits are in the word itself, it will not be possible to store arbitrary
words on the stack as is required for direct numeric conputation. (A nunber
m ght have the pointer bit set wong.) Numbers could be treated by creating
a plex containing the nuneric value and storing a pointer to that plex on
the stack. But this seriously slows nuneric conputation by unnecessarily
invoking the storage nmanagenent facilities. ISP 2 proposes that each routine
call include a 'stack map' of the storage allocated for the calling routine
This map could be accessed relative to the return address, which would also

be on the stack.

13

Swym St ack

The Swym stack is one 360 word wi de and grows downward. That is,
additions are nade at the |owest addressed end of the stack. In this way,
the latest entries to the stack can be addressed relative to the stack
pointer. Provision has been nade for three varieties of entry on the stack:
pointers, return addresses, and stack plexes. The high and low order hits
of the word are used to distinguish between these varieties so that the
garbage collector can treat each correctly. Every plex has a one-word
pl exhead specifying its length and type. Nunbers and other arbitrary bit
pattern words may only be stored in plexes; but note that a conpiler can take
the plexhead into account and generate code to directly reference nunbers

stored on the stack.

|.2 Data Structures

Data structures that have been inplenented include
dass I. bits, words, arrays, strings, stacks, queues, and

connection matrices.

Cass I1. Lists, plexes, rings, and hash-coded associative struc-
tures.
Cass Il1. Variants of the above for tapes, cards, direct access

devi ces, and transm ssion

Al classes are alike in that they require menory space to store information
If this space is allocated during execution, there nust be sone form of
execution-tinme storage managenent.. Section Il of this paper concentrates

primarily on managenent for Cass II.

14

\

The elements of Class | are sinple in that they do not necessarily
invol ve pointers, although they may involve dynamic storage allocation.

The data structures in Cass | are well covered by [Knth 67]. Stacks have
been discussed in Section 1.1. Queues are sinply push-through (FIFp or
first-in-first-out) stacks. A connection matrix represents a graph by
having one bhit for each possible connection between the nodes. |f the bit
Is one, that connection exists. Odinarily arrays are used to contain in-
formati on concerning the nodes connected by the matrix.

The data structures in Cass Il generally involve pointers. These
structures are described in [Schr 67] and [Gray 67]. It is interesting to
conpare LISP Ii§ts with connection matrices for describing networks. If
there are n nodes, the connection matrix requires i bits. If there are p
connections and each list element requires b bits, then the list structure
requires pb bits. The density (nunber of connections/nunber possible
connections) of the graph for which the two representations take the sane
nunber of bits iS_p'ZE? where p'b :_f . For greater densities, the matrix
requires fewer bits than the list. The breakeven density is then 1/b.

For b = 64, the break even density is 1.5%. That is, if nore than that
percentage of the possible paths exist, then the connection matrix is a
smal | er representation. Connected graphs under 66 nodes always exceed

1.5% density because there are at |east n-1 paths. The trouble with matrices
is that their allocation is very machine dependent. For exanple, an increase
fromless than 32 nodes to nmore than 32 nodes m ght mean substantial re-

progr anmi ng

Two strange schenmes have been proposed for LISP list structures, but
not inplenented. In one, ¢PNS would hash its argunents and store the dotted

pair in a hash bucket. If the pair was already in the bucket, a pointer

15

to the existing pair would be returned. This schene would make EQ and EQUAL
the sane sinple operation, but would prohibit the efficiencies possible with
RPLACA and RPIACD. The mmjor bar to inplenmentation (the |BMLix was proposed)
seemed to be the lack of a suitable garbage collection algorithm The
second scheme was the n-cube addressing scheme. Every word woul d have
associated with it 2"°-1 other words. These can then be addressed with j ust
n bits in the pointer field. (It was proposed that the addresses of the words
associated with word x be formed fromthe address of x by nodifying each bit
in turn. Thus the associated words would be those connected to x along the
edges of the n dinensional hypercube.) In this scheme, though, any function
that will build aplex nust tell its argunents where to put their result;
t he consequences are staggering: in general, the conputation nust termnate
before any results are stored.

The CORAL system [Suth 66] is one exanmple of a system based on rings.
Essentially, each ring is a list with an explicit ring head; the end of
the list points back to the head. |n addition, alternate elenents of
the list contain pointers to the ring head and the reverse pointers that
poi nt back to the preceeding reverse pointer. Aring element is a plex,
called a block. The pointers constituting the ring are physically stored
in these plexes and the beginning of the plex is nmarked with a word with
a special bit pattern (all ones). CORAL is a set of macro statenment for
the TX conputers at Lincoln Laboratories.

Gther ring systens are described in [Gay 67]. [Perl 60] describes
"threaded lists'; these are simlar to rings but derived fromLISP lists
The end of the list is marked by a special bit, and the pointer there points

back to the beginning of the Iist.

16

An elegant notation for plex processing in higher |evel |anguages is
the 'record feature described in [Hoar 66] and [Wth 66]. Essentially, the
declaration of a 'record class' defines a possible type of plex. The class
nane is inplicitly declared as a procedure for generating nenbers of the
class. ldentifiers attached to the ffelds of the plex are inplicitly declared
as procedures to access the contents of records of the class. The arguments
to such procedures are records of the proper class. Qher identifiers can
be declared to be pointers to nenbers of one or nore record classes

Before direct access devices and on-line systens, Cass Ill structures
were usually sequential files. But nodern Cass |Il structures have been
forced to include el aborate indexing and addressing structures. |ndeed,
there is need fo space managenent in nost systens with Cass Il structures
The nost conprehensive existing systemfor managing file storage is 0s/360.
Its great flexibility has pronpted user grunbles about having to specify too
many paraneters. For exanple, one of the facilities offered is a relocating
garbage collector for disk packs. This collector is not called automatically
but nust be invoked by a special procedure.

One goal in on-line systems is to build a filing system capable of
maintaining any file of data. An experinental unified file system was
reported in [Frnk 66]. This system encoded the value of each data itemas a
pointer into a table of possible values for the item Variable |ength
pointers appear to be necessary to make the scheme work; and even then it
seems to entail substantial /O Another, nore analytic approach to file
design is discussed in [Benr 67].

Sone systens have used Class |Il data structures for graphic applica-
tions. The MLTILANG file systemis the basis for the PENCIL system

reported in [vDam 67]. Plexes are stored on a disk and contain keys and

17

elements. A plex may be specified by specifying |ogical conbinations of
keys. The LEAP system[Rovn 67b] stores "triples' of associative information.
Each triple is stored three tines on the disk; once for each of the conponents
Thus triples can be retrieved based on any part of their contents

Several factors nust be taken into account when designing a data structure
for a language inplenmentation. These include the host conputer, the basic oper-
ations to be inplenented, and the anmount of data description that must be avail -
able to general purpose run-time routines.
- The host conputer affects data structure design at the |owest |evels.
For exanple, the size of pointer fields depends on the amount of free storage
to be addressed. _Also, nost conputers favor certain portions of words by
having instructions for manipulating those portions. A physical structure
design should take advantage of such natural access aids. The danger in such
designs is that a 'cleverness' in sone portion of a representation will not
save as much space and/or time as is required to get the information into
the peculiar formrequired. In keeping with the principle of relative
difficulty of specification, the physical structure should bear some resem
bl ance to the logical structure. For exanple, variable length plexes could
be represented physically as a |ist of fixed length plexes. But the
programrer may reference the last itemin the plex frequently, expecting it
to be found with address arithnetic, rather than |ist searching. Numbers
shoul d be stored so as to be accessible for the hardware arithnmetic operations;
i. e., On the appropriate storage boundaries so shifting is avoided.

A large proportion of the time in a plex process is spent accessing the
correct piece of data. Since data access can mean descending through many
level s of (logical) data structure under control of the program the best

neasure of the efficiency of data access is the effort to descend one |eve

18

in the data structure. In Swym, these 'descent' operations are rst and
fst; requiring five and one instruction executions, respectively. Access
to a fixed length element of a Swm plex requires one instruction. The 7090
i npl enentation of Lisp required 8 instructions each for CAR and CDR, the only
avail abl e descent operations. Lisp inplenentations using tenporary storage
[Bobr 671 [Cohn 67] typically nust test page tables and perform address
arithmetic to descend one level in the data structure. Such processing is
time consumng and has led to the definition of hardware 'paging' systens
like that on the 360/67.

.. There are several reasons why data structure designs often include
descriptive information along with the data. A primary reason is that the
garbage collector nust determine certain properties of structures before it
can collect them Qher reasons mght be that each operator checks its
argument to see that it is the correct type, or that the operators nust know
the specifications of the data in order to conpletely specify the operation.
For exanple, a general print routine nust know the type of the data and a
string nove routine nust know the length of the string. The garbage
col lector needs the location and length of each active data item and the
position(s) of any relocatable information in the item

A data item can be described by its location, length, type, and zero
or nore type dependent paraneters. This information may be specified

explicitly or inplicitly and may be located with the item wth the

reference, or renotely. Information stored with the itemusually takes

the formof explicit fields referenced relative to the pointer at the item
Storing descriptive information with a reference to an item means that

the itemcan be a part of some other item The XPL string mechani sm

[MKee pc] permts two strings to share menory. Renote storage of descrip-

tors has been proposed by D. McLaren [MCla pc]. Plex storage would be

19

allocated from the bottom of a free storage area, while fixed length
descriptors were placed in the top. The descriptor corresponding to a
pointer could be found by a binary search on the descriptor area. Presum
ably, the descriptor would be infrequently referenced in that system
Inplicit data description is information derived from other characteristics
of a data item For exanple, the length may be inplicit in the type, that
is, all items of that type are the same length. The type nmay be inplicit
in the fact that the itemis within some area of nenmory. J. Reynol ds
[Reyn pc] has proposed a mninal encoding scheme having type explicit

and inplicit with the reference. |If the conpiler determnes (from declarations
or by analysis) that a certain field can only point at a plex of one of

n types, then the type information can be coded with the reference and requires

only l'log,ap_'l bits.

Swwm Data Structures

Very conpl ex plexes can be realized under swym, but this section con-
siders only those inplemented for the STUTTER interpreter: lists and atons.
A list is a sequence of pointers. Each pointer is the address of an elenent
of the list. An elenent, in turn, can be either a list or an atom An
atomis a plex with arbitrary internal structure. Note that Swym lists are
special plex structures because the garbage collector can conpact them

The difference between conventional lists representations and com
pact lists parallels the difference between the IBM 650 and nost ot her
conputers. 650 instructions had two address fields: one for the operand
and one for the next instruction. Mst other conputers save nenmory by
assuming that the instructions are sequential. \Wen the instruction se-

quence is broken a 'branch'. instruction continues execution el sewhere.

20

Like the 650, many list representations use two pointers for each el ement

of alist: one to the element and one to the rest of the list. On the

other hand, list storage can be conserved by storing lists sequentially

in menory; then only the pointers at the elenents are required. But if

that is the only way lists can be stored, certain list operations can be
time consuming. The Swym solution is to allowa 'list branch' pointer.

Lists are normally sequential, but when a list cannot be sequential, it is
continued with a "list branch' pointer. Figure |.1 illustrates several

list structures in both the old and new representations. Note that a 'list
-- branch' pointer is called a rst pointer because it points to the rest of

the list.

An earlier system permtting conpact |ists intermxed wth chained

lists has been reported by N. Wiseman [Wse 66]. This system provides

for creation of conpact Iists, but the garbage collector does not rearrange
storage to renove rst pointers. Unlike Swym, variables may point at rst pointers
and there may be nore than one rst pointer between elenent pointers. But the
user nust program extra checking to avoid treating rst pointers as |ist
pointers. Wiseman presents no data on the effectiveness of his system

Swym |ist words have the format shown in Figure I.2a. |[f the rst bit

is zero, the word points at an elenent of the list. If the rst bit is

one, this pointer is so-called 'list branch' pointer; it points not at an
element of the list, but at the continuation of the list. The atombit is
on in a pointer at an atom this is the distinguishing characteristic of an
atomin the swym system |f both the atomand rst bits are zero, the pointer
points at a sublist of the given list. If both the atomand rst bits are one,
the end of the list has been reached. A list ending with a pointer at the
atom NIL is a normal list; otherwise, it is what LISP 1.5 sonetines calls a

general s-expression. The atomNL is treated as a list with no elenents.

21

a

(¢

o

A ® o>

[® ¢

[v2]

| A ® 8

A KR e

B ® o;— C []

® o—]

(® ot—s

(]

?
L]
A

[® ot—>

o |4t

\

s}

[

All Possible Mixed Representations of C:

.

A [B [®C|
| A [® 8
LAlB] C[]
Le [C| & |]
LAl B[~

.
Y
A

[A [Bef—>{ B | c |]

LA]

B I® ot+—»f C [_—]

2. A ‘list branch’ pointer is indicated by ® (for rst).

3. is written Z to indicate the end of a normal list.

4.

FIGURE 1.1

22

A pointer at an atom is represented by a character string. (The ‘print name’ of the atom.)

Any other rst pointer at an atom is the end of a ‘general s-expression’list.

a. List Word

I | Address Field [

0 | 29 30 31
Reserved for Atom bit

Garbage Collector (M1)
\
Ist bit

also used by
Garbage Collector (M2)

b. P lexhead
L | [Twe J1] |]
01 7 8 14 15 16 30 31
A
always 1 in an
atom head
Type of atom
Reserved for Reserved for
Garbage Collector (M1) Garbage Collector (M2)

FIGURE 1.2

23

Associated with each atomis a plexhead - a word containing the type
of the atom and two marking bits for the garbage collector. The format of a
pl exhead is shown in Figure I.2b. The twenty-two unused bits may be used
for different purposes for different atomtypes. Depending on what is
desired, a plexhead may be |ocated al m)s“t anywhere with respect to any
other words in the atom but usually it is the first word in a plex.

Atons are addressed by pointing six bytes in front of the first byte
of their plexhead. This means that they point at a half word boundary
which is not a full word boundary. A pointer at a list always points
at a full word boundary. Thus, Swym distinguishes a list froman atom
by the pointer pointing at the item (the atombit is just part of the
address). Because atoms are addressed six (not two) bytes in front, the rst
operator examnes a bit in the mddl e of the plexhead. Since this particular
bit is always on, rst causes a specification error. fst also causes a speci-
fication error if applied to an atom But the conponents of an atom can
easily be referred to with special Swym nmacros that assenble only one
instruction. From a paged nenory standpoint, the atom bit has a small
advantage: whether or not an element is an atom can be decided wi thout
accessing that elenent. The advantages of the atom bit suggest its use even
in a 2k-bit address machi ne.

Al atom types are alike in having a plexhead and in being addressed
in a strange manner. Only two atomtypes are defined in the basic Swtn
system synbols and strings. But the user may define other types of atons
sinply by coding the primtives to create, manipulate, and garbage collect
the new atomtypes. Since the contents of a plex can be addressed directly

if the address of the plex is known, operations on plexes are no nmore costly

than operations on statically allocated storage.

ol

The symbol atom corresponds to the normal Lisp atom In Swym, such an
atom has three conponents: the plexhead, a value cell, and a property Iist
The plexhead contains control bits describing the contents of the value cel
and the atomis definition as a function. The value cell contains the atoms
variable binding as discussed in Section 11.2. The property list is sinilar
to that for LISP 1.5, but the r. ..rst is a pointer to the print nane (a
string aton.

There are currently three sub-types to the string atons. Al are alike

in containing no relocatable information (addresses) and in being stored in
a consecutive block following the plexhead. The three sub-types are string
fixed point nunbeF, and hexadeci mal nunber. The najor difference between
these subtypes is in how the print routine handles them they are not dis-
tinguished by the garbage collector. The plexhead of a string atom contains
the subtype field and a length field. The string and hexadeci mal nunber may
be any nunber of bytes up to 32767. A fixed point nunber currently always
has a length of four bytes.

Swym free storage is one contiguous block, and new plex structure is
created fromone end of that block. This storage allocation schene has
proven advantageous in the Cogent system [Reyn 65]. Lists can be created
in conpact formif all their elenments are known. Atons of any size can
easily be created; for exanple, bit string atons are always stored in con-
secutive bytes. Note that the garbage collector requires only two bits
in the plexhead; all other words in an atom structure nmay be full words

Thirty-two bit addressing is supported by Swym. A pointer may occupy

the full word except for three bits: the two low order bits and the high

25

order bit (bits 0, 30, 31). Because the 360 addresses bytes and all Swym
pointers point at words, the |ow order two bits of a pointer are not used

for addressing. The high order bit cannot be used either. Difficulties

will arise as soon as address arithnetic (especially BXIE and BXH) is

attenpted on full thirty-two bit addresses; addresses in the upper half of
nmenory are negative and are thus algebraically smaller than zero. gSwym uses the
three circunscribed bits to good advantage. The |ow order bit is the rst bit,
and it marks a rst pointer. The next to low order bit (bit 30) marks a

pointer at an atom Both the high and low order hits are used for marking

by the garbage collector. These same bits have other neanings in control

words on the stack.

26

[l. Modul ar Programm ng and the Subroutine Environnment

Plex processing inplies a structured approach to data; the corresponding
structured approach to programming is nodularity. If a large programis
broken down into a series of smaller prograns, the latter are easier to
wite, debug, and nodify. Mreover, if the programis carefully divided
along functional lines, the large program can often be redesigned sinply
by rearranging the sub-programs. Modularity is evidenced at many |evels.

There is always a set of basic operations available to the programmer, and
usual [y there is a mechanism for defining and invoking subroutines. Basic opera-
tors can range jron1nachine instructions, to interpreter 'syllables', to sets
of macro instructions. Each specifies a set of operations considered by the
designer to be convenient and conprehensive for describing the steps of a
task. A subroutine nmechanism permts the programer to design his own set of
basic operations tailored to the task at hand. Wile inplementing Swm it was
necessary both to nodul arize the systemitself and to provide efficient and con-
vient nechanisnms for modularity in | anguages inplemented under Swym.

The nost basic exanple of modularity is the hardware instruction set
of the conputer. Each instruction is a nodular description of a sequence
of gating registers onto buses and operating on those buses. (n the 360
-yet another level of basic operations called the mcro-instructions is
introduced between the programmed instructions and the hardware nanipul ation
W. McKeeman has pointed out [MKee 67] that conputer designers nust
consi der the problems of |anguage design in order to optimze conputer
functions. H's work, however, usually enphasizes the design of conputers
for specific languages. The discussion in this paper attenpts to isolate

basic operations comon to all |anguages that provide plex facilities.

27

Most LISP 1.5 inplenmentations provide an interpreter to execute Ilist
structure read by the same read routine that reads S-expression data
This provides a sinple way to begin building a LISP system In fact, nost
LISP conpilers are witten in LISP and conpiled interpretively. The
availability of an interpreter also permts treating prograns as data and
then executing the processed program The LISP interpreter can be described
“in LISP itself, a feature that can lead to better understanding of the
| anguage. But the nost common reason for providing an interpreter is
really the design of special purpose conputers. By coding an interpreter,
the programmer provides a set of operation suitable to inplementing the
| anguage. Interpreters often have syllabic operation structures like
B-5500 machine |anguage. Such code structures provide high code density -
thus saving space - because the operands are inplied to be the top of the
stack and thus need not be addressed explicitly. The only comercial
conputer specifically designed for inplenmenting |anguages by making highly
efficient interpreters is the B-8502, tantalizing details of which
are beginning to leak out. How Well suited the B-8502 is to variable
length plex processing remains to be seen.

For Swym a pseudo-machine was inplemented by witing a set of macros
for the 360 assenbler. The facilities offered by this pseudo-machine include
those desirable for plex process inplenentation - both data manipul ation and
program control. Macros are suitable for designing pseudo-nachines because
it is not necessary to design a whole machine. Just as nuch as is desired
can be formalized, while other processing is done in terms of hardware opera-
tions. In this sense, macros provide nmore freedom than the interpreted mcro

operator approach to pseudo-nachines.

28

For a variety of reasons, plex processing programs tend to include many
subroutine calls.* Probably the primary reason is that programmers who think
interns of structured data tend to think in terms of structured prograns. At
the sane tine, the fact that the data may have simlar structure at different
level s seems to lead not only to subroutfnes, but even to recursive subroutines.
For instance, in a graphical problema routine to find all connected nodes
mght easily be witten by finding all nodes adjacent to a given node and
then applying the sane subroutine to each of these adjacent nodes. Another
important reason for subroutines and modularity in plex processing prograns
is that such programs are usually experimental and subject to change
(because non-experinmental prograns usually cannot afford the overhead
currently inplicitkin many plex processing systens). Since subroutine-cal
is often the nost frequent operation in plex processing prograns, attention
must be paid to its optimzation. This problemis considered at Iength
bel ow.

There are several goals and advantages in nodul ar progranmng. These
are synonynous, because neeting the goals successfully inplies taking
full advantage of the potential saving in time and effort (in total tine,

not just initial program witing tinme). Mdularization offers

(1) Ease of witing. It is very convenient to code an operation by
witing the nane of a routine or macro that will perform that
operation. Not only is total witing reduced, but repetitive

witing is elimnated; both reduce the chance of clerical error

*¥7090 LI SP even conpiled subroutine calls for CAR and CDR Even now
most LISP inplenentation conpile arithmetic operations as subroutine calls.
ALGOLW denonstrates that with a suitable declaration structure, such basic
operation can indeed by conpiled in-line. Swym has provided the nechanisns
necessary for conpiling such in-line code while maintaining communication
between conpiled and interpreted functions

29

(2) Ease of nodification. Since clearly defined nodul es perform specific
functions, changes in these functions can be nmade sinply by changing
the appropriate nodule. Mdules often provide good 'hooks' for adding
debuggi ng output or statistics gathering routines. The nodularity
built into the Swym system was of use on nore than one occasion. The
subroutine calling conventions were changed several times. The code
in all routines was changed by nodifying the macros and reassenbling.
It was also sinple to change register usage to communicate better with
oS and PL360. The flexibility demanded by the swym programming standards
shoul d prove invaluable in inplenenting other |anguages within Swm

(3) Ease of debugging. Mdules are easily tested independently, so
that errors car: be isolated. LISP is especially anenable to nodul ar
debugging for two reasons. First, all data is represented in S-expressions,
so the inputs and outputs of a routine can be represented wthout driving
routines. Second, LISP facilitates and even encourages subroutine
organi zation so that less thought is required to put the programinto

modul ar form

Sone system design tinme should be specifically devoted to breaking the
'system into program nodules. Likew se, sone program design time should be
specifically devoted to breaking the program into appropriate subroutine nod-
ules-. Likewi se, some subroutine design tine should .

Time so spent will be returned with interest in the coding and debuggi ng
phases and will probably be returned nmany tinmes over during nodification of

the program In designing Swm subroutine modul arization was not difficult

because several LISP inplenentations denonstrate not only a good system
modul ari zation, but also the basic operation that should be provided to the

programrver. Nonet hel ess several guidelines were discovered.

30

An inportant guideline for nodularization is to restrict each nodul e
to a single definable function. This function need not be very basic, but
its definition should be consistent with the single definable function of
all other nodules. Consistency means that the set of nodul es inplenenting
a higher level nodule should have nutually exclusive functions, and those
functions should be directed toward acconplishing the function of the higher
| evel module. Thus a data accessing nodule could be defined to also update
a counter or set a bit, but only if in the enconpassing nodul e the counter
or bit was always associated with that data access operation. On the other
hand, operations should be divorced if they only occur together accidentally.
If "accidental neighbors" are combined in a single nodule, sooner or |ater
they will be needed separately. It is better to err in the direction of
too nuch separation since change is such a common feature of prograns.

One conprom se is to introduce another nodular level. A macro (for
instance) could be defined to call two accidental neighbors, |eaving the
two as separate nodul es.

Anot her inportant guideline in the construction of nodul ar systens,

is to provide for transparency. A conpletely transparent subroutine can be

“called at any point in a routine with no resulting change in the output of
the routine. For exanple, the LISP PRINT routine prints its argunment, but
does not nodify any location in nemory. Odinarily, a routine will not

be conpletely transparent, but wll affect one or nore variables in the
calling routine, or will produce output (doing both mght also satisfy the
wel | - definedness guideline); but the quantities nodified by a routine shoul d
be inplicit in its well defined single function. One exanple of transparency

is the block structure limtation of the scope of variables in ALGOL 60.

31

A pre-coded routine can be included in any program and will not create
conflicts with existing identifiers in that program (the same is not true
of nost assenblers). A good example of the need for transparent code is in
the definition of debugging packages to be executed when required in the
program

Since routines nust preserve the state of the conputer system in order
to be transparent, the system nust nake this a convenient operation. Sone
systenms facilitate state preservation by automatic stacking, or at |east
provi de other ready access to the system variables. Qher systens do not
even provide the capability to determne parts of the current state of the
system Satterthwaite has a discussion of coding transparent routines under
0s/360 [Satt pcl. Swym attenpts to provide the facilities necessary for
witing transparent routines; the stack can be used for storing arbitrary
informtion. Also, the "internal variable' convention [Reyn65] has been
adopted for accessing and controlling the state of system variables (for
exanpl e STIVQM and STIVCCH control the READ routine, see Appendix C.).

Two system conponents are vital to modul ar programmng: routine |inkage
and variable binding. The efficiency of these operations dictate the |evel
*of nodularity permssible. The PL/I macro facility is necessary not only for
conpile time conputation, but also to provide modul arization that would not
be -practical using the cunbersome PL/I procedure invocation mechani sm
(involving two subroutine calls for storage managenent). Routine |inkage
and variable binding are each discussed in detail below. There is a two
fold relation between these system conponents and the storage management
mechanism (1) they require storage for control information; (2) if there
is a garbage collector, they nust identify pointers and distinguish them

from non-poi nter information.

32

II.1 Routine Linkage

The code required to call a subroutine and return is critical to system
efficiency. The speed of any individual routine is far less critical because
it is executed less frequently than subroutine linkage, the latter is required
between all subroutines. Routine linkage includes several functions

save return address and status

| ocate and execute subroutine

restore status and continue at return address
Théyprinary interaction between routine |inkage and storage managenent is
control of the space for the status information. This information can
include control bits™and register contents. It also includes current
variabl e bindings, but this is considered in the next section. The space

managenment must be coordinated with the storage managenment required for data

pl ex operations. In particular any pointers that are saved nust be available
to the garbage collector

Ordinarily, status information can be saved on a stack because routines
exit in exactly the reverse of the order in which they are entered. But sone
| anguages |ike Gedanken [Reyn69] pernmit |abels as values of variables. A
routine may store a local label in a global variable; after the routine exits,
it may be reentered in the nmddle by a branch to that global variable. Not
only must the routine be entered, but the status must be restored to the
status existing when the label was stored in the variable. Thus, for Gedanken
status information (and variable binding) nmust be stored in plexes just as
data. Storage for both can be managed with the same plex mechanisns.

Label s can introduce problems even in A gol inplementations. Al gol
permts a routine to branch to a label in an outer block (this |abel may

even be specified as an argunent to the current routine). If status infor-

33

mation i S stored on the stack and includes the stack pointer for the dynam

ically enclosing block, then a goto to an outer block must interpretively
unwind the stack to find the correct status for the outer block, That is
the goto nust keep restoring the stack pointer until the storage for the
correct block is found. This problem can be solved for Algol with the

DI SPLAY nechani sm nentioned below. |n EULER [Wrth65], though, all operators

take their operands fromthe stack and replace themwth a value. This means
that the DI SPLAY mechani smis much nmore cunbersome for the §ggiproblem

The inplementation conputer can influence routine |inkage. The PDP-6
has a single instruction to store the return address on a stack and pass
control to a routine; The routine can branch to the return address and delete
it fromthe stack with a conplimentary instruction. The 360, on the other
hand, has no stack instructions and requires provision for the addressability
of the calling and called routine.

Two conmon techniques should be avoided in designing routine |inkages.
1) Routine linkage should be in-line rather than a call on a service routine.
The latter technique effectively doubles the nunber of routine |inkages. Al so,
service routines often waste time retrieving Iinkage parameters froma para-
-meter list, while parameters can be inplicit in in-line code. 2) Not all
registers should be saved on entry to a routine. The time expenditure is snal
but the storage expense is large. Although it is possible for the called rou-
tine to save and restore only those registers it destroys, the calling routine
usual Iy has an even smaller nunber of active registers. Mreover, the calling
routine has the information needed to mark each register as pointer or not-
poi nt er

It is not necessary for the called routine to return to the instruction

immediately following the call. In the 360, a call night be:

3k

L 15, Address of called routine
BATR 14, 15

CPNTINUE DS O H

The called routine exits with BR 1k. éut other information may be included
between the BAIR and CONTINUE with little extra cost. The called routine
woul d sinply have to return with B n(1k), where n depends on the ampunt

of included information. This information can be used for several purposes
CgGENT conditional execution is based on the FAILURE mechanism The failure
return point is an extra branch instruction in the calling sequence, executed
by the called routine if it fails. The calling sequence could also include
information to facilitate debugging. Pointers to the name of the routine and
the values of its variables could be referenced by information in the calling

routine. This is also the place for the pointer to the stack map discussed

in Section 1.1.

Swm -- Routine Linkage

In Swym three instructions are required to call a routine, three nore
are used for routine entry, and three are used for routine exit.

These instructions provide for

(1) establishing addressability for the called routine
(2) branching to the new foutine
(3) marking the return address so it won't be garbage collected
(4) storing the return address in the stack (two instructions)
(5) recovering the return address from the stack (two instructions)
(6) returning to the calling program
(7) re-establishing addressability for the calling routine

35

One register (B) is designated as the base register for all routines.

Before branching to the routine, this register is loaded froma '"transfer
vector.' This area is always addressable (via register S) and contains the
entry point addresses for all routines. Thus establishing or re-establishing
addressability requires one load instruction. Space is saved because only one
address constant is required for the address of each routine

Strict conventions govern saving and restoring the eight registers
available for general use. (Eight is enough if BXLE and BXH are avoided,)
If-an assenmbled routine wants a register saved it nust save it itself or be
certain that the called routine preserves that register. In the latter case
a comrent in the called routine nust describe the calling routines and registers
which nust be left intact. Conpiled functions nust save the active registers
when cal ling another function.

Swym provi des some debugging information with no extra storage in the
call. The return address is the stack makes it possible to find the BCD
name of the calling routine. The BCD nane is assenbled just before the entry
point to a routine. The entry point can be found because the instruction at
the return address refers to the location in the transfer vector table of the
entry point address.

A CGedanken interpreter was designed to run under Swym The |abe
variables mean that an interpreter like the LISP EVAL cannot use a stack
because the status at any point might have to be restored. Consequently, the
designed interpreter used plexes to contain status information and return
addresses for the interpreter. A second type of plex contained status information

for routines being interpreted. The latter also contained variable bindings

36

1.2 Variable Binding

To refer to itens of data, a routine has variables. Usually, each
variable is named with an identifier (a character string). But two identifiers
may refer to the same variabl e (Fortran EQUIVAIENCE) and one identifier may
refer to different variables in different routines, so an identifier is not
the same as a variable. The binding of a variable at a given time is the value
that variable would have if it were referenced and the information changed if
a value were assigned to the variable. Aong with nmore conplicated data struc-
tures and program control, higher-level |anguages have introduced nore conpli-
cated relations between variables and their values. Variable binding affects
t he garbage collector both because nost variable binding schemes require
menory and because the garbage collector must find all active structures that
are pointed at by variables. This section will cover three topics: types
of variables, types of bindings, and the special problens introduced wth
LI SP gl obal vari abl es.

Types of Variabl es:

The variables of a routine may be local, argument, or @obav.ar i abl e

is local to a routine if it is declared in that routine. Space is allocated
on entry to the routine and the routine uses the local to hold a value. A
conpi l er can usually conpile straightforward code to access a local variable.
An argument to a routine also establishes a local variable, but the value
and/or storage allocation nmay be supplied by the calling routine. Argunents

are passed to routines in at least four different ways: value, result

reference, name. A value argument is treated exactly like a local variable
except that it is initialized to the value of the actual paraneter. A result
argunent is treated [ike an uninitialized local, except that when the routine

exits the final value is assigned back to the actual parameter, which nust

37

be a variable. Value and result variables are like locals in that storage
is allocated for them during execution of the routine. Reference argunents
refer directly to the allocation of storage in the calling routine. If an
actual parameter for a reference argument is an expression, a tenporary variable
is created in the calling routine and the argument refers to that created
variable. Call by nanme argunents are evaluated each time the argument variable
is referenced. Nane argunents can slow execution substantially because a
conpl ex expression may be repeatedly evaluated, and because each eval uation
requires reestablishment of the environment for evaluation of the name
ar gunent .

A global variable is any variable that is referenced, but not declared in
a routine. It may have been either a local or an argunent in the routine where
it was declared, In block structure |anguages |like Algol, a global variable
nust have been declared in a typographically enclosing block. The conpiler
must conpile a reference to the variable that will be created in that outer
block. Because it has no block structure, LISP global references (called
free variables in LISP) are references to the nearest dynamcally enclosing
declaration of the sane identifier. (A routine dynanically encloses all
routines called during its own execution.)

In a given inplementation, global variable binding may be either static

or dynamic. The distinction is based on the treatnent of variables during
execution of functions that have been passed as values. Static binding means
that variables always have their nost recent binding. Dynam c gl obal binding
means that variables have the binding they had at the time the functiona
value was created. LISP is defined to require dynamic global variable

binding. Exanples of the problens involved are given bel ow

38

Types of Bi ndi ng

There are four types of binding: register, static storage, stack, and

free storage.

Regi ster variable binding is oftenﬂused for system functions. The
arguments are placed in registers and the function is called. This technique
is used even for conpiled functions in P0P-6 LISP and can be used for conpiled
functions in other Ianguage inplenentations. Register binding is convenient
because the calling routine usually nust conpute the arguments and the result
isinaregister. Mreover, the argument may stay in the register until a
subroutine is called. Problens arise when a subroutine is called: the
registers must be ;aved. [f any sub...subroutine gl obally refers to a
quantity bound in a register, then the reference nust be not to the register,
but to the location where the register is stored. Usually this is either
static storage or the stack. Furthermore, if the subroutine mght invoke
a garbage collector, any variable that is a pointer nust be stored in a
| ocation accessible to the garbage collector and nust be identified as a
poi nt er

Regi ster binding of variables is satisfactory for direct nuneric conputa-
tion (i.e. the value in the register mght be a nunber). Suitable declarations
in the called routine enable the conpiler to treat the nunber correctly. But
when the nunber is saved across a subroutine call, it nust be identified so
that it cannot be mstaken for a pointer.

If a routine is not recursive and not reentrant, space for variables can be
allocated by the conpiler. Such variables are statically bound, that is, their
bi ndi ng never changes and all references are to the sane location in menory.

Fortran variables are allocated in this manner. This binding technique can

39

require excess space because storage is allocated for all variables even though
several sets of routines may never call each other. (They could use the same
variabl e storage space.) One problemw th static binding is that the garbage
collector nust find all plexes that are pointed at from static storage. This
can be handled either by allocating all pointers together or by building a
list of statically allocated pointers. A second problemis that a large
structure can be referenced by a single static variable and will remain active
even if it is no longer needed.
] To provide for recursive and reentrant code and to ensure that variables
are allocated only as long as they are needed, variables can be allocated on
a stack. In Algol, all variable storage (except the controversial dynanc
own arrays) can be\allocated either statically or on a stack. Wen stack
storage is allocated onwentry to a routine, care nmust be taken that any
variable marked as a pointer contains a valid pointer. Qherwse the gar-
bage collector may becone confused and the program may have a bug that
depends on the previous contents of menory. The garbage collector does not
need to determne which quantities on the stack are variables; all it needs
is to determine which are pointers.

ATGIW utilizes an el egant extension of the DI SPLAY mechani sm di scussed
in [ReR64]. The variables for each routine are allocated on the stack
when the routine is entered. One pointer to the stack is maintained (in
the general registers) for each typographically enclosing block. Wth this
techni que, code can be conpiled to reference any global variable directly.
Moreover, the environnent for an argument called by name can be established
by sinply loading the stack pointer registers.

Free storage must be used for binding the variables of conplex

| anguages like LISP and Gedanken. The original reason for this in LISP was

ko

that the technique was easy to describe in the LISP formalismand easy to
implement for the interpreter. However, the discussion of the gl obal
variable problem below will show that given the features of LISP, free
storage variable binding cannot be avoided. Several techniques have been
enpl oyed including the A-list, the APVAL, and the VALUE cell.

The A-list was used in the early LISP 1.5 inplenentation. It is
described inplicitly in the description of EVAL in [MCar 62]. Basically,
each time a routine is entered a dotted pair is created for each variable;
the CARis the variable nane and the COR is the value. These dotted pairs
are cowsed onto the front of the current A-list. Wen the interpreter nust
find the value of-e variable, it scans the A-list looking for a pair whose
CAR is the variable nane. Note that this handles global variables as a
straightforward extension. Wen a function is passed as an argunent, both

the expression for the function and the A-list current at the tinme the

function was passed are passed. Thus, when that passed function is invoked,

the old Alist is used so that global variables have their correct val ues.
A major disadvantage of the A-list, besides search time, is the fact that it
is continually allocating and releasing free storage and thus increases the
* frequency of garbage collection.
It is possible to inprove on the structure of the A-list and still use
the A-list. As suggested by John Reynol ds [Reyn pcl, this method would create
a plex on the Alist for each function invocation. The nethod is best illustrated
with an exanple. Suppose a routine binds the variables A B, and C. The new

portion of the Alist would be (with conpact lists):

41

.jgl————————b old A-list

B |v@®)|
B

The new nethod woul d create this plex:

Hl | e~ » old A-list

A |V

The searching procedure would be slightly nore conplex, but there would
be a saving of space.

In a block structured |anguage, a function can only address variables
declared in itself or in statically enclosing blocks. The A-list can take
advantage of this structure by pointing not at the Alist formed for the
calling routine but at the A-list for the smallest statically enclosing block.
This is another extension of the DI SPLAY nechanism A Swym interpreter for
- Gedanken [Reyn 69] was designed to take advantage of the block structure of
that |anguage.

~In LISP 1.5 sone frequently referenced atoms such as T and NIL are only
bound at the outernost level. This would mean searching the entire A-list
to get the appropriate value (*T* for T and NIL for NIL). To avoid this,
Lisp 1.5 permtted the APVAL property on property lists (usually a shorter
list than the A-list). If an atomhad an APVAL, that was its permanent binding.
Thus evaluation of variables neant searching first the property list for an
APVAT and then searching the A-list.

4o

More recent Lisp systems have extended the APVAL concept by al ways
storing the value of an atomin a cell on the property list (under the
property VALUE in PDP-6 Lisp). As the atomis rebound, the old binding is
stored on a special push down list. Thus interpreted functions need only
search the property list for variables. Mreover, the location of the VALUE
cell never changes so the conpiler can conpile code refering to it directly.
By reducing the nunber of types of binding in LISP, the VALUE cell reduces
the conplexity of the language. Al variables are the sane, whether they
-are declared in a PR@G or a IAMBDA or are undeclared but have been given a
value external to all routines. But as discussed below, there are valid

LISP prograns that the VALUE cel | cannot inplenent.

Jobal Variables in LISP

A obal variables (LISP uses the term 'free variables') contribute both
the best and worst features of LISP. The global reference scheme defined
by the A-list mechanismis neat and sinple, and yet very general. But the
A-list is time consumng; it requires list searching tine and garbage
collection time. The worst features of LISP are the problens of conpiling
functions to interface with interpreted routines and the contortions
necessary when attenpting to replace the A-list.

