CS 119

o

”MPL'

MATHEMATICAL PROGRAMMING LANGUAGE

BY
RUDOLFBAYER MICHAELB. MCGRATH
JAMES H. BIGELOW PAULD. PINSKY
GEORGEB. DANTZIG STEPHENK. SCHUCK
DAVID J. GRIES CHRISTOPHWITZGALL

TECHNICALREPORT NO. CS119
MAY 15, 1968

COMPl\JTE.'R SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY




|
}
|-

MPL

|

k MATHEMATI CAL  PROGRAMM NG LANGUAGE

‘; by

(-

L Rudol f Bayer M chael B. McGrath

L James H Bigelow Paul D. Pinsky
Ceorge B Dantzig St ephen K. Schuck
David J. Gies Christoph Wtzgall

|
L

Comput er Sci ence Depart ment

Stanford University
Stanford, California

—

—

——

Research partially supported by National Science Foundation Gant GK-6431;
Ofice of Naval Research Contract ONR-N-00014-67-A-0112-0011 and Contract
. ONR-N-00014-67-A-0112-0016; U S. Atonic Energy Commission Contract
- AT[04-3] 326 PA #18; National Institutes of Health Gant GM 14789-01 Al ;
and U S. Arnmy Research O fice Contract DAHCO4-67-C0028.

—

r—

—



L

o

h-

—

r DU r—m r““ ,..w«..m

o

e

[

MPL

MATHEMATI CAL  PROGRAMM NG LANGUAGE

PART |

A SHORT | NTRODUCTI ON

Rudol f Bayer M chael B. McGrath

Paul D. Pinsky
St ephen K. Schuck
Christoph Wtzgall

James H. Bigel ow
"Ceorge B. Dantzig
David J. Gies

The purpose of MPL is to provide a |language for witing mathematical
programming algorithns that will be easier to wite, to read, and to nodify than

those witten in currently available conputer |anguages. |t s pelieved that the

witing, testing,and nodification of codes for solving large-scale |inear prograns
will be a less formdable undertaking once MPL becormes avail able. It is hoped that
by the Fall of 1968, work on a conmpiler for MPL will be well underway.

The |anguage proposed,is standard mathematical notation. Tpjg

| east, has been the goal. Whether or not there is such a thing as a standard
notation and whether or not MPL has attained it, js uyp to the reader to decide.

at

The Manual to MPL comes in three parts

PART I: A SHORT | NTRODUCTI ON
PART |1 CGENERAL DESCRI PTI ON
PART 111 FORMAL DEFI NI TI ON



L

o

o e e S e el el e I el e

—

r—

1/a

FORWARD

Mat hemati cal programming codes for solving linear programmng problens

in industry and government are very conplex. Although the sinplex algorithm (which
is at the heart) night be stated in less than twenty instructions neverthel ess error
checks, re-inversion, product-forminverses for conpactness, conpacting of data,
special restart procedures, sensitivity analysis and paranetric variation are
necessary for practical inplementation. Twenty thousand instructions are not
uncommon.  The cost to program such a systemis several hundreds of thousands of

.dollars.

Recently, there has been nuch interest in extending mathenatical
programm ng codes.into the large-scale, nonlinear, and integer progranming areas.
The large-scale mathematical programmng applications are anmong the |argest
mat hematical systens ever considered for practical solution by man. g4 exanpl e,
a system of close to a nillion variables and thirty five thousand variabl es has

al ready been solved using the deconposition principle.

If large-scale dynamc linear programs could be successfully solved
it would have enornous potential for industrial, npational,and international

| ong-range pl anning.

For this reason, there is considerable interest in solving |arge-scale
dynami c systems. Many papers have been witten on this subject and the nunber of
theoretical proposals now number in the hundreds. wvery |ittle in the way of
enpirical tests have been made. (xcasionally, a "soft-ware" company has dared to
ge froma theoretical proposal to a conmercial programw th inclusive results. It
is like going froma drawing board to a battleship when all that has been built

bef ore has been a rwboat.

The need then is to be able to wite elaborate codes for solving
mat hematical progranming systems; to test them out on sanple problems; and to
conpare them with conpetitive and nodified codes. present day conputer |anguages
i ke FORTRAN, ALGOL, PL/1 are not in the same world as nachine |anguage of 0 1 bits.
Nevertheless, it is a formdable undertaking to read codes in these |anguages,
particularly when they involve sone twenty thousand instructions. The finding of
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errors (debugging) is time consum ng. It is often difficult for the author of a
programto deci pher his own hierogliphics assuming he is available for consultation
This difficulty becomes ever nore acute when extended to proposals for solving

| arge- scal e systens. It is one of the chief stumbling blocks to progress in getting
practical |arge-scale system codes.

For this reason, the chief effort of MPL has been directed towards
readability. The objective is not to invent a powerful new language but to have
a highly readabl e |anguage, hence one easy to read, correct, and modify.

The Iverson Language is an example of a powerful |anguage. Wth a
smal | amount of effort it could have been set up in standard mathenatical notation
and made readable (to a non-expert) as well. It is probably possible to inplenent
MPL by using Iverson Language as a translator. This is not our plan

It is possible to view MPL as nothing more than a beefed-up ALGOL or
FORTRAN.  The new progranmm ng | anguage PL/1 is very powerful and coul d al so be used
to realize MPL. This is being considered. Mreover, recently there have becone
avail able excellent compilers for conpilers that make easier the job of
devel oping a conpiler that would directly translate MPL into nmachine |anguage
We are seriously considering this as our approach for inplementing MPL.
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COMPARATIVE MATH VS MPL NOTATI ON

The short introduction (Part 1) that follows is not a formal description
of the language. This is done in Part IIl; nor is it a general manual as Part II;
rather our purpose is to notivate the need for MPL and to provide a short comparision
with standard mathematical notation. MPL notation assunmes that a standard key-punch
or its equivalent is all that is generally available at present for program preparation.
This limts the al phabet to Capital Roman andreplaces A by its functional

1,3
equivalent A(I1,J).
MATH MPL
SUBSCRI PTS: A'i,j A(1,J)
SUPERSCRI PT: Al;,j A(K) (1,J)
MATRI CES: A A
Matrix Addition A+B A+B
Matrix Product AB or A.B A*B
Transpose A' or AT TRANSPCSE( A)
| nver se At | NVERSE( A)
A=Matrix, K=Scalar, L=Scal ar A K A K
AK A*K
KA K*A
KL K* L
Conposing a matrix M from M= Fl M := (A,B)#
subnmatrices A, B, C, D (C (C,D) ;
or M:= (A,B)#(C,D) ;
M=(A,B,C) M:= (A,B,C);
Colum of a matrix A A. i A(%,J)
Row of a matrix Ai,. A(I,x)
Det er ni nant |A] DETERM NANT( A)

Array of Consecutive Integers (k, k+l,...,8) (¥,...,L)
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OPERATORS :
Matrices or Scal ars:

Addition, Subtraction,
Mul tiplication

Division by Scalar

Exponent

Sign

Substitution Qperator(=)

Logi cal Qperators

MATH: If A > B,
MPL: | FA>B

MATH; If A> B

- Rel ational Operators

Set Qperators

MAPPI NGS, PROCEDURES, SUBROUTI NES:
B, X, Y...Mtrices, Sets, Scalars

1/2

New val ue of
A=value of B+C

AND, OR, NOT

C > D, and not

AND C >= D AND NOT D = 0 THEN

or ¢ > D,
MPL: IF A>B OR C> D THEN

= < > >

?,
AU B, A+B

AN B, A'B

A M (not B),

MPL

+, =, *

A/K

Ak%x2

| NVERSE( A)

2 ,+2,-2

A := B+C; (neaning:
change the
val ue of A
on LHS to
equal the
val ue of
B+C on RHS.)

AND, OR, NOT

=, <, >, >=, <=,

= =,

A OR B

A ANDB

A AND NOT B

Y o= R0

Y 3= SINX);

Y := 2xBx(X%%2);
Y := | NVERSE(B);
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SYMBOL REPLACEMENT:

SETS:

I ndex Set or Dommin of a vector A
ndex Set of a matrix A
Definimg of Set where P(1) a

Bool ean Expression or
property is true

Er_
or
Empty Set
SET FUNCTI ONS
Suppose S = (Sl,...,S Yis a
| - di mensi onal ~array of
integers and we wish to pick
out colum vectors A ,A s--A
s, s s
1 2 m

to forma matrix B.

1/3

MATH

Let W = f(x,y)

(any set of elenents)

S

{1,3’—'2,5}
s ={1,.. . ,n}
IS

I e AUBUC

-
m

ANBANC
|  ANBE

D

(AUB)NC.
Domai n of A

Row Dommin of A

{1eR:P(I) = true)

{IeR:P(1)}
{1eR|P(1)}
{ieRIAi> 0}
{i|Ai > 0}

@, Null, Enpty

B= (A LA ;...

s

1 "2

MPL

LET W:= F(X,Y);
(rmeani ng do not conpute

Wbut replace it by
F(X,Y) wherever W
appears later on.)
(I'ndex sets only)

S := SET(1,3,-2,5);

S 1= (1l,e..,N);

I IN S

I IN A OR B OR C
I IN A AND B OR C
I IN A AND NOT B

D :=(A Ok B) AND C,

DOM (A)

ROW_DOM(A)

(I IN R|P(I) = TRUE)

(I IN R|P(I))

(I INR|AI) > 0)
(1 IN DoM(A)fA(T) > 0)

NULL

o
]

A(S);

w
i

(A(J) FR J IN S)

o
n

(A(S(1)) FOR I IN
(190--aM))';

However,

B := (A(S(I)),...,
A(S(M))) is not
correct because
(P,...,Q neans

(P,P+1,P+2,...,Q)in MPL



]
L
L

— r -

—

SYMBOLS
CAPS
Lower Case
G eek

| nt egers

Mul ti- Character Synbol:

as function nane:

as variabl e nane

Brackets

1/4

PIVOT(M,R,S)
SIN(X)

(not used)

{} (1

A B ---
(not available yet)
(not available yet)

0, 1,'00,99, =T

PIVOT (M,R,S)

SIN(X)
B2, BASIS, X-S

(not avail abl e yet)
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SYNTAX

In general, a procedure has the form

PROCEDURE F(X, Y, 2)
St at ement ;

St at enent ;

FINI;

Certain reserve words |like FOR and IN can be interspersed in place of commas in

F(X,Y,Z) as in the exanple given bel ow.

Exanpl e Giyen an array of integers

that yields S = J F(j)
jeR

PROCEDURE SUM(F)

(1) S := 0;
(2): SAVE LOCATION(S,S');
(3): S' := S+ F(1) FOR | IN DON(F);
(4): SUM : = s;
(5): RETURN;
FINI;

Onee the Z synbol, or rather

it to wite a statenent like P =

i

Ll S Jm

P := SUM(I%xx2 FOR | IN T)

2

R, we wish to wite an algorithm called SUM

"SET UP A STORAGE REG STER S TO ACCUMULATE

THE SUM OF TERMS. I NI TIALLY,"

"LET S§' BE THE UPDATED VALUE OF S. WE WANT

TO STORE S IN THE SAME PLACE AS S AND

THEREAFTER CALL IT S.*"

"1 TERATI VELY ADDS F(1) TO s."

' SETS THE VALUE OF THE FUNCTI ON EQUAL TO s"

" "RETURN MEANS: RETURN TO MAIN ROUTINE."

" 'FINT' MEANS :  END OF WRITE-UP."

SUM 1s in the procedure |ibrary we can use

in MPL.

WHERE T := (1,...,N);
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ce nunbers like (1), (2),..., on the left are called |abels. They

ry in the above exanple and may be onmitted. Labels can be a string

of characters or nunbers like (1), (2). If the latter, they need not be consecutive.

Label s are used

A stat enent
s' = S+ F(1);

equal to the cu

I n general,

to locate a statenent-'when a program branches.

like the one with label (3) is called a substitution statenent because
means:  Substitute forthe current value of S' on the left a new val ue

rrent value of S + F(1) on the right.

A := B, means updated A = Current B.' A statenent S :=S + F(1);

| ooks |ike nonsense but means:Updated S = Current (S + F(1)). Hence a progranmer

not interested in readability woul d probably boil down the procedure SUMto two

|'i nes.

PROCEDURE S

SUM := 0;

UMF)

SUM := SUM + F(J) FOR J I N DOM(F); RETURN, FINI;
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There are several different types of statements that one can draw upon to

write a procedure:
Procedure Name If Defi ne
V Substitution For Rel ease
g Let Same Location Fini
N Return G to
- and some words like "then“, "otherwise", "endif", "do", endfor" that indicate
L different parts of a conpound "if" or "for" statement.
Procedure Nane Statenent: PROCEDURE F( X) PROCEDURE F("IN" X, "QUT" YY)
where X, Y represents a list of one or nore
& synbol s.
Exanpl es: PROCEDURE Sl N( X)
— PROCEDURE PIVOT(A,R,S)
PROCEDURE SI MPLEX( A, B, C, BV)
- PROCEDURE ARGMIN(F(I) FOR | IN T)
| "where ARGMIN finds the first index or argument
where the mnumum occurs.”
Substitution Statenent: A := Arithmetic Expression;
Exanpl es: S :=0; M := ARGMIN(H(J) ForR J IN R);
L A := PIVOT(A R S); G := INVERSE(MATRI¥ + H
S = ARGMMN(C(J) FOR J IN T). WHERE T := (1,...,N);
Let Statenent: LET A := Arithmetic Expression;
1 Exanpl es: . LET A := B;
L LET T := (I | N DOM(B)|A(I,S) > 0);
LET R := ARGMIN(B(I)/A(I,S) FOR I INT);
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If LET is used to sinplify onky one statenent,

a WHERE can be used instead using inverse order.

G := INVERSE(B) WHERE B := TRANSPOSE( A);

Return Statenent: RETURN;

If this statenent is reached during execution of the subroutine,

the next step is to return to the main routine.

|f Statenent: IF P THEN statenent ;...; statenent;

OTHERW SE st atenent ;...; statenent;
ENDIF;
Exanpl e: IF R= NULL THEN GO TO (21); OTHERW SE

A := PIVOT(A R S); ENDIF;

Al statements up to "OTHERW SE' are executed if proposition p is true and
then sequence control skips to the statement follow ng ENDIF. However, as in the
above exanple, there is a GO TO statenment preceding the OTHERW SE then control
skips to wherever GO TO directs. If p is not true, control skips to statenents
following "OTHERWSE'. For the case of several parallel conditional statenents

OR IFstatements are available - see Part II and III. QOTHERWSE can be onitted if

i medi ately followed by ENDIF.

For Statenent: FOR1 INT DO statenent ;...; statement; ENDPBR;
Exanpl e: FOR I IN (1,...,M) DO
S =S+ K1),

T =5 + 31);

ENDFOR;
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Sane_Location Statenent: SAME LOCATI ON(A, B);

A and B will be assigned the sane set of storage |ocations in the conputer.
An alternative way to acconplish the same thing would be to wite: LET A :=B; For
psychol ogi cal reasons, it seems best to separate the concept: "A is another symbol

for B" fromthe concept "same storage |ocation".

Go to Statenent:

G TO & (where 2 is a label). This nmeans that control is to skip to the

statement that has ¢ as a |abel.

-

Define Statenent:

Exanpl e: DEFINE B DI AGONAL M BY M

Used to define the size of storage array needed for a symbol whose value will be

conmput ed pi eceneal later on.

Rel ease Statement:

To release a synmbol and its storage assignnent a release statenent takes the

form
RELEASE A, B;

Its purpose is to conserve storage and pernit re-use of the sanme symbol for some

other purpose. A special type of automatic release is available that allows release

of all synbols in a block of code.

Rel ease occurs automatically when a procedure returns to a main routine; all
symbol s defined in the procedure and their storage are released except the output

synbols, which are treated as part of the symbols of the main routine,

Synbol s used as dunmies as Gin the statenent: Z := A+G WHERE G := | NVERSE(M);
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are treated as local to the statement and are immedigtely released. The same appl i es
to the running index in a conpound For statenent and to a dummy paraneter in a Let

statement as | in : LET 1):= B(I)/A(,J); .
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EXAMPLE:  SIMPLEX ALGORI THM

PROCEDURE SI MPLEX ("IN! A B,

"WARNING:  ALL I NPUTS ARE MOD

c By, "aur" BV, B, Z, CASE);

IFIED I N THE COURSE OF CALCULATI ONS. "

"THE PROBLEM IS TO FIND MIN Z, X > 0 SUCH THAT:

I T I'S ASSUMED THAT:

AX- B, CX=2Z.

A IS I N CANONI CAL FORM W TH RESPECT TO

BV THE INITIAL SET OF BASIC VAR ABLES.

B>0 ARE THE X VALUES OF BV, |.E. X(BV) = B.
TH'S INITIAL BASIC SOLUTION |'S REQUI RED TO BE FEASIBLE,
|.E. B > 0.

BV |'S THE OPTIMAL SET OF BASIC VARI ABLES.

B' ARE THE X VALUES OF BV', |.E. X(BV') = B .

z' = M N z

CASE = FINITE OR UNBOUNDED.

BV, B, Z REFER TO LAST BASIC SOLUTION IN THE CASE THAT

"INl TI ALl ZATI ON'

(1):

(2):

DEFI NE CASE CHARACTER;

z 7 0;

" CASE = UNBOUNDED . "

"PRIMES WLL BE USED FOR UPDATED VALUES OF VARI OQUS SYMBOLS.

THESE WLL BE STORED IN THE SAME LOCATION. "

SAVE LOCATION (A, A'),

(B, B), (C C), (BV, BV), (X, X"),(z,2");
"| TERATI VE LOOP"

"LET S BE COLUW COM NG | NTO BAS| S. "
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(3):

(4):

(6):

(7):

(8):

9

(10):

(11):

1/12

MIN-1("IN' C, "OUT" S, C.S);

"MIN.1 IS A FUNCTI ON THAT RETUNS THE | NDEX AND THE
M N MJM COVPONENT OF A VECTOR, IN TH S CASE VECTOR = C.*"

"WE NOW TEST WHETHER X(BV) = B IS OPTI MAL."

|F CGS = 0 THEN CASE := 'FINITE' ; RETURN, OTHERW SE

"LET R BE THE | NDEX OF THE BASI C VARI ABLE DROPPI NG "
MIN_1("IN" (B(I)/A(I,S) FOR | IN DOMB))A(l,S) > 0), "oUT" R Q;

"I'F ABOVE SET EMPTY, MN.-I RETURNS R = NULL, Q = 0;
OTHERW SE THE | NDEX R AND THE MINIMUM RATI O CALLED
Q |I'S RETURNED. "

IF R = NULL THEN CASE := JUNBOUNDEDY ; RETURN; ENDIF;

"UPDATE LVERYTHING BY PIVOTING ON A(R'S), PRIMES WLL
BE USED FOR UPDATED SYMBOLS. THESE ARE STORED | N SAME

LOCATI ON, SEE (2)."
B (R :=Q
A' (R,%x) := A(R,x)/A(R,S);

"ROW_DOM(B) | S THE DOVAIN OF | NDI CES FOR B."

