
CS-84
AF -311

ACOMPUTERSYSTEM

FOR

TRANSFORMATIONALGRAMMAR

JOYCEFRIEDMAN

This research  was supported in part by the United’States  Air Force

E lectronic Systems Division, under Contract F19628-C-0035.

STANFORD UNIVERSITYCOMPUTER  SCIENCEDEPARTMENT

COMPUTATIONALLINGUISTICS  PROJECT

JANUARY1968



A COMPUTER SYSTEM F'OR TRANSFORMATIONAL  GRAMMAR

bY

Joyce Friedman



AF - 21

cs - 84 January 1968

A Computer System for Transformational Grammar

bY

Joyce Friedman

Abstract

A comprehensive system for transformational grammar has been designed

and is being implemented on the IBM 360/67 computer. The system deals

with the transformational model of syntax, along the lines of Chomsky's

Aspects of the Theory of Syntax. The major innovations include a full

and formal description of the syntax of a transformational grammar,

a directed random phrase structure generator, a lexical insertion

algorithm, and a simple problem-oriented programming language in which

the algorithm for application of transformations can be expressed. In

&is paper we present the system as a whole, first discussing the

philosophy underlying the development of the system, then outlining

the system and discussing its more important special features,

References are given to papers which consider particular aspects of

the system in detail.

L

i

1
i

i

i



*
i
t

i

t
1

Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .

A metalanguage for transformational grammar . . . . . . . . . .

Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . .

Tr"ee . . . . . . . . . . . . . . . . . . . . . . . . . . .

Analysis . . . . . . . . . . . . . . . . . . . . . . . . .

Restriction . . . . . . . . . . . . . . . . . . . . . . . .

* Analysis algorithm . . . . . . . . . . . . . . . . . . . .

Complex symbol (I . . . . .

Complex symbol operations .

Components . . . . . . . . . . .

Phrase structure . . . . .

Lexicon . . . . . . . . . .

Transformations . . . . . .

Component algorithms . . . . . .

Phrase structure generation

Lexical insertion . . . . .

Control of transformations

The Program . . . . . . . . . . .

................

................

................

................

................

................

................

................

................

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

Directions for future work . . . . . . . . . . . . . . . . . . .

Cther transformational grammar systems . . . . . . . . . . . . .

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . .

Page

1

4

7

7

9

11

12

13

14

16

16

17

18

19

19

20

22

24

25

27

28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii

L



INTRODUCTION

The computer system for transfcjsmationa.l.  grammar presented in this

paper is the outcome of an attempt tjs write computer programs as aids

to research in transformational grammar, in particular, as aids to

writing grammars.

In the course of this work it soun became apparent that an

essential prior task was the formalization of a general and inclusive

notion of transformational grammar. The basic model is that of Chomsky's

Aspects of the Theory of Syntax [3];-w we have extended this model to fill

in the many missing details and have formalized it to make it precise.

The system is implemented by a FORTRAN program on the IBM 360/67

computer. However, as a formal statement of transformational grammar,

it can be considered independently of the program. We have therefore

relegated to one section and to occasional fcotnotes all matters related

directly to the program.

This paper may 'be considered as both a summary of and an introduction

to the system. We have stressed the ways in which the system is new>

and have left the details for other papers, which will be cited.

Zn developing the system our primary examples have 'been the MITRE

grammar- [18], the IBM Core Grammar [13j and the UCLA work on syntax [lT]g

However, we have not limited the system to matters treated in these

examples, but have tried to be comprehensive.

iuThe UCLA work has kindly been made available to us in its preliminary
stages th.rough unpublished working papers and memoranda. We wish also
to thank Barbara Hall Par-tee of UCLA for numerous discussions which
have helped to clarify our ideas about transformational grammar.

1



A transformational grammar may be sketchi?,y described as follows.

The components of a transformational grammar are phrase structure

rules, a lexicon, and a set of transformations,, The process of generating

a sentence consists first of the generation of a base tree using the

phrase structure rules. Lexical items are then attached appropriately

by a lexical insertion algorithm. Finally, the base tree with its lexical

items is mapped by application of the transformations  in some order into

a surface tree. The terminal string of the surface tree represents the

sentence.

From the outset we have felt that it was essential to consider a

transformational grammar as a whole. A rule of a grammar may behave

as intended in isolation, but in the grammar its interaction with other

rules is crucial. It is precisely these interrelations which are most

difficult to control, and we believe it is here that a computer system

can be most helpful,

We did not wish to try to guess the exact amount of power

required to describe the syntax of natural language, nor to be normative

in our approach. Our aim is to handle as uniformly and simply as we

can the sorts of things which do appear in the current work on

transformational grammar. The formalism has been made general enough

so that most of the formal grammars and rules which we have seen can be

expressed naturally. On the other hand, there are some devices in the
i

literature which appear to us to be so different in character from the

rest of the material as to be unacceptable in anything like their present

ii
i

5
i

form, and we have not included them.f2

'As an example we might cite the distance measure included in the Identity
Erasure Transformation of [13]. This appears to us to be more properly
considered as a linguistic rule, which should be expressible, but which
should not appear as part of a particular transformation. Further
comments on linguistic rules of this type appear below.

2



L

i

i

It is quite likely that at least some linguists will feel that

the generality of the system is excessive. But there is no need for any

one user to employ its full power. In the metalanguage of this system,

a linguist may easily define his own subset of the syntax; we 'believe

such formalization will make it easier for him to adhere to his conventions,

Although we have not done so, it would be possible to provide user-

oriented subroutines to verify that the user's additional constraints

are not violated.