Conpiled LISP routines usually use the stack for variable binding
because that is the nost efficient technique. But if a variable is to be
used globally in some other routine it nust be accessible. LISP 1.5 pro-
vides two types of global bindings for conpiled routines: SPECIAL and
COWDN. A SPECIAL variable is bound to a special cell on the property list
of the atom representing the variable. (PDP-6 LISP uses the VALUE cell.) This

special cell never noves so code is conpiled to access it directly. But

43

if the variable nust be referenced by both conpiled and interpreted functions,
it nust be bound on the A-list. Thisis precisely the treatment given to any
variable declared to be COMON. But SPECIAL and COMWDN are attributes of
variables and all references to the sane vgriable are treated the same. Thus
if Xis declared COWMNN, all routines referencing X must refer to it on the
A-list, even though only two or three routines use it as a global variable.
Primarily this problemis a fault of the LISP syntax because there is no
place for declarations in the S-expressions that are interpreted.

- The nost difficult problens are introduced into LISP by the provisions
for allow ng functions as arguments and values of routines. The difficulty
is that a function i§ a pair consisting of a piece of code and an environnent

for interpretation of that code. Consider these functions:

MAP[a3x] = if null [x] then NL
el se cons [a[fst[x]]; map[a;rst[x]]]

ACONS[a3x] = MAP[function[yx.cons[x;all;x]

The call AcoNs [NIL; (A B Q] should return ((A) (B) (c)). Note that the
ainside the function nust refer to the first argunment of acons. The A-list
treats this case properly because function returns a FUNARG. This is a list
withthree elenents:
“(FUNARG {function S-expression] {A-list]).

Wien a[fst[x]] is interpreted, the A-list used is the A-list current when
function was executed. The binding for a on this Alist is indeed the first
argument to ACONS. The SPECIAL cell or VALUE cell would not work because

the nost recent binding for a is the value returned by function.

44

PpP-6 LI SP avoi ds the problemin MAP by having function save both the
code and a pointer to the stack. Wen the function is invoked, the stack is
unwound down to that level; that is the old bindings are taken from the stack
and placed in the VALUE cells of the appropriate atoms. To remenber the
current enviromments however, as each binding is unwound the current binding
is saved on the binding stack. Thus the nechanism for function is very
clumsy using the VALUE cell approach. This certainly violates the principle
of relative difficulty of specification.

The VALUE cell mechanism does not work at all if functions are permtted

to return functions as values. Consider this valid LISP function:
~ PLUSX(x) = function [Ay.x+y]

The value of PLUSX is a function containing the global variable x. This
gl obal variable nust be evaluated in the environment existing when the

function operator was applied. Subsequently the val ue of,

[plusx[3]][2]

should be five. In short, the variable x nmust retain its value after PLUSX

exits so that that value can be referenced by the function returned by PLUSX
(The problem of global variables in functions that return functions is care-
fully explained in [Weiz 68]).

There is such a wide diversity of requirenents for variable binding that
it seenms necessary to consider a conprehensive declaration structure |ike
PL/I. Variables can usually be bound on the stack efficiently, but other
techni ques nust be available to handle those cases that cannot be so sinply

handl ed.

45

I

Swym Vari abl e Bindi ng

Sswym uses nmany of the variable binding techniques described above and can
support all them because it has variable |ength plexes. Argunents are passed
to system functions in the general registers and remain there unless it is
necessary to call a sub-routine. A few variables controlling input/output
are bound in statically allocated storage. Six general registers are used
for passing argunents to conpiled functions; no conpiled function may have nore
than six argunents. Swym provides a conprehensive set of macros for storing
and accessing information on the stack. The standard Swym approach is to save
a word on the stack when it nust be saved and renmove it when it is no |onger
needed. ~

The STUTTER vari abl e binding schene is sinmlar to that used for PDP-6
LISP. Every symbol atom has a value cell (the word followi ng the plexhead in
nmemory). Wen the interpreter is asked to evaluate a single synbol atom it
sinply returns the contents of the atom's value cell. Before entering a routine
defined by an S-expression, the arguments supplied are appropriately eval uated
and the values are placed in the value cells of the formal argument atons in the
LAVBDA expression. The old contents of the value cells are stored in a block
. on the stack. This block contains alternately the formal argunent atons and
their old values. Wen the routine termnates, the block is renoved from the
stack and the old values are restored to the atoms value cells. Currently,
only static global variable binding is inplemented. To communicate with inter-
preted code, conpiled code would store the required value in the value cell of
the appropriate atom

A conpiler could conpile code to access nuneric operands directly, either
in the registers or in the value cells. The values in the register could be

stored on the stack in a stack-plex indicating the presence of one or nore

46

full words. A non-relocatable value can be stored in a value cell by re-

setting the relocatability bit in the plexhead for the atom The cost of

these features is a little additional

the garbage collector

b7

bit testing in the interpreter and

[II. Storage Managenent Environnent

Fortran is a static language; all storage can be allocated at conpile
time or loading tinme. More conplex |anguages require nore conpl ex nenory
al l ocation mechani sns. Algol 60 has dynamic array sizes, but still its
nenory allocation can be handled with a stack nechanism Plex processing
routines, however, create structures that can be referenced after the
routine exits. Mreover, plex processes create and delete plexes of
various sizes at random times throughout the conputation. The bookkeeping
ﬁecessary to keep track of the allocation of nmemory to the different plexes

is called storage namnagenent. A plex remains active as long as it can be

referenced by theprogrameither directly or via a series of pointers. The
nmenory not allocated to any plex is called free nenory., free pool, free
storage or free plexes. An active plex cannot be del eted because that would
destroy the progranmis data. Under some systems and high-level |anguages the
programrer nust wite code to keep track of the active plexes and to free
those that are no longer active. In other systens, a routine called the

garbage collector traces through all active structures and returns to free

storage any inactive plex. Use of a garbage collector demands disciplined
“use of pointers because it nust be able to find all active structures and
must be able to distinguish a pointer from other data itens.

St orage managenent schenes can be classified as relocating or non-
relocating. In a relocating system a garbage collector noves all the
active plexes so they occupy a contiguous area of nmenory and |eave a
contiguous free area. This process is time-consunming, but the process of
allocating a plex is sinple: one end is allocated fromthe free area

Non-rel ocating systems do not move the active plexes; they simply keep

track of the plexes that are-free and can be allocated. In such systens

48

the process of allocating a plex can be tine-consumng because it involves
a search of the free plexes to find one that is large enough. If a free
plex of the required size cannot be found, a larger plex is split; part
filling the request and part being returned to the free list.

Non-rel ocating systens risk encountering the fragmentation problem

If a request is made for a plex larger than any free plex but smaller than
the total of all free plexes, then core is said to be fragmented. \Wen this

occurs, a System may

(1) termnate execution
(2) relocate all active storage as an energency procedure
(3) call-a user routine to free any little-needed plexes

Since (3) is highly problem dependent, its use can only be considered in
special situations. Some research seems to indicate that the probability of
fragmentation is |ow enough to justify solution (1). The argunment is that

if fragnentation occurs, then all of storage will soon be exhausted anyway.
The conpronise approach (2) above is often suggested, but this conmbines the
di sadvantages of both relocating and non-relocating systenms nerely to guaran-
tee that the systemw Il fill menmory before termnating. The extensive
bookkeeping for the non-relocating systemis required, as well as the
disciplined use of pointers for the relocating system D. Knuth [Knth 67]
has col | ected numerous storage managenent techniques and anal yzed many. H s
enphasis is on non-relocating systems that termnate when fragnentation
occurs. The current paper concentrates on relocation schenmes, both because
the non-relocating are covered by Knuth and because the swym garbage collector

is a relocator.

)

Possibly, there are nore storage control techniques than |anguages.
Language inplenmenters often discard several techniques before selecting
the one that best suits their language. (On the other hand, system
impl enenters often discard several |anguages before selecting the one that
best suits their storage control technique.) But all systens have two
conponents, a menory organization suitable for storage allocation and a
mechani sm for control of that allocatable storage. The nenmory allocator
is the part of the nmenmory managenent system that provides a plex on request.
This mechanismis vital to the efficiency of a system because, typically,
plexes are created frequently. The storage control mechanism has the respon-
sibility of structuring nmemory for allocation. In some systems, this is a
continuous bookkeeping problem In other systems a garbage collector is

called when the allocatable space is exhausted

[11.1 Menory Organi zation for Allocation

There are three classes of nenory organization for allocation: fixed-

size, variable-size, and hierarchical. The fixed-size organization is very

sinple. Menory is structured into a list of free plexes, all of the same
size. An allocation request is net by taking the first element fromthis
‘free list'. Since all plexes are the same size, their relative position and
the ordering of the free list is uninportant. Consequently fixed-size systens
do not usually have relocation. Variable-size systems permt requests for
plexes of different sizes. Such systems have been built both with and without
relocation. The choice of fixed or variable for a system depends on the data
structures being inplemented. Fixed organization is sinpler, but data usually

comes in units of more than one size. Fixed techniques are inportant, though,

for the part they play in hierarchical organizations

50

The newest and nost promsing class of nemory organizations for
allocation are the hierarchical schenmes. In these, a large plex is allocated
for some purpose and smaller plexes are allocated fromwthin the large one.

In advanced schemes, the snmaller plexes are thenselves suballocated. There
are several advantages to hierarchical allocation schemes. |If a large plex
hol ds snaller plexes of only one size, then within the large plex the garbage
col lector can use sinple fixed-size collection techniques. Hierarchica

al location schemes can be useful for segregating the frequently changing from
the sel dom changing. The garbage collector ought to ignore the latter as

much as possible. (One possible approach is suggested by the lifetime block
concept which has been proposed but not yet inplemented. |If a language has
begi n-end bl ocks |ike Algol and al so has structure class declarations, all
structures of a class can be deleted when control exits from the block con-
taining the class declaration. Thus, the "outer lifetinme block' of an
element of a structure class is that block containing the class declaration.

H erarchical structures mght be used for life time blocks by sinply releasing
the large plex. Structures have a second kind of lifetime block; those blocks
within which the structure will always exist. This nmight be, for exanple, an
. inner block making no operations on structures of a certain class. The gar-
bage collector can assume that any structure is active if control is within this
“inner lifetinme block'. Constant l|ist structure is a limting case; it always
exists, so the entire programis its inner lifetime block

There are not yet many hierarchical allocation systens. The L6 [Know 66]
allocation schenme, sonetines called the 'buddy system, is a cross between a
hi erarchi cal and a variable-non-relocating system Each plex is the size of
a power of two (up to 128 words on the 7090). Allocation may, if necessary,

divide a free plex into two plexes half the size; these two plexes are called

51

"buddies'. A separate free list is maintained for each plex size. Wen a
plex is freed, it is reconbined with its buddy if possible. UNCLLL [Mnch 67]
is a version of L6 for the 360. Its allocation schene distinguishes |arge
(>8) and small (<7) plex requests. Small requests are net by suballocating
fixed sized plexes fromwthin a single large plex. The large plex size
chosen for a given small plex size is such that these |arge plexes are about
the sane size. Both L6 and UNCLLL maintain a bit table indicating free plexes.
This permits rapid reconbination of plexes. ALGOLW allocates pages of 4096
bytes (the 360/67 page size, although paging is not otherw se particularly .
facilitated). Each page is restricted to containing records (plexes) of only
one record class,--and thus, only one size. Wthin each page standard fixed
plex length garbage collection is enployed. Two inportant hierarchical systens

are those defined for LISP 2 and AED; they are described in Section Il1.2 under

hi erarchical garbage collectors.

Swym Menory Allocation

Swym enploys a relocating variable-sized allocation organization. A
garbage collector relocates all active plexes to one end of free storage.

‘ Plexes are allocated by noving a pointer that points to the beginning of the
unal l ocated area. An additional advantage of this organization is denonstrated
by- the Swym input routines. Arbitrary length strings can be read; each
character is put into the next available location of free storage. \en the
end of the string is reached, a plexhead is provided and the string is auto-
matically a character string atom The same technique could be used when

conputing multi-word integers.

52

I11.2 Storage Control

A language permtting dynamc storage allocation nust have sone form of

storage control. The type required can depend on other |anguage features

Is there a 'release storage' instruction?
are comon sublists and comon tails permtted?
are circular lists permtted?

are variable length plexes inplied in the |anguage?

Based on the answers to these questions, storage control techniques can be

divided into classes simlar to the classes for Menory O ganization for

Al l ocation
fixed - rel ease
fixed - no-rel ease
variable - non-relocating
variable - relocating
hi erar chi ca

wher e

"fixed" and 'variable' refer to the size of plex allocated,
‘release’ refers to the presence of a 'release allocated storage'
instruction in the |anguage

‘relocating’ refers to moving the plexes in storage

Systens wi thout 'release* usually depend on a garbage collector to find al
active storage. Variable-non-relocating systens usually have 'release',

because they are designed to have a mnimm system Variable-relocating systens

53

do not have 'release’ because they nust do a large amount of processing any-
way to relocate all of memory. Before the description of each class bel ow,

there is a list of systems in that class and suitable references.

Fi xed- Rel ease

| PL- v [Newl 64]
SLIP [Weiz 63]
REFC@-III,SAC [Coll 60] [MBth 63] [Coll 67]
AL, LEAP [Feld 65] [Rovn 66, 67a, 67b]
TSA [Tol | pc]

In all these systems, except AL and LEAP, a list is an entity with a
controlling list head;, it is not possible to point at a part of a list wthout
a list head. A list is released by pointing at the list head and issuing the
release instruction. Storage is also released by deleting an elenent from a
list. Lists can be pointed at by other lists or by the program variables. If
a given list is pointed at by two or nmore pointers, the release operation is
ill-defined: one routine may release a list that is still required by sone
other routine.

The systens solve this nultiple-reference problemin different ways
IPL-V, the earliest popular system required that the programmer be sure that
a list was no longer required before releasing it. To aid in this task
programrers assigned certain bits in IPL-V structures as 'responsibility bits.
Routines could pass responsibility for lists by changing these bits. The
REFCA-III and SAC systens associated a *reference count’ with each list head
This count kept track of how many pointers were pointing at a given |ist.

The rel ease process reduced a list's reference count by one. Wen the count

reached zero, the list was purged. Unfortunately, the reference counts

54

require a substantial amount of memory. In TSA no list is ever referenced
by nore than one pointer. Al operators destroy their argunents and make a
new copy of any information to be saved. This applies to procedures as well
when a procedure is called, the argunents passed to the procedure are copies
of the actual arguments. Wen a procedure exits, the storage for its argu-
ments is released. TSA avoids garbage collection and bookkeeping at the
expense of frequent list copying. In fact, none of these systens has a
garbage collector, primarily because they are designed to be mniml and
conceived of the garbage collector as detrinmental to efficiency. But each
of the above systenms has a fault: programmer bookkeeping, nemory consunption,
or copying. -

SLIP introduced a formof rings, two way connected lists. The programer
still must keep track of what list can be referenced and rel ease any no
| onger needed. But the task is somewhat easier because lists can be
traversed either forward or backward. SLIP discovered that it was not best
t 0 immediately scan a released structure and reduce it to a linear list on
the free list. Instead it was more efficient to put the whole structure on
front of the free list. The allocation mechanismis then designed to handle
a structured free list rather than a linear one

AL and LEAP are unlike any other languages in this report although they
are intended for the same kinds of programs. They use plex processing inter-
nally but only to chain together the elenents of hash buckets. O herw se,
the |anguage is phrased in terms of attribute-object-value triples. These
are stored in hash coded formon direct access storage. There is an operation
to destroy a triple, but this sinply nmeans deletion of the link from the hash
bucket. No garbage collector is required during execution, but if a file is

saved it can profitably be reorganized.

55

Fi xed- No- Rel ease

LISP 1.5 [Mcar 60, 62]
W SP [Schr 67]
ATGPIW [B8G 681

LISP 2 [styg 671

In these systems the |anguage designer relied on a garbage collector
to find all inactive storage and create a new free list. Typically such
routines are two passes: a marking pass finds allactive storage, a scanning
pass finds all unmarked storage and structures it into a newfree list. The
marking pass may mark each active element with a bit either in the word
itself or in a bit<}ab|e. If a bit table is used, extra conputation is
required to relate bits in the table to addresses in free storage. But
marki ng words thensel ves conplicates direct numeric conmputation. [Schr 67]
has an excellent review of scanning and nmarking techniques. It proposes a
technique that avoids using the stack for tenporary storage.

The ALGPIW garbage col lector is included in this section because it is
primarily a fixed-no-release system Free storage is allocated in pages of
_1024 words. Each page contains plexes of one fixed size, and there is a
separate free storage list for each page. Each plex contains a marking bit
for the garbage collector. The marking pass goes through all plex storage
tracing and marking the active storage. The scanning phase creates a new
free list on each page. If a page is enpty, it is returned to the operating
system on the other hand, if a plex nust be put on a full page, a new page
is created for the required structure class. One problemwth this schene

occurs when a class is nearly full and a process is creating and deleting

menbers of that class. The garbage collector may be called several tines

56

before a new page is created. But the garbage collector blindly rescans all

active storage even if only one class is changing. Insufficient experience has

been gai ned with ALGSIW plexes to propose a better garbage coll ection strategy.
Only one portion of the LISP 2 garbage collector fits in this section; the

rest is discussed in the section on hierarchical garbage collectors. There is

a requirement in LISP 2 to relocate the fixed length list cells so they only

occupy the bottom of their free storage area, After the marking pass, the

| owest free word is swapped with the highest active word. The new address

of the active word replaces its old location. This process, called folding

conpaction, continues until all active words are at the bottom A final

pointer correction pass is required. Any pointer into the free area is

replaced with the new address stored in that |ocation.

Vari abl e- Non- Rel ocating Systens
6

L [Know 663
ASP [Gray 67] [Lang 68]
APL [Dodd 66]
UNCLLL [Mnch 671
CARAL [Suth 66] [Kant 66]
#s/360 [1BM 68a]

Knuth concentrates on systens in this class [Knth67], so the discussion in
this section is brief. Hs analysis and sinulations indicate that fragementa-
tion occurs with a tolerable |ow frequency, Gven that assunption, the tech-
niques in this class are to be preferred for their low overhead. |If the

| anguage permts common sublists or circular lists and requires the programmer
to release inactive plexes, then he must wite code to keep track of how many

pointers point at each plex. But some problens seldom require common sublists.

57

For such problens the variable-non-relocating systems are attractive.

ASP and APL use the L6 buddy system for allocation, but, |ike CORAL,
they organize the data into rings. Nodes of a ring are plexes, and each may
have several ring connections and several data fields. Nodes can only be
accessed along the rings, so the only delete operation needed is to delete a
node froma ring. Wwen a node is connected to no rings, it can be returned to
the free storage list. There is the problem that circular structures may
never be freed even though inaccessible.

Wien a requested plex is larger than the largest free area, the schenes
in this class nust try conbining adjacent free plexes into larger free
plexes. In sone systens, reconbination is attenpted every tinme a plex is
freed. In an application with many plexes of about the same size, however
the likelihood is that the reconbined plex will soon be broken up again
Recognition of neighboring free plexes is not always trivial. One tech-
nique is to sort the free list according to core location and then conpute
adj acency from locations and lengths. CORAL has a pl exhead marked by
containing one field of all ones. Checking for a free neighbor in the upwards
direction is easy (the next plexheag follows the current plex); but finding a
- preceeding nei ghbor neans searching back to find a plexhead. UNCLLL associ ates
a bit table with free storage. A bit is set for the first and last word of
each active plex.

Operating System/360 dynamically allocates variable length blocks (GET-
MAIN and FREEMAIN nacros) and requires some form of storage managenent.
Rel ocation is inpossible because programs manipul ate absolute addresses and
the system cannot know where a probl em program has stored an address. Free
storage is structured in blocks chained together in sequence by their size.

Al'location is acconplished by-finding an appropriately sized bl ock or dividing

58

a larger block. Wen a block of storage is returned to free storage, it is

pl aced on the chain according to its current size. Wien a sufficiently large
block is not available, OS tries to conbine adjacent free blocks into |arger
free blocks. This is acconplished by maintaining an additional chain pointing
to the bl ocks in sequence by core address. The garbage collector scans this
second chain trying to combine each block with the next higher block in nmenory.
If no sufficiently large block is built to satisfy the user request, he is either

termnated or given a return code indicating his request was not net.

Vari abl e- Rel ocati ng

COGENT _ [Reyn 65]

| [Hadd 66]
EPL [MCle pc]
EULER [Wth 651
MUTANT [MKee 663
XPL (strings) [MKee pc]
SWYM (this paper)

A variable-relocating garbage collector conpletely ignores the garbage.
“Instead, it builds a new structure isonorphic to the old with respect to

the permtted data access operations. The time for this process depends on
the size of the active structure and sometinmes on the incidental arrangenent

of the elements of that structure. Many systens relocate storage by coal escing
the active plexes; that is, moving them all toward one end of nemory, wthout
rearranging them Qhers, |ike SWwYM, not only nove all plexes, but also change
their order. In SWMthis process tends to nove together lists and their
elements, an inportant property for paging systems, But there is a disadvan-

tage in rearranging menory. In non-relocating and sinply coal escing systens,

59

the address of a plex can be used as an arbitrary ordering function. Such
functions have utility when manipulating otherw se unordered sets. In
systens that rearrange storage, such pseudo-ordering functions are difficult
to define

Most variable-relocating garbage collectors have four phases in sone

order or another. As identified in [Styg 67] these are Find, Plan, Fix,

and Mve. The Find phase is responsible for finding all active structures.
The new address of each structure is conputed by the Plan phase. During the
-Fix phase all pointers are changed to point at the new |ocations of the
structures. Finally, the Mve phase relocates all structures

In the Find phase, a tracing algorithm goes down all chains of pointers
starting with the pointers on the stack and in the static variables. To
identify the active plexes and to avoid processing a plex nore than once, a
visited plex is usually marked in some way. |f bits are available in each
plex, the plexes can be marked within thenselves. Qherwise, a bit table
can be used. In the latter case, extra conputation is required to find the
relation between a word address and a bit in the table. [If a plex contains
nore than one pointer, the tracing algorithm nust be applied to all of these
There nust be sone way to renenmber those pointers that have not yet been traced
One sinple solution is to put all the pointers fromthe plex on the stack.
The tracing routine always takes the top pointer off the stack. But this
system can use large anounts of stack space. Space requirenents can be
reduced by stacking a pointer to the plex and a counter indicating how nmany
of the pointers in the plex have been collected. |f room for this counter
can be found in the plex itself, then the WSP technique [Schr67] can be

used to elimnate the need for a stack.

60

The other three phases nust also be designed wth care. During the
Plan phase, the new address of each plex nust be saved for succeeding phases.
Sone plex encodings |eave roomin each plex for the garbage collector to store
this new address. Qhers use the free-areas to store information to conpute
the new addresses. In a systemthat nerely collapses storage by noving it
all down, it is sufficient to conpute the change between the old address and
the new address. Systens, |ike SWYM, that rearrange the plexes nust be
prepared to associate an entire new address with each plex. The Fix phase
like the Find phase, nust locate all pointers. Processing a pointer twice,
however, is not only time consuming as it is in the Find phase, but is also
fatal as the second update might access erroneous data. Some systens create
a list of pointers during the Find phase for use by the Fix phase; ordinarily,
though, this is an exhorbitant waste of space. The nost common solution is
sone formof marking bit. During Mve, care nust be taken that no plex is
overwitten with a new plex before it itself has been noved. In push down
relocation, this is acconplished sinply by noving plexes starting with the
| owest in nenory. SWYM, on the other hand, relies on secondary storage to
hold the new contents of nenory.

The COGENT system uses a bit table for marking the active words of
storage. Each plex contains a type field, Depending on the type, the gar-
bage collector determ nes exactly which conponents in the plex are pointers.
The yet-to-be-traced pointers are renenbered by stacking a pointer to the
plex and a count of the nunmber of pointers that have been traced. The relo-
cation factor for each block of storage is stored in the first word of the
next free area. The Fix phase precedes the Mve phase

Haddon and Waite [Hadd 66] have described a push down garbage collector

that creates a table of relocation factors during the Mve. This table is

61

then sorted on the 'old address' field. The Fix phase is last: each pointer
is found in the table by binary search and the associated relocation factor
is applied to correct the pointer.

Don McClaren [MCla pC] proposes to.use a nodification of the preceeding
plan. Descriptors for each plex are stored not with the plex but in the
upper portion of free storage. (H's systemis PL/l-like and the assunption
is that the descriptors are infrequently referenced.) The garbage collector
can find the descriptor for each plex by a binary search on the table. The
"descriptors contain roomfor the relocation address of each plex. The point
of this approach is that the garbage collection features have very |ow cost
if they are not uged. Indeed, the descriptors can be renoved altogether
with little reprogrammng (if the garbage collector is not used).

W. McKeeman has witten several garbage collectors, including those for
EULER, MJTANT, and XPL (strings). These systems rely on descriptors and
store all lists (strings) as a plex of pointers (characters). A descriptor
contains the beginning location of the itemand its length. In XPL, a por-
tion of a string can be identified as a separate string by sinply specifying
a different beginning and length; this corresponds neatly to PL/1 SUBSTR
expressions. The MJUTANT and EULER garbage collectors are simlar; each
begi nning by scanning all active structure and abstracting all descriptors.
These descriptors are stored in a newy created array (using B-5500 Algol).
Note that this requires a substantial anount of tenporary storage. This
descriptor array is then sorted by the location of the list. In the Mve
phase, active blocks are moved down; the new address of each block is stored
ina field of the descriptor reserved for this purpose. The last step is to
scan through menory and update the address fields of all descriptors. The

XPL string garbage collector inproves on this process by creating a list of

62

pointers to the descriptors, rather than a list of the descriptors. Since
only the string area is being garbage collected, the descriptors wll not
nove. This list of pointers to descriptors is sorted based on the address
fields in the descriptors. Finally, in a single pass all active portions of

strings are noved downward and the new addresses are stored in the descriptors.

H erarchi cal
LISP 2 [styg 67] [Hawk 67]
LI SP 1.5 [Barn 68]
AED [ross 67]

Hierarchical storage control schemes are characterized by allocating
plexes within |arger plexes, called super-plexes. In the nmore general
schemes, super-plexes are allocated within larger super-plexes. Hierarchical
schenes can use different garbage collection techniques for different super-
plexes. This approach permts each type of data to be collected by a routine
specifically witten for that data type. Such specific routines can avoid
type testing and can thus reduce garbage collection tine.

A major problemin a hierarchical systemis deciding the size of the
space that should be allocated to each super-plex. (One approach is that
used by ALGOLW and described above. But this system can call the garbage
col lector frequently if pages are nearly full. One solution to this problem
is to attenpt to determne the rate of change in the storage requirenents
for each class. Garwick has proposed and inplenented such a scheme for the
array feature of GPL [Garw 68 and Knth 68]. In that system array declarations
must specify an upper bound but the current upper bound dynamcally depends

on how many of the cells are full. At garbage collection time, a new length

63

is calculated for each array as a function of its current length and its
length at the time of the preceeding garbage collection. A simlar system
is used in the SDC LISP 1.5 for the 360 -[Barn 68] to assign to each storage
area an appropriate nunber of 256 word bl ocks.

One other serious problem can occur in an allocation scheme |ike that used
by ALGfLW: two large structures can be created sinmultaneously and occupy many
pages. If only one of these structures is required later in the program and
if.no other structure is created in the given storage class, then all pages
remain active for the storage class although they are only partially occupied.
The probability of this problem occurring is program dependent, but the |oss
of storage can be large. This can be avoided by relocation, or by splitting
the class into two classes. The problemis nore conplex when pages
are being swapped; the decision nust be made as to whether the tine to
relocate menory is less than the tine spent in swapping the inactive portions
of pages.

Mermory is allocated hierachically in both LISP 2 and AED that is, plexes
are allocated fromwthin other plexes. But the details differ; LISP 2 per-
mits only a system defined hierarchy and garbage collects it very efficiently
AFD sacrifices sonme efficiency to permt conplete user control of allocation.

~In the LISP 2 system different types of program values are stored in
different areas of menory. Sone areas contain only fixed length plexes
others contain variable Iength plexes. The areas are paired; each pair is
assigned a super-plex and one menber grows up from the bottom while the other

grows down fromthe top. Thus the folding conpaction described above is

64

necessary for the fixed length areas. Provision is also made for changes
in the size of the plex assigned to each pair. No indication is given of
the basis for these size changes.

The AED system defines an allocation schene that is essentially non-
relocating. However, provision is nade for the user to wite routines to
be called when storage is exhausted in a super-plex. Thus the user can
define his own garbage collector. The system provides a plethora of prim-
tives to assist in witing this garbage collector. Adding to the confusion
inthe fiel d, the AED system defines a GARBCOLL node. This node can be set on
for a super-plex that controls sub-plexes with a variable-non-relocating
(with release) schene. Wen GARBCOLL is in effect, a released plex is auto-
matically conbined with any adjacent free plexes. Wen GARBCOLL is off, freed

plexes are merely kept on a list (which AED calls a string).

Basic Swm Garbage Collector A gorithm

Swym contains a variable-relocating garbage collector that creates a
set of structures isomorphic to all active structures with respect to rst
and fst. Mst unnecessary rst pointers are elimnated. This set of struc-
tures is in a new core image, created sequentially and witten to a tenporary
storage device. After collection, the new core image is read into one end of
the plex storage area and the remainder of that area becomes the new free
storage area.

The idea of using external storage was suggested by Marvin Mnsky in
an internal MT menorandum [Mnsk 63]. But the algorithm reported there

woul d not work for even the sinplest cases (for instance, the structure in

Figure III.2). The swym garbage collector works not only for the sinplest

65

cases, but also for the nost conplex cases of nutual circularity. The
conpl ete garbage collector is described in Appendix E the current section
presents a mniml version of the garbage collector to illustrate the
central ideas. This mniml version is satisfactory only for structures
that never have nore than one pointer at any given word of the structure.

OOLLECT (x), the portion of the garbage collector presented here, has
as its argument a pointer at a piece of list structure. It then wites that
list structure sequentially to the new core image. Qher functions exist to
call COLLECT for each possible pointer at active structure, to collect atons,
and to read in the new core inmage.

The contents of a list are address pointers to the elements of that |ist.
Wien a list is witten to new core, the contents of that list nust be the
newcore addresses of the elements of that list. Consequently, the elenents
of a list nust be COLLECTed before the list itself can be witten to the new
core. COLLECT (x) proceeds in two recursively intertw ned passes. The first
pass applies COLLECT to each element of the |ist x. The second pass wites
the new representation of the list x to the new core imge. To renenber
where a piece of [ist structure is in new core, its fst is replaced (rplf)
-with the address of that structure in the new core. The head of an atomis
used to store the address of that atomin new core.

Three operators must be defined in order to describe the garbage
col l'ector:
ATCOL (x) x nust be an atom |f x has not been garbage
collected, it is collected and witten to the new core imge. The
pl exhead of x is replaced with the address of x in the new core.

ATCOL calls Separate routines to garbage collect each type of atom

66

GCPUT (x) x is any full word. This word is witten to the next
available location in the new core image. The value of GCPUT is the
address of that location. An internal variable is advanced to point
at the next available location in the new core image. GCPUT handl es

/O and wites buffers to the external device when necessary.

HD (x) x nust be an atom HD returns the plexhead of that atom
after ATCOL, the plexhead contains a pointer to x in the new core.

If x is non-atomc, processing is interrupted.

The basic garbage collection algorithmis given in Figure 111.1 in a
notation simlar to Algol. The declarator |ist declares a variable which
may point at a piece of list structure. The declarator word declares a
variabl e whose value is one full word. Note that rstbhit is initialized to
the value 1. This corresponds to the value of a word with just the rst bit
on. rstbhit is used to "or' the rst bit into a word witten to the new core
image., The result of applying COLLECT to a sinple structure is shown in
Figure III.2.

"Garbage collection' is truly a msnoner for this algorithm COLLECT
~examnes only the active list structures, while the garbage is conpletely
ignored and has no effect on the processing. 'Storage reclamation' describes
the process no better. Possibly better ternms mght be 'storage reorganiza-
tion" or 'garbage control'. But the term 'garbage collection" is so wdely
used and so colorful as to preclude replacenent.

Sone limted experinents have beenconducted with the Swym garbage
collector. On one list structure, representing a program there was a 25 per
cent saving of storage using compact lists instead of standard lists. This

corresponds to an average list length of only two elements. The correspondence

67

Figure I11.1

Sinplified Swm Garbage Collection Al gorithm

COLLECT (x) = begin list r, t; word rsthit := 1;

roi= x;
chkloop: t := fst (r);
if atom (t) then ATCOL (t) else COLLECT (t);
tor=rst (r);

if atom (t) then ATCOL (t)

el se begin r :=t; goto chkloop end;

roi=x;
wloop: t := fst (r);
rpif (r, if atom (t) then GCPUT (HD (t))
el se GCOPUT (fst (t)));

toi=rst (r);

1f atom (t) then GCPUT (HD (t) vrsthit)

else beginr :=t; goto wloop end
end COLLECT

68

Initial Structure:

Exanpl e of swym Garbage

Figure IIl1.2

Col | ection

&

h 4
o

At wrloop on the highest level:

Old Memory

new

Mew

69

‘ M D |
— 1 ® 2
'L ® ? NG i
\ \ I i
\-.. ___________ > -~ // Il
‘ . L
B N\ \ 4 <
'l ® o A -
Y i | {
S - ! | |
AN I ! }
\ I ! !
1
New Memory * 'I + L ;
Anew *new Cnew new

Old Memory

Exanple of Swm Garbage Collection

Figure 111.2 (Cont)

At completion:

. [4 [4
T ® ARG 4
M S '\\
. \ \
& ’ ' v | o
t ® -~ ! y ! ! ® I
M f i | 7 |
NoU o et |
} o 7 / ,_.I. _______________ —
B { I ’ l
3 N R R N
\ ! ! ! = ! \‘ :
S~ AN] |
New \ | j——-——-l'——-r——-—\\ i |
- | Ll V4 (| }
Al"eW ne& ’ new Enew I:new ‘w 1 Dnew 1 W
\ /
NOte: e NEW pointer

"t

pointer unchanged from preceding diagram

pointer at location a word will occupy after the new core image has

been read in.

70

is easy to conpute: A normal list of length n requires 2n pointers. The
nt+l

correspondi ng conpact |ist requires ntl pointers, for a saving of 1 = %;—;

when n is 10, the saving is 45 per cent. Every symbol atom takes at |east
four words of storage plus the length of the“print nane, so the nunber of
synbol atoms is also a factor.

For every active word of storage, roughly forty instructions were executed
during garbage collection. This was conputed by dividing execution time into
amount of active storage. The experinental system did not use external
storage; instead, nmenory was shuttled between two alternate core areas. Thus
the time to wite out nmenory is the maximum of the time to wite out the active
structure and the tinme to execute forty instructions for each active word. The
time to read in nemory is dependent solely on the nunber of active words. The
Swym garbage col | ector speed can be contrasted with the speed of that routine in
the Stanford LISP360 system. This is a standard LISP 1.5 inplenmentation with a
fixed-no-rel ease garbage collector. LISP cells are stored in double wards.

The garbage collector executes approximately fifteen instructions for each active
double word. In addition, the linear scan through free storage requires four
instructions for each of the double words in free storage. These rates were
conputed based on execution of several large programs on a 360/75.

Several applications for the swm garbage col |l ector are conceivabl e,
even apart from conpact list structure. The Swym garbage collector could be
valuable in a systemwth roll out and roll in. If the nonitor set a signal
for the programto roll itself out, the program could garbage collect for
free the next time a cons was executed. Even without memory swapping, external
storage of structures has always been a problem for plex processing systens.

The Swym garbage col | ector provides anal gorithm for scanning |ists and storing

themin a conpact formon an external device. Another application for this

71

algorithmis in the transmssion of list structures between two machines over
a slow channel. If the new storage is witten starting at location zero, the
address fields can be small. Only as the size of the structure passes a power
of two would the length of each address “field have to increase.

The inplenented garbage collector stores partially collected structures
on the stack, but uses a trick to avoid saving return addresses during
recursion. It would be possible to use the WSP technique [Schr67] to
avoi d using the stack during collection. This was not done because it would
involve at |east two nore passes over the data. In a nenory sharing en-
vironnent, it is sonetines possible to acquire tenporarily the needed extra
storage for a stack; otherwise, sufficient stack nust be available to hold at

least twice the length of the longest fst chain.

T2

CONCLUSI ON

The best conclusion to this paper would be to point to a specific set
of environnents and say, "These are the best for inplenenting a plex processing
| anguage.” But this cannot be done because storage managenent is highly
probl em dependent. A set of environnents satisfactory for one |anguage may
be very poor for some other |anguage. For conpleteness, four storage nanage-
ment schemes are necessary: fixed-release, fixed-no-release, variable-
relocating, and variable-non-relocating. The nost universal approach is a
hi erarchical system offering each of these types of storage control; current
work holds the promse of making this approach as efficient as the |east
efficient of the fécilities actually used. That is, it seems possible to
‘charge' the user the 'cost' (tine or nenory) of only the storage managenent
technique he uses. Alternatively, large projects should consider inplenenting
a language and system suited to their own particular needs. Since all environ-
ments can be conveniently inplemented with a conbination of a stack and variable
| ength plexes, a general storage managenent system like Swmis a suitable basis
for the devel opment of specialized |anguages.

The paper will close with (1) a summary of the SWM solution to a
variabl e-rel ocating storage nanagenent system and (2) the inplications

of plex processing |anguages for hardware design.

3

Summary of Swym Environments

St ack:

The Swym stack stores pointers, return addresses, and stack plexes.
The three are distinguished by the high and | ow order bits of the word.
For plexes these bhits are in a plexhead and all other words in the plex
can be full 32-bit words. The stack grows toward |ower addresses so

routines may address local variables they store on the stack

Data structures: To permt conpact lists, Swym distinguishes between lists

and all other plex structures. The distinction is based on the pointer

at the item plexes being addressed six bytes in front of their plexhead
Li st operators will not work on plexes and vice versa. But this is advan-
tageous in debugging, and neither type of operation is slowed because this
checking is done by hardware. All plexes have a plexhead, which is

menory consuming if many small plexes are used

Routine Iinkage: The stack is essential to routine linkage: return addresses

are stored on the stack, and the calling routine stores any active regis-
ters on the stack. The address of each routine is available froma

transfer vector table.

Variabl e binding: STUTTER variablesarebound in a value cell associ ated

with the atom representing the variable. A bit in the plexhead indicates
whet her the value is a pointer or a full word of information, SO a

conpi ler can conpile direct numerical operations. \Wen an atomis re-
bound, the current binding is saved on the stack and the new binding

placed in the cell. Dynamc free variables are not pernmtted

Th

Menory al |l ocation: Menory is allocated fromone end of a single large free

area. This could be used like a stack, but this is rare in STUTTER

St orage managenent: The swym garbage col lector creates a representation of
all active structures on secondary storage. This representation is then
read into one end of the free storage area. In this process lists are

conpacted, and related structures are relocated near each other.

| mplications for Hardware Design

Because storage managenent is very problem dependent, hardware design
shoul d not favor one technique over others. But three features woul d
facilitate storage' management and | anguage inplementation: 1) extra bits in
every word, 2) stack operations, 3) subroutine operations. Qher operations,
|i ke data access and program control, seemto be adequately handled by the
360 hardware. Appendix K contains one proposal for instructions inplenenting
t hese proposals.