FOR |  IN ROWDOM(B) |1 - =R DO

B' (I) := B(1) - A(L,S) * Q

A' (I,%) := A(I,%) - A(l,S) % A'(R,*); ENDFOR;

(12): C':= C = C(S) * A'(R,%); -

(13):

z' =Z+ (S xQ;
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(15):

GO TO (3);

FINI;

1/13

"THE REMAI Nl NG COVPONENTS OF BV ARE UNCHANGED AND
SINCE BV AND BV  ARE STORED IN THE SAME LOCATI ON.

UPDATING IS COWPLETE, RECYCLE."
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STRAC

The objective is to develop a readable l|anguage for witing experinental codes
to solve large-scale mathematical programming systens. Readability is defined as
standard mathematical notationwith mnor adjustnents reflecting current linmtations
of input-output equipnent. Thus symbols are restricted to those found on a standard

keypunch; subscripts (or superscripts) like A appear as A(I,J). Starting in

i,3
the Spring of 1967, several test algorithms witten in the proposed |anguage gave

evidence that readability was an achievable objective.

A task group in the latter part of 1967 began to define the proposed |anguage in
BACKUS Normal Formwith the intent of using a special conpiler's conpiler to

i mpl erent the | anguage.
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1.0 | NTRODUCTI ON

This paper describes recent work on a conputer progranm ng |anguage for
the inplenentation of mathenmatical programmng algorithns on a digital conputer

the objectives of the |anguage are:

a) to facilitate programming an algorithm from
theoretical formto conputer code in as short
a tine as possible, and

b) to enable other mathematical programmers to
understand and nodify an existing code wth
a mninumof effort. The present efforts are
being directed toward the coding of experinental
mat hematical programming algorithms rather than
conmercial techniques. By and large, the first
report (Mathematical Programm ng Language, June
1967) represented the thinking of persons with
mat hemati cal programm ng backgrounds.  Sjnce
then, several conputer scientists contributing
to the project have brought the |anguage nuch
closer to inplenmentation.

The purpose of this report is to explain the use and the reasons for the
concepts being developed in MPL. This part of the Minual attenpts to explain the
reasons for using the specific concepts of MPL while the third part devel oped
under the guidance of David Gies gives a formal definition of the language in a
nmodi fied formof BACKUS Normal Form  Part IIl is primarily the work of Stephen
Schuck, who, since joining the project last summer, has been a driving force behind
the inplementation of MPL. His work in turn uses several concepts devel pped by
Rudol f Bayer and Christoph Wtzgall of the Boeing Scientific Research Laboratories.
At present, the BACKUS Normal Formis used to describe the |egal prograns, not the

phrase structure of the |anguage.

David Gries of Stanford University is currently devel oping a technique of
witing conpilers, called the Konpiler Inplementation System (KIS), which, it is

planned will be used in the inplenmentation of the Language. Many of the concepts
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presented herein, are the sane as or simlar to those found in existing conpiler

| anguages (ALGOL, FORTRAN, COBOL, PL/1, etc.). One of the difficulties
encountered thus far in witing a fornmal definition of MPL is that mathenatical
notati on depends upon the context for its meaning. (Pl""’PM) may mean

(Pl’ P2, P3,...,PM) or it may nmean. (PI, Pl + 1, Pl + 2"“’PM)~' This is defined

in MPL to nean the latter.

There are certain concepts planned for MPL that have not yet been set down in
BACKUS Normal Form  In particular, the representation of index sets has not been
conpletely formalized;, the ability to operate with matrices whose elenents are
matrices (useful for example in the deconposition principle) has not yet been fully
devel oped.  Procedure paranmeters need nore work. |nput-output statements have not
yet been defined, nor storage conmands that would reflect the variable size and

speed of different nenory |ocations.
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2.0 MPL LANGUAGE ELEMENTS

The set of characters upon which MPL is built is the character set found
on standard key-punches (such as the |BM 029 key-punch). For conveni ence, we
shall group these characters into the categories of letters, digits, and special
characters. The letters are A through Z, the digits are 0 through 9, and

the special characters are as follows:

and a bl ank. El enents of MPL are defined to be one of the follow ng four constructs-
variable, constant, operator, or reserved word. Let us now delve nore deeply into

each of the above el enents.

2.1 VARl ABLES

Variabl es are synmbols which represent those data values which may change
during the execution of the program There are several types of variables -arithnetic,

| ogical, set and character.

For exanple, if Cis a row vector and Q a scalar both previously defined

t hen

D :=(C SINQ);

sets up a new row vector D with one nore conmponent than C.  The function sin(x)

is a reserve word and "sin" cannot be used as symbol for a variable on the left hand

side of an equation.

A variable nay have zero, one, or two dinensions. A zero-dimensfonal variable

is a scalar, a one-dinensional variable a vector, a two-dinmensional variable a matrix.
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his report, an array refers to any variable whose dinension

Each nmatrix has associated with it a structure shape

commonly used in mathematical programming algorithms. These shapes are rectangul ar,

di agonal, upper triangular, lower triangular, and sparce (neaning few non-zero
el enent s). The concept of structure shape is useful in conserving menory space
and execution tinme. An exanple of the use of shape matrices is in the storage and

multiplication of two

in the conputer requires only n nmenory words for each (as opposed to n

rectangular matrix),

only n elementary nmultiplications as opposed to n

Vectors have the shap

diagonal matrices of size nxn, Storing them as diagona

2

and the nultiplication of two diagonal natrices requires

3 for rectangular nmatric

e of row or colum; this distinction is required for

mul tiplying vectors by vectors or matrices. An additional feature of MPL is

the elenents of an ar

such as the deconpos

ray may be arrays. This construct is helpful in coding

for a

€s.

t hat

al gorithns

tion principle. Another variable allowed is an index set

variable. This consists of an ordered set of integers. Exanples of index se

/

a,...,M
SET(l, 3, -4, 3, 12)
(1 IN(L, ... ,M]|A1,S) >0

More will be said about how to define and use variables |ater on.

The synbols wh

an optional subscript.

ich constitute variables have two parts, the variable na

The variable nane alone conpletely identifies the var

under consideration if that variable is a scalar or an entire storage structu

(vector, matrix, etc.). If the variable represents a subset (element, row, c

etc.) of a larger array, the variable-name part only identifies the larger ar

subscripts being needed to specify the particular subset.

begin with a letter,

but the characters which follow it may be any number of

ts are:

me and
i abl e
re

ol um,

ray,

Variabl e names al ways

letters,
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digits, or underscores. Reserved words (defined in Section 2.4) may not be used

as vari abl e nanes.

L
L

Exanpl es of variable names are

—

L A
OBJECTI VE- 1
| KEY- SET
“ BASI S- | NVERSE

r~—

However, variable nanes with blanks |ike KEY SET are not allowed. Subscripts
are either scalar arithnmetic expressions or the synmbol *. Scalar arithmetic

expressions (defined in Section 3. 2) are automatically bounded to the nearest

r— r—

integer value when wsed as a subscript. The subscript * refers to an entire

dinmension of a storage structure. Thus

-

A(x, J) refers to the Jth colum while
{
L_ A(I, %) refers to the Ith row of the matrix A .
1 The following exanples illustrate the use of subscripts:
-
% M(B + C, 3)
-
B_INVERSE(1, %)
i
; X_VALUE (BASIS_LIST(I)).
—
? 2.2 CONSTANTS
. SIS TANTS
‘ Constants are of four types--arithmetic, logical, set and character. The
—

type of a constant determines how the nunber will be stored in the machine and used

. in cal culations.
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ARITLMETIC CONSTANTS may be either integer or real.

INTEGER ARITHMETIC CONSTANTS are witten as a string of digits w thout

.a Jecimal point, exanples 1, 10, 10090.

REAL ARITHMETIC CONSTANTS may or may not have an exponent.  An exponentl ess

real nunber is a sequence of digits containing a decinmal point, Exanpl es: 1
S

1.0, .3925, 102.34. The exponent form of the real constant allows witing the
Conét ant | n m)dl f| ed SCi ent | f| Cc not at| on. Th| S for m Consi Sts Of an exponent| ess
real nunber followed by an E (meaning 10 to the power) followed by an optionally

signed string of digits.

Exanpl es:
2. 5802 (25.x10% = 2500.)
1.0E-02  (1.0¥1072 = .01)
. 8E03 (.8x10° = 800.)
9.1E+05  (9.1x10° = 910000.)

LOG CAL CONSTANTS are TRUE and FALSE.

A SET CONSTANT is NULL.

CHARACTER CONSTANTS are any string of characters enclosed by single quotes (')

Exanpl es:

" TABLEAU

" PRICES ARE
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2.3 COPERATORS

Qperators are the connecting elements which allow the grouping of variables

and constants into |arger

five classes:

The use and neaning of the first

in existing languages (ALGOL) while the concatenation operator may be new to the

| anguage phrases called expressions.

a)

b)

c)

d)

e)

2/7

arithnetic operators-unary: + and - ;
and binary: 4 (addition), - (subtraction),
* (multiplication), / (division), and

*% (exponentation).

| ogi cal operators-unary: NOT ;

and binary: AND, OR

relational operators == (equal),

-1 = (not equal), >= (greater than or
equal) , <= (| ess than or equal),

> (strictly greater than),

< (strictly less than).

concatenation operators (for building
up matrices from el enents) : a
comma (,) is used for horizontal
concatenation; a nunber sign (#) is

used for vertical concatenation.

set operators - OR (union),
AND (intersection), AND NOT (relative

conmpl ement ).

Qperators are of

three operators is quite simlar to operators
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L

reader. This operator isused to build larger storage structures from smaller
ones. For now an example of concatenation operators will be given; the detailed
explanation of their use being pruentedin Section 3.2.3. Suppose A, B, C, and D

.are matrices of the same dimensions. Then M.:= (A, B)#(C,D); represents a

N S e

larger matrix of the following form: M -{g g) . If the programmer writes

M := (A, B)#(C, D); partly on one punch card and partly on the next it takes the

form M:= (A, B)# .
(C, D);

r\_.’._.\ r_ —

To resolve ambiguities which can develop In forming combinations of elements,
each operator has an associated precedence. In the absence of parenthesis to
dictate the meanings of such combinations, the meaning will be given by the

precedence of the operators, with those having higher precedence being first.

— o— 1

Operators of equal precedence will be performed from left to right as one would

{ expect. Section 2.5.2 in Part 11l Interprets the operator ® ymbolr in order of

|

~ decreasing precedence. A # before an operator indicates that its precedence is the
i same as the preceeding operator. The following examples show the meaning of

-

precedence.

—

A-B/C+D is Interpreted u A=-(B/IC)+D

} (A, B)#C 1s Interpreted u [ (A, l)]
L c
1 B + C/D #n E#A is interpreted as B + ((C/(DaE))#A)
L

Ambiguous notation in two of the examples can be avoided, of course, by use
|
L of parentheses.
C
‘x
_

-

I
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2. 4 Reserved Wrds

st andar d function names such as si n(X) and pr ocedure nanes. Recal | that
reserved words may not be used as variable panes.. Keyword symbols (such as

FOR, IN, END, GO TO) will be discussed in Section 4e2e3e

Functions:
A standard, fynction nane identifies a Btandard function. |{ s hoped
that extensive use of standard functions will |ead to ease in programing and

is alist of standard- functions, which hopefully will grow as MPL devel opes.
Reference to a standard function is of the formV := F(P) where V represents
the value of the function, Frepresents the name of the function, and P
represents one or nore arguments which we will refer to as a parameter |ist.
Depending upon the function, the value may be integer or real, scalar, vector, or

matrir,and if matrix, it may have any structure shape. These properties as well

as the properties of the parameter list are described in Part Il1l. Following are

a few exanples of the use of standard functions. Let C and X be vect or s

A a matrix, and T an index set all pteviously defined:

L := SUM(C(I)#X(I)FORI IN T) ;

R := ARGMIN (B(I)/A(1,8) FOR I IN T|P(1,5)>0);

2.5 Comment  Statements (Quote Symbols)

In the algorithms coded thus far by the MPL group, it has been

found that coments are essential for readability of computer codes. Comments may

be placed between any two sentences and are separated from the program by quote
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marks before and after the conment. Exanple:

SAME LOCATI ON (COUNT, COUNT');

A =3B + c;
"AIS THE SUM OF B AND c"

FOR | IN SEL_1, COUNT! := COUNT + 1;
"WHERE COUNT' |S THE UPDATED VALUE OF
COUNT WHICH IS STORED | N THE SAME
LOCATI ON AS COUNT AND REFERRED TO HERE-

AFTER AS COUNT."

The general objective of MPL is readability. |t is however, doubtful that
a program will be readable unless liberally interlaced with comments statenents
whereby the programmer explains to the reader why he is doing the various steps.
In experinents with nathematical progranming reutines, alnpbst two lines of comments
are needed on the average to explain an executable line of code. Comment statenents

can consi st of one or several lines set off at the beginnkng and end by quote nakes.

"PI'VOTING WLL BE DONE ON THE FULL
MATRI X D WHI CH | NCLUDES A, THE

RHS B, AND COSTS c."

D := (A B)#
(c, 0);

"WE NOW | NCREMENT COUNT AND RECYCLE' ."

CONT'  := COUNT + 1; GO TO (21);
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3.0 Expressions

Vari abl es, constants, and operators are conmbined into |arger |anguage
phrases called expressions. Expressions are either arithnetic, logical, set or
character. In addition, the value of an arithnetic expression has a shape
(rectangul ar, diagonal, lower triangular, upper triangular, sparce). The
follow ng sections explain the use and meaning of some of the special features

of MPL expressions.

3.1 Logi cal Expressions

A | ogi cal expression, having the value of TRUE or FALSE,is a conparison
between two arithnetic expressions. Two arithnetic expressions which are conpared
by a relational operator nust be identical in type, formand shape. Foll ow ng

are exanples of |ogical expressions:

A>B
NOT (X(I) > Y(I))
(Z>M AND (B+C<A+D

(H(I) = Z(I)) OR (M =Q)

When A and B are scalars and p is a relational operator, then the interpretation
of ApBis clear. However, in the case of arrays, the neaning of A > B can
differ by author. Table 1 below defines precisely what is meant by the relational

operators in MPL.
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TABLE 1

A and B are arrays identical in type, form and shape.

refer to elements of A and

B.

MPL St at enent

[N
A
=

>
v
o)

A —=B

Arithmetic Expressions

Mat hemati cal Meani ng

Ai = Bi Vi
A < B, ¥
Ai < Bi Vl
Alz-Bi 4 1
A, > B, ¥,
Ay # B for some i

Arithmetic expressions are any conbination of the following types--

3.2.1 Conputati onal

Expr essi ons

Comput ati on expressions are of

"right-operand' . |f

operand) - Exanpl e:-A, + (g 2z/B).

expressions, function references,

and array builders.

the structure 'left-operand -'operator'

the left operand is mssing, the operator is unary (one

If both operands are present, they are

connected by a binary operator (two operands) - Example: A c*D . At execution

time the expression wll

defi ned,

conventi onal

an operation can only be performed if

be evaluated to produce a result. In addition to being

the operands conformto the

restrictions of matrix algebra (for exanple - Mand N are nmatrices

then MsN has neaning if and only if the nunber of colums of M equals the

nunber

detail.

of

rows in N).

Section 2.5 of

Part

describes these relationships in
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3.2.2 Function References

A function reference expression involves the use of predefined functions
as set forth in Section 2.4. Exanples of function references used with

conput ational expressions to form new arithnetic expressions are given bel ow

X*SUM(Y)
A* TRANSPOSE( B)

BASIC_COSTS*#INVERSE(BASIS)

We shall see further use of function references in array builders in the next

section.

3.2.3 Array Builders

There are two types of array builders--concatenahors and array designators.

A concatenator is a notational device for constructing vectors and natrices

by concatenation. The rules for the use of a concatenator will be given followed

by several exanples.

Qperations within a concatenator are horizontal concatenation (denoted by
a commm) and vertical concatenation (denoted by a number sign). Horizontal
concatenation has precedence over vertical concatenation and is perforned first
whenever both operations appear. Two structures being concatenated nmust conform
i.e., have the sanme nunber of rows for horizontal concatenation and the sane
nunber of colums for vertical concatentition. Both of the structures being
concatenated nust be of the same type, all arrays nust be rectangudar and the

result is also rectangular. As an exanple of the use of &rray constructors,

consider the follow ng:
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— A has M rows and N colums (matrix)

% B has M rows and 1 columm (colum vector)
- C has 1 row and N columm (row vector)
L (B, TRANSPCSE(C)) has M rows and 2 colums: (B CT)

'i (A,B) or A B has Mrows and N+l colums: (A B)

L (A)#(C) has M+ rows and N col ums (é

1{ (A,B)#(C,0) has M+l rows and N+1 col unns ég

The above exanples of correct usage of the array constructor while the

e

foll owing exanpl es display incorrect usage because of the incompatability of the

rows and columns.

—

(a, ©)

—

(A #B)

An_array designator is used to horizontally concatenate several matrices

D(J) for J in sone index set L. For exanple L night be a list of basic

colums L(I1), L(2),...,L(MM). Then the basis B is given by

—

B := (A(%,J) FOR J | N L);

—

Alternatively, it can be witten
i
1
L

B := (A(x, L(I)) FOR I IN (1,...,M));

\
— however, it should not be witten
i
“ B := A(%,J) FOR J IN L;
}L because without the concatenation synbol it is equivalent to
\ FOR J IN L DO
—

B = A(*, J);

ENDFOR:
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which is quite different. Nor should it be witten

L B := (A(*, L(1)),.. . ... LM));
| because this does not define the running index and (k,...,%2) in MPL neans
(k, k+1,...,2). Still simplier we can wite
——
B := A(*, L);
N
- -

—

[ S

rt —
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4.0 St at enent s

All statements in MPL are categorized first by whether or not they are

statenments are ended by the terminator sem-colon ().

preceeded by a | abel.

4.1 Label ed Statenents

A label is a neans of providing a specific location in a programto which

execution contro

may be transferred. Labels are either a string of digits enclosed

in parentheses or can have a name |ike a variable.

A | abel ed statenent consists of a

(defined in 4.2)

| abel, followed by a colon followed by an "unl abel ed statenent"”

may be used only once as a | abel within each storage bl ock

referred to |ater

4.2 Unl abel ed

can only be

G0 TO statenents. Exanpl es:

UPDATING: | TERATIONS : = |TERATIONS + 1;

B0 TO UPDATI NG

St at enent s

Unl abel ed

call statements,

4.2.1" Assignnent

statenents are of three types--assignnent statenents, procedure

and keyword statenents.

St at enent

Assi gnnent

storage |ocations.

statenents are used for transferring data values between data

The form of a substitution statenent is V := AE; where V

is any variable as defined in Section 2.1 and AE is any arithnetic expression

as defined in Section 3.2.

A := B+C
S := ARGMIN(¥);

A(I,%) := B+C -
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4.2.2 Procedure Call Statenent

A procedure call statenent transfers execution control to a procedure. When
the execution of theprocedure is conpleted, control returns to the statenment
fol l owi ng theprocedure reference. Mre will be said about procedures in Section 5.1.

Exanpl es:

PIVOT(MR S);
SIMPLEX("IN" A B, C, "OUT" Z, BV, X_BV);

4.2.3 Keyword Statenents

Mich of the ]oower of MPL lies in the use of keyword statenents. Formally,
a keyword statement is one which begins with reserve words such as DEFINE, FOR
|F, GO TO, LET, ENDIF, RELEASE, RETURN. The conplete-list will be found in 3.2.4
in Part Il1l. The keyword indicates to the conmputer and the programer what type
of action is desired. Sone of the keyword statemmts wll be discussed here, the

remai nder being discussed in Chapter 5 (Statement Bl ocks).

4.2.3.1 O_TO Statenent

A GO TO statement is used to alter the normal sequential flow of contreél
during the execution of a program The formis GO TO & ; where & is any | abel

as defined in Section 4.1. Exanple:

| TERATE: o=l o+ 1,

GO TO | TERATE;

4.2.3.2 Sinple Conditional Statement (IF)

A sinple conditional statenent enables one to execute a single statement only
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i f certain conditions hold, and skip it otherwise. The formis

s IF le;

where le is any logical expression as defined in Section 3.1 and s is an

assignment statement. Examples:

S:=01F A(*,J) = B;
R := S+T IF Z = 03
K:=RIFU = 0;

L :=SIFV > 0;

If the logical expressions le is true, the programis executed with s replacing
the entire conditional statement. |If not true, the program goes to the next

stat enent.

In section 5.4 a conpound conditional formis discussed. Its formis

IF le THEN S1s .8y

OR IF le THEN s, ., ...

OTHERW SE Snt1’ 25,

ENDIF;

4.2.3.3 Simple lterated Statenment (FOR)

A sinple iterated statenent is used to perform a given statement several
times in such a manner that during each execution an iteration index is changed

according to a predetermined pattern. The formis

s FOR v IN set ;
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where v is any variable name as defined in Section 2.1, gt s any index set

variable as defined in Section 2.1 and s is a statement. s jp geperal depends

on v . The first part of the conditioned statenent (the FOR phrase) states that

the values of an iteration index (V are EO range over set). The first cycle

through s is executed with the first value of v in set; the second cycle is

executed, the second value of v in set, and so forth until the last value of
the iteration index has been used in the execution of s.  Then control is passed

onto the next statenent. Exanple:

A(I) := B(I,J) FOR | IN (1,...,M);

In Section 5.3 & compound iterated statenent is discussed. |Its formis

FOR V IN set DO
sl,...,Sm
ENDFOR;

4.2.3.4 Let Statenent

The let statement enables one to represent one symbol by another and was

introduced into MPL to ehhance readability. This statement is similar to a MACRO-

It-causes nodification of the program at conpiler tinme instead of execution tine*

The let statement will be explained by showing several examples of its use.

a) LET M:= MATRI X;
A = MxB;
is equivalent to A := MATRI X % B;

b) LET L(1) := RHS(I)/A(I,S); LET T :=(1,...,M);
R := ARGMIN (L(T));
is equivalent to " R := ARGMIN (L(J) FOR J IN T);
or equivalent to R := ARGMIN (RHS(I)/A(I,s) FOR | IN (1,...,MD;
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c) LET Bl := BASIS-| NVERSE, LET BC := BASIG_COSTS;
Pl := BC*BI;

is equivalent to Pl := BASIC_COSTS*BASIS_INVERSE;
Note also in the first exanple that | js a dummy and that another synbol
J was used in its place later on.. The form of a let statement iS LET v := e

where v is a variable and e is an expression.

In the case that let is only used to sinplify a single statement, an inverted

| et .or WHERE form can be used.

R := ARGMN(L(J) FORJ INT)

WHERE T := (1,...,M);

4.2.3.6 Define Statenent

Before a variable name nmay be used in a program the type, structure and
storage requirenents of the values which it represents nust be explicitly or
implicitly defined. The only exception to this rule is that an undefined variable
may be used as a dummy iteration index or as a dummy variable in a let or where
situation. The declaration may be done in two wayS. (One is to define the variable

but not give it any val ues:

DEFINE V 1 BY M;

The other is to define the variable and assign it values at the same tine. |, the

exanple below V is a new variable while A and B have been previously

def i ned.

V := A+ B

Let us now explore the details and neaning of the define statenent.
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The form of an explicit DEFINE statenent is

SI ZE
DEFI NE Vari abl e Type Shape Di nensi ons or Donai n
nane ARI THVETI C RECTANGULAR m BY n
DI AGONAL (ml,...,mz) BY (nl,...,nz)

UPPER TRI ANGULAR
LOAER TRI ANGULAR

SPARSE W TH K NONZEROS

nane LOGd CAL
nane CHARACTER m
nane SET n

Wrds "AR THVETIC', "RECTANGULAR' will be understood if type, shape or size
descriptors are onitted. Scalar is assured if size description is nissing. Let
symbols k, m, n, m, Wy, 0y, 0, be any previously defined integers or integer
expr essi ons. A matrix "SPARSE WTH K NON-ZEROS" neans the matrix has at nost

k non-zeros. It will-be stored as a sparse matrix. A list which has neither row
nor colum interpretation may be indicated by "(m)" where mis the nunber of

el ement s. Exanpl es:

1 DEFI NE E MBY N

2. DEFINE D, E DIAGONAL P BY B;

3. DEFINE D (1,...,M) BY (K,...,1);
4. DEFINE J;

5. DEFINE M SPARSE W TH P NONZERCS,;
6. DEFINE ¢~ 1 BY N

1. DEFINE B M BY 1;

8. DEFINE L CHARACTER,;

9. DEFI NE S SET;
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The form of a domain descriptor is SRL where SRL is a subscript range

L

list, a series of subscript ranges separated by a BY- A subscript range

—

is two arithmetic expressions separated by ,...,. Example of subscript range
list: (1,...,M) BY (MtN,...,K). Each subscript range determ nes the mnimum and

maxi num val ues of the array's subscripts. The number of subscript ranges in the

—

subscript range list determnes the number of dinensions of the storage structure.

o If the domain is of the form(1,...,M) BY (1,...,N) it is witten in Dinension

f

— form M BY Nor sinply Mfor a one-dinensional list or set. The description

f shape and size descriptions may appear in any order in a define statenent.

L

SL The second @nd nost used) method of defining a variable is inplicitly. The

formof an inplicit define statement is vn := ae; where vn is a

—

variable nane as defined in Section 2.1 and ae is an arithnetic expression as

! defined in Section 3.2. In this version of the define statenent the variable
= name being defined is given the sane form type, and structure as the value of
L the first arithnetic expression. Exanples:
(- M := (A, B)#
(C, D);

— M:= (A B O;

B := (P(x, BL(I)) FOR | IN (1,...,M));
—

D := E+ Fx6; "WHERE E AND F ARE MAERICES"
-
—
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5.0 St at enent Bl ocks

A programin MPL consists of a sequence of statenents (defined in 4.0)
and statement blocks. A statement block is a sequence of statements with special
initiating and termnating statenments. There are four kinds of statement bl ocks--
procedure plocks, storage allocation blocks, conditional blocks and iteration
blocks. The entire programis a procedure bl ock. A bl ock can have other bl ocks
i mbedded within it,or it may be inbedded in other blocks,but no two blocks

partially overl ap.

51 Procedure Bl ocks

A procedure is designed to carry out a specific sequence of operations which
may be required over and over again. Rather than rewiting the sequence of steps
each tine, they may be witten once in a form which can be utilized whenever needed.
It is hoped that a library of procedures witten in MPL will be devel oped, thereby
enabling the work of one programmer to be available to others. This will not only
speed up the witing of MPL codes, but will also enhance the readability. Later on

we will say how to call a procedure in a program

If one wants to wite a procedure (which will 3ater be called by some main
routine), the ' procedure is initiated by a procedure statenent, contains a
statement sequence, and is terminated by a finistatement. A procedure statenment
consi sts of the reserved word PROCEDURE followed by a procedure identifier.

The procedure identifier specifies both the procedure name and the |ocal nanes of
the input-output paraneters. The formof a procedure identifier is a variable name

followed usually by a |ist of parameters enclosed in a pair of parentheses.
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The fini statement is used to mark the end of a procedure wite up. In
contrast, RETURN is a signal during execution of a programthat control is to

be passed back to the main routine. This also ternminates any storage allocation,
iteration, or conditional blocks which were initiated but not explicitly or

implicitly termnated within the .Pprocedure.

Control is paased to a procedure by either a function or a procedure
reference call. A procedure may have several return statenents, each one nay cause

termination during execution. vjalues are transferred to and fromthe procedure

by neans of substitution statenents in the input-output section of the procedure

identifier. In general, new variables for the main routine may be defined in the

out put section.

As an exanple of the use of the return statement in a procedure

consider the following routine for checking whether two colum vectors are equal

COWARE := 0 neans A = B.

PROCEDURE COVPARE( A, B)

1 | F ROWDIM(A) == ROW DI M B) THEN
COWPARE := 1;
RETURN;
* OTHERW SE
(2): FOR | | N ROW_DOM(A) DO

IF A(l) == B(1) THEN

COWPARE := 1;
RETURN

ENDIF;

ENDFOR;

COWPARE : = 0;
(3): RETURN
ENDIF;
FINI ;
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Next suppose that in a program we have the follow ng sequence of statements:
| F COMPARE (X,Y)=0 THEN GO T9(21); OTHERW SE GO TO (23); ENDIF;

thus if the vector X equals the vector Y in each conponent, control is

transferred to the statenent (21), if not, it goes to (23).

5.2. Storage Allocation Bl ocks, Rel ease Statements

Storage allocation blocks are required for the efficient use of nenory

core in a conputer. To release a symbol and any storage for other use, the

statenment takes the form
~ RELEASE A, B;

After nmuch debate, it was decided that in witing mathematical programing codes,

block storage allocation was preferable to continual re-allocation.

Rel ease of synbols takes place automatically, however, with subprogram

bl ocks and special release bl ocks.

Al'l symbols and storage except outputs, generated within a procedure are
rel eased when the procedure returns to the main routine. Hence the sane synmbols
outside the procedure can be used with entirely different nmeani ngs.

G in-the statenent
Z := A+ G WHERE G := | N\VERSE(M ;

is treated as a dummy variable locally defined within the block and imediately

rel eased. However, in the situation

LET G:= | NVERSE(M ;
Z :=A+ G

the release of G is not possible until the end of a procedure unless by a special
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rel ease statenent

RELEASE G

5.3 [terati on Bl ook

An iteration block is a statenent sequence which is repeated a nunber of
times only with an iteration index changed between each execution. As such, this
is a generalization of the iterated statenent (Section 4.2.3.3). An iteration
bloek is initiated by a for statement, contains a statement sequence, and is
terminated by an endfor statement. The for statenment (very simlar to the
for phrase of Sectiqp 4.2.3.3) governs the behavior of the iteration by specifying
the values Eor the iteration index. [teration blocks do not release symbols and

storage like a subroutine blocks. Exanple: The formis

FOR v IN set DO

sl,....sz

ENDFOR;

FOR I IN(,...,M) DO
X(1) = ¥(I);

J' =0+ 1

A(x,I) ;= B(1);

ENDFOR;

5.4 Condi ti onal Bl ocks

Condi tional bl ocks are constructions wherein the program sélects between
a set of nutually exclusive courses of action. A conditional block is initiated
by an if statement and terminated by an endif statenment. O if and otherw se

statenents allow for the provision of nultiple alternatives. This construct is a
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generalization of the conditional statenent (Section 4.2.3.2). Conditional blocks

do not rel ease synbols generated within them The formis:

IF le THEN s 8

) R

R IF le THEN s, 8y

OTHERW SE Snb1’ " "5,

ENDIF;

IF A= B THEN GO TO (7);
ORIF A= C THEN GO TO (8);
OTHERW SE

- B := A,

ENDIF;

The OR | F and OTHERWIBE are optional in a conditional block. For exanple

IF le THEN s ENDIF;

1,-.-,S2
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6.0 Exanpl es of MPL Procedures

PROCEDURE  SUM F)

(3):

(4):
(5):

PROCEDURE

(1):

(2):
(3):

"SUMS A VECTOR F OVER I TS DOVAI N'

" ACCUMULATE THE RUNNING SUM IN s."

:S:’—'O;

SAME LOCATION (S, S);

"S' WLL BE THE UPDATED VALUE OF S TO BE STORED I N THE SAME

LOCATION AS S AND THEREAFTER REFERRED TO AS S."
§' :=S + F(1) FOR | IN DOM(F);
"| TERATI VELY ADDS F(1) TO s"

SUM := S,

RETURN, FINI;

MIN1("IN" F, "OQUT" K, M
"K IS THE FIRST INDEX | WHERE F(1) TAKES ON ITS M Nl MUM

VALUE M OVER DOVAIN OF F."
"INl TIALIZE K AND M"

K := DOM(F)(1); "|.E. THE FI RSTCOVPONENT OF THE SET DOM(F)"
M = F(K);

SAME LOCATION (K, K), (M M);

"K', M', ARE UPDATED VALUES OF K, M"
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L (4: FOR | IN DOM(F) DO
-
IF F(1) < M THEN
- R' = I’
M = F(I); .

N

‘ ENDIF;

ENDFOR;
«

(5): RETURN; FINI;

r—-—“-

PROCEDURE COL_PIVOT (A P, R);

r—

"WARNING - MODI FIES A AND STORES THL RESULT A I'N THE
SAME LCCATION AS A"

"PIVOTS (A, P) ON P(RI WHERE A IS A MATRIX AND PA

- r—

COLUMN VECTOR, AND RETURNS A", THE MCDI FI ED A PART ONLY."

(1): SAME LOCATION (A, A);

M := ROW_DIM(A);

G
©

(3): LET T := (1,...,M AND NOT R

A'(R, *) := AR, *)/P(R);

c—
—
=

(5); A'(I, %) := A(I, *) - A'"(R, %) * P(1) FOR | IN T,

r—

(6): COL_PIVOT := A';

(7): RETURN, FINI;

—

PROCEDURE REVISED_SIMPLEX 2 ("IN" A D, C, BV, "OUT" STATUS,X,Z,K);
"REVISED_SIMPLEX_ 2 | S JUST PHASE 2.
A = MATRIX, C =c0SsTS, D= RHS, BV = BASIC VARI ABLES,

X = BV VALUES, Z = OBJECTIVE VALUE, K = | TERATI ONS"

—

"THE PROBLEM IS TO FIND MN Z, X > 0, AX=D, CX = Z

IF MN Z IS FINNTE, STATUS = FIN TE, OTHERW SE STATUS =

{_M\

INFINITE. | T | S ASSUMED THAT BV IS A BASI C FEASI BLE SET

—

OF VARI ABLES. "
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“I'NITI ALI ZATI ON'

(1): K := 0;

(2): STATUS := "FINTE';

L
L
L

"THE FIRST STEP IS TO SET UP THE INITIAL BASIS WH CH CONSI STS
~ O THE SET OF BASI C VARI ABLE COLUMNS, BV, OF A THUS
BASIS := A(BV). LET G BE THE I NVERSE OF THE BASI S.

WE ARE | NTERESTED IN COVPUTI NG G AND LATER UPDATING IT."

(3): G := INVERSE(BASIS) WHERE BASIS := A(BV);

-~

"ALSO X, THE VALUES CF THE BASI C VAR ABLES, ARE | N Tl ALLY"

L’ (4): x := G »D;

" | TERATI VE LoOP"

—

"THE COSTS ASSCCI ATED W TH BASI C COLUMNS ARE C(BV) - HENCE

THE SI MPLEX MULTI PLI ERS P ARE 3 VEN BY"

r—

(5): P := C(BV) % G

"LET S DENOTE THE | NDEX OF THE COLUMN OF A COM NG I NTO THE

BASIS AND C_S = C(S)."

rr— — — r—
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(6) : MIN_1("IN" CGP % A "OQUT" S, CS) ;

"WHICH | S THE | NDEX (ARGUMENT) OF THE SMALLEST COMPONENT
OF ThE VECTOR OF RELATIVE COSTS G P * A"

"TEST FOR FINNTE M N Z"

(7): GO TO (16) IF C_S > 0;

"LET Y BE THE REPRESENTATI ON

TERMS OF THE BASIS.™"

(8t v :=GxA(* s):

"LET R DENOTE THE | NDEX OF THE COLUWN IN THE BASIS TO BE

REMOVED'

LET T := (I IN DOM(Y)|Y(I) > 0);

I'F T = NULL THEN
STATUS := 'INFINITE ;
G0 TO (16);

ENDIF;

(9): MINI(MIN" (X(I)/Y(I) FOR1 INT), "OUT" R Q;

"UPDATE X, G K, BV DENOTED BY X, G, K, BV "

(10): savE LOCATION (X, X'), (G 6"), (K, K"), (BV, BV');

(11): X' =K + 1;
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(12): x' = XY % Q;
X (R :=Q

(13): G := COL_PIVOT(G,Y,R);

"COL_PIVOT PIVOTS (G,Y) ON Y(R) AND RETURNS MODI FIED G

PART. "

(14): BV'(R) := S;

"CHANGE R-TH BASIC VARI ABLE TO S."