Extra bits in every word: Swym utilizes high and |ow order bits of
pointers in many ways. But careful control is necessary to avoid confusion
with numbers. Mich bit testing and indirection coul d be avoided if each word
included two or nore bits that did not participate in arithnmetic operations
This idea has been inplenmented in at |east the B-5500 and other Burroughs
machines. But very careful design would be required to integrate extra bits
into the design of the 360, because so many different kinds of instructions
can access different portions of each word. (One approach would be to associate
four bits with each word that could be set and tested with special storage
imediate instructions but would not otherwise participate in arithnetic opera-

tions. These hits could be considered as one per byte to mark the ends of

™

strings, or could be considered as four per word with different configurations
marking pointers, integers, floating point numbers, or other data types. One
or two of the bits with a word could be used for marking by a garbage collector
In a carefully worked out |anguage inplenmentation, the special bits would only
have to be set when menory was allocated.

Anot her possible approach to associating bits with every word would be to
provide an instruction that translates a word address into a bit address (and
possigly tests or alters that bit). Wth this approach the user would have no
expense if he did not use the facility. But if he did, nmemory allocation would
be required both for data and for any associated bit tables.

St ack operations:n' A stack can be invaluable in many programs and is
essential in inplenentation of plex processing |anguages. Moreover, the
required operations are relatively sinple and non-controversial: add an item
delete an item and reference an item Wth no provision for checking the
ends of the stack, the add and delete operations can be placed in mcro-code
and the reference operations can use ordinary base-displacement addressing
End checking is a little nore conplex. One approach is to make the stack
pointer a pointer at a descriptor giving the ends and the current |ocation
of }he stack. But this prevents using the stack pointer to reference items
on the stack. An alternative is to use special settings of the special bits
to indicate the ends of the stack. The special bits would then be checked
by the m cro-code.

Subroutine operations: Like stack operations, these are easy to
inplement and are of general utility. The basic subroutine operations are
call and return, using the stack to store the return address. Storage of
registers and other status information is nore |anguage dependent and shoul d

be controlled by the calling routine.

76

rRTTRETTS e TR e TR TR

[Barn 68]

[BBG 681

[Baur pcl
[Benr 67]
[Bobr 67]
[Bobr 681
[Cohn 67]
[Coll 60]

[coll 67]

[Comf 64]

* [Dodd 663

[Farb 64]
[Feld 65]

[Frnk 66]

Bl BLI OGRAPHY

Barnett, J.A and Long, RE The SDC LISP 1.5 Systemfor |IBM
360 Computers. System Devel opnent Corporation Docunent SP-
3043, (Jan, 1968).

Bauer, H R, Becker, S. and Graham S.L. ALGOL W Language
Description, Conmputer Science Departnent, Stanford University,
(Jan, 1968).

Bauer, H. Stanford University, Stanford, California.

Benner, F.H. On designing generalized file records for manage-

ment information systems. AFIPS V. 31, 1967 FJCC. Thonpson Books,
Washi ngton, DeC., pp. 291-303.

Bobrow, D.G. and Murphy, D.L. Structure of a LISP System Using
Two- Level Storage. Comm. ACM 10, 3 (Mar, 1967) pp. 155-159.

Bobrow; D.Ge (Ed.) Synbol Manipul ati on Languages and Techni ques.
Nort h-Hol I and Publishing Co., Amsterdam Netherlands, 198.

Cohen, J. A use of fast and slow menories in |ist processing
| anguages. Comm. AcM 10, 2 (Feb, 1967) pp. 82- 86.

Collins, G.E. A nethod for overlapping and erasure of |ists.
Comm. ACM 3, 12 (Dec, 1960) pp. 655.

Collins, G.E. The SAC 1 |ist processing system Conputer
Science Departnment and Conputing Center, University of Ws-

consin, (July, 1967).
Comfort, W.T. Multiword list itens. Comm. ACM 7, 6 (June 1964),
pP. 357,

Dodd, G.G. APL, a language for associative data handling in
PL/1. AFIPS Conf. P. V.29, FJCC, Spartan Books (\sh, 1966)
pp. 677-689.

Farber, D.J., Giswld, R.E., and Pol onsky, T.P. SNOBOL, A string
mani pul ati on language. J. ACM ii, 1964, pp.21-30.

Fel dman, J. A Aspects of associative processing. TN 1965-13
Lincoln Lab MT 1965.

Franks, E.W. A data nanagement system for tine-shared file
processing using a cross-index file and self-defining entries.
AFIPS Conf. P. V. 28 1966 SJCC pp. T9-86.

77

[Garw 68]
[Gerl 60]

[Gay 67]

[Gis 67]

[Hadd 663
[Hawk 671
[Hoar 66]
[18m 68al
[18m68bl
[I1if 62]
[John 631

[Joyec 671

[Kant 661

[Know 663
[Kknth 683

[Lang 68]

Garwick, J.V. GPL, a truly Ceneral
ACM 11, 9 (Sept,1968), pp. 634-638.

He, Bt Al. A FORTRAN-conpiled |ist-processing
J. ACM 7, 190, p. 87.

Purpose Language. Comm

CGerlernter,
| anguage.

Gay, J.C.
a survey.
Washi ngt on,

Conpound data structure for conputer aided design;
Proc. ACM 22nd Nat. Conf. 1967, Thonpson Books,
D.C., pp. 335-365.

Giswol d, R.E.,Poage, J.F., and Pol onsky, I.P. Prelimnary
Report on the SNOBOL % Progranming Language |1, Bell Tel ephone
Laboratories, Holmdel, New Jersey (Nov, 1967).

Haddon, B.K. and Waite, WM A conpaction procedure for variable-
length storage elements. Conputer J. 10, 8 (Aug, 1966).

Hawki nson, L. Lisp 2 Internal Storage Conventions.

Syst ens
Devel opnent Corp. TM-3417/550/00 (Apr, 1967).

Hoare, C.A.R. Record handling. Pi sa

(Sept, 1966).

I nt ernati onal Business Machi ne& BM System/360 Qperati ng System
MVT Supervisor, Form ¥28-6659-2 Ki ngston, New York, (Jan, 1968).

| FIP working conference,

International Business Machines. |BM System 360 PL/I Reference
Manual . For m ¢28-8201-1, Ki ngston, New York, (March, 1968).

Iiffe,
schene.

J.X. and Jodeit, J«G. A dynam c storage allocation
Comput. J. 5, 10 (Oct, 1962) p. 200.

Johnson, T.E. Sketchpad |11 3-D graphical conmunication with a
computer. ESL-TM173 MI.T., Canbridge, Mss., 1963.

Joyce, John D. and G anciolo, Marilyn, J. Reactive displays:
Improving man- machi ne graphi cal communication. AFIPS Conf.
P. V. 31, FJCC (Sept, 1967) pp. T13-721.

Kantrowitz, w. CORAL - A Questionnaire for |anguage consultants.
ACM Special Interest Conmttee on Synbolic and Al gebraic Mani-
pulation, Conparison of Languages Subcommittee (May, 1966).

A programmer's description of % . Comm. ACM No. 8,

Know ton, K.C.

9 (Aug,1966).

Knuth, DE. The Art of Computer Programming, Vol. I, Addison-
Vsl ey, Menlo Park, California, 1968.

Lang, C.A., and G ay,
structure package.

J.C. ASP - A ring inplenented associative
Comm. ACM 11, 8 (Aug, 1968) pp. 550-555.

78

[MBth 63]

[MCar 60]

[MCar 62]
[MCla pec]
[MKee 66]

[ﬁKee 671

[MKee pc]
[Mnch 671
[Mnch pc]
[Mnsk 63]
[Newl 64]
[Perl 60]
[R&R 64]

[Reymn 65]

[Reyn 69]

[Reyn pcl

McBeth, J.M. On t he reference counter nethod. Comm. ACM 6, 9
(Sept, 1963) Do 575

McCarthy, J. Recursive functions of synbolic expressions and
their conputation by machine, part | Comm. ACM 3, 4 (April, 1960)
p. 18L.

MCarthy, J., et. al. LISP 1.5 Programmer's Manual. The MT
Press, Canbridge, Mass., 1962.

McClaren, M D., Argonne National Laboratory, Argonne, Illinois.

McKeeman, WM An_Approach to Conputer Language Design.
Techni cal Report cskd, Conputer Science Departnent, Stanford
Uni versity, (Aug, 1966).

McKeeman, WM Language directed conmputer design. AFIPS

Confe P. V. 31 FJCC 1967, Thonpson Books, Washington, D.C.
pp. 413-L17.

McKeemsn, W. University of California at Santa Cruz, Santa Cruz,
Cal i forni a.

Manacher, G.K. and Dewar, R B.K. ~ The UNCLLL List-Processing
Language: A Prelimnary Description. University of Chicago, 1967.

Manacher, G.K. University of Chicago, Chicago, I|Ilinois.

M nsky, M.L. A LI SP garbage collector using serial secondary
storage. MT Artificial Intelligence Meno. No. 58, Canbridge
Mass., (Oct, 1963).

Newel |, A (Ed.) Information Processing Language-V Manual,
2nd ed. Prentice Hall, Englewood, N.J., 1964.

Perlis, A«J. and Thornton, D. Symbol Manipulation by Threaded
Lists. Comm. ACM 3, 4 (Apr, 1960), pp. 195-20k.

Randell, B. and Russell, IL.J. Algol 60 |npl enentation. Acadenic
Press, London, 1964. ‘

Reynol ds, J.C. Cogent Progranm ng Manual . Argonne National Lab.
report no. ANL-7022. Argonne, Illinois, (Mar, 1965).

Reynol ds, J.C. CGEDANKEN - A Sinple Typeless Language which permts
Functional Data Structures and Coroutines. Argonne National Lab-
oratory, (May, 1969).

Reynol ds, J.C. Argonne National Laboratory, Argonne, Illinois.

79

[Ross 61] Ross, D.T. A Generalized Technique for Synbol Manipulation and
Nunerical Calculation. Comme ACM 4, 3 (Mar, 191) pp. 1k47-150.

[rRoss 67] Ross, D.T. The 4ED free storage package. Comm. ACM 10, 8
(Aug, 1967) pp. 481-492.

[Rovn 663 Rovner, P.D. Investigation into paging a software simulated
associative nemory system Document No. 40 10 90, University
of California, 196.

[Rovn 67a] Rovner, P.D. and Feldnan, J.A. An Associative Processing System
for Conventional Conputers. Lincoln Laboratories, TN 1967-19.

[Rovn 67b] Rovner, P.D. and Feldman, J.A. The Leap Language and Data
Structure. Lincoln Laboratories, Novenber 1967.

[satt pc] Satterthwaite, E. Conputer Science Departnent, Stanford University.
[Schr 671 Schorr, H and Waite, WM An efficient machine - independent

procedure for garbage collection in various list structures.
Comm. ACM 10,8 (Aug, 1967) pp. 501-506.

[Styg 671 Stygar, P. LISP 2 garbage collector specifications. systens
Degel)oprrent Corp. TM-3417/500/00, Santa Mbnica, Calif., (April,
1907).

[Suth 633 Sutherland, |.E Sketchpad: a man-machine graphical comunication
system T 296, Lincoln Lab., M.I.T., Lexington, Mass., 1963.

[Suth 663 Sutherland, Wlliam R The Coral Language and Data Structure
(Appendix C) from Lincoln Laboratory, TR No. 405, May 1966.

[Toll pc] Tolliver, B.L. Conputer Based Laboratory, Stanford University,
Stanford, California.

[vDam 67] Van Dam A and Evans D. A conpact data structure for storing,

retrieving and manipulating line drawings. AFIPS P. v. 30
SICC 1967, pp. 601-610.

[Weiz 63] Weizenbaum J. Symmetric list processor. Comm. ACM 6, 9 (Sept,
1963) p- 524.

[Weiz '68] Weizenbaum J. The Funarg Probl em Expl ai ned. MIT, Canbri dge,
Masse, (Mar, 1968).

[Wilk 64a] W1 kes, MV. An experiment with a self-conpiling conpiler for a
simple list-processing |anguage. Annual Review in Automatic
Programmng, Vol. 4. Perganon Press, N.Y., 1964, pp. | -48.

[Wilk 64b] Wl kes, MV. Lists and why they are useful. .Proc. ACM 19th Nat .
Conf., (Aug, 196L).

[Wse 66] Wiseman, NNE. A sinple |ist processing package for the PDP7.
Second European Sem nar of DECUS, (Oct,1966).

80

[Wth 65]

[Wth 66]
[Wwrth 68]

[Yngv 62]

Wrth, % and Weber, H. Euler: A generalization of Algol and its
Formal Definition. Technical Report cs20, Conputer Science Depart-
ment, Stanford University, (April, 1965).

Wrth, N and Hoare, CAR A contribution to the devel opnent

Wrth, N ©Pr360, A progranming |anguage for the 360 conputers,
ACM 15, 1968, pp, 37-Tk.

Yngve, V.H. et. al. COMIT Programmer's Reference Mnual, the
MT Press, Cbridge, Mss., 1962.

81

Appendi x A Details of Swm Structures

There are many different information structures in swym Free
storage contains lists and plexes (also called atons), while the stack
contains pointers, return addresses, and plexes. Al currently inplenmented

varieties of these structures are described bel ow

Al. Free Storage Structures

a. Lists

A list word has the structure

1 29 11
Addr ess
Neqe AT@Ma/' \>-RST
ADDRESS. May point at another list element, or at an atom
GC. Is used by the garbage collector for marking (bit M).
RST. Is on to indicate that the continuation of the list is at

| ocation ADDRESS. RST is also used by the garbage collector
(bit me).

- ATOM Is on to indicate that ADDRESS points at a plex (or atonj.
ATOM is on automatically because a pointer at a plex points six

bytes in front of the plex.

In the fol lowing exanples, the two low order bits of each pointer

are indicated explicitly. A pointer at an atomis indicated by the

82

printnane of the atom and the presence of the ATOM bit. The list (

(AB C may be represented by

® B ® > C
A 01 10 o1 10 "

or

10 10 10 11

Note ‘that the rrrst of either structure is a pointer at the atom NIL.

\' is not —\'

c 10 1 ¢ 10 "

That is,rst of

but is the poi nter at NIL (contents of the second word). It is inportant
to note that no valid pointer will point at a list element with the RST bit
on.

The Swym list structure can represent both circular lists - which
cannot be printed, and lists with common subel ements - which are not

printed correctly.

Crcular list:
- g —— N
o 5 | & ¢ | 4
10 01 10 01 10 01
or
¥y N
A B C l
10 10 10 01

List with conmon subel enents: The exanple below would print as

((a (((B) B) (B) B) ((B) B) (B) B) ((B) B) (B) B)

but note that B occurs exactly once in all representations of the structure.

83

‘ ~

Aﬁw '.01 o0 101

i pay
', Ioo 1“ s |
N
A, ‘W'lm

Lists may use any mxture of adjacency and |ist continuation elenents.

-

The last exanple mght also be

ﬁoo o ¢ 01 " 00 B 10 1
| \
A] l

10 00 10

or even

9 *—
00 o1w
Y NV /0w

A [1 1 B

~ 10 00 00 00 10 11

"The garbage collector would rearrange this structure to occupy menmory as:

r_ ‘ N X N\
B 10 11 ¢ 00 lo1». 00 T 01 A 10 ° 00 £o1 7 00 l o1
"~ S‘tar’:¥ //‘

h. Plexes (or atons)

Two types of plexes have been inplenmented: one simlar to the LISP
1.5 atom the other a variable | ength string. Cther types may be

84

inplemented as required by an application. all plexes have a plexhead

aligned on a full word boundary; a pointer at a plex points six bytes in
front of the first byte of this plexhead. This offset ensures that

the atombit is on in a pointer at a plex and thus distinguishes between
pointers at lists and pointers at plexes.

The standard fields of a plexhead are

1 7 7 1 15 1
Type [1
cc . o
cC. These two hits are reserved for the garbage collector.
1inbit 15 This bit, in conjunction with the offset addressing of

pl exes forces the RST routine to make a specification error if its

argument is a pointer at a plex.

TYPE. This field distinguishes between different plex types.
Currently types 0 and 1 are inplenmented.

The blank fields may be defined for individual plex types

Plex Type 0 - Symbol (LISP atom

This plex is a three part entity: plexhead, value cell, and

property list. The plexhead has the format

1 5 11 7 1 15 1
FCN 0 1
GC’, VAL A \\-REL \\—GC
VAL. If this bit is a one, the atomis bound to the value
currently in the value cell. If 0, the atoms function definition

iIs in the value cell.
85

REL. If this bit is a one, the contents of the value cell are

relocatable, that is, the garbage collector will treat them |ike

a pointer.

FON. If the atomis not a function nane this field is zero. CQher-

wise, this field encodes what type of function definition exists. The

coding is
1 SUBR
2 FSUBR
3 EXFR
4 FEXPR

The fifteen bit blank field can be used as required. It is proposed to
use these bits as marker hits indicating the presence or absence of

properties on the property list.

Thus routines could find out if the indicator were present wthout
searching the property list. Aso the extra bits can be used to replace
the "flag" feature of Lisp 1.5.

The atom's value cell is the next word after the plexhead. This cel
-holds the current binding of the atom that is, the value that is to be
returned for EvAL of this atom There is 8 unique string atomwth the
printname 'UNBPUND', that is only pointed at by value cells. I|f an atom
has no function value and is not bound, the value cell points at *unsguwp’.
When EvAL finds an atomw th this value anerror i S indicated and control
returns to the top level. If an atom has 'uNegum' in its value cell, VAL
and REL are both one, because the atomis bound to a relocatable val ue.
Note that given a pointer at the atom the value cell can be addressed

directly.

This means that no searching nust be done to find the value of a
routine's argument. Normally, when the STUTTER interpreter is running,
the Value cell contains 8 relocatable value, a pointer at either 8 |ist
or another atom Provision is made, hpmever, for conpiled functions to
store non-relocatable quantities in the value cell. This neans that
conpi | ed functions can, indeed, do direct numeric conputation.

If an atomis not currently bound, the value cell may instead contain
the function definition of that atom For FEXPR and EXPR, the REL bit is
. on and the value cell points to the list defining the function. For SUER
and FSUBR, the greL bit if off, and the value cell contains the entry
point of the subroutine. Since function names are not usually variable
nanes, the interbreter normal |y does very little searching to find function
definitions. Regardless of where the function definition is stored, hits
are set in the atomhead t0 indicate what kind of definition it is; that is
EXPR, FEXPR, suBrR, FSUBR Thus when the definition is sought on the

property list only the correct indicator need be used.

87

The property list of an atomis a standard swym |ist, except that
ther...rst is not NIL, but a pointer to the printnane of the atom (a
character string atom (type 1)).There is no PNAME indicator. The first word
of the property list is the word after the atoms value cell. |f there is no
property list, the word followng the value cell is a pointer to the print-
nane with the RST bit on. By convention, the property list always consists
of indicator value pairs; there are no flags as there are in LISP 1.5,

GET, PuTPROP, REMPROP, and EVAL al|l obey the above conventions for
the value cell and the property list. BINDERY, however, will not bind
a value to an atom havi ng a function definition. See the description

of BINDERY in AppendiXx D.3.

Plex Type 1 - Strings

This plex type illustrates Swymvariable |ength plexes. The plex

format is
1 7 T 1 15 1 |
) |
Subt ype 1 1 Lengt h Y
w’ N
LENGTH. Nunber of bytes in string. String is right padded to occupy

an integral number of full words.

SUBTYPE. This describes further the type of string. Currently, it

affects only the print routine. Three subtypes are defined:

0 character string
4 fixed point nunber
8 hexadeci mal nunmber

Fixed point nunbers are restricted to length four.

88

A 2. Stack Structures

The garbage col | ector nmust be able to scan the stack collecting
those structures which are currently active. Thus, it nmust be possible
to distinguish pointers from nunbers and other random bit patterns. The
high and low order bits of each stack word are used for this purpose and

are interpreted as:

00 poi nt er (col I ected)
g% return address (not col | ected)

10 stack plex (collected by special routine)
Any non-rel ocat abl e informtion Whi ch may have a zero |oworder bit nust

be stored on the stack in a stack plex. A plex head is stored after

the plex on the stack because the garbage collector scans the stack from

latest entry to earliest. The stack plexhead format is:

1 e3 7 1
1 Type |0
TYPE. Determ nes what type of plex this is. The garbage collector

invokes an appropriate type dependent routine. Two types of stack

plex are inplemented: the non-relocatable plex and the binding plex.

Stack piex Type O - non-rel ocatabl e

1 15 8 71
Length
LENGTH. This many prior words in the stack are non-relocatable.

They are igngred by the garbage col | ector

Stack Plex Type 1 - Binding

This type of plex is used by BINDERY to store the old bindings of atons
89

before changing them The plex nust be removed from the stack by UNBIND
for proper stack synchronization. Bindings are stored in atomvalue pairs

thus the stack binding plex |ooks Iike-

FFFF . |
Fat o] pair b
St ack o | .
.Growth 2" val pair
2" val } pair 1
N~
"Type 1 stack plexhead
0

The plexhead format is:

1 15 8 7 1
1 reloc bits | engt h 1 |0
LENGTH number of pairs in plex.

RELOC BI TS These define the relocatability of the value nenber of
each pair. Bit 15 corresponds to pair 1. If the bit is on,
the value is relocatable, that is, it nust be collected. Up
to fifteen pairs with a relocatable value may be stored. The atom

pointers are always assuned to be relocatable.

90

Apvendix B. SWM Macros

An essential factor in the devel opment of the Swym system was the
creation of a collection of macros. |In effect, these macros create a
machine suitable for processing Swym data structures. The operands to
nmost nmacros are register nanes, therefore a know edge of Appendix I,
"swym Register Assignments”, will be useful. For purposes of description,
the macros have been divided into eight classes. An index indicates the
. class to which an individual macro belongs. The classes are
1. LISP - The Basic LISP (perations.

FST, RST, NULL, ATOM RPLF, EQ
2. Atom - Qperations on Atom Fields.

CELL, RPLCEL, HEAD, TAIL, RPLHD
3. Freest - Free Storage Creation.

STRAT, wmaroM, SUBR, FSUBR, CHAR, qcHAR, VALUE
4. Stack - Stack Manipulation.

PUSH PCP, POPN, TOP, TOPN, RPLTCP, RPLTCPN
5. Bit - Named-bit Qperations.

BI T, serBir, RESETB, |NVERTB, TESTB

oN

. Link - Subroutine Linkage.
SUB, RET, CAL, TVMAK, XB
Control - Flow of Control.
|F, THEN, ELSE, EwpIr, AND, ORX, NOT, BCMAC, GOT0

~

8. Misc - Mscellaneous
CHTBL, SWEAR, INST:, GCPUT, FIXUP
Also in the gwm macro library is a piece of code which nust be COPY'ed

during a swm assenbly. Called swm, this code is described in Appendix M.

91

Unl ess otherw se indicated, the label field of a macro is attached

to the first executable instruction.

Macr o

ATOM
BCWAC
BIT

BI TTBLMK
CAL
CElL

CHTBL
ELSE
ENDIF
EQ
EVCH
FINDBIT
FIXUP
FST
FSUBR
GCPUT
GETNAME

GETNUM
GATg

d ass
Control -7
LI SP-1
Control -7
Bit-5

_Bit-5

Li nk- 6
Atom 2
Freest-3
Mst-8
Control -7
Control -7
LI SP-1
Freest-3
Bit-5
Misc-8
LI SP1
Freest-3
Misc-8
Atom 2
Atom 2

Control -7 .

MACRO | NDEX

Nunber of Positional

Qper ands
0
1
0
1
0

2

2 -
SYSLI ST
SYSLI ST
0

0

2

1

1

2

24
SYSLI ST
1

1

24

1

92

Keywor d
Qper ands

TGP, FGp

TBR, FBR, TG@, FGP

P,B,S

TGP, FGP

Macro
. HASH

| F
| NST4
INVERTB

MAT@M

NULL
PRX
P@P
PPN
PUSH
QCHAR
RESETB
RET
RPLCEL
RPLF
RPLHD
RPLT#P
RPLTOPN
RST
RSTMAK
SETBIT
STRAT
SUB

d ass
Freest-3
Atom 2
Control -7
Mst-8
Bit-5
Freest-3
Control -7
LI SP1
Control -7

"Stack-4

St ack- 4
St ack- 4
Freest-3
Bit-5
Li nk- 6
Atom 2
LISR1
Atom 2
St ack- 4
St ack- 4
LI SP-1
LI SP-1
Bit-5
Freest-3

Li nk-6

Number of Positiona
Qper ands

1
24
.

— o

0
1
2
1

SYSLI ST
2
1
2 «
2 «

2 «

93

Keywor d
Qper ands

ATHD

TGP, FGP

ATHD

R, E, P, B

ATHD

R,E,P,B

Macr o
SUBR
SVEAR
TAIL
TESTB
THEN
TP
TPPN
TVMAK
VALUE

NOTES

Nurmber of Positional

d ass Qper ands
Freest-3 SYSLI ST
Misc-8 1
Atom 2 2 -
Bit-5 2
Control -7 0
St ack- 4 1
St ack- 4 2
Link-6 SYSLI ST
Freest-3 2
Li nk-6 1

Keywor d
Qper ands

TGP, FGP, ATHD

1. The nunber follow ng class name is the section nunber of that class

in this appendix.

2. - . Both

arguments nust be register names.

If this macro has one

argument, it conputes the function of that argunent and assigns the

val ue back to that argunent,

If a second argunent is supplied, the

value is assigned to this second argument and the first argument

I's unaf fect ed.

3. « . Aways has two arguments.

referred to by first.

4. SYSLIST.

ar gunent s.

Val ue of second is stored in location

The &sysLisT(i) feature is used to reference up to 25

ok

LI SP - The Basic LISP Qper ati ons

FST, RST, AT@M, NULL, EQ RPLF, RSTMAK

FST a,b. (This is theLISP 1.5 CAR). a and b nust be register

names. FST finds the first element of the list pointed at by a.
If pis present, the result is placed in register b, otherwse, the
result is placed back in register a. Assenbles as either

L a,0(g) or L b,0(a).

RST a,b. (This is theLISP 1.5 CDR). a and b nust be register

nanes. BT finds the list formed by deleting the first el ement
fromthe list pointed at by the register a. The result is placed
inpif present, otherwise in a. Assenbles as either BAL IL,RSTxx
where xx is a or LR b,a; BAL L,RSTxx Wwhere xx is b. The
routine msTxx is created by the macro RSTMAK. In the current swym
system there exist RSTAl, RSTA2, RSTA3, RSTT, and RSTTT; these are
the only registers whose RST can be taken. Note that if bis
specified, it nust be anong Al, A2, A3, T, TT while a need not be.

If b is not specified, a nust be among that restricted set.

ATPM a,TGP=tgo, FGf=fgo. This is a predicate macro; see section 7

of this Appendix, especially the description of BCMAC. a nust be
a register name; its contents are tested to see if they point at
a plex (or atonm). The code generated is

LA TT,2

NR TT,a

BCVAC TBR=BM, FBR=BZ, TGff=tgo, FGf=fgo

Note that argM destroys the contents of register TT.

95

NULL a,TGP=tgo,FGP=fgo. This is a predicate macro; see section 7 of
this Appendix, especially the description of BCMAC. a nust be a
register name; its contents are tested to see if they point at the
atom NI'L. The code generated is

CR a,N
BCVAC TBR=BE, FBR=BNE, TGff=tgo, FGf=fgo

EQ a,b,TGP=tgo,FGf=fgo. This is a predicate macro; see section 7 of
this appendix, especially the description of BCMAC. a and b nust
be register nanes. They are tested to see if they both point at
the same identical entity. The code generated is

CR 8,b
BCVAC TBR=BE, FBR=BNE, TGf=tgo, FGO=fgo

RPLF a,b. (This is the LISP 1.5 RPLACA). a and b nust be register

names. The list structure pointed at by a is nodified so that

the first element of the list is the structure currently pointed

at by b. Neither a nor b is changed. The code is ST b,0(a).

RSTMAK a. This macro generates the routine needed by the RST nacro.
Note that this routine nust appear in an addressable section when
a RST calls it. The code generated is
RSTa ™ 7(a) X '1° is there a RST hit?
BY RSTLDa yes, branch
BXH a,Ct,0(L) nNnoO, iner ptr and return
RSTLDa L a,li(a) load Iist cont ptr

BCTR a,L remove RST bit and return

96

B.2. Atom- Qperations on Atom Fiel ds

HEAD, RPLHD, TAI L, CELL, RPLCELL; GETNAME, GETNUM

HEAD a,b. a and b nust be register names. Accesses the pl exhead
of the atompointed at by a. If b is present result goes in b,
otherwise into a. Result is a bit pattern and is not relocatable.
a may be a pointer at any plex (not just type 0). Assenbles as

L a,6(&) or L b,6(a).

RPLHD a,b. a and b nust be register names. a nust point at a plex.
b should contain a bit pattern which is a valid plexhead. The
result is that the plexhead pointed at by a is replaced by the
contents of h. The contents of a and » are not changed. Assenbles
as ST b,6(a).

TAI L a,ba and b nust be register names. a nust point at a type
0 atom (not checked). The result is a pointer to the property
list of the atom If b is specified the property list is put in b,
otherwise a. Assenbles as LA a,10(a); RST a or LA b,10(a) ;
RST b. Note that the restriction to RST applies to the last argunent
of TAIL.

CELL a,b. a and b nust be register nanes. a nust point at type 0
atom (not checked). The result is the contents of the value cell
of a (not a pointer to the value cell). If b is specified, the
value cell is placed in b, otherwise in a. Assenbles as

L a,10(a) or L b,10(b).

97

RPLCEL a,b. a and b nust be register names. a nust point to a type
0 atom (not checked). The value cell of the atomis replaced by

the contents of b. Assenbles as ST b,10(a).

GETNAME a,b. a and b nust be register names. a nust point at type 0
atom (not checked). The result is a pointer to the printname of
the atom If » is specified, it receives the result, otherwse a
~receives the result. Assenbles as
LA a,10(a) or LA b,10(a)
RST a or RST p

ATPM a,FGO=%¥-10 OF ATPM b,FGf=*-10

GETNUM a,b. a and b nust be register nanes. a nust point at a
type 1 plex of subtype 4, that is, a string which is a fixed point
nunber. This is not checked. The result is the value of the fixed
point number. If b is specified the result replaces b, otherw se

a. Assenbles as L a,10(a) or L b,10(a).

B.3. Freest - Free Storage Creation

VALUE, SUBR, FSUBR CHAR, QCHAR maTgM, STRAT, HASH EVCH

There are three levels of free storage creation macros. The highest
| evel macros create atoms with properties required for the interpreter:
VALUE, SUBR, FSUBR CHAR and QCHAR These macros call on MATM to
actually create an atom The third level macros are called by MATgM
as utilities: HASH EVCH and STRAT,

In addition to assembling the structure required for an individual

atom these nmacros create the object list and the character objects Iist,

98

These lists are the values of @BLIST and CHAR@BS, respectively, as described

in Appendix H

The macro MAT@M takes care of creating the $BLIST. Each tine an atom

is created using MAT@M, the print nane is hashed (using the HASH nacro),

and a bucket link is created. Created labels are used to link the nenbers

of a bucket together. These |abels have the form

BUC xx L nn
where xx is the hash nunber and nn is the nunmber of the items in the
bracket. Thus the oblist itself is

@BLIST DC A(BUCLLO)

_DC A(BUC2LO)

DC A(BUC64LLO)

DC A(NIL+RBIT)
Wien an atomis created, two words are created to link the atomin the
porper bucket. They are

BUCxxIn DC Aatom

DC A(BUCxxLm+RBIT)
where xx is the bucket nunmber, n is the nunber of itens already in this
bucket, mis ntl, and A(aton) is a pointer at the atom RBIT has the
value 1 and is used to put in the BT bit where required.

The initial contents of free storage are discussed in Appendix H

nm VALUE pneme,val. The structure for one atomis created. The
| abel nmis given the value by which the atom should be addressed.
The printnane is pname. The value cell is a pointer to_val. The

plexhead is marked to indicate that there is a quantity in the

99

value cell and that it is relocatable. The assenbly is perforned
by cal l'ing
nm MAT@M pname, RELB+VALB, A(val)

REIB and VALB are equated to the bhits REL and VAL (see AppendiXx A.l.b).

SUBR pnanel, pname2, ..., pnamen. An atomis created for each pnane

inthe list. The printname i S pnane_and the value cell is the
~address of the SUBR with that name. The atom head is marked to
indicate that the atom has a function definition, it is a SUBR
and the address of the routine is in the value cell. The pnane
I's declared EXTRN to communicate with the assenbly in which the
SUBR is defined. For each pname on the list, the code assenbled is:
EXTRN pname
MAT#M pname,SUBRB, A(pname)
SUBRB is equated to 1, the function definition code for susr's.

Any label field on SUBR is ignored.

FSUBR pnanel, pname2,..., pnanen. Same as SUBR, but FSUBRB is used
i nstead of SUBRB.

CHAR charl, char?,..., charn. An atomis created for each character

in the [ist of characters. The print name is just the character.

The value cell is set to point at the 'uxggunp' error atom The

pl exhead bits are set to indicate that the value cell is relocatable

and has a value. In addition, the appropriate entry in CHARgBS i S

set to point to the created character atom Each atomis created by
MAT@M chari

If there is a label on the CHAR it will be equated to the atom for

the first character on the list.

100

The followi ng characters are valid argunents to CHAR
A-Z, 0-9, blank, and these special characters
[¢]
+ | $. /% :#"¢:[§]*=_(>@-.;
o
not e t hat H prints as -, while.¢ and ! print as blank.
8
QCHAR. Same as CHAR, but expects arguments to be quoted: viz.

t(t,)tt’ and !,l'

nm MAT@M pnm celbits, plist. Creates an atomwith the print pnm.

The label nmis equated to the offset address of the atonis bl ockhead.

If celbits and plist are not specified, the atom head is marked to

indicate relocatable binding and the value cell is a pointer at the
speci al atom *uNBgunp'. |f celbits are specified, that quantity is
assenbl ed (AL1 (celbits)) as the first byte of the atom head. The
rest of the atom head is 010000; indicating a normal type 0 atom

The menbers of plist-which my be a 360 assenbl er sublist - are
assenbled following the atom head. Thus the first element of plist
is the contents of the atoms cell. Oher elements of plist nust

be in indicator-value pairs for the property list. After the property
list, a pointer to the printnane and the printnane itself are

assenbled. The code assenbled for mssing celbits and plist is

BUCxxIn DC A(* + 8 - AT) put atom in bucket
DC A(BUCxxLm+RBIT) link to nxt bucket item
nm EQU *-AT equate nane to atom ptr
DC AL1(RELB+VALB) X ' 010000 assenmbl e atom head
DC A(UNB@UND) val ue cell
DC A(%+h-AT + RBIT) null prop list is ptr
STRAT *pnm!. print nane

101

wher e

XX is hash code of _pmm,

n I's nunber of prior entries in bucket xx,

m IS ntl,

AT is atom of fset (6),

RBI T isrst bit (1),

RELB+VALB put in relocatable and variable-bound bits.

The code generated with celbits and plist is the same except the

atom head is

DC AL1(celbits),X'010000"

and the elements of plist precede DC A(*+h-AT+RBIT).

nm STRAT 'string' . Creates a string atom (type 1). The atom head is

DC X '0003',AL2(2*L'string)

which indicates character string atom Followng words are four

character at a tine chunks of string. m is equated to the offset

location of the string atom That is, the first assenbled instruction

would be mm EQU *-AT. String atoms are not placed on the @BLIST
Or CHAROES.
BASH string. HASH eval uates the hash function for the sfltingh e

result is left in an assenbly tinme global variable (GBLA &HVAL)

whose value can be used by a calling macro. BASH calls on EVCH

three times to evaluate the three character values needed by the

hash function (first, third, and last).

102

EVCH ch. Unbel i evably with 360 assenmbler, there is no sinple way to
determine from a character the nunber corresponding to that
character's EBCDIC code. EVCH performs this feat by a large test:

chval = i.f ch = 'A' then 193
else if ch = '8' then 19%

else_if ch = *¢* then 195

el se | h

'z* then 233

else_if ch = 'o* then 2k0

el se

else error ("illegal character - evchr')
The value is left in a global variable (GBLA gcHvaL) whose val ue
can be used by a calling macro, for instance HASH ~ The following
characters are valid to EVCH A-Z, 0-9, blank, comma, >,), pgriod,
S G/t o 8 %,y 6 % i, # 8,

12].
8

B.4. Stack - Stack Manipul ation

PUSH, PgP, PPPN, T¢P, T@PN, RPLTPP, RPLTEPN

The stack is allocated in units of one word. The basic macros are
PUSH and pgp. The former puts one word on the stack, the latter renoves
a word fromthe stack. A routine nust do exactly as nmany PUSH'es as
Pgr's unless very special care is taken.

swym stack macros use negative stack growh. That is, the first
stack location allocated is the highest address and successive words are

in successively lower locations. This neans that since the stack pointer

103

points at the last entry on the stack, all recent entries to the stack
can be addressed with sinple displacenent addressing. Thus a routine
my do three PUsH'es to allocate three words of tenporary storage; then
It can address all three Iocations.

A Swym stack pointer nmust be in a register when the stack is referenced
by a stack macro. The standard Swymstack is always pointed at by register
P. Al stack macros have a keyword paranmeter "p=". If P=is omtted,
P=P is assuned.

Currently, no check is made for going off either end of a stack.
Several techniques are possible to ensure that other storage is not
destroyed or that too many PgP's are not executed. The sinplest is to
generate code to check the stack pointer at each PUSH and Pgp. This is
tinme consuming and inelegant. An elegant nethod would be to use a
PP-6 Whi ch has hardware PUSH and 2¢p with built-in checking. (Unfortun-
ately, the 360 does not have PoP-6 mode). It is proposed for Swym that
the stack be first in the user partition. Wen the stack is exhausted, a
protection interrupt will termnate the conputation.

Al stack macros except PUSH have an 'N* form indicated by N at the
end of their name. The first argument to the Nformis a nunber in the
range |-1024. The action of the macro takes place but rather than
affecting the top of the stack, it affects the Nth elenent of the stack.
The latest entry on the stack is N=1. Thus xxxN 1,y IS equivalent

to xxx y although different code may be generated.

PUSH r,P=p. r my be the name of a register or a sublist of register
names. |f the former, as in

PUSH Al

104

PgP

then the stack pointer (P since none other is indicated by P=) is
incremented and the contents of Al are stored on the new top of the
stack. |f a sublist i s coded

PUSH (A, A2, AI, T, M)
then the required nunber of locations are allocated on the stack
and the naned registers are placed on the stack. The |ast nanmed
register is at the top of the stack. The first naned register is
the first placed in the stack. Note that in the exanple, Al is
placed in the stack twice. A PP TT imediately follow ng the exanple
will put the old contents of A% into TT. The code generated for
each elenent of the sublist r IS

SFQ\}bcu

ST r,0(p)

where ¢k is a register whose contents are always k4.

r, P=p. Like PUSH r may be sinple or a sublist. |f sinple,
then the top elenent of the stack is placed in the named register
and the stack pointer is decremented. |f a sublist,

PPP (Al, A2, A1, T, AY4),
then the registers are filled in the reverse order from PUSH That
I's, the right thing happens and this exanple wll exactly restore
the contents of the registers as stored by

PUSH (A, A2, A, T, M)
The code generated for each element of the sublist r isS

L L4,0(p)

AR p,Ch

where ck is a register whose contents are always 4.