.. "UPDATING COWPLETE, RECYCLE"

(15): GO TO (5);

" TERM NATI ON'

(16): Z := C(BV) % x;

(177 RETURN,

(18): FINI;
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PART Il A GENERAL’' DESCRIPTION
PARTIII A FORMAL OEFINITION

NOTE: BECAUSE THEDEVELOPMENT OF PARTS | AND Il WA SSLIGHTLY
CUTOF PHASE WITHTHE DEVELOPMENT OF PARTIII THE READER M A Y
CBSERVE SOME NOTICEABLE, ALTHOUGHNOT SIGNIFICANT, OESCREPENCIES
BETWEFENTHEM. THESEDESCREPENCIESARE DUE TO THE FACT THATMPLIS
NOTVYET FULLY CEVELOPEDANDMANYIOEASARESTILL EXPERIMENTAL.
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0-1 ABSTRACT

COMMUNICATION WITH A DIGITAL COMPUTERIS A PROBLEMWHICH HAS
OCCUPIED MANY PEOPLE FOR A LONG TIME. IN OKDERTO ALLOW THE
COMPUTER TOBEMOREWIDELYUSED AS A COMPUTATIONALTOOLMUCH OF
THIS EFFORT HAS GONEINTO OEVELOPING SYSTEMS THROUGH WHICH 4
PERSON ‘MAY COMMUNICATE HISDESIRES EVEN THROUGH HEIS NOT FAMILIAR
WITHTHE SOPHISTICATED ANDHIGHLY DOETAILEDPROGRAMMING LANGUAGE S
AVATLABLE, THE MATHEMATICALPROGRAYMING LANGUAGE IS ANOTHER
ATTEMPT TO PROVIDE A LANGUAGE IN WHICH THE NON-PROGRAMMER MAY
WRITEPROGRAQS. THEVALUEDFTHI| SWIRKLIES IN THE FACTTHAT IT
ISORIENTED DIRECTLY TOWARD MATHEMATICAL PROGRAMMING. CONSEQUENTLY
CONSIDERABLEEFFORT HASBEENMADETIMAKE YPLLOOKAS MUCHLIKF
STANDARD MATHEMATICAL NCTATION ASPOSSIBLE.

| TISHOPED THAT THIS WORK WILL PRODUCE A RIGOROUSLY DEFINED LANGUAGE
INWHICH MATHEMATICAL PROGRAMMERS CANDESCRIBE ALGORITHMS WHICH
WILLATTHE SAME TIMEBEEASILY UNDERSTOOD BYOTHERMATHEMATICAL
PROGRAMMERSAND MEANINGFUL 4ND VALIOCOYPUTEQ PROGRAMS.

SINCEJYPL IS A LANGUAGF INTENDED FOR COMMUNICATIONBOTHWITHOTHER
INDIVIDUALS-AND W I THCOMPUTERSy ITS DEVELOPMENT IS AN EFFORT TD
PROVIDE A*READABLE* PROGRAMMING LANGUAGE. HOWEVER, FORA PROGRAM
TOBE READABLE (AN EASY TO USE AND RAP10 METHODFOR TRANSFERRIYG
INFORMATION) ITMUST BEBOTH ‘UNDERSTANDABLE’' (THE NOTATION IS
FAMILIAR OR SELF-EXPLANATORY WITHIN ITS CONTEXT)AND *COMPREHENDABLE"
(THEPAKTS OF A PROGRAM MUSTINTERRELATEIN A MEANINGFUL MANNER

FOR THE PROGRAM READER )e IN‘“THIS RESPECT THE EMPHASIS OF MPL

ISUPOY PROVIDING ANUNDERSTANDABLE LANGUAGE. COMPREHENDABILITY
WILLSTILLBETHE USER'SRESPONSIBILITY,.
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-
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L

} 0-3 .MPL LANGUAGE DESIGN PHILOSOPHY

L_ -~
THE PHILOSOPHY BEHIND THE DESIGN Of THE MATHEMATICAL PROGRAMMING

l LANGUAGE (HEREAFTER CALLED MPL) ISTOPROVIDE A MAXIMUM OF

L READABILITY TO THE UNINITIATED. THUS | T C A NHOPEFULLYB E
ASSUME3 THAT THE USER HASONLY A FAMILIARITY WITH THENOTATON

1’ OF CURRENT MATHEMATICAL LITERATUREe AS A RESULT THE LANGUAGE

| DEFINITIONATTEMPTS TOAVOID ABBREVIATIONSWHICH MAY BE

— OBSCURE,TOKEEPTHE NUMBEROF SPECIAL SYMBOLSTOAMINIMUM,
AND TO PROVIDE THE MOSTFAMILIARNOTATION AN D FORMATION.

- AS YPL DEVELOPED IT BECAME OBVIOUSTHAT MANY USEFUL STRUCTURES
WERE AVAILABLE IN EXISTING LANGUAGESe AS A RESULT THE READER
WHOISFAMILIARWITHALGOL, FORTRANGPL/IZWETC.9OWILLENCOUNTER

, FAMILIAR FORMS AND PHILOSOPHIES. NO ATTEMPT HAS BEEN MADE

=~ TOPARALLEL ‘ANY SINGLE SUCHLANGUAGE, BUT WHERE APPLICABLE

f T ODEVELIPTHEBESTTHATWAS AVAILABLE.

.

—

A
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0-4 USEDFTHE MANUAL

THEFOLLOWING DISCUSSION IS DRGANIZED SO THAT THE READER MAY
FOLLOW THE CONSTRUCTION OF MPLFROM THE MOST ELEMENTARY
UPTHRIUGH THE BROADEST CONCEPTS, THE FINAL SECTIONI| S A RESUME
QF THEFORMAL DEFINITIONS SO THAT THIS PAPER MAYBEUSEDBOTH

FDRINSTRUCTIONAND AS A REFERENCE MANUAL. EXAMPLFS WILL BE

LIBERALLY SPRINKLED AMONG THE. DESCRIPTIONS.

THEDEF INITION OF YPL WHICH' APPEARS HERE IS AIDEDBYTHE
USE OF A YETALINGUISTIC ORLENGUAGE-DESCRIBING LANGUAGE WHICH
HAS SEVERAL SPECIAL SYMBOLS.,.

< > A PAIR OF BROKEN BRACKETS DELIMITS A PHRASENAME.
v A PAIR OF PRIMES DELIMITS 4 CHARACTER STRING WHICH

APPEARSIN A PHRASE EXACTLY ASIT APPEARS WITHIN
THE PRIMES.

.
o
fl

READTHISSYMBOL “IS DEFINED AS", IT SEPARATES THE

-PHRASE NAME ON THE LEFTFROMTHE PHRASE DESCRIPTION

OK. THE RIGHT.

| KEAD THIS SYMBOL ™0OR™, IT SEPARA'TES MUTUALLY EXCLUSIVE
DESCRIPTIONS.

EXAMPLE METALINGUISTIC STATEMENTS

<CHARACTER>::=<LETTER>|<DIGIT>| <SPECIAL CHARACTER>

THIS METALINGUISTIC STATEMENT READS “A CHARACTERISDEFINED AS
A LETTERORADIGIT OR A SPECIALCHARACTER.”

<ITERATED STATEMENT>::=*IF'<EXPRESSION>',*<KSTATEMENT>
THIS READS “ANITERATED STATEMENT IS DEFINED AS THECHARACTERS

“l F* FOLLOWED BY AN EXPRESSION FOLLOWED BY ACOMMAFOLLOWED
BY 4STATEMENT."
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1-1 AN ORGANIZATIONAL OVERVIEW

THE MPL LANGUAGE IS DESIGNED TO FACILITATE THE COMMUNICATION
OFMATHEMATICALPROGRAMMING ACGORI THMSs THE COMPLETE STATEMENT

OF AN ALGORITHMINMPL IS A ‘PROGRAM’* A PROGRAM IS COMPOSED 7t
ONE OR MORF ‘PROCEDURES’, EACH OF WHICHI| S ASEQUENCE OF SEVERAL
*'STATEMENTS's EACH STATEMENTI SMADE UP OFYRESERVED..... AND

. @EXPRESSIONS'y THERASIC BUILDINGBLOCKS Of MPLe THESEy FINALLY

ARE COMPOSED OF ‘CHARACTERS".

1-2 THE MPL CHARACTER SET
THE CURRENT VERSION OF MPL ISBASEDUPON THECHARACTER SET OF
THEIBMO029 KEYPUNCH. FOR CONVENIENCE THESE cicrens A

R E
GROUPEDINTOTHECATEGORIESNFLETTERS, DIGITS;ANDSPECIAL
CHARACTERS.

<CHARACTER>: :=<LETTER>|<KDIGIT>|<SPECIAL CHARACTER>
WHERE ...SPECIFIC CHARACTERS I N EACH CATEGORY ARE GIVEN BY:

<LETTER>::_-:iAI|03||'cn'|D|'|El'q:c|UGQ'|H|'IIO||J0|‘K1||LO
jeMefaNsjege]sprjeqQujepeagefaTejeoyroyejoegejoxsjsyejoye

CDIGIT>:z=10v 110020030040 v50 |60 [s70]0gr]1ge

KSPECIAL CHARACTER>:s=0(t]e)orce]ode]e,vfa njopojosjoxejaye
jeso |t~ o=t joenjr v sjegejegelogeegu|spefefefege

TWO OTHER CHARACTERS ARE AVAILABLE ON THE 029 KEYPUNCH,BUTARE
NOT INCLUDED IN THE ABOVE CATEGORIES DUETOTHEIR SPECIAL USAGE
| NMPL, THESE CHARACTERS ARE

3 STATEMENT TERMINATOR
poe COMMENT DELIMITER
1-3 SOME ELEMENTARY PHRASES
<CHARACTER STRINGS::=" ((CHARACTER STRING><CHARACTER>

<DIGIT STRING>::=<DIGIT>|<KDIGIT STRING>KDIGIT>
KNULLPHRASE>: :=*¢|<KNULLPHRASE>"?

THESE PHRASES ARE USED IN SEVERAL PLACES THROUGHOUT THE MANUAL.
THE CHARACTER AND OIGIT STRINGS ARE JUST STRINGS OF CHARACTERS
OR DIGITS AS THEIR NAMES IMPLY. THENULL PHRASE INDICATESTHAT
THFPHRASEWHICH | T DESCRIBES MAYBE OMITTED.
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2 EXPRESS IONS

<EXPRESSION>::=%(*<EXPRESSION>?)?
| <XNUMBERD>
| *TRUEY | *FALSE"
l*NULL’
] ** " CCHARACTER STRING> ¢
|<VARIABLE>
| <PROCEDURE CALL>
| <COMPUTATIONAL EXPRESSION>
| <DOMAIN ITEM>
| KCONCATENATORD
| <ARRAY CONSTRICTORD>
| <SUBSET SPECIFIER>

EXPRESSIONS 4RE ELEMENTS OF MPL WHICH HAVE *VALUE’'. THEY USUALLY
DERIVE THEIR VALUES FROM MANIPULATIONS OF VALUES OF CONSTITUENT
PARTSes THE MOSTBASIC EXPRESSIONS ARECONSTANTS WITH FIXED
VALUES AND VARIABLES WITH VALUES WHICH MAY CHANGE DURING PROGRAM

-OPERATION. EACH CONSTANT AND VARIABLE, AND CONSEQUENTLY EACH

EXPRESSION, HAS AN ASSOCIATED SET OF ATTRIBUTES WHICH DESCRIBE THE
PROPERTIES OF THE VALUE OF THE EXPRESSION.

2-1 EXPRESSION ATTRIBUTES

'*TYPE’ MPL ALLOWS THE USER TO MANIPULATE VALUES WHICH ARE ARITHMETIC
QUANTITIES, LOGICAL OR BOOLEAN QUANTITIESy SETS, OR CHARACTER STRINGS
CONSEQUENTLY THE POSSIBLE VALUES FOR THE TYPE ATTRIBUTE ARE ARITHMETIC,
LOGICAL, SET, AND CHARACTER. INITIALLY NO ATTEMPT IS BEING

YADETD | MPOSE THE ‘FLOATING POINT’ AND *INTEGER® SUB-CLASSIFICATIONS
NOF THE ARITHMETIC TYPE ON MPL USERSs INSTEAD IT IS HOPED, PERHAPS
INVAINy THAT THESE HARDWARE IMPOSED CONVENTIONS MAY BEBYPASSED.,

* FORM’ IF A VALUE HAS TYPE ARITHMETIC, THENITYAYBEEITHER A SCALAR
QUANTITY, A VECTOR QUANTITY, ORA MATRIX QUANTITY"’ CONSEQUENTLY THE
POSSIBLE VALUESFORTHE FORM ATTRIBUTE ARE SCALAR, VECTOR,y AND MATRI X,

‘SHAPE’ IF A VALUE HAS TYPE ARITHMETIC, ITSFORMUSUALLY HASA RELATED
SHAPEATTRIBUTE WHICH PROVIOFS ADDITIONAL INFORMATION ABOUTTYHEVALUE'S
DRGANIZATIONe A SCALAR FORM HAS NO SHAPE ATTRIBUTE, A VECTOR YAY

BE EITHER AROWVECTOR ORA COLUMNVECTORSO ITS POSSIBLESHAPFS ARE
ROW A Y D COLUMN, MATRICES, NORMALLY RECTANGULAR, ARE GIVEN SHAPESTO
CONSERVE STORAGE SPACE BY STORING ONLY SUBSETS OF ELEMENTS. POSSIALE
MATRIX SHAPES ARE RECTANGULAR, UPPER TRIANGULAR, LOWER TRIANGULAR,
DIAGONALy AND SPARSE.
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2-2 CONSTANTS

A CONSTANT ISANEXPRESSION WHICH HAS AFIXED VALUE DETERMINEO BY
THE NAMEOF THE CONSTANT. THEREARECONSTANTS OF EACH TYPE.

‘2-2-1 NUMBERS
<NUMBE R3>::=<NUMBER BASE> |<NUMBER BASE><EXPONENT>

<NUMBER BASE>::=<DIGIT STRING>
I<DIGIT STRING>" .’
| *<DIGIT STRING>
IKDIGIT STRINGD> '3 *<DIGITS TR ING >

<EXPONENT>::=" E*<DIGIT STRING>
|1EY Y +9<DIGIT STRING>
| YE**__<DIGIT STRING>

ESSENTIALLY A NUMBERISA DIGIT STRING(1-3)y POSSIBLY CONTAINING A
SINGLEDEC IMAL PQINT, | F THENUMBERHAS A VERYLARGEOR AVERYSMALL
VALUE SO THATWRITING IT REQUIRES MANY ZEROS, I T BECOMES WORTHHWHILE
TOUSE THE ABBREVIATED ‘SCIENTIFIC NOTATION' PROVIDED BY THE EXPONENT.
HERE®'E*MEANS‘TIMESTENTO THE POWER". THE SYMBOL**INOICATES
THAT THESIGN FOLLOWINGTHE"E* ISOPTIONAL.

EXAMPLE NUMBERS
2 1306 2«‘54 16325 15.65"03 2E5 0006

2-2-2 LOGI CAL CONSTANTS

LOGICAL, BOOLEANy OR TRUTH VALUEO EXPRESSIONS RESULT MOSTLYFROMTESTS
ON OTHER QUANTITIES WHICHYIELD THE VALUES TRUE OR FALSE. SINCE
THERE ARE ONLY TWO POSSIBLE VALUES FOR ANY LOGICAL EXPRESSION
THEREAREONLY TWO POSSIBLE LOGICAL CONSTANTS,y ‘TRUE’ ANO ‘FALSE".

2-2-3 SET CONSTANTS

SETSINMPL ARE INTENDED PRIMARILY FOR INDEXING OVERROWS ORCILUMNS OF
MATRICES, ITERATION. LOOPS, ETC. AS A RESULT, SET ELEMENTS HAVE WHOLE
NUMBER VALUES,, THERE ARE NO OUPLICATE ELEMENT VALUESIN, SETS.
HOWEVER, SINCE SETSMAY, CONTAIN A VARIABL'E NUMBER O F ELEMENTSy THEY
HAVE AN ASSOCIATED SIZE OR NUMBER OF ELEMENTS. THE SINGLE MOST
IMPORTANT TESTON ASETISTHEREFORE WHETHERIT ISEMPTY. THUS THE
THESETCONSTANT‘NULL" ISPROVIDED TO FACILITATE THESE TESTS AND
FOROTHER USES.
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L; 2.2-4 CHARACTER CONSTANTS
CHARACTER CONSTANTS HAVE THE FORM “*<CHARACTER STRING>' "%,

L CHARACTER CONSTANTS WERE ORIGINALLY PROVIDED IN MPCFOR CONVEYING FORMAT
INFORMATIONTO THE INPUT AND OUTPUT ROUTINESe HOWEVER, WITH ONLY SLIGHT
DEVELOPMENT A VERY POWERFULMANIPULATING CAPABIL ITY APPEARED. 4

4 CHARACTER CONSTANTISANY STRING OF CHARACTERS DELINEATEO BY A

e PRIME (SINGLE QUOTEYONEACH ENO. A PRIMEWITHINACHARACTER
STRING M U S T BEREPRESENTED BY TWO AOJACENT PRIMES'I.E. " (A S
OPPOSEDTO A DOURLEQUUTE 'O

-

EXAMPLE CHARACTER CONSTANTS

; t1H-y 25E1346"

L *HELP, HELP?

‘THIS ISTHE JONES” HOUSE®

— 2-3 VARIABLES
SVARIABLE>:: =<VARTABLENAME> | <VARTABLE>? (*<SUBSCRIPT LIST>‘)"

- -

VARIABLES REPRESENT VALUES. JUST AS A VARIABLE NAMEISUSEO TN
REPRESENT AN ENTIRE MATRIX OR VECTOR, VARIABLE NAMES WITH SUBS"RIPTS
REPRESENT SPECIFIC ELEMENTS OR SETS OF ELEMENTS OF THESE FORMS,

- MPLVARIABLES CAN REPRESENT VALUES INDIRECTLYe FOR INSTANCE, IF A
REPRESENTS A MATRIX' THE ELEMENTS OF THE MATRIX COULDBE NUMBERS,

L ORTHEYCOULD HE POINTERS TO OTHER MATRICESe INTHE LATTER MANNER
A(L,J) (KoL) WOULD PICK FROMA(I4J) THE POINTER TOSOME MATRIXFROM
WHICH THE (KoL) TH ELEMENT WAS ACTUALLY DESIRED. THE POWER HERE
IS THAT THE ELEMENTS OF AN ARI THMETIC MATRIXO R VECTOR NOW MAY BE

_ OTHER ARITHMETIC QUANTITIES, LOGICAL QUANTITIES, SETS, OR CHARACTER
STRINGS.

- 2-3-1 VARIABLE NAMES

-<VARIABLE NAME>: :=<LFTTER>
- | <VARIABLE NAMEDXLETTERD>
| <VARIABLE NAME>XDIGIT>
I<VARIABLENAME>","
] <VAIRABLF NAMEDt¢?

A VARIABLE NAME NAMES A ‘STORAGE STRUCTURE AND THEREBY HAS

ALL Of THE ASSOCIATED PROPERTIES OF THE STRUCTURE. IF THE STRUCTURE
HASTYPEARITHMETIC ITS ELEMENTS MAY BE POINTERS TO OTHER STRUCTURES
HAVINGOTHER TYPES . A VARIABLE NAME ALWAYS BEGINSWITH A LETTFR
WHICH YAYBEFOLLOWED BY ANY NUMBEROF LETTERS'DIGITS, UNDERSCORES,
DRPRIYES.

r

EXAMPLE VARIABLE NAMES
4 A’ ALPHA36 THIS_IS_A_VARIABLE_NAME OBJECTIVE_FUNCTION

— —

—
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L 2= 3-2 SUBSCRIPTS

SUBSCKIPTS ARE SUBSCRIPTLISTS ENCLOSED IN PARENTHESES.

- <SUBSCRIPT LISTD::=<¢SUBSCRIPTELEMENT>
| <SUBSCRIPT LIST>'49<SUBSCR IPT ELEMENT>
L ‘<SUBSCRIPTELEMENT>::="%¢ | KEXPRESSIOND>
SUBSCRIPTS ARE USED TO ACCESS SUBSETS OF ELEMENTS OF ARITHMETIC
DATA STRUCTURES. THENUMBER(OF SUBSCRIPT ELEMENTS I N.SUBSCRIPT
— LIST MUSTBE EQUALTO THENUMBER OF DIMENSIONS OF THE DATA STRUCTURE.
THE*USEDASASUBSCRIPTELEMFNYT REFERENCES AN ENTIRE ROW O R
; COLUMN OF AN ARRAY. THUS A(%*y%) = A AND B(*)= B WHERE A  AND B
- ARE AMATRIXAYO A VECTOR RESPECTIVELY. VALUES OF EXPRESS IONS
UUSED AS SUBSCRIPT ELEMENTS MUST HAVE EITHER ARITHMETIC OR SET
TYPEs |IF THE EXPRESSIONISARITHMETICIT MUST BE EITHERA SCALAR
L OR 4 VECTOR. A SCALAR ACCESSES ASINGLE ELEMENT WHILE A VECTOR
ACCESSES A SET Of ELEMENTS, ANYFRACTIONAL PART OF A VECTOROR
SCALARELEMENT VALUES IS DROPPEDAND ANY’ VALUESOUTSIDE THE RANGE
O F THF SUBSCRIPTELEMENT ARE IGNORED.
- -
EXAMPLE VARIABLES
A(3%A+3,C) AT, B(I) A'(I,%) A{(ROW_SET,COL_SET)
.
AS YENTIONEO IN (2=3)THE ELEMENTS OF AN ARITHMETIC DATA STRUCTURE
(VECTOR OR MATRIX! MAY ALSO POINT TDOTHER SUCH QUANTITIES. HENCE
L "MATRIX_LIST(K)(I4J)?' ACCESSES THE(I9J)ITHELEMENT INTHE MATRIX
INDICATEDBY THE(KITHELEMENTI| N *MATRIX_LIST's THISPROCESSMAY
BECONTINUED TO ANY LEVEL, RUT WITH CARE.
5
2-4 PROCEDURE CALLS
L <PROCEDURE CALL>: :=<VARIARLE NAME>
|<KVARIABLE NAMED* (Y<EXPRESSION LISTD>*)?
YEXPRESSION LIST>:: =<EXPRESSION>|KEXPRESSION LIST>' ,*CEXPRESSION>
-
A PROCEDURF CALLCALLS APROCEDURE FROM WITHIN AN EXPRESSION.IT
f | SASSYUMED THATTHE CALLEDPROCEDURE RETURNS A VALUE WHICH CAN
L BFUSEDTO EVALUATE THE EXPRESSIONINTHECALLING PROCEDURE.
% WHEN A PKOCEOURE ISDEFINED(3) ANY VALUES WHICH WILL BE PASSED FROM
L THE CALLING PROCEDURE AT THE TIMEOFTHECALL ARE REPRESENTED BY
VARIABLF NAMES IN THE VARIABLE NAME LIST FOLLOWING THE PROCEDURE
, NAMEINTHE DEFINITION. THESE VARIABLES TAKE THEVALUES QOF THE
¥ EXPRESSIONS IN THE PROCEOURE CALL EXPRESSIONLIST INTHE OROER IN
L WHICH THEY OCCUR.

THEVALUE OF 4 PROCEDURE ISDETERMINED IN AN ASSIGNMENT STATEMENT
W THI N THE PROCEDUQE IN WHICH THE NAME OF ‘THE PROCEDURE APPEARS
ONTHELEFTOFTHE ASSIGNMENT SYMBOL {(3=2=-21,

r—

EXAMPLE PROCEDURECALLS
PIVOT(A+A' 4By 142,J4R=3)
sus(8}

—
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2-5 COMPUTATIONAL EXPRESSIONS

<COMPUTATIONAL EXPRESSICN>2:='+9<CEXPRESSIOND>
| "= <EXPRESSIOND>
I*NOT @<EXPRESS ION>
| KEXPRESSTOND '+ ' <EXPRESSION>
| CEXPRESSIOND - *<EXPRFSSIOND>
| <EXPRESSIOND ' ®*¢ CEXPRESSLOND>
| CEXPRESSINN> !/ <EXPRESSIOND
| <FXPRESSTUN>Y %9 CEXPRESSIOND
) CEXPRESSIDND #1<CEXPRESSTOND
| <EXPRESSION>" AND ‘<EXPRESSION>
| <EXPRESSIOND' CR ‘<EXPRESSION>
| CEXPRESSTOND® [N ‘<EXPRESS ION>
| <EXPRESSION>* AND NOT ‘<EXPRESSION>
| CEXPRESSION>Y=¢<EXPRESSION>
| <EXPRESSION>' ~=¢<EXPRESSION>
| <EXPRESSIOND*>*<CEXPRESSIOND
| CEXPRESSIOND? C*<EXPRESSIOND>
| CEXPRESSIOND*>=¢<EXPRESSIOND
. | KEXPRESSIOND>*<=*<EXPRESSION>

‘OPERATORS’ MODIFYOR CONNECT *OPERAND*EXPRESSINNS INCOMPUTATIONAL
EXPRESSIONS, ALL COMPUTATIONAL EXPRESSIONS HAVE ONE OF TwWQ

GENERAL FORMS:

UNARY <OPERATOR><R-0OPERAND>

BINARY KL-DPERANDD>COPERATUR><R-DIPERAND>

2-5-1 OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS
EACHOPERATORHAS 4 UNIQUE CONTEXTIN YHICH I TMAYBEUSED. THE
CONTEXT IS DETERMINEDRBY THE TYPES OF THE ASSOCIATED OPERANDS.
AS A RESULT QPERATORS ARE CLASSED AS "ARITHMETIC’, ‘SET’,
CARTTHMETICTEST?'y* SETTEST*y A N D *LOGICAL',

THEFOLLOWING TABLE DETERMINES THE TYPESQOF OPERANDS ALLOWABLE

WITHEACHC L A S SOF DOPERANDS,

L=3PERAND “OPERATOR R-OPERAND RESULT
TYPE CLASS TYPE TYPE

. ARITHMETIC ARITHMETIC ARI THM ET IC ARITHMETIC
SET SET S E T SET
AR | THMETIC ARITHMETIC TEST ARI THMET I C LOGICAL
SET SET TEST SET LOGICAL
LUGICAL LOGICAL LOGICAL LOGICAL
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2-5-2 OPERATOR DEFINITIONSAND PRECEDENCES

THEOPERATORS WHICM FALL INTQ THESE CLASSES AND THEIR MEANINGS

ARE SHOWNINTHE FOLLOWINGTABLEs SOTHAT THE ORDER OF COMPUTATION
IN ANY COMPLICATED EXPRESSION WILLBEUNAMBIGUOUS,y EACHOPERATOR
HAS A PRECEDENCE (INDICATED BY A PRECEDENCE NUMBER) ANDOPERATIONS
WITHTHE HIGHESTPRECEDENCE (NUMBER) ARE PERFORMEDFIRST,

OPERATORS WITH THE SAME PRECEDENCE NUMBER HAVE EQUAL PRECEDENCF
AND ARE PERFORMED FROM LEFT TO RIGHT.

OPERATAORDEFINIT ION TABLE

OPERATOR PRECEDENCE USE INTERPRETATION
ARI THMETIC OPERATORS
g 70 BINARY VERTICAL CONCATENATION
LR 65 UNARY NDEFFECT
-1 65 UNARY NEGATION
"ok 60 BINARY EXPONENTIATION
"t _55 BINARY MULTIPLICAT ION
v/ 5¢ RINARY DIVISION
g 45 BINARY SUM
bl 45 RINARY DIFFERENCE

SET OPERATORS

! AND * 40 BINARY S ETINTERSECTION

* OR ! 35 RINARY SET UNION

* AND NOT ' 30 BINARY SET RELATIVE COMPLEMENT
ARITHMETIC TEST OPERATORS

1= 25 BINARY IS EQUAL TO

Pa=t 25 BINARY ISNOT EQUAL TO

't 25 BINARY IS GQEATER THAN OR EQUAL TO

(= 25 BI NARY ISLESS THANOREQUAL TO

e 25 BINARY IS STRICTLY GREATER THAN

1< 25 RINARY ISSTRICTLY LESS THAN
SET TEST OPFRATORS

YIN Y 2C - BINARY IS CONTAINED I N (IS A SUBSET OF)
LOGICAL OPERATORS

YNOT ¢ 15 UNARY : LOGICAL NEGATION

' AYD * 10 BI NARY LOGICAL INTERSECTION

t QR ¢ 5 B INARY LOGICAL UNION
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SEMANTICS

EACH CIMPUTATIONALEXPRESSIONHAS THE FORM
<L-0O0PERAND>XOPFRATOR><R-OPERAND>

‘THIS SECTION DESCRIBES THE RESTRICTIONS PLACED UPON EACH

(JPERAND AND SOMEADDITIONAL PROPFRTIES OF THE RESULTS,

ARITHMETIC OPERATORS

THE CURRENT VERSION OF MPL RESTRICTS ARITHMETIC DATA STRUCTURES

TOTWODIMENSIONS.

THISRESTRICTIONALLOWS CONSIDEQARLE IMPLICZIT

COMPUTING POWER WITHCUT BEING OVERLY RESTRICTIVE FOR MATHFMATIC AL
PROGRAMMING APPL ICATIOMSe THUS ALL ARITHMETIC DATA STRUCTURES
(EVENT H ECONSTANT 15)CANBEVISUALIZED AS MATRICES.

(JPERATOR

'y

1408

"okt

PART

L-OPERAND
R-NPERAND

RESULT

L-OPERAND
R-OPERAND
RESULT .

L-OPERAND

R-OPERAND
RESULT

L-CPERAND

R-OPERAND

RESULT

CHARACTERISTICS -

ANYARITHMETIC QUANTITY.

AN ARITHMETIC QUANTITY WITH THE SAME NUMBER

OF COLUMNS AS THEL-OPERAND,

THE VERTICAL CONCATENATION OF THE TWO OPERANDS.
IT HAS THE SAMENUMBER Of COLUMNS ASEACH
OPERANDANDTHENJMBEROFROWSEQUALTO THF
SUMOF THE NUMBERSOFROWSINEACHOPERAND-

NONE.
ANYARITHMETIC QUANTITY.
SAME AS R-0OPERAND,

NONE.

ANYARITHMETICQUANTITY.
THER-OPERANDWITHALL ELEMENT VALUE SIGNS
REVERSED.

ANY ARITHMETIC QUANTITY WITH THE SAMENUMBER OF
ROWS AND COLUMNS. THUS THE L-OPERAND MAY
BEEITHER-ASQUAREMATRIXORA ‘SCALAR".

MUST BE ASCALAR (ONE ROW ANOONE COLUMN)

WITH A NON-NEGATIVE VALUEs

THE L-OPERAND YILTIPLIED BY ITSELF THENUMBER
Of TIMES SPECIFIEDBYTHER=~OPERAND,

IF THE L-OPERAND HASMORETHANONEROW AND
COLUMN ANY FRACTIONAL PORTION OF THE R-OPERAND
WILL BEDROPPEDe OTHERWISETHEL-OPERANDIS A
SCALAR AND ANY POSITIVE VALUES FORTHER-OPERAND
ARE ALLOWED.
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2-5-3

OPERATOR

L3 ]

'/

LIS
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SEMANTICS (CONTINUED)

PART
L-0OPERANY
R-1OPERAND

RESULT

L-CPERAND
R-0OPFRAND
SE SULT

L-OPERAND
R=0OPFRAND

RESULT

CHARACTERISTICS

ANY AR I THEMET IC QUANTITY,

ANY ARTTHMETICQUANTITY WITH THE SAMENUMBEROF
ROWSASTHEL-OPERAND YAS COLUMNS EXCEPT THAT
EITHFR OPERANDMAYBE A SCALAR.
ANARITHMETICQUANTITYWITHTHE SAME NUMBER
DFROWS ASTHE L-OPERAND AND THE SAME NUMBER .

O FCOLUMNS AS THE R-OPERAND, ELEMENT VALUFS ARE
THE RESULT OF CONVENTIONAL MATRIX MULTIPLICATION.
IFEITHERNPERAND IS 4 SCALAR THE RESULTHAS
THE S AME NUMBERUOFROWSAND COLUMNS AS THE OTHER
DPERAND,

ANYARITEMETICQUANTITY,

ANY SCALAR ARITHMETIC QUANTYITY,

HAS ALL THE PROPERTIES OF THE L-OPERAND
EXCEPT THAT ALL ELEMFYT VALUES HAVE BEEN
DIVIDED BY THE R-DPERAND,

ANY A!? | TEFMETICQUANTITY,
ANYARITHMETICQUANTITYWITHT H E SAMENUMBER

OF ROWS AN D COLUMNSAS THE L-OPERAND.

AN ARITHMETIC QUANTITY WITHTHE PROPERTIES

OF T HEL-OPFRANDs ALL POINTERS ARE SET TO ZERQOa.

SAMEAS'+*{BINARY)

SET OPERATORS

OPERATOR

t AND ¢

' OR ¢

PART

L-OPERAND
R=-(PERAND
RFESULT

L-0OPERAND
R-0OPERAND
RESULT

COAND NOT ¢

L-0OPERAND

R-0OPERAND

RESULT

CHARACTERISTICS

ANY SET.

ANY SETs

A SET CONTAINING ONLY THOSE ELEMENTS WHICH
APPFAREDINBOTHTHE L-OPERANDAND THE R-OPERAND,

ANY SET,

ANY SFT,

A SET CONTAINING ALL ELEMENTS WHICH APPEARED

IN EITHER THE L-OPERAND, THE R-OPERAND OR BOTHe

ANY SET,

ANY SET,

A SET CONTAINING ALL ELEMENTS WHICH APPEARED
INTHE L-OPERAND BUT NOTINTHE R-OPERAND.
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ARI THMETIC TEST OPERATORS

ARITHMETICTE S T OPERATORSIMPOSETHREEOIFFERFNTREQUIREMENTS
ONT H EIRTWOOPERANNDS, TOSATISFY THESE REQUIREMENTS BOTHOPERANDS
ARFTREATEDAS MATRICES. THESEREQUIREMENTS ARF:

1)
2)
3)

OPERATR

1=t

1=

l)l

l(l

T Y FTWO UPERANDS H A V E THE SAME NUMBER OF RNWSe
THFTWIOPERANDS HAVE THE SAMENUMBEROFCOLUMNS.
THE SPECIFIED RELATINNSHIP HOLDS WITHINEACHPAIROF

CORRESPONDING(L-OPERAND,R-QOPERAND) ELEMENTS.
PARTY CHARACTERISTICS

L-OPERAND  ANY4RITHMETICQUANTITY,

R-OPERAND  ANYARITHMETIC QUANTITY.

RESULT A LOGICALQUANTITY WHICH IS TRUE ONLY IF
REQUIREMENTS 1)42)y AND3)ARESATISFIEO
WTH THE EQUALI TY  RELATIONSHIP.

L-OPERAND AN YARITHFMETICQUANTITY.

R-0OPERAND ANYARITHMETICQUANTITY,

RESULT a LOGICAL QUANTITY WHICH IS FALSE ONLY | F
REQUIREMENTS 1)y 2)y AND3)ARE SATISFIED
USINGTHEEQUALITY RELATIONSHIP,

-

L-OPERAND ANYARITHMETIC QUANTITYS

R-0PERAND ANYARITHMETICQUANT ITY,

RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF
REQUIREMENTS 10, 2)y ANO3) ARE SATISFIED
USING THF GREATER THANDOREQUAL RELATIONSHIP.
A N ERRORCONDITIONEXISTS IFEITHERO F
REQUIREMENTS1)A N 02)1'S N O T SATISFIED.

SAW as?® =% EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT
3)IS LESS THANOJREQUAL.

SAME A$*>=¢ EXCEPT -THAT THE RELATIONSHIP FOR REQUIREMENT
3) |S STRICTLY GREATER THAN.

SAME AS *>=' EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT
3)1S STRICTLY LESS THAN,
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2=-5-3 SEMANTICS (CONTINUED)

SET TEST OPERATORS
NDPERATAOR PART

' IN ' L-0OPERAND
R-0OPERAND
RESULT

LOGICAL OPERATORS
OPERATOR PARTY

‘NOT? L-OPERAND
R-0OPERAND
RESULT

*AND*L-OPERAND
R-NPERAND
RESULT

* OK ' L-0OPERAND
R-OPERAND
RESULT

CHARACTERISTICS

ANYSET,

ANYSFTa.

A LOGICALQUANTITYWHICH IS TRUE ONLY IF ALL
ELEMENTS OfF 1 H eL-OPERAND ARE ALSO ELEMENTSO F
THER-OPER AND,

CHARACTERISTICS

NONE.

ANY LOGICAL QUANTITY.

A LOGICAL QUANTITY WHICHIS FALSE IF THE
R-OPERAND IS TRUE ANDISTRUEIF: THE R-OPERAND
IS FALSE.

ANY LOGICAL QUANTITY,
ANY LOGICAL QUANT | TY,
ALOGICAL QUANTITYWHICHI STRUE ONLYIF BOTH
THE L-OPERAND AND THE H-OPERAND VALUES ARE TRUE.

ANY LOGICAL QUANTITY.

ANYLOGICAL QUANTITY,.

A LOGICAL QUANTITY WHICH IS FALSE ONLY IF

BOTH THE C-OPERAND AND THE R-OPEQAND VALUES ARE
FALSE.
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2-6 OTHER EXPRESSIONS

MPLCONTAINSCONSTRUCTIONSWHICH ARE NOT PROPERLY ciceco s
COMPUTATIONAL EXPRESSIONS, BUT WHICH ARE USED TO COMBINE VARIABLES,
CONSTANTSy "MRMORE COMPLICATED EXPRESSIONSINTO ivcen curne

2-6-1 DOMAIN ITEMS
<DOMAIN ITEM>:2=2(*<EXPRESSIOND® yane 9+ ' <EXPRESSION>*)?

DOMAIN «... HAVE VALUESWHICH ARE SETS. THE SETS ARE SPECIFIEO
BY SPECIFYING THE LOWEST AND HIGHEST VALUED ELEMENTS ANDASSUMING
THATALLINTERMEDIATE VALUED ELEMENTS ARE IN THE SET. ROTH
EXPRESSIONS SHOULD HAVE SCALAR ARITHMETIC VALUES AND ONLY THE
WHOLENUMBERPARTSNFTHESE WILLBE USED. THE VALUE OF THE

FIRST EXPRESSIONSHOULDBELESS THAN THESECOND, IF THE EXPRESSION
VALUESAREEQUALTHE SET WILL CONTAINONE ELEMENT. IF THE FIRST
EXPRESSIONI SGREATERTHAN THE SECOND THE SET WILLBFEMPTY.