105

PPPN n,r,P=p. The nth el enent of the push down list p is popped into
register r. Aso the stacked is popped so that the current (n+1)St
el ement of the push down list is the new first elenment. The current
top of the stack is n=l. The code generated is:

L x,4*%(n-1)(p)
LA p,4*n(p)

TPP r,P=p. The first element of push down list pis put in register

r. The code generated is

L r,0(p)

TPPN n,r,P=p. The gth el enent of push down [ist pis put in register
r. The code generated is

L r,4*(n-1) (p)

RPLTPP r,P=p. The first element of push down list pis replaced by

the contents of register r. The code generated

ST z,0(p)

RPLT$PN n,r,P=p. The n® el ement of push down list p is replaced by
the contents of register r. The code generated is

ST r,4*(n-1)(p)

106

B.5. Bit - Named-Bit Qperations

BI T, SETBIT, RESETB, |NVERTB, TESTB; BITTBLMK, FINDBIT

mm BI T bitno. Using this macro defines nm for all the other bit

mcros. m is defined as being thehbitith bit of a word. Because
all the other functions use Sl instructions both the bit within a
byte and the byte within a word nust be stored for each BIT declared.
The former is stored by equating mm to
BITTBL(bitno-bitno/8%8+1)

where BITTBL has the quantities

x'80!, x'ko', x'20', x'10',X'8', X'4', X'2', X'1'
The byte within a word is stored in an assenbly tine array
(GBLA &BITS (64)). It is conputed byAbitne/Bsr r espondi ng
array (@BLC &BITNAMS(64)) contains the name of the bit so table

| ookup can be perforned.

SETBIT r,bit,ATHD=T. This macro sets a bit in a word in nemory. r

must be the nane of a register. The register will be assumed to
point to the required word. bit nust be the nane of a bit declared
with the BIT nacro. |f the ATHD=T parameter is present, the pointer
inris assuned to point at a plexhead and the pointer is suitably
adjusted. The code generated is @I bl(r),bit or @I bL+AT(r),
bit., In either case, romBIT is used to find the value b1, the

byte-within-the-word for bit.

RESETB r,bit, ATHD=T. Sane as SETBIT but turns the bit off by using

NI bl(r),x'FF*-bit or N Dbl+AT(r), X'FF'-bit.

107

| N\VERTB r,bit,ATHD=T. Same as SETBIT but conplements the bit by .

using Xl bl(r),bit or XI bl+AT(r),bit.

TESTB r,bit,ATHD=T, TGO=tgo, FGO=fgo. This is a predicate macro;
see section 7and especially theBCMAC nacro. The word pointed at
by register r is tested to see if bit Bif ision. is control
goes to |abel Bgo, if not control goes tho | abel &go. r TG
. or Fop or both may be specified. The omtted condition will sinply

drop through. Between IF and THEN, both T6f and FGf may be onitted.
| f AmHD=T i s specified, rwill be assumed to point at a plexhead
and the appropriate offset will be assenbled. The code assenbl ed
is either ~

T™ Di(x),bit

BCVAC TBR=B@, FBR=BZ, TGff=tgo, FGfi=fgo
or TM bl+AT(x),Dbit

BCMAC TBR=B@, FBR=BZ, TGf=tgo, FGP=Lgo
The macro FINDBIT is used to conpute bl, the byte-wthin-the-word
for bit.

BI TTBLMIS. This macro is called exactly once at the beginning of an
assenbly to create the array BITTBL used by the macro BIT. It
stores these character strings into the elements of BITTBL:

x'8o', x'so', x'20', x'10',Xx'8',xX'4", x'2', and x'1' .
The nane field and any argunents are ignored. No code is assenbl ed.

(BITTBIMK i s coded in the essweM control section. See Appendix M)

FINDBIT bit. This macro finds the byte-within-the-field for the

bit named bit by a BIT declaration. The result is left in a global

108

variabl e (eBLA &BITLAC) for use by the calling nmacro (SETBIT,
RESETB, INVERTB, or TESTB). The nane bit is |ooked up in the array
BI TNAMS created by BIT. Corresponding to the entry for pbit is an
entry in the array BITS giving the correct byte-within-the-field.

No code is assenbled.

B.6. Link - Subroutine Linkage

SUB, RET, CAL, TVMAK, xB

Subroutine I|inkage occurs at three points: the calling point, the
entry point, and the exit point. swm has a macro for each point. Note
that for a given routine the entry point and exit point occur within that
routine, but the calling point occurs wherever some routine calls that
- given routine.

The basis of swym subroutine Iinkage is a table of transfer vectors
which is always addressable via register S. This table contains the
address of each routine which can be called by any routine in another
modul e or by conpiled functions. Entries in the table are created by the
TVMAK macro. TVMAK may also be used within a nodule to address routines

‘used only within that nodule.

Two conventions are assumed for subroutines. First, registers nust
be saved by the calling programif it expects themto be saved. Second
the entry point to aroutineis the first byte of code and a base register
will contain that address during execution of the routine.

Three standard registers are vital to subroutine |inkage:

S swym base, base for transfer vectors

109

B base for all routines; nust be |oaded by calling routine

P push down list pointer.

nm SUB R=N@,E=N@, P=p,B=b. This macro assenbl es subroutine entry

code. The parameters supplied should be identidal to the paraneters
supplied for any corresponding RET macros. SUB must occur exactly
once and then only at the beginning of the subroutine it defines.
The normal case has no paraneters coded. |f RN§ is coded, the
routine will not be recursive; that is, it wll not push its return
address onto the stack. |f E=Ng is coded, the subroutine nanme nm
will not be ENTRY'ed. In this case, no other nmodule may refer to
the routine end a TVMAK for it nust be included in its own nodule.
The P= paraneter determnes onto which push down list the return
address will be pushed. p nust be a register name. If omtted,
the standard push down list pointed at by register Pis used. b
must be a register nane. It is the base register declared for

this routine. If onitted the standard base register B is assuned.

The standard case of no paraneters generates:

USI NG mm,b
DC C'nm’ supplied for debugging
ENTRY nm

nm BCTR L, O nmake odd So G¢ ignores
PUSH I, P=p

|f ReNp is coded, the last two lines are replaced by nm DS CH.

_nm, R=N@, E=N@, P=p, B=b, This macro assenbles subroutine exit code.
The m paraneter nust be the name on the nearest preceding SUB.

The other paraneters must be the same as for that SUB. If RNp is

110

coded, the pushdown list is not popped and the return address is
assuned to be in register L. pis the register nane of the push
down list pointer; if Pep is omtted, the standard push down pointer
register pointer P is assumed. b is assuned to be the name of the
base register of the current routine; if omtted, the standard base
register B is assumed. The standard case is with only mm specified.
The code assenbled is

POP L,P=p

B 1(b)
|f ReNp is coded, the code is

BR L

CAL nm, regs, P=p,B=b,S=YES. This macro assenbl es subroutine calling
code. mm iS the nane of the routine to be called. 1Itis also
possible to specify registers to be saved before the call and
restored afterward. The operand regs may be any nane or sublist
acceptable to the PUSH and POP macros. p is the push down pointer
for the register saving; normally P is assuned. b is the nane of
the base register for the routine mm and for the current routine
(last SUB). If B=b is omtted, the standard base register B
Is assuned. If s=YEs is coded, no base register is |oaded after

“return, the assunption being that the current routine is addressable
via some preserved register. Wth 8= onitted, the code generated
is
PUSH regs, P=p I f regs specified
L L, #nm

BALR L,b

L b,#self

POP regs, Psp ‘ifre_gsspecified
fam i s the label of the address'of routine m in the transfer
vector table, #self is the label of the address constant for the
current routine. The name self was the name on the nost recent

SUB nacro.

TVMAK mml, nn2, . . ., nmm. This macro creates entries in the transfer
vector table. One entry is created for each element in the [ist.
The label on the entry is created by concatenating a "#" on the
front of the first seven characters of nm. If nm_is not defined
in the curient assenmbly, it iS EXTRN'ed. This decision is mde
on the basié of the type attribute of nm. Care nust be taken
that nm_is not the |abel on EQU (That pseudo-op gives its |abel
the type attribute 'u'). The code generated for each entry is

EXTRN nane If required

fname DC A(name)

XB rtn,label. This macro is provided for junping into the mddle
of sonme other routine. Because this is considered evil, xs
generates an MNOTE Statement which goes into the error |isting.
¥B does net nodify the stack; this.must be acconplished by RET
inrtn. The second argument may be omitted and the code generated
s

L B, #rtn

B 8(B)
#rtn is the label of the transfer table entry for rtn.
Execution of rtn begins just after its SUB macro (which mst not

speci fy R=Ng). -
112

If the second argument is specified, |abel must appear somewhere
inrtn and rtn nust be assenbled in the current nodule. Control is
transferred to |abel in rtn by the code:

L B, #rtn

B label-rtn(B)

B.7. Control - Flow of Control

| F, THEN, ELSE, ENDIF; AND, @RX, NgT; BCVAC, GfTg

There are three groups of control macros. |F, TEEN, ELSE, and
ENDIF nust occur i\n that sequence; they avoid many user generated |abels,
AND, grx, and N¢T may occur only between |F and THEN. BOVAC and agrg
generate branch instruction; the former conditional, the latter
uncondi tional .

The macros in the first two groups ignore any argunents. Instead
they affect the flow of control to the code between them The primry
purpose of these macros clarify what code i s executed under what
condi ti ons.

The key to the flexibility of the IF-THENELSE is BOMAC and the
concept of predicate macros. A predicate macro calls on BCVAC to
assenble a conditional branch to a label depending on the context.
Predicate macros need not supply branch labels if they occur
between | F and muEn because BCMAC uses |abels generated by the preceding

IF. Currently, the predicate nacros are AT#M, NULL, EQ and TESTB.

| F, THEN, ELSE, ENDIF. There are two forns: |F-THEN-ENDIF and
| F- TEEN-EI SE-ENDIF. The expression |F-THEN-ELSE wi |l nean-bot h.

113

The first formmay be represented
| F
predi cat e- part
THEN
true-part
ENDIF
The code generated is
predi cat e- part
THENx EQU * (if PRX occured in predicate-part)
true-part
ELSEy EQU *
where x and\y are unique four digit numbers, The IF macro generates
the label s tHENx and ELSEy and stores them on an assenbly-time gl obal
stack. Predicate macros in the predicate-part sinply test for the
fal sehood of the predicate and branch te the ELSEy on top of the stack.
grx and Ngr in the predicate-part nodify the action of BOMAC so that
the desired result is acconplished (see the descriptions of those

macr os) .

The second formmay be represented
| F
predi cat e- part
THEN
true-part
ELSE
fal se-part

ENDIF

114

The code generated is

predi cat e- part

THENx EQU = appears only if gRK is in predicatepart

true-part
B DONEz
ELSEy EQU *
fal se-part

DONEz EQU =*

where x, y, and z are unique four digit numbers. The |abel DONEz
is created by the EISE macro and stored atop the |abel stack.
IF-THEN-ELSE's are permtted to nest (up to 60 levels). That is,
they may appear in either the true-part or the false-part. But

IF-THEN-EISE i S not permtted in the predicate-part.

#RX, NgT. The second group of flow of control macros may appear
only in a predicate-part. They control the code generation in

BCMAC.

This macro reverses the sense of any BCMAC occurring
before the next AND, @RX, N6T, or THEN. Two NfT's cancel eadh ot her.
Wile ¥r is in force, BCMAC makes tests for true and branches to the

ELSEy on top of the label stack.

#rRx (not @R because |BMused it). This macro makes tests parallel.

It assenbles the code
B THENx
ELSEy EQU =*

115

AND.

Also it turns off any outstanding Ngr, sets an indicator so that
THENx EQU * will appear, and creates an ELSEw (on the IF

| abel stack) for subsequent false tests to branch to.

The only action by aw is to turn off any outstanding
Ngr. But use of AND nakes explicit the fact that all sequential

tests nust be net before the true-part is executed.

BCVAC TBR=tbr, FBR=fbr, TG@=tgo, FGf=fgo. This macro assenmbles one

branch conditional instruction. If either T6f or Faf (or both)

is specified, BCMAC assembles a branch to_tgo, fgo or both. The
operator for tgo is Bor; the opeoator for fgo is fbr. h fbr
and thr are assumed to exist. The code generated is

tbr tgo if only tgo exists

fbr fgo if only fgo exists
thr tgo if both tgo and fgo exist
B fgo

If neither tgo nor fgo exists, the BCMAC nust occur in the predicate-
part of an IF-THEN-ELSE. If mgr is not in force, the code generated
S

fbr ELSEx

If ngris in force, the code generated is

thr ELSEx
agrd | abel . This macro assembles into a branch to |abel:
B | abel

116

B.8. Misc - Mscellaneous
CHTBL, SWEAR, INST4, GCPUT, FIXUP
CHTBL loc{,what,where} (. . . indicates that *, what, where '

my be repeated up to 127 tirreé). This macro is intended for
creating character tables for the translate instruction (TR) and
the translate and test instruction (TRT). As such, loc iS assumed
to be the address of a table. CHTBL then gra's into that table
and puts values at the required places. For exanple, a TRT to
scan for blanks mght be witten
BLTBL DC 256x*00*

PRG BLTBL + c¢''

DC X'oL!
This scheme is docunentary in that the gre tells exactly where
sonething goes, while the DC tells what that something is.
Using CHTBL, the exanple mght be witten
BLTBL DC 256x'00!

CHTBL BLTBL,1,C! '

The nane field is ignored in call on CHIBL,

The loc field may be any expression. It will be assumed to be
the beginning of a table 256 bytes long. The last instruction
generated is an
fRG loct256

That what field may be either a decimal number or an argument for
DC. In the first case, the macro generates DC FL1(what); i n
the second case, DC what. The cases are distinguished because
a decimal number nust be three or less characters and the general

DC argument nust be four or nore.

117

The where field may be a (360 assenbler) sub-1ist. Each el enent
of the sub-list may be either a single character or a non-relocatable
term The latter nust be nore than one character. In the first
case the macro generates
PRG loc+C'where'
Wi le the non-rel ocatabl e term generates
gRe] oc+where
The fol lowing exanple illustrates all of the above
HEXTBL DC 256x%00!'

CHTBL HEXTBL,4,(A,B),4x*4t,c, 10A11(8),C'0’

will generate
HEXTBL DC 256X'00!
fRG HEXTBI+C'A®
DC FL1'!
PRG HEXTBIAC'B!
DC FL1'4?
PRz HEXTBL+C'C'
DC Lux'h?
fRG HEXTBIAC'O'
DC 10AL1(8)
§RG HEXTBL+256
Note that using a sub-list for where can lead to large object
modul e decks. (Each gre forces a new output card image).

Note al so that good docunentation requires that each what - where

pair go on a separate continuation card.

118

SVEAR error-code. This nacro generates a call on the STUTTER internal
routine: SWERROR The error-code nust be two characters. These
characters will be supplied as a character string to the error

routine: ERROR The code generated is

LH L,*%+8 | oad error-code in REG L
B SWERRZR go to system error routine
DC C error-code'

Note that SWERRAR is al ways addressable via register S

INST4 op,r,rand. The purpose of this macro is to avoid the overly
cautious assembler's "ALIGNMENT ERROR' nessage. This is done
by assenmbling first the OP and RrL fields and then the si-p1 field.

The R2 field can not be used with this macro. Two forns are

possible: r present

% x O

frG *-2

DC S(rand
romtted

op O

PRG *-2

DC s(rand)

GCPUT type. . This is a special purpose macro for witing the garbage
collector. It is called to place a word in new core. For further
di scussion see the routine acpur in Appendix E. The code generated

depends on type.

119

type omtted

BAL L,GCPUT
typd S T

NR 7T, NgTML

BAL L,GCPUTFUL
type =FULL

BAL L,GCPUTFUL
If sonme other type is coded, GcPUr assunes 'type omitted', but generates an

error nmessage.
FIXUP pt,new. This is a special purpose macro for the garbage

collector. It makes an entry in the fixup table. pt and new
nust be register names. Register pt contains the address of a
word in old core which will eventually contain a correct new core
address. new contains a pointer to new core show ng where to
put the eventual contents of pt. Register FIXPTR points at the
fixup table; so the code generated is:

ST pt, O(FIXPIR)

ST new,4(FIXPTR)

LA FIXPTR, 8(FIXPTR)

120

Appendix C. READ Routines and Synt ax

The READ routines convert a character string on an input mediuminto
an internal plex structure. The syntax is simlar to the risp 1.5 syntax.
The major innovation is the super-parenthesis. The parser guarantees that
all regular parentheses within a pair of super-parentheses wll match.
The syntex i S described in section C.|. A second section describes the
internal routines. (External routines are described in Appendix F.) Section
¢.3 details the variables in csswM used by the READ routines. Flow charts

of the main READ routines are in the last section. Al error codes are

col lected in Appendix J.

c.1. The Syntax

| nput expressions are punched free-formin the first 71 colums of the
input cards. Colum 72 is used for the continuation as described in the
paragraph on (string). Colums 73-80 are ignored. Colum 1 of one card
i mredi ately follows colum 71 of the preceeding card. Comments may be
included, the characters' /' are ignored and terminate scanning of a card.
“Acard with under bar - slash-in the first two colums is printed, but
otherwi se ignored. Allcharacters nust be in the IBM 029 character code.
The BNF of the syntax appears in figure C.I. The highest non-termnal is
the s-expression, abbreviated (sexpr). The follow ng paragraphs specify

the semantics of selected syntactic types.

(super list). The less-than and greater-than characters bracket a
(super list). Wen a greater-than is reached before all subordinate

structures are termnated, parentheses are created as required to

121

Figure c.

(sexpr) ::= (list) | (super list) | {atom}

(list) ::= ()] ({sexpr) (list tail)

(list tail) z:= (sexpr)) |.({sexpr)) |
(sexpr) (list tail)

(super list) ::= < >| < (sexpr) (Super list tail)
(super list tail) ::= {sexpr)> | . (sexpr) > |

(sexpr) (super list tail)
(atom) ::= (symbol) | (string)

(synbol) ::= {retter) | (symbol) (alpha-num) |
@ {char) | (synbol) @ {char)

(string) ::= {num string) | - {oum string) |
Z ' (char string) * | x* (hex string) !
Wt (bit string)'

(mm string) ::= {num) | (oum string) (num)

(mm) ::= o|1ilelz||5|6|7]8]9

(char string) ::= (char) |'*| (char string) {char)|

(char string) (char) '

(hex string) ::= (hex digit) | (hex string) (hex digit)
(hex digit) ::= (blank) | {mum) | (hex letter)
(hex letter)

AlB|c|p|E|F

(bit string) ::= o|1|o (vitstring) | 1 (bit string)

(bl ank) (bitstring} | (bitstring) (bl ank)

122

(other letters) ::= c|e|z|J]|k|z|m|v|o|p|Q|R|s|T|UlvIW|X|Y]|2
(letter) ::= (hex letter) | (other Zletters)

(al pha-nun) ::= (hex digit) | (other letters)

(char) ::= (alpha-mT)|.|(\)|>|<|@|-|+H\$|;|
SU/EE Ll Tl AL 1 =1, | (otame)

& | _
/

123

close all structures. Wien al| internal structures are closed and
an extra right parentiesis i S encountered -- Where a greater-than is
expected -- characters are di scarded until t he matching greater-than
is found, As will be seen fromthe flow chart, whol e structures are
discarded, so that the matching greater-than is found rather than
just the next greater-than, (For example, '<)A<AC>()>' is parsed as

'NIL').

(1ist taill. Note that a degenerate form of the {list) i s the LISP 1.5

dotted pair, This syntax reflects the "general s-expression” form as

supported by most LISP read routines,

{symbol) . Thisis parsed into a type 0 atom |f a type 0 atomwith the

sane string exists on the OBLIST, a pointer to that existing atomis
returned; otherwise, a new atomis created, Note that '8' preceding
any character causes that character to be treated as a letter, Only
one character, the seoond, is stored in the ereated print nane, For
exanple, the (sexpr) @ returns a pointer to the symbol atom with the

one character print name '8'. This atom already exists,

(string). Arbitrary string atems may be input,, Both (hex string)'s and

{bit string)'s are converted into hex string type string atems intern-
ally, Nunbers are currently always four bytes, but the other two
classes My be up to 212 3 bytes. Hex strings are filled with zerpes
fromthe right to make an integral number of' bytes. Floating poi nt
nunbers are not defined SO there i S no dot ambiguity problem; however,

this probl emcould be solved with r.,, '

124

Any string within quotation marks may be continued from one
card to the next. Colum one of the second card imediately follows
colum 71 of the preceding card. In this case, colum 72 nust contain
a dash (*-'). therwi se, colum 72 nust be blank. This convention
was adopted fromcgegL in order to attack the quote m smatch recovery
problem This problem occurs if there is a mssing or extra quote
mrk. Thereafter, everything which looks like it should be in quotes is
outside and vice-versa. There is sufficient redundancy in the Stutter
syntax for recovery at some later point. Because there was insufficient
experience with thelanguage to have a feeling for reasonable recovery
heuristics, the msmatched quote problem was not attacked other than to

specify what should be an adequate syntax.

(bl ank). The general rule is that blanks may appear where they do no
harm They are only required to separate the strings representing
synbol atons. Bl anks may appear between any two elenents of the (list),
(list tail), (super list), and (super list tail). Mre than one
blank will be treated as a single blank except inside a (char string).
Bl anks may al so appear within the quotes for (hex string) and (bit
string).

(char).: In flow charts, two special characters are used: '.' represents

a single blank; '~' represents underbar.

125

C.2. Internal Routines

The routines described in this section are service routines available
only within the read package. The routines available through the stutter
interpreter are described in Appendix F. The entire CSREAD control section
is reentrant. Al tenporary storage is in CSSWYM,

All read routines make use of three global bytes: RDSTAT, RDCHAR, and
ROCLASS . These are described in Section C.3.

The get-a-character routine, GETCH puts a single character into
" RDCHAR and puts the class of that character into RDCLASS. The class of a
character is a number chosen to sinplify distinctions like "Is this
character possibly the first character of an aton?" The classes and their
menbers are in figure C.2. RDCHAR can be set and tested by a STUTTER
programwith the functions STIVCCH and | VCCH This can be inportant
because the general rule is that the read routines interpret the
character in RDCHAR and then read another character for the next routine
to interpret.

The RDSTAT byte is conposed of eight status bits. They are used to
communi cate between the various routines. One of these bits may be manip-
ulated by a stutter programas an internal variable (STIVQMO, IVQM0). The
defined bhits are described in figure c.3.

The synbol nocarDs al so bears explanation. It is the address branched
to when the input file is exhausted. The routine there provides for
orderly termnation of the job

The remainder of this section is a discussion of each of the interna

read routines:

126

cl ass
0
b
8
12
16
20
24
28
32
36
Lo

nenbers

0,1
2,3,4,5,6,7
8,9
A,B,C,D,E,F

GIHIZ,@

all other keypunch characters

Figure C 2

conment s
7 !, l_bit string
octal string

number

~Jhex string

—lal phanuneric
-1 atom start
list start

dot

|ist termnator

ALl non-keypunch characters are in class 255. They cause an error and

are converted to blank before being processed.

127

Figure C.3

seton setoff interpretation
QUOVON QUOVOFF on: GETCH passes each character in
| turn. '-* rmust appear in colum
72,

off: if last char was blank., GETCH scans
for non-blank. Colum 72 nust be
blank. '_ /' in two colums neans
ignore those characters and the

rest of the card,

NEGNON NEGNOFF on;: detected -{mm string) construct
(used in RDAT)
GJFND GJNFND on; GETOBJ found the synbol atom

already on the OBLI ST, RDAT
rel eases any new storage
al | ocat ed,

SKI PMON SKIPMOFF on: skipping to find right super-
paren. Used by RDSE when ski pp-
ing to avoid recursive RO error

nmessages.

Abit is set on with the instruction
01 RDSTAT, seton

The same bit is set off with the instruction
Nl RDSTAT, set of f

128

error routines
RDERR, RDERRCNT
character fetching
GETCH
string construction
PBOPEN, PUTBYTE, PBCLOSE
recursive parser
RDSE, RDLI ST, RDAT
RDERR. This routine prints a two byte error code. The code nust be
in the right half of register Al on entry. RDERR also prints a pointer
indicating the last character scanned.
RDERRCNT. This routine prints a read error nessage by using RDERR
RDERRCNT's second argunment is a nunber in A2. This nunber is printed

at the far right of the RDERR nessage.

GETCH. This routine GETs one character fromthe current input card
and puts it in RocEAR; its class is put in RDCLASS. GETCH reads a
new card when required and maintains two pointers - one to the current
character, the other to the end of the card. Initially, both pointers
are zero to force the reading of the first card. GETCH converts
strings of blanks to a single blank by ignoring blanks if RDCHAR (the
last character read) is blank. Illegal characters (not on keypunch)
are converted to blanks. Wen quote node (QUOVD is on, all blanks
are sent to the calling routine. The '_/' terminates scanning of a
card unless QUOMD is on, in which case both characters are passed to

SuUCCessi ve GETCHes.

129

PBOPEN, PUTBYTE, PBCILOSE. Wi le RDAT is scanning a character string, no

TAK2's are performed. The character string for the atom nane is
constructed directly on top of free storage. PUIBYTE takes one
character fromregister A and stores it in the next position in the
new string. PBOPEN initializes the process. Its argunent is a ful
work in Al which is stored at the beginning of the string as its atom
head. PBCIDSE termnates the process and stores the length of the
string into the atom head. PBCIDSE returns a pointer to the new
string atom PUTBYTE nust provide for exhaustion of free storage.
Wien this occurs, the tenporary string is converted to a bona fide
string atomand a pointer to it is put on the stack. The garbage
collector is called. On return, the tenporary string is copied to
the top of free-storage and PUTBYTE'ing continues. PBOPEN saves the
address of the atom head in PBD, |If a type O atomis being created
and GETOBJ finds an old instance of an atomwith the given print

nane, storage allocated for the new print nane is recovered. The
free storage pointer is sinply reset from PBHD.

This routine has no arguments. It scans the input string for
an s-expression and returns a pointer to that expression. RDCHAR is
assumed to contain a legal character for the start of an s-expression,
otherwi se characters are skipped (and an error nessage is printed)
until a legal character is found. RDSE checks to see if the string is
an atom a list, or a super list. In the first case it calls RDAT to
read the atom In the other two cases, it calls RDLIST to read the
list. RDSE has the function of destroying structures if a right super
paren is not found. It also prints the error message indicating how

many parentheses were created. No parentheses are actually created

130

the nunber is sinply a count incremented as RDLIST exits each |evel of
recursion for a mssing right parenthesis. Normally, this count will
be 1. That is, RDLIST did not find one right parenthesis before a

ri ght super-paren.

ROLI ST. This routine has no argunents. It scans the input string and

takes one list off the front. On entry, RDCHAR nust contain either

“t(r or '<*., RDLIST calls RDSE to read each element of the list.

RDAT.

-t

RSLIST terminates when it finds either) or > The forner it changes
to blank so no other routine reads it. The latter it |eaves in RDCHAR
so the next higher level can process it. In the latter case, a count
is incremented indicating that one parenthesis was created. Wile
creating the structure for a list, RDLIST maintains two pointers, one
to the beginning of the list, the other to the end of the list. After
each element is parsed, a dotted pair is created of that el ement and

NIL. Then a RST pointer to that new pair is stored in place of the

NIL at the current end of the list. In this limted context, the

operation RPLR (not a macro) works because a RST pointer always exists

to be replaced.

This routine scans the input string and takes the characters
for one atom off the front of the string. It returns a pointer to
hat atom The atom may be either a (synbol) or one of the (string)
types as indicated in the syntax. A nuneric character or dash in
RDCHAR at the start of RDAT causes a branch to RANSCN. This routine
scans a nunber and creates a number atom Currently, the nunber nust
fit in eight digits because that is the size of the internal buffer

used. An al phabetic character may be the start of either a synbol or

131

some quoted string. The latter is distinguished by the quote follow ng
the al phabetic character. Quoted strings are scanned by RABITS which
in turn passes control to RABX, RABW or RABZ for hexadecimal, bit, and
character strings respectively. After a string atomis created for the
print name Of asymbol atom, GETOBJ is cal | ed. GETOBJ either finds the
old atomwith the sanme print name, or makes a new symbol atom using
the new character string atomasthe print nane. In the former case,

storage for the new string atomis recovered.

c.3. CSSWM Fields Used by READ Routines

RDCOL, RDEND, RDLNG These fields control the scanning of the card by
GETCH RDCOL cont ains the address of the last character read, the
character now in RDCHAR RDEND points at the |ast character to be
read fromthe card. RDLNG contains the nunber of characters to be
read froma card. Normally, ®OING is 71 because the continuation
character is in column 72,

RDCHAR, RDCLASS. These one bhyte fields contain respectively the most
recent input character and its class. The class of a character is
illustrated in figure C 2.

RDSTAT. This byte contains bits representing the state of the read
routines. These bits are detailed in figure c.3.

RDERVS, RDERNO, RDERILOC, RDERCT. These fields formthe line printed
for READ errors generated by RDERR and RDERRCNT. RDERMS is the
address of the string passed to PUTSTR RDERNO is the error number
(the argument to RDERR). =rmoErioc is the field beneath the card image
and is set up with a single pointer ('<')to the last character
scanned (character in RDCHAR). RDERCNT i s used by RDERRCNT to store

the nunber of parentheses created for error R2.

132

RDSUPCTR. This field accumul ates the nunber of parentheses created

before a right super-parenthesis. It is incremented each time RDSE
exits due to finding a ™" instead of a ')* at the end of a |ist.
Wien recursion returns to a level of RDSE |ooking for ', RDSUPCTR
contains one nore than the nunber of parenthesescreated. RDSUPCTR
is zeroed both before and after reading a |ist bounded by super-

% par ent hesi s.

ATAM. This half-word contains the atom offset. Atom pointers

point [the quantity in ATAMT”}bytes in front of the atom they

ref erence.

PBHD. Wil e PUTBYTE is being used to create a character string

atomon top of.free storage, register F points at the location to
store the next byte. PBHD contains the contents of F before PBOPEN
was called. PBHD - ATAMI will be the address of the created

character string atom

133

Vs

C.4. Flow Charts

Flow charts are included in this section as the nost concise means of
describing the parsing algorithmin conplete detail. The parser is simlar
to the parsers conpiled by Cogent. The syntax is designed so there is
never any ambiguity in the string. That is, fromthe current location in
the program and the next incoming character, it is always possible to decide
the type of the forthcoming input construct. Then the appropriate routine

is called to handle the indicated type.

RDERRCNT
('R2RDSUPCTR)

RETURN

134

Yes

no

end Yes

of card

incr char
ptr.

followed
by slash

set up ptrs
to card

find elass
of next
¢har

make char
blank

IRDCHAR <« next

priint card

135

created « O

|
save value
to return

parens
created

>l

— g

Y

parens
created «o0

/return velue\

lof RDLISTJ

136

RDERR
(*rc")
no
RDCHAR 1o /\ no ves | 2dd 1 to
= (< or atom ») j : no. parens
created
>t

current-list
~(value of
RDSE . INIL)

place value of RDSE | B
as last element of RDCHAR
current list Yes [}

or
atomstart

Yes no
RDCHAR
T 3
CHAR « L | no I
ok | I B
I Yes add 1 to
RDCHAR no. parens
is next store value of RDSE => created
non-blank as final RSt of

) or > current |ist

137

RDAT

set negative
switch

fomid

138

GETOBJ

o

Yes

return

alloceted
storage

g
2
g

ut digit
P in burfer

\

- ack
BUFFER

negative
switch

put in
minus sign

put in
plus sign

convert buffer

to binary and

store in new
bl ock

store atom
head for
number atom

Y

RETURN ptr.
to atom

139

BITE \ convert to

+0 hex ~
\digits/

make one

character
atom

from type

.

bl ank out
quot e

U

=

hex digit

convert tO
hex digit

in 04449
A...F

140

put into
byte

Yes byte
G oo >

no

L]

RDCHAR

(_I‘ g !

<

CLOSE
PUTLBYTE

Return new
atom'

141

Appendi x D. EVAL and the Stutter Interpreter

To facilitate experinentation with Swwm an interpreter for the eval-
uation of functions was provided. These functions are witten in a |anguage
called Stutter, simlar to LISP 1.5, but wthout PROG.

The interpreter is essentially the routine MAN \Wen Swmis |oaded

for a Stutter run, MANis given control. MAIN can be described by:

main ()= begin
A print (eval (read()));
terpri ();
goto A

end
(But note that Stutter does not currently have_goto or assignment state-
nents.) Thus, the interpreter repeatedly reads an expression, evaluates it,
and prints the value. MAIN as inplenmented in assenbly |anguage also prints
nunbers between reading the expression and printing the value. The first is
the tine to read the expression, the second is the time to evaluate that
expression. Both times are hundredths of a second. READ is described in
Appendix ¢. PRINT and TERPRI are described in Appendix F. EVAL i s described
below. The routine ERROR exits to the loop in MAIN, so that interpretation
can continue with the next expression. Succeeding sections of this appendix
describe Stutter function definition, Stutter variable binding, and the

individual internal interpreter routines.

D.1 Defining Functions to the Interpreter

There are four varieties of functions in Stutter, just as in LISP 1.5:

SUBR, FSUBR, EXFR, FEXPR. -SURR's are nachine |anguage routines, executed

142

by the machine. EXPR's are S-expressions executed interpretively by EVAL.
The arguments for SUBR's and EXPR's are EVALuated before the function is
called. FSURR's and FEXPR's are the sane as SUBR's and EXPR's, except their
argurrents are not EvALuated. Instead, a list of the uneval uated arguments is
passed as the single argument to an FSUBR or an FEXPR

Functions are stored on the property lists of symbol atons. The indi-
catorused is the type of function. The value is either a pointer to a
pi ece of code (SUBR's and FSUBR's) Or a pointer at an S-expression (EXPR's
and FEXPR's). These values can be stored, referenced, or nodified using
PUTPROP, GET, and REMPROP. To save property list searching tine and storage
space, a function definition for a synbol atomis stored in that atoms value
cell. See the discussion of BINDERY in section D.3

The format for an Expr or FEXPR s-expression is different than that for

Li sp 1.5. The expression should be a list of the form

(v1 exp; exp, exps cesseXp '?’t)

—

wher e:
vl is a list of yariables. These are bound to the argunents of the
function as discussed in the next section.

exp IS an expression

each exp, is evaluated until the atomat at the end is reached.
Normal |y nis 1 and at isNIL so that a function definition |ooks Iike
(vl fegpY responding to the LISP 1.5: (LAVBDA vi exp)l

at this is the atomat the end of the list of expressions. If at

IS NIL, the value of exp is returned. COherwise, the EVAL value of

at is returned.

143

Twproblens with a common solution exist in Stutter and in many
i mpl enentations of LISP. First, a pointer at a piece of code -- the value
of a SUBR property -- is not distinguished froma pointer at an s-expression.
This leads to either errors or special handling in routines that accept
arbitrary list structure as input, eg. PRINT. The second problemis the
inmpossibility of conmpiling a function stored under a special indicator.
Suppose the atoms of some class have, as one property, the indicator PROCESS
whose value is a functions |f the value is an s-expression, this code

applies the appropriate-function to one such atom

--. ((cer X (QUOTE PRACESS)) X)

This works because EVAL assumes that the FST will EvALuate to a function.

But the only way code can be executed is to be stored under the indicator
SUBR or FSUBR The solution to both these problens is to create a third
atom type: the code atom Such an atomwoul d indicate the l[ocation of the
code and its length. It mght contain garbage collection information such as
relocatability and a list of pointers referenced by the routine. The atom

mght also contain informtion about whether the argunments shoul d be eval uat ed.

~D.2 Stutter Variable Binding

* Two kinds of variable binding are used in Stutter. SUBR's and FSUBR's
receive their argunents in registers Al, 42, . . . 6. Thus no SUBR may have
more than six arguments. (FSUBR's al ways have exactly one argunent.)

Assenbl ed routines may generally use the registers and the stack as tenp-
orary storage, as long as they obey the restrictions of Appendices | and A.2.

The value of a SUBR or FSURR iS returned in Al .

14k

EXPR's and FEXPR's are |ists whose first elenment nust be a list of synbo
atoms (called vl, variable list, above). There nust be exactly as many
atoms in the list as arguments in the function call. The arguments of the
function are stored in the value cells of the listed synbol atoms. The
previous contents of the value cells are stored in a stack-block type 1 as
described in Appendix A 2. Wen EVAL is called with a single synbol atom

as its argunment, the value returned is the value in that symbol's value cell.
Thus, sub-expressions are EvALuated using the appropriate val ues for synbo
atoms.

Using the value cell nmechanismthere is no sinple method of establish-
ing any particulanﬁenvironnent that existed at sone higher level (for exanple,
that existed whenafunction was passed as an argunent). That would be
dynami ¢ variable binding. Stutter variable bindings are static; that is,
every variable has its nost recent binding time-wse, regardless of when a
function was passed as an argument. This affects free variables of passed

functions and their sub-functions.

D. 3 Stutter Interpreter Internal Routines

Six routines are basic to the Stutter interpreter: MAN, EVAL, EVLIS,
EVGET, BINDERY, UNBIND. They are all assenbly |anguage routines. Wth the

exception of EvaL, they are not available to the Stutter programer.
MATIN<

This routine is the central loop of the interpreter. It was described

above.

145

EVAL.

This routine has one argument, an s-expression. The expression is
evaluated in terms of the current environment (bindings of variables). A

compl ete description of the action of EVAL is in figure D.1. EVAL, |ike all

Stutter functions, returns its value in register Al. In D.1, symbolp(a)

is a predicate true when & is a synmbol atom The other functions are

described further on in this appendix. WNBND points at a special atom It

is the contents of the value cell of any unbound atom (if there is no function
definition in the value cell.) EvAL signals an error when an unbound atomis
EVALuated. EVAL should also test for the value cell containing a function
definition and signal the same error. Currently, though, this latter test is
not made. EVAL handles correctly the evaluation of an atom whose value iS non-
rel ocatabl e, i.e., a number. The value is converted into a nuneric type 1 atom
This makes possible comunication between the interpreter and fast arithnetic

functions using the value cell sinply to hold a nunber.

Wien the fst of EvAL's argument is non-atomc and evaluates to a non-
atomic expression, that expression is treated as though it were an FEXER.
That is, its arguments are not evaluated. However, the variable |ist for that
expression nust have as many atoms as EVAL's argument has rst's because of
the way the call on BINDERY is reached. This permts the expression to have
sone control over the evaluation of its arguments. The nost serious problem

is the inconsistency of this feature with the rest of the |anguage.

EVLIS.

This routine has one argunent, a list of s-expressions. Its valueis

146

a list of the EvaL values of those s-expressions. EVLIS sinply applies EVAL
to each menber of its argunent |ist and creates a list of the values. The
length of the list is conputed and a eempact list of tnat |ength is allocated.

Successive values are stored in that |ist.

It is now realized that using free storage to return the value of EVLIS
is just as flagrantly wasteful of space as an a-list would have been. The
appropriate correction is to have EVLIS place values on the stack. They would
then be taken off the stack by BINDERY. Since BINDERY must put information
on the stack, the best solution is the conmbination of EVLIS and BINDERY into
a single function. - This function would create a BINDERY type stack bl ock and
store the new values of the atons init. \Wen all arguments were EVALuated,
the values woul d be swapped between the stack and the value cells of the atons.
Note that the call of EVLIS at the |abel EVSUBR in EvaL nust be replaced with
code, probably in-line, that stores new values in the stack and then places

themin the registers.
EVGET.