EXAMPLE DCMAINITEYS
(leseerM)
(I+J-Kseeesl-1)
({HEREsos ey THERE)

2=-6-2 CONCATENATOR
- KCONCATENATORD>::=¢ (‘<EXPRESSION LIST>®)?

A CUNCATENATOR HAS AN ARITHMFTIC VALUE,, ITALLOWS THE CONSTRUCTION
OF ARITHMETIC DATA STRUCTURES BY ‘THE EXPLICIT HORIZONTAL CONCATENATION
(ADJACENTPLACEMENT) OF SEVERAL SMALLFR STRUCTURES WITH THE SAME
NUMBEROFROWS. THEINDICESOFTHE RESULTING STRUCTUREBEGIN

A TONEs VEKTICAL CONCATFNATION IS ACCOMPLISHED USINGTHE

— OPERATOR * #¢,

I EXAMPLE CONCATENATORS

_ (1+1344,8,10)

(3%] 4 5%K,2%J43 4, 14J,13,69)
(AyB)

r—

r—



2(12)
L Z-6-3 ARRAY CONSTRUCTOR

CARRAYCONSTRUCTOR>:2=% (*<EXPRESSION>* ‘<FOR PHRASE>")’

AN ARRAV CONSTRUCTOR HAS AN ARITHMETIC VACUE. IT ALLOWS THE
=~ CONSTRUCTIONO FARITHMETIC DA TASTRUCTURESBY THEIMPLICITHORIZONTAL
CONCATENATION OF SEVERAL EXPRESSINONVALUES, THUS ALL EXPRESSIONS

'} ‘BEING CONCATENATED MUST HAVE THESAME NUMBER OF ROWS. THE
I FOR-PHRASE(3-2-5-2)GOVERNS THE | TERATIV E PROCESS WHICHPROVIDES
VALUESTOB ECONCATENATED.
{
L EXAMPLE ARRAY CONSTRUCTORS
(A(*, I)+BFOR | TNS)
. (BLIDVFOR | IN(loaseosN))
‘L (C(J) FOR J IN S|F(3) >= D)
{ 2-6-4 SUBSET SPECIFIER
o <SUBSET SPEC IFIER>:s="(*<VARIABLENAMED*|N ‘<EXPRESSION>
") Y<EXPRESSION>)?
{
L SUBSET SPEC[‘FIERSPRODUCESETS. THEY FORM SETS FROM LARGER
SETS BY SELECTINGELEMENTS WITH A GIVEN PROPERTY. THE VARIABLE
. NAME REPRESENTS ELEMENT SSELECTED F Ro MTHE*PARENT*SET SO THAT
‘L THEY YAVBE TESTED FOR THEPROPERTY. THE FIRST EXPRESSION
DETERMINES THE PARENT SET AND MUST BE SET VALUEDe THE SECOND
EXPRESSION TESTS THE PROPERTY AND MUST' BE LOGICAL VALUED. ONLY
f THOSEELEMENTSIN THE PARENT SET FOR WHICH THE LOGICAL EXPRESSION
L IS TRUE ARE INCLUDED IN THENEW SFTs

EXAMPLE SUBSET SPECIFIERS
i (JI NSIA(JyKI<=R)
{J IN S |J>=D AND J»=Y)

—

r—

r—
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3 PROGRAM CONSTRUCTION

<PROGRAM>::=*PROCEDURE ‘<PROCEDURE IDENTIFIER>
<STATEMENT SEQUENCE>" FI NI’ *3¢
| <PROGRAM> * PROC EDURE *<PROCEDURE IDENTIFIER>
<STATEMENT SEQUENCED*FINT*? ;¢

(PROCEDURE IOENTIFIFR>: s =<VARIABLENAME>
[<VARIABLE NAME>* (*<VARIABLENAMELIST>*)?*

<VARTABLENAMELIST>::=<VARITARLENAME>
|<VARTABLE NAME LIST>*,*<VARIABLE NAME>

A PROGRAM| NMPL | S A COMPLETE sSTATEM EnT ofFA NALGORITHMA Npo

| SMADE U P OFONENDRMORE PROCEDURE DEFINITIONS. ITISASSUMED
THAT THE PROGRAM BEGINS WITH THE FIRST PROCEDURE SO DEFINED,

IN THECURRENT VERSION OF THE LANGUAGE PROCEDURE DEFINITIONS
MAYNOT BE “JESTED (APPEAR WITHIN OTHER PROCEDURE DEFlNlTlONS)
ALTHOUGH PROCEDURE CALLS MAY BE NESTED TO ANY OEPTH (PROCEDURE A
CALLSPROCEDUREBWHICHCALLSPROCEDURE CyETC.)s

PROCEDJRE DEFINITIONS BEGINWITH THE KEYWORD ‘PROCEDURE’ AND
E N DWITHTHE_KEYWORD'FINI', NOTE THAT PROCEDURE DEFINITIONS
HAVE THE SAME GENERAL FORMAS ACOMPLEXKEYWORD STATEMENT (3-2-5),

THEPROCEDUREIDENTIFIERPROVIDESNAMES FORTHE PROCEDUREAS WELL
ASFORTHE INFORMATION WHICHWILL BE PASSEDT O THE PRNCEDUREB Y
A CALLING PROGRAM¢ WHEN THE PROCEDURE ISCALLED THE PARAMETER
EXPRESSIONS (SEE PROCEDURE CALLS (2-4)) AREEVALUATED AND THESE

VALUES ARE USED IN THE CALLENDPROCEDUREWHEREVER THEIR REPRESENTATIVE

NAMES OJCCUR,
EXAMPLE PROGRAM COMPOSED OF TWO PROCEDURES

PROC EDURE PROG
o0
SUBLJ,K)3
e O
FINIS;
PROCEDURE SUB(EF)
RETURN;

*e D

FINIS:

3-1 STATEMENT SEQUENCES
<STATE MENT SEQUENCE>: :=<STATEMENT> |[<STATEMENT SEQUENCE>KSTATEMENT>
A STATEMENT SEQUENCE IS A SEQUENCE OF ONEORYORE STATEMENTS.

THIS CINCEPT IS USEFUL FORDEFINING PROGRAMS (3) AND COMPLEX
KEYWORD STATEMENTS (3-2-5),
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3-2 STATEMENTS

SKSTATEMENTD: :=<LABELD>*: ' <STATEMENT>
I<KASSIGNMENT STATEMENTD>
| <PROCEDMURE CALL STATEMENT>
| <KEYWORD STATEMENT>

'STATEMENTS INMPL DETERMINE THE SEQUENCE OFOPERATIGONS WHICH

MAKES 4 PROGRAM MEANINGFUL.,

3-Z2-1 LABELS
SLABEL>::=<VARIABLENAMED>|*(*<KDIGIT STRINGY )?*

LABELS ARE EITHER VARIABLE NAMESOR STRINGS OF DIGITSENCLOSED
| NPARENTHESESe SINCFMPLIS WRITTENINA FREE FORMAT, A LABEL
MUSTBESEPARATED FROM THE FOLLOWING STATEMENT BY ACOLON *3¢,
LABELSMAYONLY B E REFERENCECBY'GOTO'STATEMENTS (3-2-4-2).

EXAMPLE LABELED STATEMENTS
LABEL: VARI=EXP;
LOCATION_B: VAR2:=EXP2;
(13): VAR3:=EXP3;

3-2-Z ASS | GNMENY STATEMENTS

<ASSIGNMENT STATEMENT>::=<VARIABLED*:=*<EXPRESSIOND>*;?
(KVARIABLE>" :=*<EXPRESSINN>®' *<FOR PHRASE>';?
I<KVARTABLED>* :='<FXPRFSSION>® **[F '*<EXPRESSION>';?
| <VARIABLE> :=*<EXPRESSION>'W H E R E *<SYMBOL SUBSTITUTFR>*;"*

ASSIGNMENT STATEMENTSALTFR THE VALUES OF VARIABLES. THEVARIARLE
ON THE LEFT OF THE ASSIGNMENTSYMBOLTAKESTHEVALUE OF THE
EXPRESSIONANTHERIGHT. THIS EXPRESSIONMUSTHAVE THE SAME TYPE
AS THE VARIABLE.

EXAMPLE ASSIGNMENT STATEMENTS
A N_Fg=
MATR IX:=(A.B)#
(CyGC)3
YES_OR_NQ:=MATRIX~=INVERSE(A)
SET1:=SET2ANDSET30 RSET4;
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3-2-2 ASSIGNMENT STATFMENTS(CONTINUED)

THE ASSIGNMENTSTATEMENTHAS SEVERAL MODIFIED FORMSWHICH ARE
PROVIDED TO MAKEYPLA MORE ‘NATURAL’ LANGUAGE.

THE ITERATED ASSIGNMENT STATEMENT

THEITERATEO ASSIGNMENT STATEMENTPROVIDES AMETHOD FOR ITERATIVELY
PERFORMING 4N ASSIGNMENT,, THISFNRM IS EQUIVALENTT OTHE SHORT
FORM ITERATED STATEMENT (3-2-5-2)s FOR PHRASES ARE ALSO DISCUSSED
| N(3-2-5-21),

EXAMPLE ITERATED ASSIGNMENT STATEMENTS

A(P_ROWyJ):=A(P_ROW,J)/A(P_ROW,P_COL) FORJ | NCOLDOM(A);
AlT,%):=A(T,*)-A(I,P_COLYXA(P_ROW,*) FOR | | NROWDOM(A)|
I~=P_R0OW;

CCNDITIONEDASSIGNMENT STATEMENT

THE CONDITIQNEDASSIGNMENT STATEMEY T ALLOWS THE SPECIFICATION (IF
ACONDITION UNDERWHI CH ANASSIGNMENTWILLOCCURs, T H | SFORMIS
EQUIVALENT TOTHE SHORTFQORMOF THE CONDITIONED STATEMENT (3-2-5-1 )

EXAMPLE CONDITIONED ASSIGNMENT STATEMENTS
3=B-A{*,J) 1| FX(J)=13
B(IN:=R(I) I FBR(INI>=03

THE ASSIGNMENT STATEMENT WITH SYMBOL SUBSTITUTION

THE ASSIGNMENT STATEMENT WITH SYMBOL SUBSTITUTION ALLOWS' THE
USERTOREDUCE THE APPARENT COMPLEXITYOFEXPRESSIONSBY USING

4 SINGLE SYMBOLTOREPRESENT A LARGEAND COMPLEXSTRING OF
CHARACTERS AS DEFINED BY THE SYMBOL SUBSTITUTOR FOLLOWING
THE*WHERE" (SEE(3-2-4-1) FORA DEFINITIONOFSYMBOLSUBSTITUTORS),
UNLY A SINGLE SUBSTITUTIONI S ALLDWED SINCE THE'$Y*STATEMENT
TERMINATOR ALSO TERMINATES THE STRING TOBESUBSTITUTED. THIS
FORM | SSIMILARTG USING A ‘LET' STATEYENT EXCEPTTHAT THE

(SYMBOL CHARACTER STRING) EQUIVALENCE ONLY HOLDSWITHINTHE

ASSIGNAENT STATEMENTDEFINING IT,,

EXAMPLE ASSIGNMENT STATEMENTS WITHSYMBOL SUBSTITUTION
t=P+QWHEREP:=INVERSE((A,B)#(C,0) )3

I MPLICI T DEFINE STATEMENT

I F A VAR ABLE FIRST APPEARS AS LEFT MEMBER OF AN ASSI GNMENT STATEMENT W THOUT | TS
TYPE STRUCTURE AND STORAGE REQUI REMENTS HAVI NG BEEN PREVI QUSLY DECLARED BY A DEFI NE

STATEMENT (3-Z-4-4) THESE REQUI REMENTS ARE DETERM NED BY THE EXPRESSI ON THAT APPEARS

AS R GHT MEMBER. THE IMPLICIT DEFINE CONCEPT | S UNDER DEVELOPMENT AND WLL NOT BE
DI SCUSSED FURTHER.
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3-2-3. PROCEDURE CALL STATEMENT
<PROCEDURE CALL STATEMENT>: :=<PROCEDURECALL>*;"

A PROCEDURE CALL STATEMENT CALLS APROCEDURE WHICHDOES NOT RETURN
A VALUE (VSs THE PROCEDURE CALL WHICH CALLS A PROCEDURE FROM WITHIN

‘AN EXPRESSION ¥¢ SI NCE THFPROCEDURE CALL STATEMENT APPEARS

ALONEI(NDT |IN ANEXPRESS ION)y ANY VALUE RETURNEN BY THE PROCEDURE
| S LosST.

EXAYPLE PROCEDURE CALL STATEMENTS
PIVOT(A.P_ROW,P_COL);
PROC1(A4ByCyD) 3
PROC2(I+J=3%KyJ=2 yWHAT_NOW,(A,B,C))3

3-2-4 KEYWORD STATEMENTS

CKEYWORD STATEMENT>:: =<LET STATEMENT>
1<GOTO STATEMENT>
| <RETURN STATEMENT>
| KDEFINE STATFMENT>
|<RELEASE STATEMENT>
|<CONDITIONED STATEMENT>
| KCITERATED STATEMENT>
| <BLOCK STATEMENT>

EACHKEYWORD STATEMENT BEGINS WITH AN MPL KEYWORDa THESE
STATEMENTS ARE DIVIDED INTOSIMPLE AND COMPLEX STATEMENTS. COYPLEX
STATEMENTS HAVE SPECIAL BEGINNING AND ENDING SYMBOLS AND CONTAIN
OTHERSTATEYENTSWITHIMTHEY. THISSECTIONDISCUSSESONLYTHE
SIMPLE KEYWORD STATEMENTS*

3-2-4-1 LET STATEMENT

LET STATEMENT>: s=¢LET *<SYMBOL SUBSTITUTERD>' ;¢
| 'SAMELOCATION **(*<VAR| ABLE NAME>@ 9*<VARTIABLE NAME>")**;?

<SYMBULSUBSTITUTER>: 3 =<VARTABLENAMED>*:=*<CHARACTERSTRING >
(<VARI ABLE NAME>"("<VARIABLE NAME LIST>")*¢:=¢<CHARACTER STRING>

LET STATEMENTSDIFFERFROM OTHER MPL STATEMENTS BY MODIFYING
THEPRIGRAM AT TRANSLATION TIME INSTEADOFEXECUTION TIME. THEY
CANMAKE A PROGRAM EASIER TOWRITE AND/OR MORE READABLE BY
ALLOWING THF PROGRAMMEP TO REPRESENT CHARACTER STRINGS BY SYMBDLS.

THETWJPARTSOFASYMBOLSUBSTITUTER ARE THE CHARACTERSTRING (1-3)TO0 THE -
RIGHT IF THE ASSIGNMENT SYMBOL AND THE IDENTIFIER TO THE LEFT,
THEIJDENTIFIER PROVIDES A NAME FOR THE CHARACTER STRING AND,
NDPTIONALLY, NAMES FOR PARAMETERS. IF THESTRING NAME IS DEFINED
WITHOUTPARAMETERSEVERY OCCURRENCEQOF THE NAME IN THE FOLLOWING
TEXT WILLBEREPLACED BY THE CHARACTER STRING. THE PARAMETERS
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3-2-4-1 LET STATEMENT (CONTINUED)

ALLOW40DIFICATION OF THE CHARACTER STRING AT THETI ME OF REPLACEMENT
WHEN OCCURRENCES OF THF PARAMETER NAMES IN THE CHARACTER

STRING ARE REPLACED WITHTHE CHARACTERSTRINGS PROVIDED A S
PARAMETERSWITHTHE STRING NAME. | F COMMAS MUST APPEAR WITHIN
THESEPARAMETERCHARACTER STRINGS, TWOMUST BE USED FOR EVERY

‘| NTENDED  SINGLE OCCURRENCE. THUS({AyB)A S APARAMETERCHARACTER
STRI NG INALET STATEMENT MUST BE WRITTEN (Ay yB)e WHICH ISTO AVOID
HAVING THE COMMA TREATED AS-A PARAMETER SEPARATOR. THESEMICOLON.
TERMINATES THE CHARACTFRSTRINGANDSD MAY NUT OCCUR WITHIN IT,

AS 4RATHEREXTREMEEXAMPLE, THE STATEMENT
LETA(C,IY 2= BUIV*C(J)3
FOLLOWEDB Y
NIK):=A{R+F 4N}
YIELDS
D(K) :=B{N)*R+F(J});
WHILETHESTATEMENT
LETLOOP({VARySTART,INCySTOP):=FORVAR:=START STEP INC UNTIL
STOP D03
FOLLOWED BY i
LOOPL{I s3%M+Ko15,N) A(I):=B(I);ENDFOR:
YIELDS
FOR| :=3%J4KSTEP 15UNTILN D OA(I):=B(I);ENDFOR;

CERTAINLY THESE ARE RATHER OBSCURE USESINA MATHEMATICAL
PROGRAMMING LANGUAGE,BUT THEY AREINCLUDED TOGIVETHE READER
INIDE4UOFTHE POWER WHICH IS INHERENTI N THIS CONCEPT.

| NA MORECNONVENTIONALUSAGE THESTATEMENT
LETBIT)I:=A(T,y%)%X;

FOLLOWED BY
Il F Bt1)>0, GO TO(5);

YIELDS
| FALL,*)%XD>C,G0T 0(5);

THE FORM USING THE KEYWORD *SAME LOCATION® [NDICATES AN EQUIVALENCE
BETWEENTHE TWOSYMBOLS WITHINTHE PARENTHESES.

A SHORT FORM OF LET STATEMENT USING | NVERTED WORD ORDER W TH 'WHERE' | NSTEAD OF
"LET', 1S DI SCUSSED UNDER ( 3-2-2).

=24 -2 GO TO STATEMENT
<GOTUSTATEMENT): 2='GOTO ‘<LABEL>";"

GOTOSTATEMENTS 4LTER THE NORMALSEQUENTTAL FLOW OF PROGRAM
EXECUTIONBYTRANSFERRINGCONTROLTOTHE POINT IN THE PROGRAM
INDICATEDRYT H ELAREL (3-2-1),

EXAMPL=GDTO STATEMENTS
G0TOLOC3;
GO TO(23);
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3-2-4-3 RETURN STATEMENT
CRETURN STATEMENT,: c=tRETURNYI;

THF RETURN STATEMENT RETURNS CANTROL FROM A CALLENDPROCEDURE
TOITS CALLINGPROCEDUREaA

‘EXAMPLZUSEO FTHERETURNSTATEMENT. IN APROCEDURE

PROCEDURE EQUAL{A,B)
| FNOM({A)-~=DCM(BYTHEN
EQUAL : =FALSF;
RETURN
ENDIF;
FOR T  NDUM(A),
|F A(IY-=B(I)THEN
EQUAL :=FALSE;
RETURN 3
ENDIF;
EQUAL:=TRUE};
RETURN;
FINT;

3-2-4-4 OEFI NE STATEMENT

<DEFINE STATEMENT>::='DEFINE ‘' <VARI ABLE NAME L IST>XTYPE PHRASE>
<SHAPE PHRASE>XSIZEPHRASE>

<TYPEPHRASE>::=" ARITHMETIC*{*LOGICAL'|*SET'|*CHARACTER"
|<NULL PHRASE>

<SHAPE PHRASE>: : =*RECTANGULAR*|'DIAGONAL'I*UPPERTRIANGULAR"’
I"LOWER TRIANGULAR'!"ROW*|*COLUMN’'{’ SPARSE WITH?
<EXPRESSION>" NONZEROS I<KNULL PHRASE>

<ST7EPHRASE>::=<EXPRESSIGN>*BY ‘<EXPRESSION>
| KEXPRESSION> | <KNULL PHRASE>

REFOREAVARIABLE NAME MAY BEUSED |IN A PROGRAM THE TYPE,

STRUCTUREy ANDSTORAGE REQUIREMENTS OF THE VALUES WHICH IT
REPKESENTSMUSTH EDECLAREDa THE ONLY EXCEPTIONSARE THE VARIABLES
USEDINITERATED STATEMENTS {3-2-5-2) ANDARRAYCONSTRUCTORS (2-6-3},
AND SETELEMAENT REPRESENTORS USED INSUBSET SPECIFIERS (2-6-4).

SEE | MPLI CI T DEFI NE ASSI GNVENT STATEMENT UNDER 3-2-2.

VARIABLENAMELISTSAREDEFINEDUNDER PROGRAMS (3),

THE TYPE PHRASEDETERMINES WHETHER THE VALUE OF THE VARIABLE | S
TOBETREATEDA SA NARITHMETIC,LOGICALySET, OR CHARACTER
QUANTI TV, IF THIS PHRASEIl S OMITTED THE VALUEI| S ASSUMED TO BE
ARITHMETIC,

THE SHAPE HRASE MAY ‘ONLYBEUSED WHENDEFINING ARITHMETIC
QUANTITIES AND DETERMINES THE STRUCTURE OF SPACE REQUIRED FOR
STORINGTHEDATAA SWELLASITS ORGANIZATION, IF THE SHAPE
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3=-2-4-4% DEF INE STATEMENT ( CONT | NUED)

PHRASE | S OMITTEDTHE DEFAULTASSUMPTIONS ARE:

DIMENS ION DEFAULT SHAPE
2 RFC TANGUL AR
1 COLUMN
0 NONE

THEMUDIFIERS ‘RECTANGULAR’, ‘DIAGONAL’, YUPPERTRIANGULAR', AND
'LOWFR TRIANGULAR® AR E ONLYMEANINGFULWHEN DEFINING TWODIMENS TONAL
AQUANTITIES(MATRICES)WHILETHE MODIFIERS*ROW!*AND ‘COLUMN’

ARE MEANINGFUL ONLY WHENDFFININGONEDIMENSIONAL QUANTITIES
(VECTORS)y, THEMODIFIFR ‘SPARSE CANCONSERVE STORAGE WHEN

THERE|I S 4 PREDOMINANCE OF ZERO ELEMENTS IN THE ARRAY, THE
EXPRESSIONINTHESPARSEFMODIFIER MUSTBEA SCALAR VALUED

ARITHMETIC EXPRESSION I N  THAT IT| NDI CATES THE NUMBER OF ELEMENTS

(OF THE SPARSE ARRAY WHICH ARE ACTUALLY T O BEKFPT.,

THE SIZE PHRASE SPECIFIESTHENUMBER OFDIMFENSIONSOFTHEVARTIABLE
ASWELLAS THE RANGESOFTHE INDICESONEACH OF THESEDIMENSIONS,
THEEXPRESSIONSINTHESIZEPHRASE MUSTBE EITHER DOMAIN ITEMS
(2-6-1) OR SCALAR 4RI THMETICEXPRFSSIONSe DOMAINITEMSGIVE
ROTHTHE UPPERANDLOWERBOUND ON THE RANGE OF THE SUBSCRIPT WHILE
SCALARARITHMETICEXPRESSTOYSNETERMINEONLY THE UPPER BOUND

ON THE SUBSCRIPT RANGE AND A LOWERROUND OF ONE | S ASSUMED,
THETYPEPHRASE, SHAPE PHRASF, AND SIZE PHRASE MAY APPEAR IN

ANY ORJDER IN 4 DEFINESTATEMENT,

EXAMPLE DEFINE STATEMENTS
DFFINE JyX ARITHMETIC;
DEFINFSET1,SET2,SET3S E T :
DEFINESTRINGLCHARACTER
DEFINE A (lyeee sM) BY (lyseesN)s3
DEFINEA M BY N;
DEFINE C N ROW;
DEFINESPARSE-AMBYN SPARSE WITHI®NNONZERQSS

3-2-e-5 RELEASE STATEMENT
<RELEASE STATEMENT>::='RELEASF ‘<VARIABLE NAME LIST>";’

THERELFASE STATEMENT EXPLICITLY RELEASES THE STORAGE ALLOCATED
BYO RAFTERT H ECORRESPUNDINGD EF I N ESTATEMENT(3-2=4~4),1T

| STMPROPERTORELEASE AVARIABLEWHICH WASDEFINEDOUTSIDE

OF THE CURRENTBLOCK(3-2-5-3)s RELEASE STATEMENTS REFERENCEING
VARTABLENAYES WHICH HAVE NOT BEEN DEFINED OR HAVE ALREADY BEEN
RELEASSD A R EIGNUREDe THE RELEASE STATEMENT ALSOIMPLICITLY
RELEAS=S ALLSTORAGE WHICHWAS DEFINED AFTER ANY VARIABLE IN
THENAMELIST (SEE(3-2-5-3) FOR AN EXAMPLE).

EXAMPLE RELEASE STATEMENTS
RELEASE A;
RELEASE AyByCyDyR, T3
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3-2-5 COMPLEX KEYWNRDSTATEMENTS

THEFOLLOWINGSECTIONDL SCUSSESCOMPLEXKEYWORD STATEMENTS.
THESESTATEMENTSA L LHAVFTHEF O R M

CINTRODUCT IOND>KSTATEMENT SEQUENCED>CKTERMINATIOND>

3-2-5-1 CONDITIONED STATEMENT

SCONDITIONED STATEMENT>: 2='|F ‘<EXPRESSION>‘, ‘<STATEMENT>
I*IF ‘<EXPRESSION>" THEN ‘<STATEMENT SEQUENCE>
<ORI|IF SEQUENCE>XOTHERWISEPHRASE>'ENDIF ;5

<OR I F SEQUENCE>::=<NULLPHRASE>
I<OR | F  SEQUENCE>*ORIFYCEXPRESSIAONDYTHEN®
<STATEMENT SEQUENCE>

<OTHERWI SE PHRASE>:: ="OTHERWISE ‘<STATEMENT SEQUENCE>| <NULL PHRASE>

A CONDITIONED STATEMENT ALLOWS THE USERTO SELECT CONDITIONS
UNDER  WHI CH STATEMENT(S) WILL BEEXECUTEDe TYF SHORT FORM IS
USEDONLYWHEN A CONDITION GOVERNS THE EXECUTIONOF A

SINGLE STATEMENT, THE LONGFORYALLOWS THETESTING OF SEVERAL
MUTUALLY EXCLUSIVE CONDITIONS, WHEN ACONDITION |S SATISFIED THE
STATEMENTS FOLLOWING THE TESTAREEXECUTED AND CONTROL PASSES
TOTHE ENDOFTHE STATEMENT, THEEXPRESSIONSFOLLOWING THE
KEYWORD ‘| F’ AND THE KEYWORD ‘OR IF’4RELOGICAL VALUED.
SPECIFICALLY THELOGI CAL EXPRESSION FOLLOWING THE ‘IF" | S
EVALUATED AND IFTRUETHE FOLLOWING STATEMENT SEQUENCE IS EXECUTED
ANDCONTROL THEN PASSES TO THE *ENDIF's  |F THE EXPRESSION IS
FALSE THE EXPRESSION I N THE NEXTFOLLOWING ‘ORIF* |S EVALUATED
WwITHTHE SAME ACTI ONS. | F AN ‘OTHERWISE’ IS ENCOUNTERED ALL
STATEMENTS IMMENDTIATELYFOLLOWING THE ‘OTHERWISE' ARE EXECUTED.

EXAMPLE CONDITIONED STATEMENTS
IF 7~=0 4G OT ONDN_ZERO3s
| FA(XxeJ)=By Alkyd)s=A(%,K);
| F A=BTHEN
G0TO A-EQUAL-D:
DRIFA=CTHEN
G0T OA_NE_B_BUT_EQ_C3;
MR IF J-=K ANDN>3%RTHEN
R:=N;
OTHERWISE

* = .
s =0 4

GOTO NO-GOOD;
ENDIF;

SEE ALSO CONDI TI ONED ASS|I GNED STATEMENT UNDER (3-2-2) WHERE A SHORT-1F FORM IN
I N\VERTED ORDER | S DI SCUSSED.
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3-2-5-2 ITERATED STATEMENT

<I TERATED STATEMENT>: :=<FORPHRASED>®* “<STATEMENT>
|<FORPHRASE>' DO ‘<STATEMENT SEQUENCE>*ENDFOR® 3¢

<FOR PHRASED>::="FOR*<VARIABLE NAME>' IN ‘<EXPRESSION>
| *FOR '<VARIABLE NAME>* [N ‘<EXPRESS | ON>’ | ‘<EXPRESSION>
]*FOR'<VARIABLENAMED?:=¢<EXPRESSIOND*STEP"?
<EXPRESSIOND>® UNTIL *<EXPRESSION>

THE FOR PHRASE GOVERNS THE | NDEXI NG OF AN ITERATION, ONE OF THE
TWO FORMSINDICATES AN| NDEXI NG OVER ELEMENTS OF A SET, NAMFS THE
INDEX, SPECIFIES THE SET, ANDALLOWS ELEMENTS OF THE SET T O RE
SELECTIVELY DISCARDED, ON EACH CYCLEO  FTHEITFRATIONTHE INDFX
TAKESONA NEW VALUE FROMTHESET, THIS INDEX MAY BE USEDTO
AFFECT STATEMENTS WITHINTHE SCOPE Of THE ITERATION. SELECTIVE
DISCARDINGOFELEMENTS | S PERFORMED BY THE UPTIONAL EXPRESSI ON
FALLOWING THE ‘SUCH THAT’ SYMBOL('{*)s HENCE THE INDEX VARIABLE
AND FIRST EXPRESSION MUSTRE SCALAR ARl THVETI C QUANTI TIES, THE
SECOND EXPRESSIONMUSTBE SET VALUED, ANDTHEQPTIONALTHIRD
EXPRESSIONMUSTRELOGICAL VALUED.

THE SECONDFORMSPECIFIES THE INDEXING INA MORE CONVENTIONAL
MANNERIN WHICHTHE INDEXISGIVEN A STARTING VALUEFORTHEFIRST
CYCLE ANDTHAT VALUEI S INCREMENTEDBY THE STEP ON EACH SUCCESSIVE
CYCLE, THE TERMINAL CONDITION|ISTESTEDON EVERY CYCLE BEFORE
ANYENCLOSED STATEMENTS ARE EXECUTED, EXECUTIONO FTHESESTATFMENTS
OCCURSAS LONG AS THE CONDITION IS NOT SATISFIED. THUS THE VAR TABLE
NAMEANDTHEFIRST TWOEXPRESSIONS MUSTBESCALAR ARITHMETIC
QUANTITIES WHILE THE TERMINAL CONDITION EXPRESSION MUST RE LOGICAL
VALUED, THIS SECONDFORMDOESNOT PROVIDE AN ADDITIONAL TESTFOR
SCREENING INDICES.

EXAMPLE ITERATED STATEMENTS

FOR | IN (lyeeosMiy A(I)2=B(I,J);
FORl |IN SET1|1I-=P,F O RJIN SET2, Al1,J)2=003;
FOR | IN SET2 ORSFT3|B( | )>=0 DO
B(I):==B(I);
R:=R+1s
ENDFOR: |

FOR K:=1 STEP 2 UNTILK>=N,A(K):=B(K);

SEE ALSO | TERATED Assl GWENT sTATEMENT UNDER ( 3- 2-2) WHERE THE ABOVE FIRST (SHORT)
FORM |S DI SCUSSED | N INVERTED ORDER.
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3-L-5-3 BLOCK STATEMENT

<BLOCK STATEMENT>::='BLOCK ‘<STATEMENT SEQUENCE>*ENNBLOCK®";?

ALLOCATI ON AND HANDLING GF STORAGE|S 4 MAJOR PROBLEM IN MPLSINCE IT
W LL BEUSED 7O SOLVE PROBLEMS | NVOLVI NG LARGE AMOUNTS OF DATA,

THE BLJICK STATEMENT ALLOWS THE PROGRAMMER TODIVIDEHI S PROCEDURES
INTOBLOCKS W THI N WHICH HE CAN ALLOCATE (DEFINE {3=2=4-4))

STORAGE., THISSPACEIS AUTOMATICALLY RELEASFD WHEN CONTROL

LEAVESTHEBLOCK. |INADDITICNSTORAGEMAYBEEXPLICITLY
RELEASED ( 3-2-4~5) ELSEWHERE IN THEBLOCKINWHICHIT WAS
DEFINED,RUT INNOOTHERBLOCK, I N THIS CASE STORAGE | S RELEASED
IN ANJRDEROPPOSITETHAT OF DEFINITION, THUS THE SEQUENCE

DEFINE A;

DEFINE B3

z ] L ] *
RELEASEA :

CAUSES BOTHB AND A TO BE RELEASEDI N THATORDERse NOTICE THAT
A PROCEDURE | S AN IMPLIED BLOCK STATEMENT.

EXAMPLE BLOCK STATEMENTS
BLOCK .
DEFINE MATRIXM+1B YN+1:
MATRIX:=(A,B) #
{(Cy2)3
ENDBLOCK; “EVENTHOUGHIT |S ASSUMED THAT A, ByC,
ANDZAREDEFINED OUTSIDE THEBLOCKy THIS
STATEMENT PRODUCES NO USABLE RESULTS”
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4 INPUT/ZOUTPUT
VERY LITTLE WORKHASYETBEEN DONEOGNTHIS SEcTioN. If IS

CURRENTLY THROUGHT THAT MANY IDEAS WILL BE ADOPTED FROM LANGUAGES
SUCH ASALGOLy FORTRAN,ORPL/I.
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5 L IRRARY PROCENURES

THIS SECTION DESCRIBESTHE USE Of SEVERAL PROCEDURES WHICH ARE
PROVIDED I NTHEMPL LIBRARY. REFERENCES TO THESE PROCEDURESALL

HAVE THE FORM F(P) WHEREFREPRESENTS THENAME OF THE PROCEDURE
AND P REPRESENTS ALIST OF PARAMETERS. WHERE INDICATED THESE
PROCEDURES RETURN VALUES WITH TYPE, SHAPE, AND FORM AS DESCRIBED BELOW.

ARGMAX{VECTOR)

VECTOR AN ARITHMETIC EXPRESSIONWITH A VECTOR VALUE.

VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MAXIMUM
VALUENELEMENTO F‘VECTOR’,

ARGMIN{VECTOR)
VECTOR ANY VECTOR VALUED AR ITHMET IC EXPRESSION.
VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRSTOCCURRING MINIMUM

VALUED ELEMENT OF *VECTOR’,

COLDIM(MATRIX)

MATR | X ANY ARITHMETIC EXPRESSION.

VALUE .THE SCALAR ARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OF
THE SECOND SUBSCRIPT OF ‘MATRIX". THIS FUNCTIONI S
INTENDED FOR FINDING THE NUMBER OF COLUMNS IN A MATRIX,
S OIf*MATRIX" IS AVECTOROH SCALAREXPRESSION, V 2=1,

DIM(VECTOR)
VECTOR ANY ARITHMETIC EXPRESS ION.
VALUE THESCALARARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OF

THE FIRSTORONLY SUBSCRIPTQF*VECTOR?®, IF “VECTOR' I S
MATRIX VALUED THISPROCEDURE IS EQUIVALENT TO ROWDIM,
| F®VECTOR®* IS SCALAR VALUED, V=1,

IDENTITY{RANK)

RANK THE SCALAR ARITHMETIC RANK OF THE SQUARE IDENTITY MATRIX
WHICHISTHE VALUE GF THE PROCEDURE,

VALUE A NIDENTITY MATRIX WITH ‘RANK’ROWS AN D COLUMNS,

INVERSE(MATRIX)

MATR | X A SQUARE NON-SINGULARy MATRIXVALUED ARITHMETIC EXPRESSION.
VALUE THEINVERSE OF ‘“MATRIX".

MAX{VECTOR)
VECTOR: " A VECTORVALUED ARITHMETIC EXPRESSION*

VALUE THESCALARARITHMFTIC VALUE OF THE MAXIMUM VALUED ELEMENT
O F'*VECTOR?,

MIN{ VECTOR)

VECTOR  ANY VECTOR VALUED ARITHMETIC EXPRESSION.

VALUE THE SCALAR ARITHMETIC VALUE OF THE MINIMUM VALUED ELEMENT
O F'MATRIX's ALLPOINTERS ARE IGNORED.
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5 LIBRARY PROCEDURES (CONTINUED)

ONES(RIOWSyCOLUMNS )

ROWS THE SCALAR ARITHMETIC NUMBER OFROWS IN Ve
COLUMNS THESCALARARITHMFTIC NUMBEROFCOLUMNSIN V.
VALUE A MARTIX OF ONES WITH *ROWS’ ROWS AND ‘COLUMNS’ COLUMNS.

ROWDIM{MATRIX)
MATRIX ANY ARITHMETIC EXPRESSION,
VALUE THE SCALAR ARITHMETIC NUMBER OF ELEMENTS INTHE RANGE
OF THE FIRST SUBSCRIPTOF'MATRIX". THIS PROCEDURE I S
INTENDED FOR FINDING THE NUMBER OF ROWS INAMATRIX,
BUT ISEQUIVALENTT ODIM(VECTOR)IF ‘MATRIX'ISACTUALLY
, VECTOR VALUED. | FIMATRIX* |ISSCALAR VALUED, V:=1,

SUM( VECTOR)
VECTOR A VECTOR VALUED ARITHMETIC EXPRESSION*
VALUE THE SCALAR ARITHMETIC SUM OF THE ELEMENTS OF ‘VECTOR",

TRANSPISE(MATRIX)

MATRI X AN YARITHMETICEXPRESSION.

VALUE THE TRANSPOSE OF ‘MATRIX", | F*MATRIX*HAS*M*ROWS AND
*N*COLUYNS THEN V HAS ®N*ROWS AND*M* COLUMNS.