This function gets the function definition of a symbol atom from that
atomts value cell or property list. This is a non-standard function in that
its-argunent is passed on the stack. The value is returned in Al. EVGET also
stores the previous contents of Al on the stack to avoid repeating that store
in several places in EvAL. EVGET first checks the CELVAL bit in the atom head.
If that bit is off, the contents of the value cell are the function definition
for the atom If CELVAL is on, EVGET finds out (by indexing VFPROPS With the

CELFNC bits) the type of function definition: SUBR, FSUER, EXPR, Of FEXFR.

147

CGET is called to find the function definition on the property Iist.
Bl NDERY.

This function has two arguments; a list of values, and a list of synbol
atoms. The result is to store each value in the value cell of the corres-
ponding atom When EvVAL subsequently eval uates one of these atons, it
retrieves the new value. The old values of the atons are stored in a plex
on the stack (stack plex type 1 -- ses Appendix A 2). This stack plex nust
| ater be popped off the stack by a call on UNBIND

Information is left on the stack after BINDERY exits. This leads to the
stringent requirement that BINDERY may not itself use tenporary storage on
the stack, nor may the calling' routine. BINDERY does all its computation in
the general registers. Wen EvAL cal|s BINDERY, a pointer to EVAL's ar gu-
ment is in register A3 BINDERY nust not affect this register.

Because BINDERY cannot call functions, it cannot bind a symbol atom having
a function definition in the value cell. The function definition would have to
be put on the property list, which would require storage allocation and
possibly garbage collection. Consequently, BINDERY causes error Bl when a
yalue cell contains a function definition. The sinplest solution to this
problemis to not store function definitions in the value cell. This woul d
increase property list searching time, but would save a great deal of messy
bit pushing. A second solution would be to always store function definitions
on the property list and to store themin the value cell until the atomis

bound to sone val ue.
UNBI ND.

This function pops off the stack a plex stored on the stack by BINDERY.

148

Note that UNBIND nust be called when the BINDERY plex is at the top of

the stack, or disaster will occur. UNBIND may not use any storage on the

stack, nor may it affect register A.
Figure D.1
eval (a) = begin list x,v;
if atom(a) then
i f symbolp (a) then
if cell (a) = VUNBND then error (E)
el se return (cell (a))

else return (a)
f

el se if - atom (fst (a)) then begin
f

if - atom (x) then begin

comment assunme x is s-expression for an FEXPR w/ nultiple argunents;
y: = st (a); goto EVENBD

end

end else x: = fst (a);
xi=get (X, { SUBR FSUBR EXPR or FEXPR depending on bits in atom head]);

goto {EVSUBR, EVFSUBR, EVEXPR, or EvFEXPR depending on bits in atom head];

EVSUBR: y @ = evlis (rst (a));

{place elements of y into registers Al to 4};

return ({execute routine pointed at by x});
EVFSUBR: {put rst (a) into register Al};

return ([execute routine pointed at by x});
EVEXPR y :=evlis (rst (a));

149

EVENND: Dindery (y,ffl_(x)); X .= [EL_(X);
EVELP: if atom (x) then begin
X = eval(x); unbind (); return (x)
end:
Y i=fst (x) ; x =718t (x);

if null (x) then begin
x :=eval (y); wbind(); return (X)
end,
eval(y);
got O EVELP;
EVFEXPR: bindery(list (rst_(a)), fst (x));
x i=rst (X); o
got 0 EVELP

end eval

150

Appendi x E. swym Garbage Col | ector

one of the inportant goals of Swymwas the devel opment of a list conpact-
ing garbage collector. This appendix explains that collector in great detail.
Section I11.2 contains a sinple version of the collector explaining the basic
concept. The first section of this Appendix describes the heart of the collector
in a higher level language. The second section describes the internal garbage
col lector routines (i.e., those not available to the STUTTER progran). The

| ast section describes those portions. of csswM used by the garbage collector.

151

E.l. The Conpl ete Garbage Coll ector Al gorithm

The sinple garbage collector in I11.2 is inadequate for ma.ny common | i St
structures: circular lists, several lists with the same rst, a structure which
is an element of nore than one list, and-nore pathol ogical cases., The
i npl enented garbage collector handles all possible cases with marking bits and
a fixup tabl e.

Two nmarking bits are associated with each list word, Eachpasssetsa
marking bit to indicate it has visited a given word. The first pass sets
bit ml, the second sets me. Special action nust be taken when a marked word
is encountered, because that word is already being processed at some other |evel
of recursion. A word with = set always contains the address of the corres-
ponding word in the new core inage.

Several functions set and test the marking bits:

MARKL (w) The word pointed at by w is marked with ml
. MARKI2 (w) The word pointed at by w is marked with both
ml and m2.

UNMARKL (w) ml is turned off in the word pointed at by w.

ML (w) This predicate is true if ml is onin the word
pointed at by w

M2 (w) This predicate is true if m is onin the word

pointed at by w.

Conceptual |y, each of these functions tests its argument to see if it points
at an atom and adjusts the addressing appropriately. In practice it is known
a priori whether the argument is an atom and a bit macro (see B.5) i s coded

instead of a function call.

152

In circular structures, a word points at some structure already being
collected at some higher level of recursion (ml is set, but not m2). That
word cannot be witten correctly to the new core inage because its contents
are not deternmned. In nost reasonable applications, the nunber of such
circularities is well below one percent of the number of pointers. Nonethe-
| ess, some provision nust be made to handle this case; in swm, the garbage
col lector uses a fixup table. \Wen the correct new contents of a word cannot
be determned, a word of zeros is witten to the new core and an entry is made
in the fixup table. Each entry is two pointers. The first points at the word
of zeros in the new core; the second points at the word in old core which wll
eventual |y contain the correct address to substitute for the word of zeros.
After COLLECT is finished, the second pointer of each fixup entry is replaced
by the contents of the word it points at. Then, after the new core inmage has
been read in, the fixups are applied;, i.e., the second word of the entry is
'or'ed into the location indicated by the first word of the entry. (The 'or'ing
permts the word of zeros to have the rst bit on if required. The fixup procedure
thus works for both_fst and rst fixups.)

One additional function nmust be defined to describe the conplete garbage

col lector (others are defined in 111.2):

FIXUP (p, ¢) The word ¢ (either zero or rstbit) is GCPUT to the
new core. An entry is made in the fixup table consisting

of the address returned by GCPUT and the pointer p.

153

The function ATCOL defined in section I11.2 nust be extended. \Wen ATCOL
is entered, the m_is set in the plexhead. After collecting the atom both
marking bits are set. Since COLLECT may be called for some sub-structure of
an atom provision is nade for a pointer at an atomwth m and not m (a
fixup entry is generated). |

The conplete garbage collector is given in Figure E1. The argument x
nust be a pointer at list structure with neither marking bit on. COLLECT
has no value, but the newcore address of the list corresponding to x is
stored in place of the pointer to fst(x). A denonstration that this algorithm
creates a correct representation of its argument is given in Appendix L. The
UMARKL(r) and the bool ean variable mare related. The former indicates the
need for a fixup in\the rst direction; the latter detects this need in the
second pass. In Figure E.1, the marking bits are assuned to be associated
with each word, but not part of the word. This association could be by extra
bits in the hardware or by a bit table in a separate area of nenory. The
former requires hardware nodification, while the latter requires six percent
nore nemory. In the inplenented system the marking bhits are in the [ist words
thensel ves, as shown in Figure 2. Figure .1 nust be nodified for these bit
assignments by turning off the marking bits in the arguments to GCPUT and
repl aci ng

t = _rst(r)
with
i f M(r+h) then t := r+h el se t := rst(r).

Figure E 2 illustrates effect of COLLECT on a conplex structure.

154

Figure E.l
swym Gar bage Col | ection Algorithm

COLLECT (X) = begin list r, t; Boolean m

wetHit © = x'00000001';

o= x;
chkloop: comment loop to collect each fst;

t ;= fst (r); .MRgL (r);

if atom(t) then ATCOL (t) else if# (t) then COLLECT (t);
-coment test for end of list or reached marked word;

t =18t (r);

if atom (t) then ATCOL (t)

else if M (t) then

else if M (t)_then vnMaRKL (r)

el se beginr :=1t; goto chkloop end;

[o:= x;

wloop: comment loop to wite out each new fst:,
m:=M (r); t :=1fst (r);

rplf (r, If atom (t) then

if M (t)

else if w (t)

then GCPUT (HD (t)) _else FIXUP (t, 0)
then cepur (fst (t)) else FIXUP (t, 0));
| MARK12 (r);
coment test for end of second pass;
t o= rst (r);
if atom (t) then
if » (t) then GCPUT (HD (t) v rsthit)

el se FIXWP (t, rsthit)

else if M (t) then acput (fst (t) v rsthit)
else if mthen beginr :=t; goto wloop end

PACE 155

Figure &1 Continued

el se FIXUP (t, rsthit)

ewl | ect

D

156

Figure E.2

X: A ; e a
)
— |4q
At wrloop on the highest level:
0ld Memory
£\ —
X o- >
171 . ®) 19
Fixup Table 1 } 2|\®
J
> /
7/
P | e
/ /
s /
'y /
\ \ i
\ \ 7
N S //
\\\ - S \X/
u A\
o o
New Memory @

157

Figure E.2 (Con't)

At exit from COLLECT:

Old_Memory
X:
— 1102172 ® 192
{ l'\ 5T
'\ ——————— I
“\ |
-————— | |
I I)]
D]
+ -0 o— ' : I
d | :) |
I | 'r |
! \ | |
\ N—— | ! . |
. \ X\ | : |
! ,/—1 __——T _l —‘l—/
New Memory | j (i
'R | ¥ ¢ }
A
° o@ new 1 ? ew

-
C

)

Final structure after-reading new core jmaa ge and annlving fixune.
and annlvi

structure: —~

TINUND,

ew

158

E. 2 Garbage Collector Internal Routines

The interface between all other routines and the garbage collector
is the routine CC. It receives control when TAK2 or sone other routine
detects insufficient nenmory, or it my be called explicitly froma
Stutter program GC controls the garbage collection process and prints
statistics. CC, ATCOL, corx, and COLLECT are called with the standard
CAL macro. CHOKE, GCABEND, and GCPUT are routines with special calling
sequences.

Routines witten to garbage collect newy created atom types nust
be made part of the routine ATCOL. The description of that routine
includes information on inserting new atom collection routines. But
all the information in section E 3 should be understood before codi ng

special atom collection routines.

€9 This is the executive portion of the garbage collector.
I'ts major functions are outlined in F‘i gure E. 3. Pointers at
OBLI ST, CHARGBS, NL, FPROPS, and *UNBOUND* are put on the
stack so the corresponding information will be garbage collected.
Since the OBLIST points at all symbol atoms, both they and their
property lists will be collected.
The current inplenmentation does not use tenporary storage
- for garbage collection; instead, the data structures are noved
between two areas of memeory. The 'switch nenories' action in
Figure E.3 is nerely the swapping of pointers so GCPUT will store
the new structures into the currently non-active free-storage area.
In an inplenmentation using tenporary storage, the tenporary data
set would have to be initialized. Simlarly, the step "apply
fixups' woul d have to be preceded by 'read in new core image'.

159

Figure E 3

v

Not e
Ti e

Stack FPROPS,
|$BLIST, NIL,
CHAROBS,
'UNBQ)UND 1

St
- Memmoiries

Call
CALLECT
for each
pointer
on stack

¥

Apply
Fixups

\

Unstack
FPRYPS, PBLIST,
CHAR@BS, NIL,

"UNBOUND '

h J

Print
Statistics

|
‘ Return ,

160

The following statistics are printed, all on a single line:
| ength of active pdl (stack)
nunber of bytes of active free storage
tinme at start of garbage collection (100 ths/sec)
time at end of garbage collection (100 ths/sec) (tinmes are
since last starting the REaD in the MAIN | oop)

total time for garbage collection (100 ths/sec)

C@LLECT. This routine has been described in detail in section E.I.
The argunent (in Al) to CALLECT is a pointer at an unmarked |ist.
cgriEct has no result, but the fst of the argument points at the

representation of that list in the new core.

ATC(L. This routine garbage collects one atom and wites a rep-
resentation of that atomto the new core image. The argument
(in A) nust be a pointer at an unmarked atom The result is that
the head of the atomis replaced by the newcore address of that
atom The main routine of ArcdL sinply abstracts the type field
from the atom head and branches to the appropriate routine for that
atom type. Currently, there are routines for symbol atons and
bit string atoms. Adding a new routine is done by putting the
address of the routine into the branch table (ATCBTBL). If nore

- than eight atomtypes are inplemented, the table can be extended

by increasing the number of bits masked fromthe type field. The
i ndi vidual processing routines should branch to ATCXI T after conpletely
collecting the atom The individual routines are responsible for

replacing the atom head with the new core address of the atom

161

ATCO

This is the part of aregn for collecting symbol (type 0)
atons. For such atoms, the atom head and the atom cell nust
i mediately precede the property list. To achieve this, the routine
processes the property list with a loop simlar to the first |oop
incollect. Thus all pointers in the property list are nmarked
with nl_and all elements of the list are collected. Then ATCO
col lects the contents of the atomcell (if they are relocatable).
Finally, ATCOwites the atom head and the new atom cell to the new
core; then it transfers to the wrLggp portion of cgriecr to finish

witing out the property list.

CPIX. The-argunent to cgriect nust not be narked and nust not

be an atom The argunment to cgix may be marked or unmarked, atomic
or not, But if marked, the structure nust have both bits on. |f
its argunent is unmarked, cgix calls CPLLECT or ATCSL as required.
The result of cgix is a pointer at the new core representation of
CfIX's argunent. cgix's can be used by atom collection routines

if it is certain that its argument will never satisfy

(m1(A) A = m2(a)) .

CHPKE . If, followng a garbage collection, insufficient free

storage is available, then this routine should be entered. It is
in the CSSWM control section and can be entered sinply with

B CHOXE
or

BC nn,CHOKE

CHOKE sinply ABemd's with the user conpletion code 20.

162

GCABEND. If the garbage collector detects an error in the data
structure construction, it ABEND's irmmediately to avoid propagating
errors. A call on GCABEND i$

BAL L, GCABEND
This routine constructs a conpletion code based on the displacenent
of the BAL fromthe beginning of the current routine. The contents
of register 1 are stored in register L, and the ABEND i s issued.
The current conpletion codes and their significance are listed in
Appendi x J.

GCPUT. This routine is called by the acpur macro (section B.8).
It is called by that macro with either
BAL L,GCPUT
or
BAL L,GCPUTFUL.
This routine must be changed if SwiM is to use tenporary storage

during garbage collection.(Note: The comments about #mM in the next
section).

ATC1. This portion of ArcgL collects hit string atoms. Since
such atoms contain no relocatable information, ATCl sinply wites
a new atom head and copies the string into the new core. The
subtypes of type 1 atoms are designed so that the garbage collector
 need not distinguish among them The length field always indicates
a length in bytes and the garbage collector always transfers the

integral nunber of words necessary to transfer all the bytes.

163

E.3 Information stored in CSSWM

MEMUSE, IVEMNXT. These two words contain the addresses of the two
menories used alternately as free storage. On entry to CC, the
two fields are swapped and the new contents of MEMUSE are the

initial destination for words stored by GCPUT.

MEMSIZ. This word contains the number to be added to MEMUSE to

conpute the new FEND.

FEND. This word contains the address of the next to last word to
be stored into by Take. Wen this word or the succeeding word is stored,
Tak2 calls ce. FEND is also used by PB@PEN, PUTBYTE, and STAKN tO

check for the end of the free storage area.

GCTIME. GC saves the TTIME time on entry and uses it to conpute
the total garbage collection tine before exitting. This total is

printed in the garbage collector statistics line.

GCABAD. This word is used by GCABEND to create a conpletion code

for ABEND. Because the high order bhit is on, ABEND calls for a

dunp.

#MIM2, This word is used by acpur to put the M and M2 hits on
the address word it returns. #aoM2 nust be in CSSWM because B

may have different values when GCPUT is called.

164

Appendi x F.

Stutter

Functi ons

This appendix details all functions available to the Stutter

progr anmer .

with the property SUBR or FSUBR
of the inputs, the value of the function, and the internal code involved.

Three routines are described in nmore detail in separate appendices: G&c,

They are represented in initial free storage by atons

EVAL, and READ,

For each routine there is a description

Internally, a Stutter function cannot be distinguished from a

swym System function

internal |y with the standard CAL macro.

the same to the CAL macro as to the Stutter program

Specifically,

all Stutter functions can be called

The name of the function is

(Note that a few

functions - like RST and FST - are also available as macros. Al though

they can be called with CAL, it is clearer and faster to use the macro

form) Argunents to these functions are passed in registers A, a2, ...

The value is returned in register A.

Any excess arguments are ignored

they may or may not remain after execution of the function.

The routines are organized in five groups: basic, input, output,

Stutter and utility.

Rout i ne

ATOM
BELL
COND
EJECT

EQ

G oup

basi ¢
utility
Stutter
out put

basi ¢

This index tells where to find each routine;

Type

SUBR
SUBR
FSUBR
SUBR

_SUBR

f of Args.

165

Control Section

CSSUBS
Cs2250
CSEVAL
CSPRINT
CSSUBS

A6,

Routine G oup Type ¢ of Args. Control Section
ERRCR utility SUBR 1 CSSUBS
EVAL Stutter SUBR 1 CSEVAL
EXPLODE output SUBR 1 CSEVAL
FST basi ¢ SUBR 1 CSSUBS
C utility SUBR 0 CSGe
GET Stutter SUBR 2 CSEVAL
GETOBJ i nput SUBR 1 CSREAD

| VCCH i nput SUBR 0 CSREAD
vQMg | nput SUBR 0 CSREAD
LI ST basi ¢ FSUBR CSEVAL
MAKSTRNG | nput SUBR 1 CSREAD
NULL basi ¢ SUBR 1 CSSUBS
PRINT out put SUBR 1 CSPRINT
PRINL out put SUBR 1 CSPRINT
PUTPROP Stutter SUBR 3 CSEVAL
QUOTE Stutter FSUBR CSEVAL
READ | nput SUBR 0 CSREAD
READCH | nput SUBR 0 CSREAD
REMPROP Stutter SUBR 2 CSEVAL
RST basi ¢ SUBR 1 CSSUBS
SASSOC Stutter SUBR 2 CSEVAL
STI'VCCH i nput SUBR 1 CSREAD
STIVQMP i nput SUBR 1 CSREAD
TAK2 basi ¢ SUBR 2 CSSUBS
TERPRI out put SUBR 0 CSPRINT

166

F.1 Basi ¢ Routines

RST, FST, TAK2, AT@M, NULL, EQ LIST

The routines in this group are the |owest |evel functions for the

mani pul ation of lists.

(RST X). Returns the gegr of the list x, which nust not be atomc.

Atomc x results in a specification interrupt4

(FéT X). Returns the rirst el enent of the list X, which nust not

be atomc. Atomc x results in a specification interrupt.

(Tak2 x, y). If yis alist, returns a list whose FST is x and whose

RSTis y. If yis atomc (other than NIL), Tak2 returns a generalized

list, that is, a |ist whose R...RST is not NIL. In either case,
Tak2 is well defined. This function takes two words fromthe free
storage block and thus incurs part of the expense of the next gar-
bage collection. Beware when CAL'ing TAK2 from an assenbl ed
routine. Because the garbage collector mght be called, all

registers nust be saved, and all pointers nust be identifiable as

such.
(EQ x, y). Predicate. If x and y are atomc, returns T if they are
the same atom and NIL if they are not. If x or y is not atomc,

returns T if x and y both point at the same location. EQis always
def i ned.

(aTgM x). Predicate. Returns T if x is an atomand N L otherw se.

167

(NULL x). Predicate. Returns T if x is the atomNL. If x is any other

atomor is non-atomc, NULL returns N L.

17 Xpreee X

Unl'ike other basic functions, LIST accepts any number of arguments.

o XXy e o LX) Returns a |ist whose elenents are x

Note in particular that (LIST) is valid and returns NIL. LIST
is inplemented so that if given n (> 1) arguments it will use ntl
words from the free storage block. Thus list is nmore efficient than

successi ve TAK2's.

F.2 Inout Routi nes

READ, READCH, |VCCH, STIVCCH, 1vQMp, STIVQMP, MAKSTRNG, GET@BJI

The Stutter input routines are well devel oped since they were a
necessary adjunct to testing the system Two nodes are provided: READ
reads an entire expression. It is also used by the main interpretative
loop, SO an understanding of it is an understanding of the input syntax
for Stutter. A single character input node is also provided to permt

the writing of nore general input. The internal read routines are
described in Appendix c.

The read routines make use of a device, borrowed from cgeenr, call ed
an "internal variable". This is a variable whose value affects the system
and which can be set or reset by special subroutine calls. Each internal
variable is represented by a three character mnmenmonic; two routines are
associated with each internal variable. If the menonic is xxx, the
routines are (Ivxxx) and (sTIVxxx a). The first routine returns the

current value of the variable and the second assigns the value of'a

168

to the variable. If the variable is a switch, it wll have the value T or
NIL and can be set by sTIvxxx. The argunent NIL sets the switch off and any

other argument sets the switch on.

(READ). One €Xpression is READ froma card or cards and returned
as the value of READ. This routine is described in detail in Appendix c.
(READCH). READs the next CHaracter fromthe input card and returns

a pointer to an atomwith that character as its print name. Al printable

characters and ¢, !, galready exi st as objects in the system Any other

character is translatgd by READCH into blank. EQ may be used to conpare
characters because they are uniquely represented. Characters are read
using the sane conventions of card layout, that is, colums 1 to either

71 or the first underbar-slash. Aso, if the current character is a blank,

READCH Wi || return the next non-blank character. These conventions nmay be

altered by turning on the quote node with (IvaMg).

(IVecH) (STIVCCH X) . To store one character in the case that an expression
read by READ is an atom and the follow ng character is a left parenthesis,
an internal variable called 'Current cHaracter' is defined. Its value
can be seT to any character by STIVCCH An error is signalled if the argu-
ment is not an atomwth a one character printname. The 'current character'
can be accessed by evaluating (NCCH).

The relationship between REAL, READCH and |IVCCH is nost easily explained
interms of a 'scan pointer' and a character variable called the 'current
character'. The scan pointer noves along the input text having due regard for
card boundaries and the '_/* convention. The character pointed at by the scan
pointer is called the scanned character. After READing an atom the scan
pointer points at the character followng the atom (usually blank) and the
current character contains the scanned character. After REaping a |ist, the

169

scan pointer points at the final right parenthesis and current character con-
tains a blank. |VCCH does not affect the scan pointer and returns the current
character. The first character read by READ is the current character.
Succeeding characters would be the values of successive READCH'es. READCH cen
best be described as a call on GETcH, as flow charted in Appendix C.k. An

approxi mation to READCH can be given by:

Loop: nove scan pointer to next character,
if (current character is blank A
quote node is off A
scanned character is blank) then go to | oop;
current character := scanned character;

return (scanned character).

(IvaMg) (STIVQMP X) . |f Quote Mgde i S on, then each character on each
card is passed in turn as the value of READCH This provides a neans of
avoi ding the normal underbar-slash and de-blanking conventions. Unfortun-
ately, in this node there nust be a dash in colum 72 (or quote node nust
be set off just before colum 71 is scanned). Calling READ al ways sets

quote node of f.

(MAKSTRNG X) . x must be a list whose elenents are all synbol atoms with
one character print nanes. The characters are collected together and the
val ue of MAKSTRNG is a character STRiNG atom MAKed of the print names of

those atonms. Flength (x)/W1 + 1 words are taken fromthe free storage bl ock.

170

(GET@BI). x must be a character string atomsuch as is returned by
MAKSTRNG. The value returned by GEI#BI is an atomwith the indicated
print name. GETPBJ Searches the OBLIST for an atomwith the proper print
nane. |If such an atomis found, it is returned; otherwise an atomis
created. If an atomis created, three words are used fromthe free storage

bl ock.

r.3 Qutput Routines

PRINT, PRIN, TERPRI, EJECT, EXPL{DE

The routines in this group provide for printing expressions and controlling
the printer. Aroutine is also provided to abstract froma synbol atoma list of
the characters in its printname. A print line is 13 characters; no access to
the carriage control character is provided other than that supplied by TERPR
and EJECT.

(PRINT x). The expression X i s PRINTed, and then the printer is spaced
toanewline. Lines will be as full as possible wthout printing
an atom nane on two lines. This means that isolated |eft parentheses
will appear on the right. The value of (PRINT x) is x. Internally,
PRINT sinply calls PRIN and TERPRI.

(PRINL x). ldentical to PRINT except PRIN returns NIL and does not
space the line printer after printing. The first character of a
succeeding PRINT or PRIN will inmmediately follow the last character

of a given PRIN.

171

(TERPRI). TERminate the PRInt |ine. The line printer is advanced

the the next line. (TERPRI X) returns x.

(e3eCr) . The line printer is EJECTed t0 the next page. The next
PRINT or prINL Wi |l put characters beginning at the upper lefthand COrner

of the next page.

(EXPLEDE). X nust be a type 0 atom (synbol). EXPLADE returns a |ist
whose el ements are the character atons corresponding to the print nane of
x. Thus (GETOBJ(MAKSTRNG(EXPLEDE x))) returns x if xwas on the OBLIST,

otherwise a new aomwWi th the sane print nane.

Fi el ds in csswyM used by output Routines:

PRPT. Pointer to location to store next character to be printed.

Intitialized by TERPRI and incremented by PUTCH.

PRPEND. Address of character just beyond |ast character in print

line. PUTCH calls TERPRI if PRPT reaches PRPEND. Intitialized by TERPRI.

PRLNG. This constant is the length of the print line. Normally

132, it can be changed for different buffer lengths or a wider right margin.

PRATBAD. Used by prIN1 to print the message *orypx' for atoms with type
x € {2, 3, 4, 5, 6, 73. (That is, for atomtypes for which no print

routine has been defined).

F. 4 STUTTER Routines

COND, EvAL, GET, PUTPRgP, REMPREP, QUSTE, SASS@

(COND 115 Loy o ..zn). This FSUBR cfmpitionally eval uates an expression.
Each sublist nust be a |ist-of two expressions. The first expression in

172

each successive sublist i S EVALuated until one is found that is not N L.
The second expression of the selected sublist i S EvALuated and returned as

the value of cgw. If all first expressions are NIL, error CN is signaled.

(EVAL x). EVALuates and returns the value of the s-expression x.

Conpl ete details of &vAL are in AppendiXx D.

CET, PpuUTPR@P, REMPRGP. Synbol atoms have an associated list called a property
list, On this list the different 'properties’ of the atom are stored, each
under different nanes, called 'indicators." The indicators nust be synbol
atons. The properties may be any s-expression. In the initial free storage,
only the properties for SUBR and FSUBR indicators occur. Function defini-
tions can be stored under EXPR and FEXPR Qther properties and corresponding
indicators can be defined at the Stutter progranmers'convenience. The only
restriction is that the above three functions are the only ones allowed to
access the property list. This is because PUTPRSP and REMPR@P repl ace

el ement pointers with rst pointers in sone case.

(GT ai). This SUBR has two arguments: an atomand an indicator. It
searches the property list of the atom for the indicator and returns the
corresponding property value. If the indicator is not found, GET returns

" NIL.

(PUTPRP a p i). This SUBR has three arguments: an atom a value, and an
indicator. The value is stored under the indicator on the property list
of the atom If the indicator existed on the property list, the pointer at
the old value is replaced with a pointer at the new value. Qherwse, the
indicator and value are placed at the front of the property list. Currently,
the value of PUTPRAP should not be used. It should be changed to return the

atom
173

(REMPRgP a 1i). The arguments of this syBR are an atom and an indicator.

The indicator and the corresponding value are removed frem the property
list of the atom REMPR@P returns the atome Currently, REMPREP ignores

(does not delete) function definitions stored in the value cell.

(QUETE x). This function is an FSUBR. ItsS arguments are passed as an

unEVALuated |ist to the quote routine. If the list has one el enment,

QUETE assunes that the normel LISP 1.5 QUPTE was desired. If the list

has nore than one el ement, QUATE sinply returns the list. Both (QUATE A B)
and (QUATE (A B)) return the value (A B).

(sassgc x pl). _ This sur expects an expression (usually an atom) and a

list of dotted pairs as arguments, The list is searched for a pair whose
FST is EQ to the expression. The value of sassgc is RST of the selected
pair. |f the expression is not found, the value of sassgc is the atom at
the end of the list of pairs, Usually, this atomis NIL, but this is up to

the creator of the list of dotted pairs.

F.5 Wility Routines

BELL, ERR¢R, CC

All these routines are SUBR's.

(BELL x). The argument nust be a number. BELL rings the bell on the

2250 twice. The interval between the rings is specified by the argunent,
in hundredths of seconds (200 represents delay of 2 seconds), To use this
routine, a DD card nust be provided assigning SWYMSCOP t0 a 2250. The
value of BELL is NIL. (Until registers B and L are assigned other than 14

and 15, BELL causes an abnormal ternination,)

17k

(ERRfR x). This routine prints its argument and exits to the top |evel

of the 'Stutter interpreter. The stack is not unwound, so variables

retain the values they had at the time of the error.

(ac). A call on GC causes a garbage collection. The val ue of
@Cis NL. It may be advantageous to call GC at times, because
garbage collection is nuch |ess expensive when the amount of active

‘storage is low GCis described in detail in Appendix E.

175

Appendi x G. M scel |l aneous Swym Routi nes

The routines in this section are available within Swm but not to
Stutter prograns. Unless otherwise stated, a routine is called with
CAL, but nost have non- st andard cal | i ng sequences: either they pass nunbers
rather than pointers or they are not called with CAL. Such non-standard
routines are justifiable in linted contexts to avoid using free storage

and to speed processing.

STIME, TTIME. These routines provide access to the gs task timer.
STIME Starts the TIMEr. |t has no argument, but returns the
value of any argument supplied. (i.e., STIME does not modify Al.)
TTIME reports the elapsed Task TIME (in hundredths of a second)
since the last execution of STIME The result or TTIME is left in

register Al. (Not a pointer to the result, the result itself.)

STAKN. This routine allocates a plex. The argunent in A is the
number of bytes to be allocated; it nust be a nultiple of four.
The value of STAKN is a pointer to the newy allocated plex. The
calling routine must store a valid plexhead in the newy allocated
plex. The nane "STAKN' has nothing to do with the stack. It refers
to a System function to TAKe N bytes from free storage. Note that
STAKN can cause garbage collection: all pointers which are to be

garbage collected must be in the stack when STAKN is called.

There is currently a major bug in STAKN. \Wen the garbage collector
is called, one of the pointers on the stack is to the new plex. But it

is not an atompointer nor is there a plexhead in the plex. There is no

176

indication to the garbage collector of the type and extent of the allocated
plex. The best correction is to have STAKN call the garbage collector
before allocating the storage. The argunent to STAKN woul d be nmade

odd and saved on the stack.

NLENGTH. The single argunent to this routine is a list (or atom in
Al. The result of NLENGTH iS the nunber of elements in the argunent.
The nunber, rather than a pointer, is left in Al. The length of

an atomis zero.

* PUTSTR. PUTSTR PUTs a character STRing atom on the current output |ine
If its argunent is not a character string atom PUTSTR calls ERR@R.

If the string is too long to fit on the current line and short enough
to fit on a full line, PUTSTR calls TERPRI to termnate the current
line. PUTSTR uses PUTCH (in CSSWM to transmt characters one at

atim to the print Iine.

INIT, FI NI SH. INIT 1s the INITialization routine. It is entered
from @s, saves the registers, and initializes the registers for
swm It also opens data sets, sets the menory control pointers
and calls STIME to start the tinmer. INIT exits to MAIN, the Stutter
interpreter loop. Control is returned to @#s by FINISH Wen the
end of the input file is recognized, EPDAD in CARDRDR sends control

t 0 NOCARDS, which transfers control to FIN SH

FINFSH prints some information for debugging, and abnormally
termnates. \Wen debugging is complete, FINFSH will close all data sets

and termnate normally.

177

SWERROR- This routine prints ERRR messages for SWMroutines. Its
argunment is two characters in the low order two bytes of register L.
SWERRR i s called by a sinple branch. It changes the two characters
to a character string atom and calls ERRFR with that atomas its

argunent. SWERRGR is designed so that changing it to ABEND rat her
than call ERRAR will preserve all registers as they were at the tine
of the error. It is also possible to get very useful results if

ERRR prints all registers.

TRUE, FALSE. These two routines are called with a sinple branch. They
set A to T and NIL, respectively, and execute a return. These
routines save a little codein predicates like NULL and ATOM These
can exit by branching to TRUE or FALSE, thus avoiding two |oad

instructions and the codefor return (RET).

PUTCH This routine PUTs one CHaracter into the current print line.
The character must be in the |ow order byte of register ak. PUTCH

is called with the instruction

BAL L,PUTCH

This avoids several instructions for each character output. |f the
current character fills the output line, PUTCH calls TERPRI to print

the line. PUTCH nodifies only register TT.

178

Appendi x H. Swm - Stutter Initial Free Storage

Wien Swym is |oaded there are three classes of structure in the
free storage area: character objects;’ function names, and special structures.
Each of these is described in a separate section below. The cards

used to create the initial free storage are shown in Figure HI.

H.1 Character Cbjects

As indicated in Appendix C (Read Routines), there are 64 character
objects in SWM Each input character is converted into one of these
64 objects. These objects include A-S, V-Z, 0-9, +, 1, $,-,/,%,
ty M, f, 1, 0-2-8, %, =, , <, >, @ -, +» 35 1)es 1)s, and ',
These character objects are assenbled with the macros CHAR and QCHAR. For
various reasons, other neans are used to assenble the character objects

for T, blank, apostrophe, and anpersand.

H.2 Subroutine (bjects

Al subroutines available to Stutter programs nust be represented

ininitial free storage. There is one atom for each subroutine described
in Appendix F. Subroutine atoms are assenbled with the SUBR and FSUBR

macr os.

H.% Special Structures

NIL,T. These two atons are used by Stutter to represent the Bool ean

values false and true. Each has a predefined val ue equal to.

itself. Thus, (EVAL(QUOTE NIL)) is NIL; but one can also say

(EVAL NIL) and get NL.
179

$BLIST. The predefined value of this atomis a list of all synbol

atons active at any given time. This list is a list of 64 sublists.
An atomis placed on a sublist chosen by hash coding the atoms
print name. This speeds up the read routine search to find an

existing instance of an input atom (in GETgBJ). The hashing function

is

((length of pnane) + 2¥(last character) + 3¥(first

character) + 13%(third character)) nod 64 ,

where the characters are represented in EBCDIC. If the third
character ts absent, blank is used. This function seems to
distribute the atons fairly well, although there is a slight
preference for bin 32.

The val ue of @BLIST is treated as though it were an array.
That is, the proper sublist is accessed by address arithmetic rather
than successive RST operations. There is the danger that the
garbage collector could convert this list into two or nore lists
connected by RST pointers. To avoid this, no variable should ever

point at a portion of the object |ist.

CHAR@BS . The predefine8 value of this atomis the list of all

character objects. This list has 256 el enents, one for each possible
EBCDIC byte pattern. Al illegal characters point at the character

object for blank. Like @BLIST, the character object list is referenced
(by READCH and |VCCH) as though it were an array. Again, no variable

may point at a portion of the character object |ist.

180

SUBR, FSUBR, EXPR, FEXPR These atons represent properties which
can be PUTPRFP and which the system nust know about. Specifically,
each represents some form of function definition. To use an atom
as a function, EVGET | ooks for one of these indicators on the
property list and uses the corresponding value as the function

definition. See further description in Appendix D.2.
FPR@PS. This is a structure:

((SUBR. 1) (FSUBR . 2)

(EXPR . 3) (FEXPR . 4))

EVAL uses this structure at various points to associate a bit
pattern with one of the indicators for a function definition.
If an atom has a function definition, the appropriate bit pattern
will be in the CELFNC field of the plexhead. This structure

cannot be accessed by Stutter prograns.

*UNB@UND' . This is sinply a character string atom It is the value

of any atom that has not been assigned a value by one of

initial value
variabl e binding

function definition.

|f 'UNBPUND' is the value of an atom EVAL signals error E and

termnates processing of the current s-expression.

181

UNBOUND
BLANK
NI L
TRUTH
OBLI ST
CHARGBS
SUBR
FSUBR
EXPR --

FEXPR

STRAT
QCHAR
VALUE
VALUE
VALUE
VALUE
MATOM
MATOM
MATOM
MATOM
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR

SUBR

Figure H.1

C'UNBOUND'

NIL,NIL

T, TRUTH

OBLI ST, OLST

CHAROBS, COBS

SUBR

FSUBR

EXFR

FEXPR

FST,RST,TAK2,GC
ATOM,EQ,NULL, PRINT , PRIN1, TERPRI

READ

ERROR, STIVCCH, IVCCH, READCH, STIVQMO, TVQMO
GETOBJ ,MAKSTRNG ,EJECT
EVAL,SASSOC,EXPLODE, GET , PUTPROP , REMPROP
COND, QUOTE, LIST

BELL

A,B,C,D,E,F,GH,1 5L MU MM R ARSI LYWWMYLY. T
0,1,2,%,4,5,6,7,8,9

+, ‘ :$:"\:/)%: : :#)")¢: :)0'2_8)*)=)_)<)>J@"J .05

sssssssss

182

Appendix | . Swym Reqi ster Assi gnnents

Al the general registers are assigned nanes under Swym. About
hal f are available for general use, while the remainder have specific
uses. Although the register currently assigned to each name is |isted,

these assignments nust be changed to better cooperate with #§s.

Regi ster Nanme Use
N Contains a pointer to the atom N L.
1«6 Al-A6 Arguments to SUBR's; Stutter routines return

results in Al; otherwise available for
general use. Always six consecutive registers.

7 ck Must al ways contain F'k'.

9 S Permanent base register for addressing system
data, transfer vectors, and a few basic routines.

10, 11 T, TT An even-odd pair of tenporary registers. TT is
used by AT@M and PUTCH.

12 F Free storage pointer - next word to be allocated.

13 P PUSH down |ist pointer - |ast word which was
allocated. See Appendi x B.k.

1k B Base for all routines

15 L Li nkage, holds return address on entry to
a routine.

The user may alter Al1-A6, T and TT with inpunity. The follow ng rules
nust be observed:

1. No register contents are garbage collected. If something nust
be collected, it nust be in the stack. The garbage collector
destroys all tenporary registers.

2. Acalling routine is responsible for saving any registers which

m ght be destroyed by a called routine.

183

Appendi X J. Swym - Stutter Qutput and Error Messages

There are four classes of output:
1) Nor nal
2) Read Error
3) Conputation Error

4) ABEND - Abnornmal Term nations

" Each of these will be discussed in turn.

J.| Nornmal output

Normal |y, the Swym system running Stutter reads an s-expression,
evaluates it, and prints the value. Al cards read are printed beginning
in colum 24 of the print line. After reading, the time since the start
of processing this s-expression is printed (in 100ths/sec.). Next
appear any |ines PRINTed during EVAL. After EVAL, the total tine
since starting to read the s-expression is printed (in 100ths/sec.).
Finally, the value of the expression is printed, followed by a blank Iine.
At any time, the garbage collector may be called. It wll produce a

line of output as described in appendix E.