UNIT(SIZE, INDEX)

SIZE THE SCALARARITHMETIC NUMBER OF ELEMENTSIN VECTOR'V?',

INDEX THE SCALAR ARITHMETIC SUBSCRIPT OF THE SINGLE ONE VALUED
ELEMENT IN'V?, HERE1l <=INDEX<K=SIZE.

VALUE AN 4ARITHMETIC COLUMN VECTOR WITH SUBSCRIPT RANGE

(lyeeesySIZE)WHICH HAS ALL ZERO ELEMENTS EXCEPT FOR THE
SINGLEONEELEMENT IN THEINDEX*THPOSITION.

ZERUS(ROWS 4 COLUMNS)

ROWS THE SCALAR ARITHMETICNUMBEROFROWSIN Ve,

COLUMNS THE INTEGER SCALARNUMBER OF COLUMNS IN?'V?,

VALUE A YATRIXOf ZEROS WITH *ROWS* ROWS AND ‘COLUMNS’ COLUMNS.
ALSO

SIZE...SCALAR ARITHMETIC VALUED PROCEDURE FOR FINDING THE
NUMBEROFELEYENTS IN A SET.

SETeee SET VALUED PROCEDURE FORCONVERTING ARITHMETIC
QUANTITIES TO SETS,

DOMe s SET VALUED' PROCEDURE FOR INDEXING OVER VECTOR ELEMENTS,

ROWDOMeee SETVALUEDPROCEDURE FORINDEXING OVERMATRIXROWS.

COLDOMeeaSETVALUED PROCEDURE FORINDEXING OVER MATRIX COLUMNS.
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6 PROGRAM FORMAT | CN MECHANICS
6 -1 CARD FORMAT

YPLUSES A ‘FREE FORMAT' STYLE WHICH MEANS THATSTATEMENTS MAY
BESTRUNG ONEIMMEDIATELY AFTER THE OTHER, ONLY SEPARATED BY THE

' ¢ TERMINATORS,. THUS MUCHCFTHERESPONSIBILITY FOR AN AESTHETIC
‘AND READABLE PROGRAM RESTS UN THE WRITER.

WHENCOMMUNICATINGTHEPROGRAMTOTHE COMPUTERONPUNCHCARDS
THE PROGRAM ‘TEXT’ MUST BE CONFINED TO COLUMNS 1 THROUGH 72
COLUMNS 73 THROUGHB8CG MAY BE USED FORIDENTIFICATIONSINCETHEY
YILLB EIGNIRED, THIS IS ACOMMONPROGRAMMING CONVENTION.

6-2 USEOF BLANKS

BLANKS ARE USED ASDELIMITERS IN MPL AND ARE REQUIRED WHERE
SPECIFIEDINTHEVARIOUS DEFINITIONS. IN ADDITION THEY MAY B E
INSERTED BETWEEN ANY TWO SYMBOLS (ITEMS ENCLOSED IN PRIMES IN
THEMETALANGUAGE DEFINITION) BUT MAY NOTAPPEAR WITHIN VARIABLE
NAMES OR KEY WORDS EXCEPT WHERE SPECIFIED.

WHEREVER A BLANK IS ALLOWED OR REQUIRED ANY NUMBER OF MULTIPLE
BLANKS IS ALLOWED.

6-3 COMMENTS

COMYEYTS MAY BE PCACED ANYWHEREINANYPL PROGRAM SINCE THEY ARE
COMPLETELY IGNOREDBY THE COMPUTER. THEY AREDELIMITED ON BOTH
ENDS BY AQUOTE(")(THISISNOTA DOUBLE PRIME(?*'*)), OBVIOUS
CAREMUSYTBETAKEN TO INSURE THAT THE TERMINAL QUOTE APPEARS
INITSPROPERPLACE,
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7 RESUME OF DEFINITIONS

<ARRAY CONSTRUCTOR>::= (*<EXPRESSION>**<FOR PHRASE>")’
Z-6-3
CASSIGNMENT STATEMENT>::=<VARIABLED>*:='<EXPRESSIOND ;¢
|<KVARIABLED>':=*<EXPRESSION>' '<FOR PHRASE>®;
| KVARIABLED>':=¢<EXPRESSIOND>®' “|IF ‘<EXPRESSION>"‘:
IKVARIABLEDY 1= <EXPRESSIOND ' WHFRE '<SYMBOL SUBSTITUTERD®;®
3-2-27
<BLOCK STATEMENT>: :=*BLOCK ‘<STATEMENT SEQUENCE>'ENDBLOCK®**;*
3-2-5-3
<CHARACTER>:: =<LETTER>|<DIGIT>|<SPECI AL CHARACTER>
1-2
<CHARACTER STRING>::=**| <CHARACTER STRING>XCHARACTER>
-3
<COMPUTATIONAL EXPRESSION>::=*+*<EXPRESSION>
| *='<EXPRESSION>
| ‘NOT ‘<EXPRESSION>
| CEXPRESSION> ' +*<EXPRESSIOND>
I KEXPRESSIOND*—*<EXPRESSIOND>
| <EXPRESSIOND>* %' CEXPRESSIOND
| CEXPRESSION>® /[‘<EXPRESS | ON>
| CEXPRESSIOND> %% <EXPRESSIOND
J<EXPRESS ION>’ #'<EXPRESSIOND>
] <EXPRESSION>* AND ‘<EXPRESSION>
| <EXPRESSION>’ OR ‘<EXPRESSION>
| <EXPRESSION>® [N ‘<EXPRESS ION>
| <EXPRESSINND® AND NOT ‘<EXPRESSION>
| CEXPRESSIOND>* = <EXPRESSION>
|<EXPRESSICN>*~="<EXPRESSION>
| KEXPRESSION>*>*<EXPRESSION>
| <EXPRESSIOND*<C*<CEXPRESSIOND>
| KEXPRESSIOND*>=*<EXPRESSI ON>
| KEXPRESSIOND*<=*<EXPRESSIOND>
2-5
CCUNCATENATORD>::=*(*<EXPRESSION LIST>*)*
- Z-6-2
<CONDITIONED STATEMENT>::='IF*'<EXPRESSIOND?, *<STATEMENTD>
| IF ‘<EXPRESSION>’" THEN ‘<STATEMENT SEQUENCE>
<CR| f SEQUENCE>XOTHERWISE PHRASEDYENDIF v
3-2-5-1
<DEF INE STATEMENT>::=*DEFINE ‘<VARIABLE NAME LI ST><TYPE PHRASE>
<SHAPE PHRASE><SIZE PHRASE>’ 3¢

3-Z-4-4
<D|G|T>:::l0l|l1|’12||l3l|l4l'|5l|l6!|l7l'l8|'!9!
1-2
<DIGIT STRING>::=<DIGIT>I<KDIGIT STRING>DIGIT>
1-3
<DOMA I N | TEMD>D::=1{* <EXPRESS ION>’ ye0¢ “<EXPRESSION> )?
2-6-1
<EXPONENT>:: =<DIGIT STRING>
| YE**+'<DIGIT STRING>
J*E**-‘<DIGIT STRING>
2-2-1
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7(2)
7 RESUME O FDEF INITIONS(CONTINUED)

<EXPRESSION>:: =% (*<EXPRESSION>? )?
| <NUMBER>
| “TRUE’ | *FLASE?
| “NULL’
| YY" LCHARACTER STRI NGY”
| <VARIABLE>
| <PROCEDURE CALL>
| <COMPUTATTONALEXPRESSION>
| <KOOMAIN ITEM>
| CCONCATENATORD>
| CARRAY CONSTRUCTOR>
|<SUBSETsPECIFIER)
2
<EXPRESSION LIST>:: =<EXPRESSION>| <EXPRESSION LIST>*, *<EXPRESSION>
2-4
<FOR PHRASED::='FOR '<VARIABLENAME>®' | N ‘<EXPRESSION>
| “FOR ‘<VARIABLE NAMF>* | N *<EXPRESSIOND>'] ‘<EXPRESSION>
| ‘FOR ‘<VARIABLE NAME>’ :='<EXPRESSION>'STEP®
. <EXPRESS|I ON>' UNTIL '<EXPRESSION>
3-2-5-Z
<GOTOSTATEMENT>::2='G0TO ‘<LABEL>";
3-2-4-2
<ITERATED STATEMENT>::=<FORPHRASE>? , "<STATEMENT>
| <FOR PHRASE>" DO ‘<STATEMENT SEQUENCE>*ENDFOR? 3¢

3-2-5-2
<KEYWORDSTATEMENT>::=<LET STATEMENT>
I<GOT O STAGEMENT>
| <RETURN STATEMENT>
|<DEF INE STATEMENT>
| <RELEASE STATEMENT>
(<CONDITIONED STATEMENT>
| <iITERATED STATEMENT >
] <BLNCK STATEMENT>
3-2-4
CLABEL>::=<VARIABLE NAME>}| * { *<DIGIT STRING' )
3-2-1
<LET STATEMENT>: :=* L E T*<SYMBOL SUBSTITUTERD> ¢
| ‘'SAME LOCAT ION **( ‘<VARIABLE NAME>' y"<VARIABLE NAME>')v93?
3-2-4-1

SLETTER>::= A [*B]'CYI*D I "E | "F G I H [T ]vyr oKL
‘vqc‘oNv|.00glp||aQt|lR|‘osg'|T||cul"Vu‘owl|lxl‘cyu|:zl

1-2
<NULL PHRASE>: :t=*%] <NULL PHRASE>'?"
1-3
<NUMBER>:: =CNIJMBER BASE> |<NUMBERBASE>CEXPONENT>
2-2-1
<NUMBER BASE>: :=<DIGIT STRI N&
| <DIE@ T STRING>'. ?
| v, ' <DIGIT STRI NG
JKDIGIT STRING> ' *<DIGIT STRI N&
2-7-1



7(3)
7 RESUME O FDEFINITIONS (CONTINUED)

<ORIF SEQUENCE>: ¢ =<NULL PHRASE>
|<ORIF SEQUENCED'0ORI F* < Ex PR E S Si o n> 'THEN®
<STATEMENT SEQUENCE>
3-2-5-1
<OTHERWISE PHRASE>::=*(OTHERWISE ‘<STATEMENT SEQUENCE>
{<NULLPHRASE>

3-2-5-1
<PROCEDURE CALLD>::2=<VARIABLE NAME>
I KVARIABLENAMEDY({ ‘<EXPRESSIONLIST>*)?
2-4
<PROCEDURE CALLSTATEMENT>::=<¢PROCFDURE CALL>*;"’
3-2-3

<PROCEDURE IDENTIFIER>::=<VARIABLE NAME>
| <VARTABLE NAME>* (*<VARIABLE NaM ELISTD>*)?
2-4
<PROGRAM>::=' PROCEDURE *<PROCEDURE IDENT IFIER>
STATEMENT SEQUENCE>*FINI**;?
| <PROGRAM> *PROCEDURE ‘<PROCEDURE IDENTIFIER>
KSTATEMENT SEQUENCED*F INI** ;¢

-

3
<RELEASE STATEMENT>::='RELEASE*<VARIABLEN A M ELIST>;?
3-2-4-5
<RETURN STATEMENT>: :='RETURN* ;¢
3-2-4-3
<SHAPE PHRASE>:: =* RECTANGULAR’ |* DIAGONAL”> |]* UPPER TRIANGULAR"
I" LOWER TRIANGULAR’ ! "ROW*|*COLUMN'|*'SPARSE WITH?
<EXPRESSION>’ NONZEROS*{<NULL PHRASE>
3-2-4-4
<SIZE PHRASE> : :=<EXPRESSION>*BY ‘<EXPRESSION>
| <EXPRESSIOND IKNULL PHRASE>
3-2-4-4
CSPECIAL CHARACTERDsz=v(sfv)vjego|onajo sja ejogu]o_sjoxejoye
]l;||',"vnv|'_||o’||n#"131|cgl]ﬁan||?"|sa

1-2
KSTATEMAENTD>2:=<CLABEL>' : “"<STATEMENT>
| KASSIGNMENT STATEMENTD>
|<PROCEDURE CALL STATEMENT>
J<XKEYWORD STATEMENT>
3-2
CSTATEMENT SEQUENCE>:: =XSTATEMENT> |[KSTATEMENT SEQUENCEDSSTATEMENT>
_ 3-1
<SUBSCRIPT ELEMENT»::='%v|<EXPRESSIGN>
Z-3-2
<SUBSCR IPT LIST>: :=<SUBSCR IPT ELEMENT)
| <SUBSCRIPTLIST>"' 6 *<SUBSCRIPT ELEMENT>
2-3-2Z

<SUBSET SPECIFIER>: :=*(‘'<VARIABLE NAME)' IN*<EXPRESSION>
" *<EXPRESSIOND>?)?
Z-6-4
<SYMBOL SUBSTITUTERD>::=<KVARTABLE NAME>':=¢*<CHARACTER STRING>
|<VARTARLE NAME>* ("<VARIABLEN A M ELIST>? )*0:2=v<CHARACTER STRING>

3-2-4-1
<TYPE PHRASE>::=" ARITHMETIC*|*LOGICAL'|*SET*|* CHARACTER"
| <NULL PHRASE>
3-2-4-4

— — — o



‘;
-

r—

r—

—

r— — r— r—— r— (— rr— - r—

r—

T(4)

7 RESUME OF DEFINITIONS (CONTINUED)

<VAR | ABLE>: : =<VARTABLE NAMED> [<KVARIABLE>* (?<SUBSCRIPT LIST> )

2_
<VARIABLE NAME>: :=<LETTER> ’
| <VARTABL E NAMEDXLETTERD
I<VARIABLF NAME>XDIGIT>
| <VARIABLE NAME> ¢
I<VARIABLE NAME>® ¢
2-3-1

<VARIABLE NAME LIST>::=<VARIABLENAME>]
<VARIABLE NAMFELIST>' , v CVARIABLE NAME>

3

THIS STATEMENTISNOTPARTOFTHEFURMAL DEFINITION, BUTiS
INCLUDED FOR REFERENCE.

<KEYWORD>:2=*ARITHMETIC’
|‘BLOCK?
" BY ¢
JOCHARACTER"
| * COLUMN?®
| "OEFINE *
I*DIAGONAL’
'l no ¢
| YENDBLOCK?®
| YENDIF*
| * ENDFOR?
| ‘FALSE’
I 'FINIL?
|"FOR ¢
} ‘Go 1O
llIF L]
l* IN ¢
| 'LET @
I* LOGICAL"
I* LOWER TRIANGULAR’
] *NULL?
I*"NONZEROS’
J'OR IF
| ‘OTHERWISE ?
| * PROCEDURF ?
|* RECTANGULAR’
| *RELEASF '
[*ROW’
| *SAMELOCATION ¢
I*SET”
] * SPARSEWITH?
| * STEP ¢
|* THEN
| ‘TRUE’
J*UNTILY
[*UPPER TRIANGULAR’
|* WHERE ¢
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8 SAMPLE MPL PROGRAMS

PROCEDURE REVISED SIMPLEX(MATRIXyCOSTSyRHSyBASIC_VARTIABLES,
UNBOUNDED'URJECTIVE-VALUE, ITERATIONS )
DEFINEIyJs “THESE AREINDICES LATER ON”

— — r

UNBOUNDED:= FALSE; ITERATIONS t=C;
LETP 3= MATRIX;

LET C ¢=COSTS:

LETQ 2= RHS;

LETBV 2= BASIC_VARIABLES;

LETM = ROWDIM(P);

LET N COLD1M(P);
“WE ASSUME THAT BV CONSTITUTES A FEASIBLESET
NF BASIC VARIABLES GIVEN BY THEIR INDICES.
WF  WISH TO FINDXD>={0 SUCH THATPxX = Q
WHICHMINIMIZES C*X = OBJECTIVE-VALUE. FIRST
W E CALCULATE THE INVERSE OF THE BASES.*,
DEFINE INV_B MB Y M3
I NV-B:=INVERSE(P(*%,RV));

- “THECURRENT RIGHT HAND SIDE 1S~
Q:=INV_B%*Q;

“THE CORRESPONDINGCOSTVECTORIS”
DEFINECB MROW;
CB:=C(BV};

— r— — — r—

"SISTHEINDEX OF THEINCOMING COLUMN

r—

RISTHEINDEX OF THE OUTGOING COLUMN.”

i‘ DEFINE S9R3
! PRICING:BLOCK
ﬁ ITERATIONS:=ITERATIONS+1;
— “FIND THE SIMPLEX MULTIPLIERS *SMe

DEFINE SMMRONW;
| ) SM:=CR*INV_B;
o

“AND THE SMALLEST RELATIVE COST FACTOR?”

i T=ARGMIN(C-SM*P) 3
— “TEST FOR OPTIMACITY OF THE CURRENT BAS IS’”

I fC{SI>=SM*P(%,S) THEN
‘, “WE HAVE FOUND THEOPTIMAL BASIS”
- OBJECTIVE_VALUE:=CB*Q;

RETURN 3

: ENDIF;
L ENDBLOCK 3

“NOW COLUMN S IS INTRODUCED INTO THE BASIS,
’ . PBIS THE REPRESENTATION OFP(%,S) INTERMS OF
s~ THE CURRENT BASIS”
DEFINE PB M COLUMN:
PB:= INV_B*P(*,S);
R:=03
Rz=ARGMIN(Q{I)/P{I,S)F O R |1 N(l,ooovM"P(I)S‘)O’;
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8(2)
SAMPLE MPLPROGRAM (CONTINUED)

"IFALLP(I,S)I<=0,THEN WE STILL HAVER=0AND
A CLASSOFSOLUTIONSAPPROACHING MINUSINFINITY

EXISTS*
IFR=0THEN
UNROUNDED 3s=TRUE 3
RETURN;
ENDIF;
“NOW UPDATE THE BASIC VARIABLELISTBV,THE COST
ASSOCIATED WITH THE BASIS L
VECTORC RASSOCIATEDWITH THE BASIS, THE VALUES
Q OF THE BASIC VARIABLES, AN9 THE INVERSE
INV_.BOF THEBASIS."
BV{R):=S;
CB(R):=C(S);

“UPDATE Q"
F O RJ | N(lyeas oM J~=RyQ(J)z2= O(J))I-PBR(QIRI/P(R,S));

QIR):=Q(RI/PBIR+S);

“NOW UPDATE THE BASISINVERSE"®
PIVOT( INV_8, PByR)};

“NOW THE CYCLEIS COMPLETE AND WERETURN TO
CHECK THE OPTIMACITY OF THENEWBASIS+”

GO TO PRICING:

FINIS;

PROCEDURE PIVOT(MATRIX,PIVOT_COL+PIVAOT,ROW)

LET M 2=MATRIX

LET P = pPIVOT_COL;

LETR 2=PIVOT-ROW:

FOR | | NROWDOM(M) | I~=RyM(I,%):=M{R,*)%(P(I)/P(R));
M{Ry%):=M{Ry%x)/P(R)3

RETURN:

FINIS;