5.2 Read Errors

Wil e reading cards, certain syntax errors are indicated. In all
cases the read routine proceeds in sone manner, usually by ignoring the
error. The read error nessage includes a pointer ('<') beneath the next
character to be scanned. Usually the character in error is imediately

to the left.
184

Gt

Error

RO
Rl

R2

R>
R4

RS

Code Routi ne

RDSE
RDSE

READ and
RDSE

RDLIST

RDSE

RDAT

RDAT

GETCH
GETCH

RDSE and
RDLIST

Error

m ssing right super-paren -'>';
end of skipping chars for RO

m ssing right parens')'-
I nsi de super - parens;

extra dot between |ist elenents

RO occurred while skipping for
earlier RO

igl char in X'...", W'...', or
B'...";
¢'...' but should use Z'...";
B'...' but should use W'...";
x' appears where

x & {W, X, 2, C, B};
i nside quotes but no '-'in 72;
non- bl ank in 72 outside quotes
too many digits (9) in integer;
igl char at start of s-expr;

igl char after '<'or '(';
gl char between list elenents

READ ERRORS

}

Action

start skipping s-expressions
readi ng continues

right parens created; nunber
Is printed at the far right

I gnor ed

skips for inner RO then back
t o skipping for outer RO

invents quote bhefore the error
character this may confuse the
scanner

Z'...' assumed

W'..." assumed

quote ignored, atomw th print
nane x is produced; beware, the
scanner may becone confused.
stays in quote node

I gnor ed

this and all after ignored

I gnor ed

J.3 Conputation Errors ,

These errors termnate evaluation of the current s-expression. Variables
are not rebound; this means that global variables may not have their
correct value and also that list structure may be saved unnecessarily.

Swym continues after these errors by evaluating the next input s-expression.

Error Code Rout i ne Error
Bl Bl NDERY trying to bind atom with function definition
in cel
CN CAND no predicate was true
EXx EXPLODE argunment not synbol atom (type 0)
El EVAL arg was unbound atom
atom at front of s-expr was not synbol
(type 0)
atom at front of s-expr had no function
definition

atom at front of s-expr had illegal function
definition type (system error)

more than six arguments to a SUBR

more than one formal argument in FEXPR

definition
M MAKSTRNG argument was not a list of atoms each
having a one character print name
PP PUTPR@P first argument not a synbol atom (type 0)
Pl PUTSTR argument not character string atom (type 1)
(systemerror)
RI STI VCCH argunent's print name not one character
RJ GET@BJ argunent not a character string atom
(type 1)

186

J.4 ABEND - Abnor nal

Term nati ons

card has been included.

These errors are always fatal and produce a dunp if a //SYSUDUMP DD

Most are concerned with errors in the garbage

collector and indicate that the data structure was illegal. Further

conputation on an erroneous data structure can produce nothing useful.

Conpl etion Code

Syst em 0c6

User

1.

20

20
28
2F
3E
6E
TE
TE

118

122,126

15A

1A8

Rout i ne

FST,RST

FINI SH
PBPPEN , PUTBYTE

CPLLECT
ATCEL
cpIx
CPIX
CPIX
cPLx

co

CALLECT

CPLLECT

CPLLECT

187

Error

Fst or rst taken of an atom

During debugging, normal
termnation

Insufficient menory remaining
after garbage collection

Argunment already marked with ni
Illegal atom type
Atom A —ml A m2

Atom A m A —m2

—atom A n2 A -ml
—atom A —m2 A mi

stack pointed at an m A™m2
or —ml A m2 word

in second pass, found atom
A —ml A —m2

invalid stack block type

in second pass, found =atom
A —ml A —m2

in second pass, found rst: atom
A —ml A —m2

Appendi x K. Proposed Instructions for the IBM/360

The instructions proposed in this appendix are intended to give the
flavor of possible additions to the 360 instruction set. A conpletely
different machine design mght be preferrable, but would mean reprogranming

on the scal e accompanying introduction of the 360. Additions to the

instruction set would not obsolete any existing prograns, except in that they

could be witten nore conpactly in the proposed extended instruction set.
The instructions are proposed in terns of the 360 because to a |arge extent
they then also apply to nost traditionally designed conputers. Thus,
al though these instructions mght make radical changes in program design
(more nmodul arity), the basic design of conputers need change very little
Four sets of proposals are included bel ow:

Loads and Stores

Associ ated-Bit Instructions

Stack Instruction

Subroutine Linkage

The last two are interdependent, but otherw se these instruction sets

could be added individually.

Proposed Loads and Stores

These instructions are intended to renove some of the nore annoying
linmtations of the 360. They have been proposed many tines, especially
in [Wth 68].

IHL (RX) Load Halfword Logica

The halfword at Ql(xl,Bl) repl aces the | ow order

188

The upper 16 bits of R

16 bits of register R

1’ 1

are unaffected.
STHA (RX) Store Halfword Arithnetic
If bits 1-16 of Ry do not all match the sign bit, this

instruction causes a fixed point overflow. Qherwse,

the low order 16 bits are stored in the halfword addressed

by Dy(Xy, B)) .

LI (A, SI) (RX) Load (Add, Subtract) |nmediate
Athirty-two bit quantity is conputed frole plus the
contents of registers X and By, treat ed as signed
nunbers. The resulting quantity is |oaded (added, sub-

tracted) to register R Al and SI may cause fixed point

ll
overflow,

LIR (AR SIR (RR) Load (Add,Subtract) |mmediate Register Field
These instructions are simlar to LI (A, SI) except that
the quantity |oaded, added, or substracted is the R, field
of the instruction (not the contents of that register).

LIN (STIN) (RX) Load (Store) Indirect
The Dl(xl,Bl) field refers to a word in nenory. The con-
tents of this word are used as the address from which to

[oad or to which to store the contents of Rl.

Proposed Associated-Bit |nstructions

There are many uses in higher level |anguages for non-nuneric bits
associated with the words of menory. This proposal describes one set of
instructions for manipulating these bits. It is assumed that one bit is

189

associated with every byte of memory, but that the nost common use will be

to use all four bits for each word. Four bits are also associated with each
general register. Any instruction not specified bel ow does not alter the

bits in memory or in a general register. This neans that a floating point
field, for exanple, remains marked as such as long as only floating operations

are used on that field.

MVB (SS) Move Bits
The bits associated with the L + 1 words starting at D2(B2)
are noved to the bits for the L + 1 words starting at Dl(Bl)‘
The operation proceeds fromleft to right by word. Both addresses

nust be on word boundaries. 0 <_ L <255.

WSB (SS) Move Single Bits
The bits associated with the L + 1 bytes starting at D2(BQ)
are noved to the bits for L + 1 bytes starting at D2(32).
The operation proceeds fromleft to right. 0 <L <255,

TMB, NIB, OIB, _

XIB,MVIB (SI) These instructions correspond to the normal instruction
without the 'B' suffix. The difference is that the four
| ow order bits of the mask correspond to the four bits
associated with the addressed word. The address nust be on

a word boundary.

190

GBR (RR) Get Bits from Register
The four low order bits of Rl are replaced by the bits
associ ated with R2. Bits 2k-270f R1 are zeroed; other

bits are unchanged.

PBR (RR) Put Bits from Register _
The bits associated with Rl are replaced by the four |ow

order bits of R2.

PIB (RR) Put Imediate Bits
The bits associated with RL are replaced by the contents

of the R2 field.

LB (RX) Load Bits
The four low order bits of register Rl are replaced by the
bits associated with the word at D'l(Xl,Bl). The next four
| ow order bits (24-27) are replaced by zero. The rest of

the register is unchanged. D (Xl,Bl) nmust specify a word

1
boundary.

© STB (RX) Store Bits
The four low order bits of Ry repl ace the bits associated
with the word at Dl(xl,Bl). The latter nust specify a word

boundary.

PB (SS) Pack Bits
The Dl(Bl) field specifies the beginning of a field of L + 1
bytes. The low order four bits of each of these bytes is set

fromthe bits associated with the corresponding word in the

191

TSB

TRTB

D,(B,) field. The latter is L + 1 words |ong. The high

order four bits of each byte are zeroed. DQ(BQ) nust be

on a word boundary. 0 < L < 255.

(SS) Unpack Bits

D2(B2) specifies the start of a field of L + 1 bytes. D, (B

ll)

specifies the start of a field of L + 1 words. UPB
reverses the process of PB by setting the bits associated

with the words fromthe [ow order four bits of the corres-

pondi ng byte. Dl(Bl) nust specify a word boundary. 0 < L < 255.

(RX) Test Single Bit

The low order bit of the condition code is set fromthe bit
associated with the byte at Dl(Bl). The high order bit is
set fromthe bit associated with the other byte in the half-

word of which Dl(Bl) is part. If Dl(B is even, the

1)

high order bit is set fromthe bit associated with Dl(B + 1.

)
I f odd, then Dl(Bl) - 1.

(SS) Translate and Test Bits

The four bits associated with the word at Dl(Bl) et sequens
are used to index into the table at DE(BQ). The table need

have only 16 entries. Termnation and condition code

setting are as for the instruction TRI.

192

L (RX) Load

This instruction is identical to the nornmal |oad instruction

except that the bits associated with the target register are

set fromthe bits associated with the word in nenory
IR, LNR, LFR, . , _
LTR (RR) The bits of the target register are set fromthe bits
of the source register

LM ST™M (RX) The bits of the target are set from the source

Proposed Stack |nstructions

The problem with using a stack on the 360 is that code nmust be generated
to test for the ends of the stack. These instructions manipulate the stack
and test for the beginning and end. In all cases, the Ry field indicates a
register containing a stack pointer. This register always points to the
| atest word added to the stack. The register is decremented for each entry
so all recent entries can be addressed relative to the stack pointer. The
Dl(Bl)fieId of the instructions is assuned to be the address of a two word
Stack Control Block. The first word of the block is the address of the first
entry in the stack, the second word is the address of the last allowable
entry in the stack. This control block is used to check for the ends of the

stack. Stack instructions can generate two new interruption types; stack

overflow and stack underfl ow.

195

UGR

UGMIL

(RX) Queue Register on Stack

The contents of R are decremented by four and conpared

agai nst the contents of the.word addressed by Dl(Bl). | f

| ess-than, then a stack overflow interrupt is generated.

O herwi se, the contents of the R, are stored at the location

indicated by the revised contents of R

(Rx)' Queue Multiple |mediate
The R, fieldis miltiplied by four and subtracted from Ry
The result is conpared against the contents of the word

addressed by Dl(Bl). If less-than, a stack overflow

interrupt is generated.

(RX) Unqueue Word from Stack
The contents of R, are conpared against the contents of the
word at Dl(Bl)+h if greater-than or equal, then a stack under-

flow interrupt is generated. Qherwise, the contents of R,

are replaced by the word addressed by Ry Finally, R IS
increnented by four.

(RX) Unqueue Miltiple Imediate

The R, fieldis miltiplied by four and added to R,. The result

is conpared against the contents of the word at Dl(Bl) + L.

If greater-than, a stack underflow interrupt is generated.

194

QDR,QER, UQDR,
UQER (RX) Queue Double Floating Register

Queue Short Floating Register
Unqueue Doubl e Floating Register

Unqueue Short Floating Register

These are analogous to QR and UQR except that they use the
floating registers. Aso, QDR and UQDR nodify the Ry

register by eight rather than four.

Proposed Subroutine Instructions

CAL (SS) Call a Subroutine
Thé R, and Dl(Bl) fields refer to a stack. These fields
are used to QR the program counter. The R, register is
| oaded with the word indicated by DE(BQ). The program

counter is loaded with the sane word so that execution begins

at the address in R2.

RET (SS) Return from a Subroutine
The Ry and Dl(Bl) fields refer to a stack. UQR is executed
fromthis stack and the top elenment is |oaded into the
program counter and into Roe The di spl acenent D, and the

contents of B, are added to the program counter.

195

Appendi X L. Denonstration of the Correctness of the Swm Garbage Col |l ection
Al gorithm

The Swym garbage collector is reasonably complex since the central routine,
COLLECT, involves two |oops and recursion. ‘The potential user deserves sone
reassurance that COLLECT will not mysteriously nmodify his data. The problens
of mnor errors in garbage collectors are severe because the collector is
called when storage is exhausted, and this depends on the data in the problem
at hand. This appendix attenpts to denonstrate the correctness of the COLLECT
algorithm But it is inportant to note that this demonstration proves nothing
about the actual Swym system garbage collector. There are three reasons

1) This is a denpnstration of an algorithm The programitself may or
may not corfespond to the algorithm There is many a slip 'twxt
conception and core; errors can occur in coding, keypunching, assenbly,
or during execution, when sone other part of the system may nodify
COLLECT.

2) It is necessary for this proof.to make nunerous assunptions about
the effect of subsidiary functions. These are subject to the
problens mentioned in (1). They are also subject to that fact
that they are specified only in English, a not always precise
| anguage

3) The proof itself is primarily in English. A gain in precision could
be achieved by translating the proof into the predicate calcul us;
but even though nore readers mght be reassured, the nunber of

readers woul d decline drastically.

Despite all the above, the denonstration of the correctness of the COLLECT

algorithmis at least an interesting problem Because of the involuteness

196

and the fact that a given call depends on the correctness of higher |evel

invocations as well as lower |evel invocations, the major problemis avoiding
a circular proof.
Mbst of the functions used in COLLECT are defined el sewhere. The fol | ow

ing are assuned as primtives: fst, rst, atom rplf, and HD. The five

operations on marking bits - M, M2, MARK1, MARK12, and UNMARKL - are all
assumed to use two bit tables to associate two bits with each word. This is
contrary to the inplenentation, but sinplifies the denonstration somewhat.

(A final note will show how to remove this restriction.) The properties of four
functions must be presented in detail: ATC#L, GCPUT, FIXUP and C@LLECT. The
properties of the first three will be assumed while the properties of CPLLECT
are to be denonstrated. The relevant properties are listed in Figure L.4.

The C@LIECT algorithmin figure L.I has extra labels for reference during
this appendix; otherwise, it is the same algorithmas given in appendix E. A
flow chart is in Figure L.2, for those who read flow charts. The labels in
L.1 and L.2 will be used to refer to the relevant statement without specific
reference to the figure. Several other types of references are made to itens
identified with a capital letter followed by one or nore digits. This table

sunmarizes the capital letters and the location of nore information.

ATCOL property

o r

COLLECT property

See Figure L.k
FIXUP property
GCPUT property

a figure in this appendix

< N R

marking bit See Appendix E

w

statement label in Figure L.I

197

The argument to CPLLECT is a |ist. CPLLECT processes as nuch of that
list as can be represented in new core as a single sequence of consecutive words,
where only the last is a rst pointer. This Dart of a list is called a |ist
segnent. Sometines it is the entire list, -ending with a rst pointer at an
atom But if some rst of the list is already collected, the list segment nust
end with a rst pointer to the existing representation of that rst. For conven-
ience, the pointers pointing at the elenments of the list segment will be called
fst pointers.

" Each invocation of CPLLECT writes a |ist segment on the tenporary file.
After all structures are collected, this file is read in to replace |ist storage.
It represents the same list structures as the old contents, providing that
all pointers into list storage are nodified to point to the new |ocations of
the structures. The old contents of |ist storage are referred to as old core.
The new contents, though stored tenporarily on the file, are referred to as
new core. For every pointer into old core, there is an equivalent pointer into
new core. As CPLLECT processes a |ist segment, say x, it replaces fst (x)
inold core with a pointer to the equivalent of x in new core. For exanple,
the fst of the list (ABC) is replaced with a pointer to the sane list in
new core (not with a pointer to Ain new core). This replacenent is done with
the rplf in s34 Later the pointer to the new core equivalent is accessed with
the fst in s3422o0rsh22. These three statements are not operations on |ist
struc'ture in the sense normally understood by 'fst', but they are inplenentation
independent in that they only require that fst return the value stored with

rplf.

CALLECT contains two loops: the first is all statements numbered slx and
s2x; the second is all statenents 83x and Skx. S11 and 831 initialize the

| oops by setting r to a rst of the list (the list itself being considered the

198

oth rst). Then the slx and §3x statenents process an elenent of the list.

The s2x and sbx statements check the next successive rst and either loop

back, or process the rst and terninate. Below the first loop wll be

referred to as pass one and the second loop as pass two. This is because

each makes one pass over the |ist segment.

Under st andi ng CPLLECT requi res know edge of the state of the |ist segnent,

X, at S31l. There are three cases:

1 Each pointer in the list points at a word with at least M. Each pointer

- has its own M. bit on and M hit off. The end of the list is signalled

by a rst_pointing at an atom

2, Sane as case 1, except that the final rst _points at a word marked with
both M and Me.

3. This case is |ike case 1, except that the final rst is a word that is
marked with M and not M. In addition, the elenment pointer to the |ast
el ement has neither marking bit.

Pictorially these cases can be represent éd as in diagramL.3.

To illustrate the predicate calculus approach to this denmonstration of

correctness, here is the predicate that a list segnent satisfies:

(In) (L1IAL2AL3)
wher e I
n_
Il = A (9M(R(1)) A ML(R(1))) A = M2(R(n))
i=1
n
I = A M(£st(R(1))) {case

1=1 l
: {case a:
_Y__

(ML(R(n)) A (atom(R(n+1)) v M2(R(n+1))))
v(-ML(R(n)) A ML(R(n+1)) A R(n+l) # R(n))
v(R(n*t1) = R(n) A -ML(R(n)))

199

13

{case 3}

wher e
R(i) = rst’(x)
ﬂi(p) = if i=0 (hen prel se rst _t_l (P)

X = argunment to CPLLECT

The denonstration of the correctness of CPLLECT requires 3 steps. The
first step is to show that CPLLECT terminates. This can be shown with
mini mal recourse to CPLLECT's properties. Secondly, assuming that CPLLECT
is correct for all recursive invocations, CPLLECT i s shown to have properties
Cl-Cc10. Finally, it is shown that the new core image is equivalent to the old
core, and thus that CPLLECT is correct.

The first two steps are sufficient to show that CPLLECT writes out a |ist
segnent. For if CPLIECT terninated, at some level of recursion it did not
call itself and thus did not depend on its own properties. The fact that
CPLLECT al so depends on the correctness of higher levels of recursion is
dealt with in the third step.

Certain of the properties in L.4 are assunptions about the arguments to
the relevant function. These are included for ease of reference, but they
must be denonstrated each tinme the function is called. There are a few global
aésur_rgti ons:

1) At the time cfLiEcT is first called, for a given garbage collection,

there are no marking bits set; all words w satisfy -M.(w) A 42(w).

2) Wen CgLIECT is called by the garbage collector or ATCgL, its argu-

ment satisfies CO

3) No pointer in nenory points at a word with the rst bit on.

200

Lemma 1. CO is always satisfied.

By the second gl obal assunption above, COis satisfied when CPLLECT
is called externally. Wen CALLECT is called at sik2, its argunent is neither
an atom nor marked M because of the tests-in Sl4 Thus to violate GO t in
sik2 must be —ML(t)AM2(t). But by the first global assunption above this
word was not so marked at the beginning of garbage collection. Consequently,
it nust have been created by earlier or concurrent calls on CPLLECT. These
cal I's nust have included execution of S35 to turn on the M2 bit and a subsequent
call on S223 to turn off the M bhit that is also set at s35. (S35 is the only
statement turning on M and S223 is the only statement turning off M). But by
the test before s222, S223 cannot be executed for a word with the M bit.
Consequently, a word satisfying -ML(t)AM2(t) cannot exist. Thus slk2 cannot

violate CO and the lemma iS proven

Lemma_2. At S12, r is unmarked and non-atomc.
This is true on entry to CPLLECT, by Lemma 1. Thereafter, the lemma is
true by the tests in 822, which termnate pass one if the next r would be

atomc or narked.

Lemma 3. S223 unmarks the last word marked at S13; a word previously unmarked.
No statements nodifying r occur between S223 and S13 (assumi ng the Algol
interpretation of variable binding). The second assertion follows from |emma

2.

Lemma L4 Me(w) o ML(w).

This is initially true since it is assumed that there are no M bits set
Thereafter, it remains true since M can only be set by 8§35 and that statenent
also sets M. The ML cannot be unmarked by S223 as shown in the proof of

[emma 1.
201

CPLLECT Ter mi nat es

Lemma 5. Each call on CPLLECT sets at |east one previously zero M bit.

By lenma 2, the argument to CPLLECT, x, is not marked with M. It is so
mar ked by s13. |f S223 is not the path chosen through s22, then x remains
marked with M. If S223 is executed while r = x, then x is unmarked, but is

marked again at 835 In either case, x remains marked with M by lemma3
and A 5.
Lemma 6. The recursion in sl is always to a finite depth and therefore

term nates.
By lemma 2, a previously unmarked word is narked at S13. But there are
a finite nunber of words in menory (otherw se the garbage collector would
not be called and it; correctness would not natter). By the test before sike,
CPLLECT does not recur if what would be its argument is already marked. Since
every time CPLLECT is called there are fewer words not nmarked with M, CPLLECT

cannot recur indefinitely.

[bemal7.0p in pass one term nates.
At s2242 the loop returns to chkloop, that is, s12. But then s13 marks
a previously unmarked word (by lemma 2). Since at each execution of S13
there are fewer words unmarked with ML, the loop termnates. Note that if S223

unmarks a word, the loop is termnating since s2242 will not be execut ed.

Lerma 8. The loop in pass two terninates.
By lemma 1, x is not marked with M after s31. But that x is marked with
M after S35. The loop termnates at sh22 if t is marked with M2, but r is
assigned the value of t in sk231, just before |ooping back. Therefore S35
again marks a word previously unmarked with M. Since there are a finite

number of words not marked with M2, the loop must terminate at sk22, if not sooner.

202

Theorem 1. COLLECT ternminates.
Assuming that all subsidiary functions termnate, the theorem follows

fromlenmmas 6, 7 and 8.

203

[I. Collect has properties €1-Cl10.

In this section the inductive assunption is nmade that all subsidiary

cal | s of CPLLECT satisfy CO-C10 if they terninate.

Lemma 9. Pass one has properties Cl-Ch.

The words constituting the list segment are those pointed at by
successive values of r. S13 sets the ML bit in that word, thus satisfying c2.
d is satisfied by sik:

- If t (=_fst(r)) is atomic then Al is satisfied for 5141 and t is marked

M by property A2 or Ak.

If tis rrarked\\vw'th M2, then it is also marked with M by |emma 4
If tis marked with ML, there are two possible cases: t has been marked
by a higher level invocation of CSLLECT, or t is a word in the |ist

segment. In either case, t is indeed narked with M, satisfying Q.

If t is unmarked, then it is marked with M since the |ower |evel CPLLECT

Is assuned to satisfy c2.

S22 tests for termination of the list segnent. If S221 is executed, then
the list segnent is an instance of case 1 in L.3. If S222 is executed, then
this is an instance of case 2. If S223 is executed, then this is an instance
of case 3, and the M bhit in e, is indeed set off, satisfying ck. If so2k is
executed, then at least one nore element pointer is to be included in the |ist
segment. Each tine through s22k, all prior element pointers of the Iist
segment satisfy O and €2, as shown above. The first pass eventually does
termnate, by lemma 7, and can only term nate by one of the paths through S22

di scussed above; thus C3 and ck are satisfied.

204

Lemma 10. Pass 2 satisfies ¢5-c8.

The proof is by induction on n, the length of the list segment isolated
in pass 1. Suppose n = 1. About half of the possibilities for this case are
illustrated in L.5.

c5: one word is witten for the one fst pointer in the |ist segnent by

s3k2.

c6: the address of the witten word replaces the fst pointer in the list

segnent (statenent S34).

C7: the word in the old core list segment is nmarked with M and M by

835.
c8: since n.=1, sh2 wites a rst pointer in one of its branches, depend-

ing on which case of list segment has occured.

Case 1. The rst is an atom In this case a pointer with the rst bit
is witten in skell or skele.

Case 2. The rst is marked with M. A pointer with the rst bit is
witten by ske2,

Case 3. Note that m is false because there is no M bit with the |ast
fst.pointer (by ck). Thus sk2k is executed and a word is

witten that will eventually contain a pointer and a rst hit.

Suppose n > 1. In this case, 5,06, and c7 are satisfied for the first
fst pointer by the same argument used for n = 1. By the structure of a list
segnent, rst (r) is neither atomc, nor marked with M. Furthernore, mis
true, because the M bit is always on for all fst pointers in the |ist segnent
other than the last. Consequently, sk23 is executed and control returns to 832
with r pointing at the rst of the original list segment. But rst of a list
segnment of length greater than 1 is a shorter list segment, so the induction is
satisfied. Thus the Iemma is denonstrated.

205

Lemma 11. (c9)

CPLLECT does not nodify any word marked with M by any other routine or
ot her invocation of CPLLECT.

There are seven statements in CPLLECT.that nodify marking bits or words
inold core: 813, s1k1, sik2, s221, 5223,834%, and s35. The lemma will be

denmonstrated for each in turn.

S13 (MARK1(r)) By lemma 1, this word was previously unmarked.

S141 and S221 (ATCPL(t)) By the tests preceeding these statements, A is
satisfied. Hence, ATCPL satisfies A5 and A2, nmodifying no word
previously marked with M.

g1k2 (C¢LLECT(_1§) t is neither atonic nor marked by |emma 4 and the tests
in 8lk. Thus COis satisfied and by assunption the |ower |evel
invocation of CPLLECT is correct. Therefore sk satisfies €9
because the |ower |evel CPLLECT does.

S223 (UNMARK1(r)) By lemmas 2 and 3, this statement unmarks a word
that was unnarked prior to 813.

S3kh (rplf (r; . ..)) As shown in the denonstration of lemm 10, r is
part of the list segment and it was marked with M by pass one of
the current invocation of CPLLECT.

S35 (MARK12(r)) Sinmilarly to s3k.

Lemma 12 (C10)

Any word marked M either contains or will contain the address of the
equival ent word in new core.

When the equival ent address is placed in the word by 834, the word is
marked M (and M2) by §35. By €9 and A5, this word is not thereafter nodified

by any other routine. |If M is off, then ML was set by S13. But by ¢5 and
206

C6 the address of the new core equivalent will be placed in this word.

Theorem 2. COLLECT has properties €1-Cl0.

Lemmas 9, 10, 11, and 12 were dermonstrated with the assunption that all
| ower level calls of CPLLECT were correct. But if the recursive call terninates,
then at sone |evel CPLLECT did not call itself. Thus at this level correctness
can be denobnstrated without reference to |ower |evel calls of cgLiecT. Con-
sequently, this lowest level is correct. The correctness of the outernost |evel
can be proven by induction on the depth of recursion. But by Theorem 1, C@LLECT
termnates. Consequently, by Lemmas 9,10,11, and 12, C@LLECT has properties

Cl-C10.

207

[11. The New Core Inage is |sonorphic to the Qd

The isonorphismto be demonstrated will be witten x =y and defined by

~

x=y= (if atom(x) then atom(y) Ax =y

else fst (x) = fsty)Arst_(x) = rst (y))

where x =y is the isonorphisminduced by ATC#L. If x is a word in old core
marked with M and M2, then by ¢6 that word contains the address of the
-equivalent word in new core. This equivalent word is denoted by x'. It is
necessary to dermonstrate that after garbage collection (but before reading the
new core) (¥x) (M(x)) > (M2(x)Ax=x"'). The proof will be by induction on
n the length of the list segnent in new core. This [ength is the nunber of

words fromzx' (including x') to the next word in menory with'a rst bit.

Lemma 14, M2(x) o if atom (Xx) then HD(x) = x' el se fst(x) = x' and the val ue
of x is not nodified, nor is the M renoved, by CPLLECT or any subsidiary
function.

By ak,c6, and C7, x' is witten into x at the same tine that x is
marked with M. By |lemma 4, M2(x) o ML(x); but if ML(x) then x is not

modi fied as guaranteed by A5 and C9.

Lemma, 15. s342 has the effect of GCPUT (t'), where t = fst(r).

Note that by definition FIXUP executes GCPUT, so every branch of g342
executes GCPUT exactly once. By AL, 534211 does GCPUT (3') if tis an atom
marked M2. By ¢6 and c7, s3422 does GCPUT (t') if t is non-atonic and narked
with M. g34212 does GCPUT. (0) but establishes a fixup so that the zero will
be replaced by the contents of t after cgLiEcT. But by A3 and Ak, t will

contain t'. Sinmilarly s3423 does GCPUT (0) and establishes a fixup. By d,

208

t is mrked with ML (and not M because of test before s3422); but by ClO that
word will contain the address of its new core equivalent. Thus in each branch
of g342 either t'is witten or a fixup is generated so that the witten word

will contain t'.

Lenma_16. shk211, sk212, sk22, and sk2k have the effect of GCPUT (t' v rstbit)
where t = rst (r).

sheil: By Ak, HD(t) contains the address t's

ska12: By A3 and Ak, HD(t) will contain the address t'. Since the
fixup processing routine or's the fixup into the word in new
core, rstbit remmins in the word.

sha2: By €6, fst (t) is %'

shak: Since mis false, this nust be a case 3 list segment. (The
only case having —ML(R(i)).) But in this case, by the test
before s223, the rst (r) is marked with M and by C10 will
contain t'. Consequently, the fixup process will create a

correct rst pointer to E'c

Theorem 3.
After C@LLECT, any word, x, marked M2 is also marked M and contains a pointer
to the equivalent word, x', in new core satisfying x = x'.
If x is an atom then CPLLECT called ATCSL if it processed x. By Ak,
x'is atomic and x = x'. If x is not atomc, then by the properties of pass
two, x'is not atomic. The proof that x =x'is by induction on n, the- nunber
of pointers fromx' (and counting x') to the next word with a rst bit. Note

that x' was marked by $35 and x' was written by s3k2 which never puts in a

rst bit.

209

Est = f£st(x'). By lemmal5, x' was effectively witten with GCPUT(t')

where t'is the address of the equivalent of t and t =_fst(x).

rst(x) = rst(x'). Since n =1, the word following x' has a rst bit and

thus contains the pointer at_rst(x'). But any word with a rst bit nust have

been witten with sk2. By lemm 16, any word witten with sk2 was effectively
witten with GCPUT((rst(r))' v rsthit). But r was not nodified between $23 and
sk2 so r indicated the same x whose fst was witten out in s342. Thus rst(x) =

rst(x') because the latter was created fromthe forner.

n> 1.
Est

rst(x) T rst(x'). Since n> 1, the word following x' has no rst bit and

-~

fst(x'). By the sane argument as the case above.

n

rst(x') is a pointer to that following word, that is, a pointer to the list
segnent of length n-1 starting at that followng word. After x'was witten,
sk23 was executed (otherwise the following word would have a_rst bit). So
$32 et sequens were executed with r pointing to rst(x), creating a list

segment of length n-1. By the induction, the shorter list segment is equivalent

to rst(x). Consequent!ly_rst(x) = _rst(x').

Thus in all cases, CPLLECT creates a correct representation of its argument.

210

Note on the |nplenmentation

The actual inplenentation of CPLLECT uses the ML and M2 bits in the word
itself as shown in figure I.2. The problem for the above denonstration is
that the M2 bit is the sane as the rst bit. Two changes are made in the
algorithm the argunents to all functions aremasked to remove possible

marking bits and t := rst(r) is changed to
t := if ML(x+h) then r+k el se rst(x).

This note will show that the proof can be nodified to take these changes
into account and that the nodified rst function is valid.

The proof of Iemma 1 depends on gl obal assunption 1 that no nmarking bits
exi st before the first entry to C@LLECT (for a given garbage collection). But
since there can be rst bits, global assunptionl does not hold. [Instead, it
must be changed to:

At the tine CPLLECT is first called for a given garbage collection,
there are no marking bits set in any fst pointers.
Thereafter, all discussion of marking bits nust be qualified by reference to

fst pointers only. But we have:

Lemma_0. COLIECT never sets M in a word with the rst _bit.

G obal assunption 3 states that no pointer into |ist storage, no fst
pointer, and no rst pointer points at a word with the rst bit on. But the
variables x, r, and t only acquire values fromthese three sources. Thus
X, r, and t never point at a word with the rst bit on. But M is only set by

S13 and $35 where the argument is r. Consequently the lemm is true.

211

Because of lemma 0, the nodified global assunption 1 is valid. Further-

more, the extension to the rst operation is justified;, if the word follow ng

a given word has M, it cannot be a rst pointer and the pointer to r+k is what rst

woul d return anyway.

212

Figure L.

COLLECT (x) = begin |ist x,r,t; Boolean m

word rsthit @ = x'00000001' ;
S11: r := X;
chkl oop:
S12: t = fst (r);
s13: MARKL (r);
siv: if atom(t) then
“ S141 ATOOL (1)
else ifWM1 (t) then
S142: --COLLECT (t);
S21: t = st (r);
s22: if atom(t) then
s221: ATCOL (t)
else if M (t) then
§222:
else if M (t) then
S223: UNMARK1 (r);
el se
S224: begin
S2241: r :=t;
S2242: gtk | oop
end;
S31: r := X;
322 wloop: m:= M (r);
s33: t 1= fst (r);

213

s34 rplf (s3u1: r;
S342: if atom(t) then
S3421: if M2 (t) then
s3u211: GCPUT (HD (1))
el se
S34212: FIxwpP (t; 0)
else if M (t) then
S3422. GCPUT (fst (1))
el se
S3423: FIXUP (t3 0));

$35: MARK12(r);

sul: t := rst (r);
42 if atom (t) then
S421: if M2 (t) then
211 GCPUT (HD (t) V rsthit)
el se

SA212: FIXUP (t; rsthit)
else if w2 (t) then

su22: GCPUT (fst (t) V rsthit)
else if mthen
$423: begin
$4231: r:=t;
$4232: pekd 00D

end
el se
S424: FIXUP (t; rsthit)
end COLLECT

21k

R=X $21 v

CHKLOOP ‘ T:=
RST(R)

512
T:= ATOM(T)
FST(R)
513 *
MARK1
(R >
5223
| UNMARK1
~ATCAL(T) (R) —>

$2242

COLLECT(T)

Figure L.2
clow Chart of COLLECT

215

WRLOOP

S32

M := ML(R)

$33 l

T :=FST(R)

M2(T)

S34211

Figure L. 2 (Cont)

TEMP :=
GCPUT
(HD(TY

$34212

TEMP :=
FIXUP
(T,0)

S3422

TEMP :=
GCPUT
» (FST(T))

S3423

TEMP :=
FIXUP

216

> (T,

35—y

RPLF

(R, TEMP)

s35 *

(R)

MARK12

RST(R)

ATOM(T)

Figure L. 2 (Cont)

S4211

GCPUT
(HD(T) V
RSTBIT)

>

S4212

FIXUP
| (T,RSTBIT)

S422

GCPUT
(FST(T) V
RSTBIT)

S424

>

FIXUP

(T,RSTBIT——»

217

FigureL. 3
Cases of 'List Segment'

Case 1. List segnent ends with rst pointer at atom
1 ¢ 2le |1 z 2 2le |19 2® plexhead
rei en

|1 xl ' 1 X

Case 2: List segment ends with rst that has already been collected

1 bl ® 1?? ple |19 po [%2
€ € €n+1
1 X 1 X 1 X

-

Case 3. List.segment ends with rst that is being collected

1 ¢ p| o [15% pje |19 2o [z ple[1?
{6 [®n-1 €n Cn+
1 X 1 X 1 X 1 X

Notation: e indicates rst (either adjacent or rst pointer)
’ e Is a pointer at an element of a list segment
i>1
1 (2) indicates M (M2) set
1@ indicates M (M) is zero
x indicates indetermnate M

218

Figure L. 4

Properties of ATCAL

Assunption:
Al
Properties:

A2

AB-

Ak.

A5.

NOTE:

The argument nust be a pointer at an atom

| f the atomhead is already marked with M, then ATCOL
returns; otherw se

On entry, the atomhead is marked with M.

On exit, the atomhead is replaced with a pointer to the
equi valent atomin new coreand the atomhead i s marked with
M-and M.

No word marked M before entry to ATCOL is nodified;, narked,

or unmar ked.

ATCPL may call CPLLECT to collect a substructure of the
atom If that substructure points back to the atom C@LLECT
will find an atomthat is M but not M. This case is

handl ed at 834212 and sk2l2.

219

Figure L. 4 (Cont)

Properties of GCPUT

Assunpt i on:
Gl. The argument may be any word, with or without the rst bit.
Properties:
&. GCPUT stores its argument in the next location in the new core.
G3. The value is the assigned new core address.

Properti es of FIXUP

Assunpt i ons:

Fl. First argument is a pointer at a word in old core.

F2. Second argument is either zero or zero with the rst bit.
Properties:

F3. The second argunent is GCPUT.

Flb. An entry is made in the fixup table consisting of the first

argument and the value of GCPUT.
F5. After processing the fixup table, the GCPUT word will point

to the equivalent of the first argunent.

Processing the fixup table takes two steps:
- (1) After CPLLECT, the first argunent (to FIXUP) will be M and
M2 by C10; it is replaced in the fixup table by its contents,
which point to its new core equivalent (by |emma 14).
(2) After loading the new core, the word pointed at by the second

itemin each fixup is replaced by the first item

220

Proverties of

Figure L. 4 (Cont)

COLLECT

Assunpt i on:

co

= (x) A M2(x) A —ptom (x)

Pass 1 isolates a |ist segment.

a

ca

c3

Ch

Pass 2 wites

c5
co

cr
c8

M scel | aneous:

c9

C10

After pass 1, each successive fst is marked with at least M.

The M bit for each word constituting the list segnent is
set on.

Pass 1 termnates when it reaches a word that is an atom
is M, or is M.

Inthe | ast case of ¢3, the M bit in the [ast word of the
list segment is set off.

it out and renmenbers its location(s).

Wites to new core one word for each word marked in .
Places in each word marked in O the address of the new
core equival ent word.

Marks each word marked in d with M and M.

Wites to new core a rst pointer to the rst of the Iist

segnent .

CPLLECT does not nodify any word marked with M by any ot her
routine or by any other invocation of CPLLECT.
Any word marked M either contains or will contain the

address of the equivalent word in new core.

221

Instances of Case | with n=1

’ After
Before: Old Core New Core
piex- plex- plex-
Zil ®‘ » OheadO 1 1 2 ® > 1head2 ® R %
] =
0 O 1&Hor——————=— #| l
plex- . plex- plex-
01 o®‘——4 Thea)| L 2| © —1head2(“ ? Bot— head
|
: |

(®) o-—fplex * (B- fLeexaﬁo_l-"l ' [®¢

— e d— —— — — ——

plex-
(Ro * " head

!
_}

J lex- _ [plex-
l:g o® Thead2 | |19 2®’=|=‘Ed‘2—r
Figure L. 5
Collection of List Segments with n=1

Note:
A dashed line from old core to new core represents a pointer to the location

a word will occupy when it is read in.

A dashed line from new core to old core represents an entry in the fixup
table. The new core word will eventually point to the equivalent of

the o0ld core word.

222

Instances of Case | | with n=1

After
Before: Old Core New Core
— _ —_—_T—_—“‘ ______
I '
L 4
0 0 1 T T T T T T ™
| I T T4
¢ ®
RN 1921%2 ["Y ® of—
. L J ‘J'
1 0 1 of¢—F————————
- I— ——————————— I S T3
L
1 "2“‘*“‘_]_ 1 '—2*—“_}:::3 1 2
— I_____:::__:::;: ______ e e e o e o —

Figure L. 5
Collection of List Segments with n=1 (Cont)

223

Instances of Case | 11 with n=1

Before: Old Core New Core
0To®"_’1 0 1T2®' "1 0|_|" T
I '—-—-—————Fl_ |
v i —_————
*-{—————— — -
0o ol o 1 2
o-Jol1 o 1T21 0 ' C
l_ . _ —_
— "““”
_/\ 1 o T ———— T
o'o® . =3 /®\$
R ®
1T2
040 i _|"
1 2T T T T 19 T T T -
(} L_._-_—__.._..:._ ——————
0 o,®’—‘"1 0 _fl_T2|®. 1
N —
.mll/'\J it SS
0 o|® 1T2®

Figure L. 5
Collection of List Segments with n=1 (Cont)

224

Appendix M Description of Control Section CSSWM

The control section CSSWM is always addressable via register S. It's
contents serve a variety of needs: globalvariables for system routines,
transfer vectors for routine |inkage, register definitions. CSSWM is non-
reentrant. A DSECT describing its contents nust be assenbled with any
Swym control section; the required code is described in Appendix N

The following are included in CSSWM

1) Register Definitions. These nanmes are equated to specific registers:

N, A, A2, A3,Ak, A5,A6,Ck, S, T, IT, F, P, B, |] See Appendix I.

2) AT EQU 6. Pointers at atoms point AT bytes in front of the
atom References to atons should use this identifier to enphasize
that the operand is an atom and in case the offset amount must be

changed. (Mnyroutines presently ignore this rule.)

3) Bit Definitions. The macro BITTBIMK is called to set up a table
used by BIT (to find the bit mask for the bit-within-the-byte). Bits
defined in CSSWM are;

M, M The garbage collector marking bits. (These definitions
shoul d be noved to CSCC.)

‘CELREL This bit is on in an atom head to indicate that the
value cell contains a pointer at list structure. If
off, the cell contains a nunber.

CELVAL If on, the cell contains a value definition (possibly
the special value UNDEFINED). If off, the cell

contains a function definition.

225

k)

5)

CELFNC This is a byte mask definition defining the function
definition bits in the atomhead. [If any of these bits

is on, the atom has a function definition.

SWM EQU *
USI NG SWYM, S

This establishes addressability for the information in CSSWYM. Note

that no program may nodify the contents of register S. (The contents

are established by the routine CSINIT.)

Tenporary Storage Areas.

SWYMSAVE _ Used as save area when calling OS routines.

SYSFOO Five word area to save registers 13, 14, 15, 0, 1 while
calling CS.

DUBWORK A double word work area.

TIME Used by STIME and TTIME to conpute processing tinme.

NUMAT,

NUMATVAL A nunber can be printed by storing it in NUMATVAL,

then passing a pointer to NUMAT to PRINT or PRINI,

6) Pointers at List Structure.

These pointers point at list structure referenced by the system The
val ues are updated by the garbage collector.
VCHAROBS Points at CHAROBS, the list of all character objects;

i.e., atoms with one character print nanes.

VOBLI ST Points at the OBLIST.
ST Points at the atomT.
VFPROPS Points at FPROPS for EVGET.

226

7)

VUNBND Points at the special atom 'UNBOUND' for EVAL,

For further information on these structures, see Appendix H

Wrk Areas for Specific Routines)
See the indicated appendix for further information on these
vari abl es:
Menory control - Appendix E 4
MEMUSE, MEMNXT, MEMSIZ, FEND
Garbage Col l ector - Appendix E. 4
GCTIME, GCABAD, #MaM2
Print - Appendix F.3
PRPT, PRPEND, PRLNG, PRATBAD
Read - Appendix C
RDCOL, RDEND, RDLNG, PBHD, ATAMT, RDSUPCTR, RDERMS, RDERNS,

RDERLPC, RDERCT, RDCLASS, RDCHAR RDSTAT

8) Data control bl ocks.

9)

There are two DCB's, one for output - PRINTER and one for input -
CARDRDR In the copied code, these are not assenbled, but space is
reserved. They are assenbled when CSSWM is assenbled by itself as
a CSECT.

Transfer vectors.

These contain the address constants used to address routines by the
CAL macro. The field | abel ed #xxx contains the address of the
routine xxx. The transfer vectors are created with the TVMAK nacro.
One special transfer vector is included: #PO contains the address
of the stack. This is-used by ERROR to restore the stack pointer

(register P).
227

10) Al ways eaddressable routi nes.

See the indicated appendix for a deseription of these routines.

Appendix Routine

G FALSE, TRUE, PUTCH, SWERROR

E.3 CHOKE

B. | RSTAl, RSTA2, RSTA3, RSTT, RSTIT

228

Appendi X N. Adding Routines to SWMStutter

Assenbl ed routines, conpiled routines, and interpreted routines can
be added to the SWM Systemwith a nmininumof difficulty. This appendix

treats each of these types in turn

N.1. Adding Assenbl ed Routines

Routines designed to run under SWYM can be assenbled in either an
existing SWM control section or a new control section. In either case
the assenmbly must include CSSWM as a dummy control section so the routines

can comuni cate with SWyM. The followi ng code nust begin any SWM

assenbl y:
TITLE 'title of control section'
CSSWM DSECT
PRI NT OFF
' COPY SWyM
PRI NT ON
* COPY SWYM

csect nm CSECT

The code for CSSWM is copied fromthe SWM nacro library. Each routine
nust obey the |inkage conventions indicated in Appendix K. |t nust begin
(physically and logically) with the SUB macro. It nust end (logically) by
executing the RET macro. If the routine is to be referenced by routines
in other control sections, an entry nust be made in the transfer vector
table in CSSWM To avoid reassenbling all control sections, the entry

should be nmade at the end of }he table and the card,

229

DS nnA(0) (currently nn = 20)

shoul d have nn reduced by 1. In this way, the transfer vector table stays
the same length. If the routine is not referenced by routines outside
its control section, it is sufficient to include a TVAK card for the
routine at the end of the control section. The TVMAK card nust be
addressabl e when the routine itself is executed (register B points at the
SUB nacr o).

If a routine is to be referenced from Stutter interpreted functions
there nmust be an atomfor it in free storage. This atom can be created

by coding either

SUBR new routine nane

or FSUBR new routine nane
Both generate an atomwith the given indicator and a pointer at the new
routine. The new routine nane nust be the sanme as the |abel on the SUB

macro beginning the routine.

N. 2. Conpiling Functions for Swym

Al'though there is no STUTTER conpiler, Swym has provision for

including conpilers. Three nmajor problens nust be faced: storage for

the conpiled code, |inkage between routines, and variable hinding

There is no Swymbinary program space. The plan is that conpilers wll
store code in a new plex type. This 'code plex' will have a section for
reentrant address-independent code, a section for relocatable pointers,

and possibly a section for non-reentrant, address-independent data. The

230

garbage collection routine for this plex type should nove these plexes
to a sem-permanent area to avoid relocating them every time the garbage
collector is called.

The address of a routine may appear in two different places - the
transfer vector table and the property list of the nane of the routine
(under either the SUBR or FSUBR indicator). To call another code routine,
a conpiled routine nmust load its address fromthe transfer vector table
using code such as is generated by the CAL macro. The conpiler can find the
appropriate transfer vector entry because the contents are the sane as the
address stored on the property list of the called routine's name. The
conpi l er nmust also store the address of a conpiled routine in both the
transfer vector table and on the property list of the name of the routine
This address nust be the address of the code. If the code is stored in a
*code plex', the plexhead i S presumably stored imrediately in front of
the code. A special bit in the plexheadof the nane of the routine nust
tell the garbage collector that the value of the SUBR or FSUBR property
addresses a code plex. |f thatplex is relocated, the address of the
code nust be changed in both places where it is stored

The interpreter passes argunents to SUBR's and FSUBR's in registers
Al to A6, Conpiled functions may not have nore than six argunents and nay
expect themin those registers. The result nust bereturned in register
A. If a conpiled routine needs nore working space than Al-A6, T, and
TT, then it nust store information on top of the stack with the equival ent

of PUSH and POP,

231

N.3. Defining Routines To Be Interpreted

A routine to be interpreted nust be stored as an s-expression wth

the format given in Appendix D. This expression nust be the value of the
i ndi cator EXPR or FEXPR stored on the pfoperty list of the name of the

routine. The basic function PUTPROP may be used for storing such expressions

(PUTPROP
(QUOTE routine nane)
(QUOTE S- expressi on)

(QUOTE EXPR)

A DEFINE function can be defined to sinplify the process. The version

in figure N,1, accepts a list of function definitions of this form
(nane vlexp, ... expm)

where name is the atomwhere the rest of the expression is to be stored

under the indicator EXPR.

232

< PUTPROP
(QUOTE DEFI NE)
(Quote ((A) (DEF1 4)))
(QUOTE FEXFR)
< PUTPROP
(QUOTE DEF2)
(QUOTE ((A) < PUTPROP
(FST A)
(RST A)
= (QUOTE EXFR) >))

(QUOTE EXPR)

>
(DEF2 (QUOTE
(DEF1 (A) < COND
((NULL A) NIL)

(T (TAK2 (DEF2 (FST A)) (DEFL (RST A))))

))

Figure N.1

233

Avvendix 0. SWYM Control Sections

The assenbly of SWM Stutter is divided into ten control sections or
CSECT's. Wen a routine in one CSECT is nodified, it is only necessary to
reassenble that CSECT. Thus, total assenbly time is reduced. Al other
CSECT's use information in CSSWM For this reason, CSSWM is assenbl ed
as a DSECT along with each other control section. The assenbly code to
do this is in Appendix N. This appendix lists the CSECTS and sketches the
‘contents of each.

The only non-reentrant control sections are CSSWM CSPDL, and
CSFREEST. There nust be separate copies of these for each user of Swym.

The other control sections may be shared by all jobs in the 360 nenory.

CSINT Contains inititlization code for running any programs (not
just Stutter) under Swym CSINIT establishes register contents,
opens the card and print data sets, and starts the timer. Even-
tually, initialization will include reading PARM information and
setting up the stack and free storage areas according to parameters.
CSINIT is not needed after initialization.

CSSWM Contains global information for Swym systemroutines.

Conpl ete details are in Appendix M

CSSUBS Basi ¢ subroutines for the Swym data structure; such as:
FST, RST, and TAK2.

CSGC Garbage col lector. See Appendix E.

CSFREEST Free storage. See Appendix H (CSSWM is not assenbl ed
with CSFREEST.)

3

CSMAI' N Main loop for Stutter. Calls READ, EVAL and PRINT in turn
as described in Appendix D. CSMAIN al so contains FINISH which is
entered when the input is exhausted. By replacing CSMAIN, Swym can

be used as the basis for other interpreters.

CSREAD Read routines. See Appendix C.
CSPRINT Print routines, See Appendix F.3.
CSEVAL Stutter interpreter and functions useful to interpreted

functions. The routines in CSEVAL are anong those described in
Appendi x F
CsS2250 Experinental routine to interface to the 2250. Currently,

the only function is to ring the 2250's bel|.

235

MNEMONI C | NDEX

Al'l major Swym mmenonics are listed in this index. Wth each

menonic is listed its class and the location of its definitions in the

Appendi ces and the program code. A brief comrent describes the function

of the menonic. Four differently sorted indices are included: nmenonic

C

ass, appendix, and control section. The last three are prinarily for

revi ew purposes.

There are five colums:

1)

MNEMONI C - The indexed mmenonic.

2) CLASS - The tenTclasses are:

3)

a) MACRO
b) SUBR

¢c) FSUBR

d) CAL

e) CSECT
f) REG

g) SWiM
h) FIELD
i)y STRUCT
i) MSC

Swym macro
routines available to Stutter prograns. These

routines may also be entered with CAL.

routine callable only from assenbled prograns
control section

nane equated to a register

name defined in CSSWM

nane equated to a bit or field definition

a structure in initial free storage

m scel | aneous. Mostly routines with non-standard calling

sequences.

APP - Appendix containing definition of mmenonic.

4) CSECT - Control section in which the menonic is defined.

5)

COWENTS - A brief description of the mmenonic.

236

MNEMONIC

AND
AT
ATAMT
ATCOL
ATCO
ATC1
ATOM

BCMAC
BELL
BINDERY
BIT
BITTBLMK

CAL

C ARDRDR
CELFNC
CELL
CELREL
C ELVAL
CHAR
CHAROBS
CHOKE
CHTBL
COLLECT
coLx
COND

C SEVAL
C SFREEST
CSGC
CSINIT
CSSWYM
CSMA N
CSPDL
CSPRINT
CSREAD
CSSUBS
€S§2250
Ce

DUBWORK

EJECT
ELSE
END IF
£Q

EQ

SWYM MNEMONICS SORTED ALPHABETICALLY

CLASS

SWYM

SUBR
MACRO
MACRO
MACRO
SUBR

—C o000 oCOoOEXTOMIUTMMoOMIOEEIOD XD

APP

N

w

AW w oo w

x

Mo®mT
L. -
—_ W

CSECT

MACLIB
CSSUYM
CSSWYM
CSGC

CSGC

C SGC

MACL 1B
C SSUBS
CSSWYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSWYM

CSSUYM
MACL 1B
€$2250
CSEVAL
MACL 1B
MACL 1B

MACLIB
CSSWYM
C SSUYM
MACLISB
CSSUYM
C SSUYM
YACLIB
CSFREEST
¢ SGC
MACLIR
CSGC

C SGC
CSEVAL
CSEVAL
CSFREEST
C SGC
CSINIT
C SSuMm
CSYAIN
CSPDL
CSPRINT
C SREAD
c SSUBS
CS2250
CSSWYM

CSSWYM

CSPRINT
HACL I B
MACLIB
MACL 1B
CSSUBS

COMMENTS

COMBINE TWO PREDS

EQUATED TO ATOM OFFSET{6)

ATOM OFFSET (6)

COLLECTS AN ATOM

PART OF ATCOL FOR TYPE 3 ATOMS
PART OF ATCOL FOR TYPE 1 ATOMS

? 1S ARG AN ATOM

STUTTER ROUTINE FOR-IS ARG ATOM?
ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

BASE REG FOR ALL ROUTNS

MAKE A BR CONDITION INSTRUCTION
RINGS BELL ON 2250

BIND ARG ATOMS TO THEIR VALUES
IDENTIFY MNEMONIC WITH BIT IN WORD
MAKE A TABLE FOR 'BIT*MACRD

SUBROUTINE CALL

DCB FOR READING CARDS

ATOM HEAD-FUNC DEF TYPE BITS
LOADS ATOM CELL INTO REG

ATOM HEAD-CELL IS RELOCATABLE

ATOM HEAD-CELL HAS VALUE (NOT FNC)
CREATES A CHAR OBJECT ATOM

ATOM WITH VALUE - LIST OF ALL CHARS
BRANCH TO IF STORE EXHAUSTED, ABEND
MAKE A CHARACTER TABLE (FOR TR)
CREATES IMAGE OF ARG IN NEW CORE
CHECKS AND COLLECTS ONE POINTER
CONDITIONAL EXPRESSION EVALUATED
INTERPRETER ANO RELATED ROUTINES
FREE STORAGEs INCL INITIAL STRUCTS
GARBAGE COLLECTOR

INITIALIZATION

GLOBAL INFORMATION FOK SWYM RTNS
MAIN STUTTER LOOP

STACK

PRINT ROUTINES

READ ROUT | NES

BASIC SUBROUTINES

2250 EXPERIMANTAL INTERFACE

ODD REGISTER CONTAINING F’4’

DOUBLE WORD WORK AREA

MOVES PRINTER TO NEXT PAGE

COND - END TRUE; START FALSE PART
COND = END FALSE; END CONDITIONAL
? ARGl = ARG2{TESTS TWO POINTERS)
STUTTER RTN FOR-ARGL = ARG2?

237

PAGE

SWYM MNEMONICS SORTED ALPHABETICALLY PAGE 2

MNEMONIC CLASS APP CSECT COMMENTS

ERROR SUBR F.5 C SSUBS WRITES MESSAGE AND GOES TO TOP LVL
EVAL SUBR 0.3 CSEVAL STUTTER INTRPRTR EXPRSN EVALUATOR
EVCH MACRO 8.3 MACLIB GETS 4RITH VAL OF EBCDIC BITS

EVGET CAL 0.3 C SEVAL GET FUNCTION DEFINITION OF ATOM
EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESS IONS
EXPLOOE SUBR F.3 CSEVAL CONVERTS ATOM TO LIST CHARS IN PNAM
EXPR STRUC 0.2 C SFREEST INDICATOR FOR S-EXPR FUNCTIONS

F PEG | CSSWYM FREE STORAGE POINTER

FALSE MISC G CSSWYM L AL+NIL3 RET; (BRANCH TO IT}

FEND SWYM E.4 CSSWYM POINTS AT END OF FREE SOTR

FEXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXP SPECIAL FNCTS
FINDBIT MACRO B.5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD
FINISH MISC G CSYAIN CLOSE FILES AND EXIT

FIXUP MACRO B.8 MACLIB GC-MAKE ENTRY IN FIXUP TABLE

FPROPS STRUC H C SFREEST STRUCTURE: ({SUBR .1) (FSUBR
FST MACRO B.l MACLIB FIRST ELEMENT OF LIST

FST SUBR F.l C SsuBs STUTTER RTNFOR =1ST ELEM OF LIST
FSUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH FSLJBR PROP
FSUBR STRUC 0.2 CSFREEST INOICATOR FOR ASSEMBLED SPECIAL FNC
GC SUBR E.3 CSGC CONTROLS GARBAGE COLLECT ION

GCABAD SWYM E.4 CSSWYM G C ABENDS FOR BAD DATA STRUCTURE

GC ABEND MISC E.3 CSGC BALTO I[F DATA STRUCTURE ERRyABEND
GCPUT YACRO B.8 YACLIB GC-PUT WORD TO NEW CORE

GCPUT MISC E.3 CSGC BAL'ED TO BY GCPUT MACRO

GCTIME SWHYM E.4 CSSWYM GC COMPUTES ITS TIME

GET SUBR F.4 C SEVAL FINDS PROPERTY OF AN ATOM

GETCH CAL C CSREAD GET A CHARACTER

GETNAME MACRO 8.2 MACLIB LOAOS PTR AT PNAME CHR STR ATM
GETNUM MACRO 8.2 MACL IB GET VALUE OF NUM CHAR STR ATOM
GETOBJ SUBR F.2 CSREAD FINDS SYMBOL FOR CHAR STRING ARG
GOTO MACRO 8.7 YACLIB BRANCH

HASH MACRO 8.3 MACLIB HASH CODE AN IDENY FOR OBLIST

HEAO MACRO 8.2 MACLIB LOADS HEAD OF ATOM

IF MACRO 8.7 MACLIB COND ~ START PREDICATE

INIT Misc G CSINIT SET UP SWYM REGS AND OPEN FILES
INST4 MACRO 8.8 YACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR
INVERTB MACRO B.5 MACLIB CHANGE BIT

[VCCH SUBR F.2 C SRFAO RETURNS NEXT INPUT CHAR

1 vVQMO SUBR F.2 CSREAO RETURNS STATUS OF QUOTE MODE

L REG [CSSWYM LINKAGE REG /RETURN ADDRESS)

LIST FSUBR F.l CSEVAL MAKES A LIST Of THE ARG EXPRESSIONS
MAIN - MISC D.l CSMAIN MAIN LOOP OF STUTTER INTERPRETER
MAKSTRNG SUBR F.2 CSREAD MAKES CHR STR ATM FROM LIST OF CHRS
MATCM MACRO 8.3 MACLIB CREATES AN ATOM STRUC (IN CSFREEST)
MEMNXT SWYM E.4 CSSWYM ALTERNATE FREE STOR

MEMSIZ SWYM E.4 CSSWYM SIZE OF FREE STORAGE

MFMUSE SWYM E.4 CSSHWYM FREE STOR IN USE

Ml FIELO E.2 CSSWYM GARB COL MARKING BIT

M2 FIELD E.2 CSSWYM GARB COL MARKING BIT

238

MNEHON IC

N

NIL
NLENGTH
NOT

NULL
NULL
NUMAT
NUMATVAL

OBLIST
ORX

P
"PBCLOSE
PBHD
PBOPEN
POP
POPN
PRATBAD
PRINT
PRINTER
PRIN1
PRLNG
PRPEND
PRPT
PUSH
PUTBYTE
PUTCH
PUTPROP
PUTSTR

QCHAR
QUOTE

RDAT
RDCHAR
RDCLASS
RDCOL
RDEND
RDERCNT
RDERLOC
RDERMS
RDERNO
RDERR
RDERRCNT
RDLIST
RDLNG
RDSE
RDSTAT
RD SUPCTR
READ
READCH
REMPROP
RESETB

SWYM

CLASS

REG
STRUC
CAL
MACRO
MACRO
SUBR
SWYM
SWYM

STRUC
MACRO

REG
CAL
SWYM
CAL
MACRO
MACRO
SWYM
SUBR
SHYM
SUBR
SWYM
SWYM
SWYM
MACRO
CAL
MISC
SUBR
CAL

MACRO
F SUBR

CAL
SHYM
SWYM
SWYM
SWYM
SWYH
SWYM
SWYM
SWYM
CAL
CAL
CAL
SWYM
CAL
SWYM
SWYM
SUBR
SUBR
SUBR
MACRO

MNEMONICS SORTED ALPHABETICALLY PAGE

APP C SECT COMMENTS
| CSSUYM POINTS AT NIL
H CSFREEST, ATOM WITH VALUE-NIL
G C SEVAL GET LENGTH OF LIST
0.7 MACLIB NEGATE PREDICATE MACRO TEST
B.1 MACLIB ? ARG = NIL
F.l CSSuUBS STUTTER RTN FUR = IS ARG =NIL?
M CSSWYM WORK AREA FOR PRINTING NUMBERS
M CSSWYM WORK AREA FOR PRINTING NUMBERS
C SFREEST ATOM WITH VALUE = LIST OF AL L ATOMS
B.7 MACLIB COMBINE TWO PREDS
I CSSWYM STACK POINTER
c CSREAD FINISH CHAR STRING ATOM
C CSSWYM HOLDS ADRS OF At-HD DURING PUTBYTE
C CSREAD START MAKING CHAR STRING ATOM
8.4 MACLIB GETS TOP OFF STACK-REDUCES STACK
B.4 MACLIB REDUCES STACK N TIMES
F.3 CSSWYM AREA FOR PRINGING *?TYPN*
3 CSPRINT PRINTS ITS ARG AND GOES TO NFXT LIN
M CSSWYM DCB FOR PRINTING
F.3 CSPRINT PRINTS ITS ARG
F.3 CSSWYM LENGTH OF PRINT LINE
f.3 CSSWYM WHERE TO PUT LAST PRINT CHAR
F.3 CSSWYM WHERE TO PUT NXT PRINT CHAR
0.4 MACLIB PUTS ARG ATOP STACK
C CSREAD PUT RYTE INTO CHAR STRING
G CSSWYM PUT CHARACTER IN PRINT LINE
F.4 CSEVAL STORES PROPERTIES UN ATOMS PROP LST
G CSPRINT PRINT A CHARACTER STRING ATOM
8.3 MACLIB CREATES A CHAR OBJ FOR'{'")*t,?
F.4 CSEVAL RETURNS ITS ARG UNEVALUATED
C C SREAD READ AN ATOM
C CSSWYM LAST CHAR READ
C CSSHYM CLASS OF LAST CHARACTER READ
c CSSWYM LOC OF LAST WORD READ
C CSSWYM LOC OF LAST CHAR TO READ
c CSSWYM PRINT #PARENS CREATED BEFORE '>*
C CSSWYM SYNTAX ERROR CARD COLUMN INDICATION
c CSSWYM READ SYNTAX ERROR MESSAGE AREA
c CSSWYM SYNTAX ERROR NUMBER
C CSREAD INDICATE INPUT SY N TA X ERROR
C CSREAD SYNTAX ERR-PARENS MADE BEFORE '>!
c CSREAD READ A LIST
c CSSWYM NUMBER OF CHAR READ FROM EACH CARD
C CSREAD READ AN S-EXPRESSION
C CSSWYM READ ROUTINES STATUS INFO BYTE
C CSSWYM COUNT #PARENS CREATED BEFORE *>!
F.2 € SREAD READS ONE EXPRESSION FROM CARD
f.2 CSREAD READS ONE CHARACTER FROM CARD
F.4 C SEVAL REMOVES PROPERTIES FROM P-LIST
8.5 MACLIB TURN OFF BIT

239

MNEMONIC

RET
RPLCEL
RPLF
RPLHD
RPLTOP
RPLTOPN
RST
RST
RSTAl
RSTA2
R STA3
RSTMAK
RSTT
RSTTT

S
SASSOC
SETBIT
ST
STAKN
STIME
STIVCCH
STIVQMO
STRAT
SuUB
SUBR
SUBR
SWEAR
SUERROR
SHYM
SHYMSAVE
SYSFOO

T
T

TAIL
TAK?2
TERPR
TEST6
THEN
TIME
T0P
TOPN
TRUE

T
TTIME
TVEND
TVMAK
TVSTART

UNBIND
UNBOUND

VALUE
VCHAROBS

SHYM

CLASS

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
SUBR
MISC
HISC
MISC
MACRO
MISC
MISC

REG
SUBR
MACRO
SWYM
CAL
CAL
SUBR
SUBR
MACRO
MACRO
MACRO
STRUC
MACRO
MISC
SUYM
SWYM
SWYM

STRUC
REG
MACRO
SUBR
SUBR
MACRO
MACRO
SWYM
MACRO
MACRO
MISC
REG
CAL
SWYM
MACRO
SWYM

CAL
STRUC

MACRO
SHYM

MNEMONICS SORTED ALPHABETICALLY

APP

0D P OV MNoOO D @ o™
. g hadi g o R
[V NS PRPRPRRPRPReEEAEANR DO

TEXTXTOWOWPOTITOOE®T —
. - . - - . .
WNwWwOwN N

. -
~Now =N

~ o

TOZTO—OY ORPPooT IO — I
(o))

I o
w

o
w

'

{

C SECT

MACLIB
MACLIB
MACL | B
MACLIB
MACLIB
MACLIB
MACLIB
C SSUBS
C SSWYM
CSSWYM
CSSWYM
MACLIB
CSSYYM
CSSUYM

CSSWYM
CSEVAL
MACLIB
CSSUYM
cssuas
cssuas

" CSREAD

CSREAD
MACLIB
MACLIB
MACLIB
CSFREEST
HACL | B
CSSWYM
CSSWYM
CSSWYM
CSSWYM

CSFREEST
CSSWYM
MACLIB
cSssuss
CSPRINT
MACLIB
MACL | a
CSSWYM
MACL | B
MACLIB
CSSWYM
C SSWYM
¢ SSUBS
CSSWYM
MACLIB
CSSWYM

CSEVAL
C SFREEST

MACLIB
CSSWYM

COMMENTS

SUBROUTINE RETURN

REPLACES ATOM CELL

REPLACES FIRST PTR OF LIST
REPLACES HEAD OF ATOM

REPLACE TOP ITEM ON STACK
REPLACE NTH ITEM OF STACK

ALL BUT 1ST ELEMENT OF LIST
STUTTER RTN FOR = REST OF LIST
RST(Al). BAL'EDTO BY RST MACRO
RST(A2). BAL'EDTO BY RST MACRO
RST{A3). BAL'EDTO BY RST MACRO
MAKE ROUTINES FOR ‘RST’ TO BAL TO
RST(T). BAL'EDTO BY HST MACRO
RST(TT). BAL'EDTO BY RST MACRO

BASE REG FOR CSSWYM

FINDS ARC ON AN ASSOCIATION LIST
TURN ON BIT

POINTER AT T

GET FREE STORAGE BLOCK

START TIMER

SETS CURRENT INPUT CHAR

SETS QUOTE MODE

CREATES STRING ATOM STRUC (FREEST)
SUBROUTINE ENTRY

CREATES AN ATOM WITH SUBR PROPERTY
INDICATOR FOR ASSEMBLED FUNCTIONS
SYSTEM ERROR

SYSTEM ERROR

FIRST LOC IN CSSUYM

SAVE AREA FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS

ATOM WITH VALUE-T

TEMP (EVEN, NEXT TO TT)

LOADS PTR AT TAIL OF ATOM

MAKES LIST W/ FSTARGL AND RST ARGZ
MOVES PRINTER TO NEXT LINE

TEST BIT

COND - END PRED: START TRUE PART
TIME SET'AT LAST STIME

GETS TOP OF STACK-BUT LEAVES IT
GETS NTH ITEM ON STACK

L Al,T3 RET, (BRANCH TO IT)
TEMP (ODD, NEXT TO T)

HOW LONG SINCE LAST STIME

LABEL OF LAST ENTRY IN TV TABLE
MAKE A TRANSFER VECTOR FOR CAL
LABEL OF START OF TRANS VECT TABLE

RESTORE OLD BINDINGS OF ARG ATOMS
RECOGNIZED BY EVAL AS ERROR VALUE

CREATES AN ATOM WITH A VALUE
POINTER AT CHAR OBJECTS LIST

2ko

MNEMONIC

VF PROP S
VOBL | ST
VUNBND

XB
#M1M2

#PO
HEXXXX

SUYM MNEMONICS SORTED ALPHABETICALLY

CLASSAPPCSECT

SUYM M CSSHWYM
SWYM M CSSWYM
SWYM M CSSWYM

MACRO B.6 MACLIB

SUYM E.4 CSSWYM
SUYM M CSSWYM
SWYM M CSSWYM

COMYENTS

POINTER Al FPROPS STRUCTURE
POINTER AT ALL OBJECTSLIST
POINTER-AT SPECIAL ‘UNBOUND’
TRANSFER INTO MIDDLE OF SURROUT INE
USED BY GC TO ‘OR" IN MI & M2 BITS

ADRS OF BEGINNING OF STACK
TRANSFEP VECTOR, ADKS OF RTN XXXX

bl

PAGE

5

SWYM MNEMONICS SORTED BY CLASS PAGE 6

MNEMONIC CLASS APP CSECT COMMENTS

ATCOL CAL E.3 CSGC COLLECTS AN ATOM

BINDERY CAL 0.3 CSEVAL BIND ARG ATOMS TGO THEIR VALUES
COLLECT CAL E.3 CSGC CREATES TMAGE OF ARG:I NN £ wCORE
coLx CAL E.3 CSGC CHECKS AND COLLECTS ONE POINTER
EVGET CAL 0.3 CSEVAL GET FUNCTION DEFINITION OF ATOM
EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESS IONS
GETCH CAL C CSREAD GET A CHARACTER

NLENGTH CAL G CSEVAL GET LENGTH OF LIST

PBCLOSE CAL C CSREAD FINISH CHAR STRING ATOM

PBOPEN CAL C CSREAD START MAKING CHAR STRING ATOM
PUTBYTE CAL C CSREAD PUT BYTE INTO CHAR STRING

PUTSTR CAL G CSPRINT PRINT A CHARACTER STRING ATOM
RDAT CAL C C SREAD READ AN ATOM

RDERR CAL C C SREAD INDICATE INPUT SYNTAX ERROR
RDERRCNT CAL C CSREAD SYNTAX ERR-PARENS MADE BEFORE *>?*
RDLIST CAL c CSREAD READ A LIST

ROSE CAL c CSREAD READ AN S-EXPRESSION

STAKN CAL G C ssuas GET FREE STORAGE BLOCK

STIME CAL G C ssuas START TIMER

TTIME CAL G C SSUBS HOW LONG SINCE LAST STIME

UNB | ND CAL Da3 CSEVAL RESTORE OLD BINDINGS OF ARG ATOMS
C SEVAL CSECTD CSEVAL INTERPRETER AND RELATED ROUTINES
C SFREEST CSECT H CSFREEST FREE STORAGE, INCL INITIAL STRUCTS
CSGC CSECTE CsGC GARBAGE COLLECTOK

CSINIT CSECT 0 CSINIT INITIALIZATION

CSMA IN CSECT 0 CSMAIN MAIN STUTTER LOOP

C SPDL CSECT 0 CSPDL STACK

CSPR INT CSECT 0 CSPRINT PRINT ROUTINES

CSREAD CSECTC CSREAD READ ROUTINES

¢ SSUBS CSECT ClI €SsuBs BASIC SUBROUTINES

CSSWYM CSECTM™ CSSUYM GLOBAL INFORMATION FOR SUYM RTNS
€S2250 CSECT 0 €S2250 2250 EXPERIMANTAL INTERFACE
CELFNC FIELD M CSSWYM ATOMHEAD-FUNC DEF TYPE BITS
CELREL FIELDM CSSWYM ATOM HEAD-CELL IS RELOCATABLE
CELVAL FIELDM CSSWYM ATOM HEAD-CELL HAS VALUE(NOTFNC)
MI FIELD E.2 CSSWYM GARB COL MARKING BIT

M2 FIELD E.2 CSSUYM GARB COL MARKING BIT

COND FSUBR F.4 CSEVAL CONDITIONAL EXPRESSION EVALUATED
LIST FSUBR f .| CSEVAL MAKES A LIST OF THE ARC EXPRESSIONS
QUOTE FSUBR F.4 C SEVAL RETURNS ITS ARG UNEVALUATED

AND MACRO B.7 MACLIB COMBINE TWO PREDS

ATOM MACRO a.1 MACLIB ? IS ARG AN ATOM

BCMAC MACRO a.7 MACLIB MAKE A BR CONDITION INSTRUCTION
BIT MACRO B.5 MACLIB IDENTIFY MNEMONIC WITH BIT TN WORD
BITTBLMK MACRO 5.5 MACL IB MAKE A TABLE FOR *BIT'MACRD

CAL MACRO 8.6 MACLIB SUBROUTINE CALL

CELL MACRO 8.2 MACLIB LOADS ATOM CELL INTO REG

CHAR MACRO 6.3 MACLIB CREATES 4 CHAR OBJECT ATOM

CHTBL MACRO 5.8 MACLIB MAKE A CHARACTER TABLE (FORTR)
ELSE MACRO 8.7 MACLIB COND - END TRUE; START FALSE PART
END IF MACRO 8.7 MACLIB COND = END FALSE; END CONDITIONAL

SWYM MNEMONICS SORTED BY CLASS PAGE 7

MNEMONIC CLASS APP CSECT COMMENTS

EQ MACRO 5.1 MACLIB ? ARGl = ARG2{(TESTSTWO POINTERS)
EVCH MACRO 5.3 HACLIB GETS ARITH VAL OF EBCDIC BITS
FINDBIT MACRO B. 5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD
F IXUP MACRO 8.8 MACL18B GC-MAKE ENTRY IN FIXUP TABLE

FST MACRO 8.1 MACLIB FIRST ELEMENT OF LIST

F SUBR MACRO 0.3 MACLIB CREATES AN ATOM WITH FSUBR PROP
GCPUT MACRO 8.8 MACLIB GC-PUT WORD TO NEW CORE

GETNAME MACRO 8.2 MACLIB LOADS PTR AT PNAME CHR STR ATM
GETNUM MACRO 8.2 MACLIB GET VALUE OF NUM CHAR STR ATOM
GOTC MACRO 8.7 MACLIB BRANCH

HASH MACRO 8.3 MACLIB HASH CODE AN IDENT FOR DBLIST

HEAD MACRO 8.2 MACLIB LOADS HEAD OF ATOM

I'F MACRO B.7 MACLIB COND - START PREDICATE

INST4 MACRO 5.8 MACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR
. I NVERTB MACRO 8.5 MACLIB CHANGE BIT

MATOM MACRO 5.3 MACLIB CREATES AN ATOM STRUC (INCSFREEST)
NOT MACRO 8.7 MACLIB NEGATE PREDICATE MACRO TEST

NULL MACRO 8.1 MACLIR ? ARG = NIL

ORX MACRO 8.7 MACLIB COMBINE TWO PREDS

POP MACRO 8.4 MACLIB GETS TQP OFF STACK-REDUCES STACK
POPN MACRO -8.4 MACL IB REDUCFS STACK N TIMES

PUSH MACRO 8.4 MACLIB PUTS ARG ATOP STACK

QCHAR MACRO 8.3 MACLIB CREATES A CHAR OBJ FOR *{* ')t 1,¢
RESETB MACRO 5.5 MACLIB TURN OFF BIT

RET MACRO 6.6 MACLIB SUBROUTINE RETURN

RPLCEL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLF MACRO 8.1 MACLIB REPLACES FIRST PTR OF LIST

R PLHD MACRO Be.2 MACLIB REPLACES HEAD OF ATOM

RPLTOP MACRO 8.4 MACLIB REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 8.4 MACLIB REPLACE NTH ITEM OF STACK

RST MACRO 8.1 MACLIB ALL BUT 1ST ELEMENT OF LIST

RSTMAK MACRO B.1 MACLIB MAKE ROUTINES FUR ‘RST" TO BAL TO
SETBIT MACRO 0.5 MACLIB TURN ON BIT

STRAT MACRO 8.3 MACLIB CREATES STRING ATOM STRUC (FREEST)
SuUB MACRO 8.6 MACLIB SUBROUTINE ENTRY

SUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH SUBR PROPERTY
SWEAR MACRO 8.8 MACLIB SYSTEM ERROR

TAIL MACRO 5.2 MACLIB LOADS PTR AT TAIL OF ATOM

TESTB MACRO 5.5 MACLIB TEST BIT

THEN MACRO 8.7 MACLIB COND - END PRED; START TRUE PART
TOP MACRO 8.4 MACLIB GETS TOP OF STACK-BUT LEAVES IT
TOPN MACRO 8.4 MACLIB GETS NTH ITEH ON SJACK

TYMAK MACRO 8.6 MACLIB MAKE A TRANSFER VECTOR FOR CAL
VALUE MACRO 8.3 MACLIB CREATES AN ATOM WITH A VALUE

X8 MACRO B.6 MACL IB TRANSFER INTO MIDDLE OF SUBROUTINE
AT MISC M CSSWYM EQUATED TO ATOM QFFSET(6)

ATCO MISC E.3 CSGC PART OF ATCOL FOR TYPE 0 ATOMS
ATC1 MISC E.3 CsSGC PART OF ATCOL FOR TYPE 1 ATOMS
CHOKE MISC E.3 CSGC RRANCH TO IF STORE EXHAUSTED, ABEND
FALSE MISC G CSSUYM LALGNILFRET: (BRANCH TO IT})
FINISH MISC G CSMAIN CLOSE FILES AND EXIT

GCABEND MISC E.3 CSGC BAL TO IF DATA SJRUCJURE ERR, ABEND
GCPUT MISC E.3 (CSGC BAL'ED TO BY GCPUT MACRO

INIT MISC G CSINIT SET UP SWYM REGS AND OPEN FILES

o43

MNEMONIC

MAIN
PUTCH
RSTAl
RSTA2

R STA3
RSTT
RSTTT
SWERROR
TRUE

Al
A2
A3
Ad
AS
Ab
B

c4

—wme=rm

17

CHAROR S
EXPR
FEXPR
FPROPS
FSUBR
NIL

OBLI ST
SUBR

T
UNROUND

ATOM
BELL
EJECT
EQ
ERROR
EVAL
EXPLODE
FST

GC

GET
GETOBJ
IVCCH

1 vQMO
MAKSTRNG
NULL
PRINT
PRIN1
PUTPROP

SWYM MNEMONICS SORTED BY CLASS

CLASS

MISC
MISC
MISC
MISC
MISC
MISC
MISC
MISC
MISC

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STQUC
STRUC
STRUC

SURR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SURR
SUBR
SUBR
SUBR
SUBQ
SUBR
SUBR
SUBR
SUBR

APP CSECT

TITIXIoITITro IToox

—_—_—— e — — - — — —

Www =N NN N

CSSUYM

CSSWYM
CSSWYM
CSSUYM
C SSUYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
C SSUYM
CSSUYM
CSSUYM
CSSUYM
C SSuM

CSFREEST

.2 CSFREEST
.2 CSFREEST

C SFREEST

.2 C SFREEST

CSFREEST
CSFREEST

.2 CSFREEST

CSFREEST
CSFREEST

. CcCssuBS

5 C$2250

.3 CSPRINT
.1 CSSUBS
.5 CSSUBS
.3 CSEVAL
.3 CSEVAL

CSSUBS
CSGC

CSFVAL
CSREAD
CSREAD
CSQEAD
CSREAD
CSSUBS
CSPRINT
CSPRINT
. 4 £SEVAL

COMMENTS

MAIN LOOP Of STUTTER INTERPRETER
PUT CHARACTER IN PRINT LINE

RST(AYl).” BAL'EDTO BY RST MACRO
RST(A2). BAL'EDTO BY RST MACRO
RST(A3). BAL'EDTO BY RST MACRO
RSTIT). BAL'EDTO BY RST MACRO
RSTI(TT). BAL'EDTO BY RST MACRO

SYSTEM ERROR
L Al,T3 RET; (BRANCH TO IT)
ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

RASE REG FOR ALL ROUTNS

ODD REGISTER CONTAINING F'4!

FREE STORAGE POINTER

LINKAGE REG (RETURN ADDRESS)
POINTS AT NIL

STACK POINTER

RASE REG FOR CSSUYM

TEMP (EVEN, NEXT TO TT)

TEMP (ODD, NEXT TO T)

ATOM WITH VALUE = LIST OF ALL CHARS
INDICATOR FOR S-EXPR FUNCTIONS
INDICATOR FOR S-EXP SPECIAL FNCTS
STRUCTIJRE: {{SUBR .1)}(FSUBR . .
INDICATOR FOR ASSEMBLED SPECIAL FNC
ATOM WITH VALUE-NIL

ATOM UITH VALUE = LISTOF ALL ATOMS
INDICATOR FOR ASSEMBLED FUNCTIONS
ATOM WITH VALUE-T

RECOGNIZED BY EVAL AS ERROR VALUE

STUTTER ROUTINE FOR-IS ARG ATOM?
RINGS BELL ON 2250

MOVES PRINTER TO NEXT PAGE

STUTTER RTN FOR-ARGL = ARG2?

WRITES MESSAGE AND GOES TO TOP LVL
STUTTER INTRPRTR EXPRSN EVALUATOR
CONVERTS ATOM TO LIST CHARS IN PNAM
STUTTER RTN FOR -1STELEM OF LIST
CONTROLS GARBAGE COLLECTION

FINDS PROPERTY OF AN ATOM

FINDS SYMBOLFOR CHAR STRING ARG
RETURNS NEXT INPUT CHAR

RETURNS STATUS OF QUOTE MODE

MAKES CHR STR ATM FROM LIST OF CHRS
STUTTER RTN FOR = ISARG =NIL?
PRINTS ITS ARG AND GOES TO NEXT LIN
PRINTS ITS ARG

STORES PROPERTIES ON ATOMS PROP LST

2LL

PAGE 8

MNEMONIC

READ

R EADCH
REHPROP
RST
SASSOC
STIVCCH
STIVQMO
TAK2
TERPRI

ATAMT

C ARDRDR
DUBUORK
FEND
“GCABAD
GCTIME
MEMNXT
MEMSIZ
MEMUSE
NUMAT
NUMATVAL
PBHD
PRATBAD
PRINTER
PRLNG
PRPEND
PRPT
RDCHAR
ROCLASS
RDCOL
RDEND
RDERCNT
RDERLOC
RDERHS
RDERNO
RDLNG
RDSTAT
ROSUPCTR
ST

SWYM
SUYMSAVE
SYSFDO
TIME
TVEND
TVSTART
VCHAROBS
VFPROPS
VOBLIST
VUNBND
#M1M2
#PO
EXXXX

SUYM MNEMONICS SORTED BY CLASS

CLASS APP CSECT

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SURR

SHYM
SWYM
SHYM
SWYM
SWYM
SWYM
SUYM
SWYM
SUYM
SUYM

SuUYy
SUYM

SWYM
SHYM
SHYM
SUYM
SWym
SWYM
SUYM

SWYM
SUYM

SWYM
SWYM
SUYM

SWYM
SWYM
SWYM
SWYM
SWYM
SUYM

SWYM
SWYM
SUYM

SUYM

SWYM
SUYM

SWYM
SWYM
SWYM
SUYM
SHWYM
SUYM

=

£Sx2z2x222xxx 0000090 Annnxn O kzxmmmmmm=zzo

CSSWYM
CSSHYM
CSSUYM
.4 CSSUYM
. 4 CSSHYM
4 CSSUYM
. 4 CSSWYM
4 CSSUYM
.4 CSSWYM

CSSHYM

CSSWYM

CSSWYM
3 CSSKYM

CSSWYM
.3CSSUYM
.3CSSUYM
.3 CSSUYM
CSSWYM
CSSHYM
CSSWYM
CSSUYM
CSSWYM
CSSHWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSHWYM
C SSUYM
CSSWYM
Ee4 CSSUYM
M CSSWYM
M CSSUYM

COMMENTS

READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD
REMOVES PROPERTIES FROM P-LIST
STUTTER RTN FOR = REST OF LIST
FINDS ARG ON AN ASSOCIATION LIST
SETS CURRENT INPUT CHAR

SETS OUOTE MODE

MAKES LIST W/ FST ARGL AND RST ARG2
MOVES PRINTER TO NEXT LINE

ATOM OFFSET (&)

DCB FOR READING CARDS

DOUBLE WORD WORK AREA

POINTS AT END OF FREE SOTR

CC ABENDS FOR BAD DATA STRUCTURE
GC COMPUTES ITS TIME

ALTERNATE FREE STOR

SIZE OF FREE STORAGE

FREE STOR IN USE

WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS
HOLDS ADRS Of AT-HO DURING PUTBYTE
AREA FOR PRINGING *?TYPN®

DCB FOR PRINTING

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR
WHERE TO PUT NXT PRINT CHAR

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC Of LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE *>*
SYNTAX ERROR CARD COLUMN INDICATION
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

NUMBER OF CHAR READ FROM EACH CARD
READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE '>*
POINTER ATT

FIRST LOC IN CSSUYM

SAVE AREA FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS
TIME SET AT LAST STIME

LABEL OF LAST ENTRY IN TV TABLE
LABEL OF START OF TRANS VECT TABLE
POINTER AT CHAR OBJECTS LIST
POINTER AT FPROPS STRUCTURE
POINTER AT ALL OBJECTS LIST
POINTER AT SPECIAL ‘UNBOUND’

USED BY GC TO ‘OR" IN M| &M28BITS
ADRS OF BEGINNING OF STACK
TRANSFER VECTORs AORS Of RTN XXXX

245

PAGE 9

MNEMONIC

ATOM
EQ

FST
NULL
RPLF
RST
RSTAL
RSTA2
RSTA3
RSTMAK
RSTT
RSTTT
CELL
GETNAME
GETNUM
HEAD
RPLC EL
RPLHD
TAIL
CHAR
EVCH

F SUBR
HASH
YATOM
QCHAR
STRAT
SUBR
VALUE
POP
POPN
PUSH
RPLTOP
RPLTOPN
TOP
TOPN
BIT

B ITTBLHK
FINDRIT
| NVFR TB
RESETB
SETBIT
TESTS
CAL

RET

SuB
TVMAK
XB

AND
BCMAC
ELSE
END IF
GOTQ

IF

NOT

ORX

SUYM MNEMONICS SORTED BY APPENDIX

CLASS

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MISC

MISC

MISC

MACRO
MISC

HISC

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

APP

* o (] .
e

o, N
TWWNNPODNONNONNONMEER e 2 e e pet

* e - . . » . . .
NANNNANNANOOPROOROPPVVNMO OO OERNEDNEPDDNOWWWWWW

WOOPOOPWOODMPIO®PIPOODPOWWMOOOOPOOPXODOOOOOWOOXOOUIIOCOWMPBOOOMBIO@®DPD®OOO

CSECT

MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
CSSUYM
CSSWYM
CSSUYM
MACLIB
CSSUYM
CSSHYM
MACLIB
YACLIB
MACLISB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLI B
MACL IB
MACLIB
MACLIB
MACLIB
MACL IR
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLI 8
MACLIB
MACLIB
MACLIB
MACL IB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACL I8
MACL IB
MACLIB
MACLI B
YACLIB

COMMENTS

? ISARG AN ATOM

? ARGl =ARG2{TESTS TWO POINTERS)
FIRST ELEMENT OF LIST

? ARG = NIL

REPLACES FIRST PTR OF LIST

ALL BUT 1ST ELEMENT OF LIST
RSTI(Al). BAL'EDTO BY RST MACRO
RST(A2). BAL'EDTO BY RST MACRO
RST(A3)., BAL'EDTO BY RST MACRO
MAKE ROUTINES FOR ‘RST’ TO BAL TO
RST(T). BAL'EDTO BY RST MACRO
RSTITT). BAL'EDTO BY RST MACRO
LOADS ATOM CELL INTO REG

LOADS PTR AT PNAME CHR STR ATM
GET VALUE OF NUM CHAR STR ATOM
LOADS HEAD OF ATOM

REPLACES ATOM CELL

REPLACES HEAD OF ATOM

LOADS PTR AT TAIL OF ATOM

CREATES A CHAR OBJECT ATOM

GETS ARITH VAL OF EBCDIC BITS
CREATES AN ATOM WITH FSUBR PROP
HASH CODE AN IOENT FOR OBLIST
CREATES AN ATOM STRUC (IN CSFREEST)
CREATES A CHAR OBJ FOR ('),
CREATES STRING ATOM STRUC (FREEST)
CREATES AN ATOM WITH SUBR PROPERTY
CREATES AN ATOM WITH A VALUE

GETS TOP OFF STACK-REDUCES STACK
REDUCES STACK N TIMES

PUTS ARG ATOP STACK

REPLACE TOP ITEM ON STACK

REPLACE NTH ITEM OF STACK

GETS TOP OF STACK-BUT LEAVES IT
GETS NTH ITEM ON STACK

IDENTIFY MNEMONIC WITH BIT IN WORD
MAKE A TABLE FOR ‘BIT’MACRO

FIND BIT MNEMONIC FOR BYTE-IN-WORD
CHANGE BIT

TURN OFF BIT

TURN ON BIT

TEST BIT

SUBROUTINE CALL

SUBROUTINE RETURN

SUBROUTINE ENTRY

MAKE A TRANSFER VECTOR FOR CAL
TRANSFER INTO MIDDLE OF SUBROUTINE
COMBINE TWQ PREOS

MAKE A BR CONDITION INSTRUCTION
COND - END TRUE; START FALSE PART
COND - END FALSE:; END CONDITIONAL
BRANCH

COND - START PREDICATE

NEGATE PREDICATE MACRO TEST
COMBINE TWO PREDS

oL6

PAGE 10

MNEMON It

THEN

CHTBL
F IXup
GCPUT
I NST4
SWEAR

ATAMT
CSREAD
GETCH
PBCLOSE
PBHD
PBOPEN
PUTBYTE
RDAY
RDCHAR
RDCLASS
RDCOL
ROEND
RDERCNT
ROERLOC
RDERMS
RDERNO
RDERR
RDERRCNT
ROLIST
RDLNG
RDSE
RDSTAT
RD SUPCTR

CSEVAL
MAIN

E XPR

F EXPR
FSUBR
SUBR
BINDERY
EVAL
EVGET
EVLIS
UNBIND

CSGC

Ml

M2
ATCOL
AT-CO
ATC1
CHOKE
COLLECT
coLx

6C
GCABEND
GCPUT

SWYM MNEMONICS SORTED BY APPENDIX

CLASS APP

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

oofpooo
o O 0 00 ~

SWYM
CSECT
CAL
CAL
SUYM
CAL
CAL
CAL
SWYM
SHYM
SWYM
SWYM
SWYM
SHYM
SUYM
SWYM
CAL
CAL
CAL
SWYM
CAL
SUYM
SUYM

000000 o0npo000000000000

CSECT D
MISC 0.

CAL 03

CSECT E

FIELD E.2
FIELD E.2
CAL E.3
MISC E3
MISC E3
MISC E.3
CAL E.3
CAL E.3
SUBR E.3
MISC E3
MISC E

CSECT

MACLIB
MACLIB
MACLIB
MACL B
MACLIB
MACLIB

CSSWYM
CSREAD
CSREAD
CSREAD
CSSWYM
CSREAD
CSREAO
CSREAD
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
C SREAD
CSREAD
CSREAD
CSSUYM
CSREAD
CSSUYM
CSSUYM

CSEVAL
CSMAIN
CSFREEST
CSFREEST
CSFREEST
C SFREEST
CSEVAL
C SEVAL
CSEVAL
CSEVAL
CSEVAL

CSGC
CSSUYM
C SSUYM
Cs6C
CSGC
C SGC
CSGC
CSGC
C SGC
CSGC
C SGC

3 CsGC

PACE 11

COMMENTS

COND - END PRED; START TRUE PART
MAKE A CHARACTER TABLE {FORTR)
GC-MAKE ENTRY IN FIXUP TABLE
GC-PUT WORD TO NEW CORE

ASSEMBLE INSTRUCTION WO/ ALIGN ERR
SYSTEM ERROR

ATOM OFFSET (6}

READ ROUTINES

GET A CHARACTER

FINISH CHAR STRING ATOM

HOLDS ADRS OF AT-HD DURING PUTBYTE
START MAKING CHAR STRING ATOM

PUT BYTE INTO CHAR STRING

READ AN ATOM

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC OF LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE *>*
SYNTAX ERROR CARD COLUMN INOICATION
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

TNDICA'TE INPUT SYNTAX ERROR

SYNTAX ERR-PARENS MADE BEFORE *>*
READ A LIST

NUMBER OF CHAR READ FROM EACH CARD
READ AN S-EXPRESSION

READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE *>?

INTERPRETER AND RELATED ROUTINES
MAIN LOOP OF STUTTER INTERPRFTER
INDICATOR FOR S-EXPR FUNCTIONS
INDICATOR FOR S-EXP SPECIAL FNCTS
INDICATOR FOR ASSEMBLED SPECIAL FNC
INDICATOR FOR ASSEMBLED FUNCTIONS
BIND ARG ATOMS TO THEIR VALUFS
STUTTER INTRPRTR EXPRSN EVALUATOR
GET FUNCTION DEFINITION OF ATOM
EVALUATE LIST OF EXPRESS IONS
RESTORE OLD BINDINGS OF ARG ATOMS

GARBAGE COLLECTOR

GARB COL MARKING BIT

GARB COL MARKING BIT

COLLECTS AN ATOM

PART GF ATCOL FOR TYPE 0 ATOMS
PART OF ATCOL FOR TYPE 1 ATOMS
BRANCH TO IF STORE EXHAUSTED, ABEND
CREATES IMAGE OF ARG IN NEW CORE
CHECKS AND COLLECTS ONE POINTER
CONTROLS GARBAGE COLLECT ION
BALTOIFDATA STRUCTURE ERRyABEND
BAL'ED TO BY GCPUT MACRO

2yt

MNEMONIC

F END

GCARAD
GCTIME
MEMNXT
MEHSIZ
MEMUSE
#M1M2

ATOM
EQ

FST
LIST
NULL
QST
TAK2
GETOBJ
IVCCH

| VQMO
MAKSTRNG
READ
QEADCH
STIVCCH
STIVOMO
EJECT
EXPLODE
PRATBAD
PRINT
PRINL
PRLNG
PRPEND
PRPT
TERPRI
COND
GET
PUTPROP
QUOTE
REMPROP
SASSOC
BELL
ERROR

FALSE
FINISH
INIT
NLENGTH
PUTCH
PUTSTR
STAKN
STIHE
SUFRROR
TRUE
TTIME

CHAROBS
CSFREEST

SUYM MNEMONICS SORTEO BY APPENDIX

CLASS

SWYM
SWYM
SUYM
SUYM
SUYM
SWYM
SUYM

SURR
SUBR
SUBR
F SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUYM
SUBR
SUBR
SWYM
SWYM
SWYM
SUBR
FSUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR

Ml SC
MISC
MISC
CAL
MISC
CAL
CAL
CAL
MISC
MISC
CAL

STRUC
CSECT

APP

mmmmmmm
O NGO N O '

MM T T T T T TS T T T T T T T TN T T T T TN TINTITTM

ODOOOOOOOOOO
. -

Iz

\nmhhhhhhwwwwwwwwwl\:Ngwmwwmww—a———

CSECT

CSSWYM
CSSUYM
CSSUYM
CSSWYM
CSSHYM
CSSUYM
CSSWYM

CSSUBS
CSSUBS
CSSUBS
CSEVAL
C SSUBS
CSSIIBS
CSSUBS
CSREAD
CSREAD
CSREAD
CSREAD
C SREAD
C SREAD
C SREAO
CSREAD
CSPRINT
CSEVAL
CSSUYM
CSPRINT
CSPRINT
CSSWYM
CSSUYM
CSSUYM
CSPRINT
CSEVAL
CSEVAL
CSEVAL
CSEVAL
C SEVAL
CSEVAL
€S2250
CSSURS

CSSUYM
CSMAIN
CSINIT
CSEVAL
CSSUYM
CSPRINT
CSSUBS
C SSUBS
CSSWYM
CSSWYM
C SSUBS

CSFREEST
CSFREEST

COMMENTS

POINTS AT END OF FREE SOTR

GC ABENDS FOR BAD DATA STRUCTURE
GC COMPUTES ITS TIME

ALTERNATE FREE STOR

SIZE OF FREE STORAGE

FREE STOR IN USE

USED BY GC TO ‘OR* IN Ml &M2 BITS

STUTTER ROUTINE FOR-IS ARG ATOM?
STUTTER RTN FOR-ARGlL = ARG2?
STUTTER RTN FOR =1ST ELEM OF LIST
MAKES A LIST OF THE ARG EXPRESSIONS
STUTTER RTN FOR - ISARG =NIL?
STUTTER RTN FOR = RESTOF LIST
YAKES LIST W/ FST ARGL ANO RST ARG2
FINDS SYMBOL FOR CHAR STRING ARG
RETURNS NEXT INPUT CHAR

RETURNS STATUS OF QUOTE MODE

MAKES CHR STR ATM FROM LIST OF CHRS
READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD

SETS CURRENT INPUT CHAR

SETS QUOTE MODE

MOVES PRINTER TO NEXT PAGE
CONVERTS ATOM TO LIST CHARS IN PNAM
AREA FOR PRINGING *?TYPN!

PRINTS ITS ARG AND GOES TO NEXT LIN
PRINTS ITS ARG

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR

WHERE TO PUT NXT PRINT CHAR

MOVES PRINTER TO NEXT LINE
CONDITIONAL EXPRESSION EVALUATED
FINDS PROPERTY OF AN ATOM

STORES PROPERTIES ON ATOMS PROP LST
RETURNS ITS ARG UNEVALUATED
REMOVES PROPERTIES FROM P-LIST
FINDS ARG ON AN ASSOCIATION LIST
RINGS BELL ON 2250

WRITES MESSAGE AND GOES TO TOP LVL

L Al4NIL3 RET; { BRANCH TO IT)
CLOSE FILES AND EXIT

SET UP SWYM REGS AND OPEN FILES
GET LENGTH OF LIST

PUT CHARACTER IN PRINT’ LINE
PRINT A CHARACTER STRING ATOM
GET FREE STORAGE BLOCK

START TIMER

SYSTEM ERROR

L Al,T3 RET; (BRANCH TOILT)
HOW LONG SINCE LAST STIME

ATOM WITH VALUE - LIST OF ALL CHARS
FREE STORAGE, INCL INITIAL STRUCTS

248

PAGE X2

MNEMONIC

FPROPS
NIL
OBLIST
T
UNBOUND

Al
A2
A3
A4
A5
A6

—|—|m'uzr"‘l‘|{0m
S

—

AT

C ARDRDR
CELFNC °
CELREL
CELVAL
CSSUYM
DUBUORK
NUMAT
NUMATVAL
PRINTER
ST

SYYM
SUYMSAVE
SYSFOO
TIME
TVEND
TVSTART
VCHAROBS
VFPROPS
VOBLIST
VUNBND
#PO
#XXXX

CSINIT
CSMAIN
CSPDL
CSPRINT
CSSUBS
€S2250

SWYM MNEMONICS SORTED BY APPENDIX

CLASS APP

STRUCH
STRUCH
STRUC H
STRUCH
STRUC H

REG |
REG |
REG |
REG J
REG I
REG |
REG I
REG I
REG |
REG |
REG I
REG |
REG |

REG I
REG 1

[=NeNeNe oo

CSECT

C SFREEST
C SFREEST
CSFREEST
C SFREEST
CSFREEST

CSSUYM
CSSUYM
CSSWYM
C SSUYM
CSSUYM
C SSWYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
C SSWYM

CSSUYM
CSSUYM
CSSUYM
CSSUYM
C SSWYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSWYM

CSINIT
CSMAIN
C SPDL

CSPRINT
cssuss
€S2250

COMMENTS

STRUCTURE: ((SUBR .1M{FSUBR . . .
ATOM WITH VALUE-NIL

ATOM WITH VALUE = LIST OF ALL ATOMS
ATOM WITH VALUE-T

RECOGNIZED BY EVAL AS ERROR VALUE

ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

BASE REG FOR ALL ROUTNS

ODD REGISTER CONTAINING F*4?
FREE STORAGE POINTER

LINKAGE REG (RETURN ADDRESS)
POINTS AT NIL

STACK PDINTER

BASE REG FOR CSSWYM

TEMP (EVEN, NEXT TO TT)
TEMP {NDDy NEXT TO T}

EQUATED TO ATOM OFFSET(6}

NCB FOR READING CARDS

ATOM HEAD-FUNC DEF TYPE BITS
ATOM HEAD-CELL IS RELOCATABLE
ATOM HEAD-CELL HAS VALUE(NOTFNC)
GLOBAL INFORMATION FOR SWYM RTNS
DOUBLE WORD WORK AREA

WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS
OCB FOR PRINTING

POINTER AT T

FIRST LOC IN CSSUYM

SAVE AREA FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS
TIME SET AT LAST STIME

LABEL OF LAST ENTRY INTV TABLE
LABEL OF START OF TRANS VECT TABLE
POINTER AT CHAR OBJECTS LIST
POINTER AT FPROPS STRUCTURE
POINTER AT ALL OBJECTS LIST
POINTER AT SPECIAL ‘UNBOUND’

AORS OF BEGINNING OF STACK
TRANSFER VECTOR’ ADRS OF RTN XXXX

INITIALIZATION

MAIN STUTTER LOOP

STACK

PRINT ROUTINES

BASIC SUBROUTINES

2250 EXPERIMANTAL INTERFACE

2h9

PAGE 13

HNEHONIC

BINDERY
COND

C SEVAL
EVAL
EVGET
EVLIS
EXPLODE
GET
LIST
NLENGTH
PUTPROP
QUOTE
REMPROP
SASSOC
UNBIND

CHAROBS
CSFREEST
EXPR
FEXPR
FPRQPS
FSUBR
NIL

OBLI ST
SUBR

7
UNBOUND

ATCOL
ATCO
ATC1
CHOKE
COLLECT
coLx
CSGC

GC
GCABEND
GCPUT

CSINIT
INIT

CSMAIN
F INISH
MAIN

C SPDL

CSPRINT
EJECT
PRINT
PRINI
PUTSTR
TERPRI

SWYH MNEMONICS SORTED BY CONTROL SECT IUN

CLASS

CAL
FSUBR
CSECT
SUBR
CAL
CAL
SUBR
SUBR
FSUBR
CAL
SUBR
FSUBR
SUBR
SUBR
CAL

STRUC
CSECT
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC

CAL
MISC
MISC
MISC
CAL
CAL
CSECT
SUBR
MISC
MISC

CSECT
MISC

CSECT
MISC
Ml SC

CSECT

CSECT
SUBR
SUBR
SUBR
CAL
SUBR

A

H
H
0
0

PP CSECT

3 CSEVAL
.4 CSEVAL
C SEVAL

4
4

.4 CSEVAL
4 CSEVAL

3 CSEVAL
CSFREEST
CSFREEST

.2 CSFREEST

.2 CSFREEST

H_ CSFREEST

0

H
H
0
H
H

mmmmmmmmmm

o oo [N =]

o

MmO T —+To

.2 C SFREEST
C SFREEST
CSFREEST

2 CSFREEST
CSFREEST
C SFREEST

.3 CSGC
.3 CSGC
.3 CSGC
.3 CSGC
.3 CSGC
.3 CSGC

C SGC
.3 CSGC
.3 CSGC
.3 CSGC

CSINIT
CSINIT

CSMAIN
CSMAIN
.1 CSMAIN

CSPDL

CSPRINT
.3 CSPRINT
.3 CSPRINT
.3 CSPRINT
CSPRINT
.3 CSPRINT

PAGE 14

COMMENTS

BIND ARG ATOMS TO THEIR VALUES
CONDITIONAL EXPRESSION EVALUATED
INTERPRETER AND RELATED ROUTINES
STUTTER INTRPRTR EXPRSN EVALUATOR
GET FUNCTION DEFINITION Of ATOM
EVALUATE LIST OF EXPRESSIONS
CONVERTS ATOM TO LIST CHARS IN PNAY
FINDS PROPERTY OF AN ATOM

MAKES A LIST OF THE ARG EXPRESSIONS
GET LENGTH OF LIST

STORES PROPERTIES ON ATOMS PROP LST
RETURNS ITS ARC UNEVALUATED
REMOVES PROPERTIES FROM P-LIST
FINDS ARG ON AN ASSOCIATION LIST
RESTORE OLD BINDINGS OF ARG ATOMS

ATOM WITH VALUE = LIST OF ALL CHARS
FREE STORAGE, INCL INITIAL STRUCTS
INDICATOR FOR S-EXPR FUNCTIONS
INDICATOR FOR S-EXP SPECIAL FNCTS
STRUCTURE: ({SUBR .1} (FSUBR . . .
INDICATOR FOR ASSEMBLED SPECIAL FNC
ATOM WITH VALUE-NIL

ATOM WITH VALUE - LIST OF ALL ATOMS
INDICATOR FOR ASSEMBLED FUNCTIONS
ATOM WITH VALUE-T

RECOGNIZED BY EVAL AS ERROR VALUE

COLLECTS AN ATOM

PART OF ATCOL FOR TYPE 0 ATOMS

PART Of ATCOL FOR TYPE 1 ATOMS
BRANCH TO IF STORE EXHAUSTED, ABEND
CREATES IMAGE OF ARG IN NEW CORE
CHECKS AND COLLECTS ONE POINTER
GARBAGE COLLECTOR

CONTROLS GARBAGE COLLECT ION

BAL TO IF DATA STRUCTURE ERR, ABEND
BAL'ED TO BY GCPUT MACRO

INITIALIZATION
SET UP SWYM REGS AND OPEN FILES

MAIN STUTTER LOOP
CLOSE FILES AND EXIT
PAIN LOOP OF STUTTER INTERPRETER

STACK

PRINT ROUTINES

MOVES PRINTER TO NEXT PAGE

PRINTS ITS ARG AND GOES TO NEXT LIN
PRINTS ITS ARG

PRINT A CHARACTER STRING ATOM
MOVES PRINTER TO NEXT LINE

250

MNEMONIC

CSREAO
GETCH
GETOBJ
IVCCH
| vaMo

MAKSTRNG

PBCLOSE
PROPFN
PUTEYTE
RDAT
RDERR

RDERRCNT

RDLIST
RDSE
READ
READCH
STIVCCH
STIVQMOD

ATOP
CSSUBS
EQ
ERROR
FST
NULL
RST
STAKN
STIME
TAK2
TTIHE

CARORDR
CELFNC
CELREL
C ELVAL
CSSWYM
c4
DUBWORK
£

FALSE
FEND
GCABAD
GCTIME
L
MEMNXT
YEMSIZ

SWYY MNEMONICS SORTED BY CONTROL SECTION

CLASS

CSECT
CAL
SUBR
SUBR
SUBR
SUBR
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
SUBR
SUBR
SUBR
SUBR

SUBR
CSECT
SUBR
SUBR
SUBR
SUBR
SUBR
CAL
CAL
SUBR
CAL

MISC
SWYM
REG
REG
REG
REG
REG
REG
REG
SWYM
FIELD
FIELD
FIELD
CSECT
REG
SWYM
REG
MISC
SWYM
SWYM
SWYM
REG
SWYM
SWYM

NN NN

TTTTOO OO0 MTTOO

NN NN

-

—_— . — U1 —

OTEEOTMMTMTTNSM

MM—mMMmMMO— T~ EZEXTTIXX=w——————OZX
PGS

~ B

CSECT

CSREAD’

C SREAD
CSREAD
CSREAD
CSQEAD
CSREAD
C SREAD
CSREAD
C SREAD
CSREAD
CSREAD
CSREAD
C SREAD
CSREAD
CSREAD
C SREAD
C SREAD
CSREAO

C SSUBS
¢ SSUBS
CcSsuss
c SSUBS
¢ SSUBS
C SSUBS
c SSUBS
cSSuUBS
CSSUBS
cSSURS
¢ SSURS

CSSWYM
CSSWYH
CSSWYM
C SSWYM
CSSWYM
CSSWYH
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSWYM
CSSWYM
¢ SSWYM
CSSUYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSWYM
CSSWYM
CSSWYM

COMMENTS

READ ROUTINES

GET A CHARACTER

FINDS SYMBOL FOR CHAR STRING ARG
RETURNS NEXT INPUT CHAR

RETURNS STATUS OF QUOTE MODE
MAKES CHR STR ATM FROM LIST OF CHRS
FINISH CHAR STRING ATOM

START MAKING CHAR STRING ATOM

PUT BYTE INTO CHAR STRING

QEAO AN ATOM

INDICATE INPUT SYNTAX ERROR
SYNTAX ERR-PARENS MADE BEFORE '>*
READ A LIST

READ AN S-EXPRESSION

READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD
SETS CURRENT INPUT CHAR

SETS QUOTE MODE

STUTTER ROUTINE FOR-IS ARG ATOM?
BASIC SUBROUTINES

STUTTER RTN FOR-ARG1 =ARG2?
WRITES MESSAGE AND GOES TO TOP LVL
STUTTER RTN FOR -1STELEM OF LIST
STUTTERRTNFUR =IS ARG =NIL?
STUTTER RTN FOR = REST OF LIST

GET FREE STORAGE BLOCK

START TIMER

MAKES LIST W/ FSTARGL AND RST ARG2
HOW LONG SINCE LAST SVIME

EQUATED TO ATOM OFFSET(6)

ATOM OFFSET (6)

ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARG!JMENY REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

BASE REG FOR ALL ROUTNS

DCB FOR READING CARDS

ATOM HEAD-FUNC DEF TYPE BITS
ATOM HEAD-CELL IS RELOCATABLE
ATOM HEAD-CELL HAS VALUE{NOTFNC)
GLOBAL INFORMATION FOR SWYM RTNS
0DD REGISTER CONTAINING F’'4’
DOUBLE WORD WORK AREA

FREE STORAGE POINTER

L A1oNIL; RET; (BRANCH TO IT)
POINTS AT END OF FREE SOTR

GC ABENDS FOR BAD DATA STRUCTURE
GC COMPUTES ITS TIME

LINKAGE REG (RETURN ADDRESS)
ALTERNATE FREE STOR

SIZE OF FREE STORAGE

251

MNEMONIC

MEMUSE
MI

M2

N

NUMAT
NUMATVAL
P

PBHD
PRATBAD
PRINTER
PRLNG
PRPEND
PRPT
PUTCH
RBCHAR
RDCLASS
RDCOL
RDEND
QDERCNT
RDERLOC
RDERMS
RDERNO
RDLNG
RDSTAT
RDSUPCTR
RSTAL
RSTA2
RSTA3
RSTT

R STTT

S

ST
SWERROR
SWYM
SWYMSAVE
SYSFaO
-

TIME
TRUE

TT
TVEND
TVSTART
VCHAROBS
VFPROPS
VOBLIST
VUNBND
#MIM2
0
#XXXX

BELL
52250

AND
A TOM

SWYM MNEMONICS SORTEO BY CONTROL SECTION

CLASS

SWYM
FIELD
FIELD
REG
SWYM
SWYM
REG
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
MISC
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
MISC
MISC
MISC
MISC
MISC
REG
SWYM
MISC
SHYM
SHWYM
SWYM
REG
SWYM
MISC
REG
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM

SUBR
C SECT

MACRO
MACRO

APP CSECT

CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSwym
CSSWYM
CSSUYM
CSSWYM
CSSYYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSWYY
CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSWYH
CSSWYM
CSSWYM
CSSWYM
CSSUYM
CSSWYM
.1 CSSWYM
.1 CSSWYM
1 CSSWYM
I CSSWYM
.1 CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSwWYyY
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSwym
CSSWYM
CSSWYH
CSSWYM
CSSWYM
. CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM

NN N

w

w w w

t
I}

TEAMTEZTXTXZT—OR—XTLTEOII—O I TOOOOOO0COOOONOOTTITIMETO—=—MMM
EN

F.5 CS2250
0 €S82250

6.7 MACLIB
6.1 MACLIB

COMMENTS

FREE STOR IN USE

GARB COL MARKING BIT
GARB COL MARKING BIT

POINTS AT NIL

WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS
STACK POINTER

HOLDS ADRS OF AT-HD DURING PUTBYTE
ARE4 FOR PRINGING *2TYPN!

DCB FOR PRINTING ®

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR
WHERE TO PUT NXT PRINT CHAR

PUT CHARACTER IN PRINT LINE

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC OF LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE *>!
SYNTAX ERROR CARD COLUMN INDICATIDN
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

NUMBER OF CHAR READ FROM EACH CARD
READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE *>1*

RST(AL). BAL'EDTO BY RST MACRO
RST(A2). BAL'EDTO BY RST MACRQ
RST{A3}. BAL'EDTO BY RST MACRO
RSTI(T). BAL'EOTO BY RST MACRO
RST(TT), BAL'EDTO BY RST MACRO

BASE REG FOR CSSWYN

POINTER AT T

SYSTEM ERROR

FIRST LOC IN CSSWYM

SAVE ARE4 FOR CALLING 0S

SAVE AREA FOR SAVING OS LIMK REGS
TEMP (EVEN, NEXT TO TT)

TIME SET AT LAST STIME

L AlsT5 RET; (BRANCH TO IT)
TEMP (00Dy NEXT TO T)

LABEL OF LAST ENTRY IN TV TABLE
LABEL OF START OF TRANS VECT TABLE
POINTER AT CHAR OBJECTS LIST
POINTER AT FPRDPS STRUCTURE
POINTER AT ALL OBJECTS LIST
PCINTER AT SPECIAL ‘UNBOUND’

USED BY GC TO ‘OR’ IN ML &M2 BITS
ADRS OF BEGINNING OF STACK
TRANSFER VECTOR, ADRS OF RTN XXXX

RINGS BELL ON 2250
2250 EXPERIMANTAL INTERFACE

COMBINE TWO PREDS
? IS ARG AN ATOM

252

PAGE 16

MNEMONIC

BCMAC
BIT
BITTBLMK
CAL
CELL
CHAR
CHTBL
ELSE
ENDIF
EQ
EVCH
FINOBIT
F IXUP
FST
FSUBR
GCPUT
GETNAME
GETNUM
GOTO
HASH
HEAD
I'F
INST4
| NVERTB
MATOM
NOT
NULL
ORX
POP
POPN
PUSH
QCHAR
RESET8
RET
RPLCEL
RPLF
RPLHD
RPLTOP
RPLTOPN
RST
RSTMAK
SETB IT
STRAT
SUB
SUBR
SWEAR
TAIL
TESTB
THEN
TOP
TOPN
TVMAK
VALUE
X8

SWYM MNEMONICS SORTED BY CONTROL SECTION PAGE 17

CLASS

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRC?
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

APP

moomoooomoooomoooommmoomoowoooooomoooooomoommooooooooufmoooomoomoomoomoooooooomoomgooooo
COCWORBRNUINOWO WO RRLRAMRAMNPNOUWARRNRP, VWO ~NNWINMNNOWR 0OWR, N~N©0wWwN o ool

CSECT

MACLIB
MACLIB
MACL 18
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
PACLIB
MACLIB
YACL IB
MACL I B
MACLIB
MACL 18
MACL 18
MACLIB
MACLIB
MACLIB
HACLI 8
PACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MAC118
CACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
PACLIB
MACLIS
MACLIB
MACLIB
CACLIB
MACLIB
MACLIB
MACLIB
MACLIB
PACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACL IB

COMMENTS

MAKE A BR CONDITION INSTRUCTION
IDENTIFY MNEMONIC WITH BIT IN WORD
MAKE A TABLE FOR ‘BIT'MACRO
SUBROUTINE CALL

LOADS ATOM CELL INTO REG

CREATES A CHAR OBJECT ATOM

MAKE A CHARACTER TABLE (FOR TR}
COND - END TRUE: START FALSE PART
COND - END FALSE; END CONDITIONAL
? ARGl = ARG2{TESTS TWO POINTERS)
GETS ARITH VAL OF EBCDIC BITS

FIND BIT MNEMONIC FOR BYTE-IN-WORD
GC-MAKE ENTRY IN FIXUP TABLE

FIRST ELEMENT OF LIST

CREATES AN ATOM WITH FSUBR PROP
GC-PUT WORD TO NEW CORE

LOADS PTR AT PNAME CHR STR ATM

GET VALUE OF NUM CHAR STR ATOM
BRANCH

HASH CODE AN IDENT FUR OBLIST
LOADS HEAD OF ATOM

COND - START PREDICATE

ASSEMBLE INSTRUCTION WO/ ALIGN ERR
CHANGE BIT

CREATES AN ATOM STRUC (IN CSFREESTI
NEGATE PREDICATE MACRO TEST

? ARG = NIL

COMBINE TWO PREDS

GETS TOP OFF STACK-HEDUCES STACK
REDUCES STACK N TIMES

PUTS ARG ATOP STACK

CREATES A CHAR OBJ FOR ()1,
TURN OFF BIT

SUBROUTINE RETURN

REPLACES ATOM CELL

REPLACES FIRST PTR OF LIST
REPLACES HEAD OF ATOM

REPLACE TOP ITEM ON STACK

REPLACE NTY ITEM Of STACK

ALL BUT 1ST ELEMENT OF LIST

MAKE ROUTINES FOR ‘RST’ TO BAL TO
TURN ON BIT

CREATES STRING ATOM STRUC (FREEST)
SUBROUTINE ENTRY

CREATES AN ATOM WITH SUBR PROPERTY
SYSTEM ERROR

LoampTRAT TAIL oF ATOM

TEST BIT

COND - END PRED; START TRUE PART
GETS TOP OF STACK-BUT LEAVES IT
GETS NTH ITEM ON STACK

MAKE A TRANSFER VECTOR FOR CAL
CREATES AN ATOM WITH A VALUE
TRANSFER INTO MIDDLE OF SUBROUTINE

253