The traditional description of a transformational grammar can be

given an alternative presentation in terms of basic concepts, components,

and component algorithms. The basic concepts of a grammar are trees,

analyses, restrictions, and complex symbols, with their corresponding

algorithms. The components are phrase structure, lexicon, and

transformations. The component algorithms are phrase structure genera-

tion, lexical insertion and control of transformations. Vie.wing a

grammar in this way, we are able to see more clearly the basic problems

to be treated. I,t is this breakdown which will be used in the subsequent

description.

We assume that the reader is familiar with transformational grammar.

The presentation is incomplete; we omit standard items and emphasize the

ways in which this system differs from others. While the discussion

below is largely informal, it is important that it is based on the

completely formal syntax of [21].

t
L

I
L

3



A METALANGUAGE FOR TRANSFORMATIONAL GRAMMAR

To describe the syntax of a transformational grammar one must

first choose a metalanguage, The usual choice by linguists has been

English. The metalanguage used here is a modification of Backus Naur

Form (BNF), familiar to computer scientists as the language used

in the description of Algol 60, As we will use the symbols 1 t

C and > in transformational grammars, we modify the usual BNF by

replacing angular brackets by underlining, e.g. "transformation"

rather than "<transformation>", and using "or" in place of "1" .,

For linguists unfamiliar with BNF it shoixld suffice to say that

(1) the modified-BNF production " A ::z B C or D or E If

expresses the context-free rewriting r-&e

(2) the nonterminal symbols of modified-BNF are denoted by the

underlined name of the construct;, viz. transformational grammar ::=

phrase structure lexicon transformations (3) symbols not

underlined are used autonymously, and (4) juxtaposition in the

object language is indicated by juxtaposition in the metalanguage.

We refer to the constructs of the metalanguage as "formats",

because they are in fact the free-field formats of the computer system.

We have carried the underlining of rformat names into the text of the

paper.

. Basic to the syntax are the two formats word and integer.A

word is a contiguous string of letters and digits beginning with a

letter; integer is a contiguous string of digits, Except in these two

formats, spaces may be used freely.

4



I

;

L

If a BNF description is to elucidate a language, it should not

introduce names for intermediate formats which do not have meaning.

In order to avoid additional formats where possible, and to simplify

the description, we have introduced into the metalanguage the five

operators list, clist, opt, booleancombination and choicestructure.

In each case the operand is given within square brackets following the

operator. Only the first three of these operators are used in this

paper, They are:

1. list

a : := list [ integer ]

allows a to be

1 2 6 9171 3 20

2. clist (comma list)

a : z= clist C integer ]

allows 2 tobe

1, 2, 6, 9171, 3, 20

30 opt (option)

a . ea o= opt [ integer ] word

allows 2 to be either

3 NP or NP

- It is clear that any occurrence of an operator in a production

could be deleted by the introduction of intermediate formats and

corresponding additional productions, This would not change the object

language.
I (

,

i



i

A f'ull description of the syntax of transformational grammar is

given in C211. In this paper we shall give only a few of the productions,

asneeded to describe special features of the system,

6



BASIC CONCEPTS

Each of the basic concepts is used throughout a grammar; they

are defined recursively in terms of one another.

Tree

L

The format for a tree is

L tree ::= node opt [ complex symbol ] opt [ < list [ tree ] > ]

where

L

i,
L

node ." := word or sentence -symbol or boundary symbol

The optional list of trees is the list of daughter sub-trees of the

noda in left-to-right order. For example, the tree

S <NP<N>VP<V>>  represents:

S

NP VP

NfoV

Because a bracketed representation of a tree can easily become

cumbersome and unreadable, a substitution capability is provided by

the production:

tree specification ::= tree/ opt C,clist C word tree- ] ]

L

I

A tree-is read and then searched for anoccurrent ef1 of the first word_

in the list. Then the tree following the word is substituted for that

occurrence of the word. The process is repeated until the list is

exhausted. For example, the tree specification S < SX S2 > ,

i Sl NP<N>, S2 VP<X 2, X V results in the same tree shown

above.

&n this and other similar substitutions for a word, it is intended
that the word have exactly one occurrence in the tree.



Occasionally a tabular representation of a tree is preferable,

and one is available in the system. It is used for inputs to the

random generation routine, and as the output format.

For a detailed discussion of internal and external formats

for trees used in the system see [26].

Tree operations

The basic operations for trees are comparisons and changes.

The. basic tree comparison is equality. The test for equality of trees

can be combined with a test for either equality or nondistinctness of

their corresponding complex symbols (see below). Trees may also be

tested to see if they include a specified node (dominance).

Changes to trees include the elementary operations of the

MITRE grammar and the IBM Core grammar. They also include the operation

( tree ) SUBST word which substitutes the tree for an occurrence of

word. This can be used to allow a change to refer to a node inserted

by a previous change in the same set.J1

YThe MITRE programs [5] and Londe and Schoene [lOI handle this same
problemin other ways.

8



Analysis

Analyses occur in two places in

description for a transformation and

The syntax for an analysis is a

notion of proper analysis originally

analysis is given by a list of nodes

right cut across a tree. The syntax

recursive; the terms of the analysis

which may contain further analyses.

Note that

analysis : z= list C opt C integer J term 1

this labelling of terms of an analysis allows the linguist

to number only those terms to which he will refer.

the grammar: in the structural

as contextual features.

strong generalization of the

given by Chomsky. A proper

which are to occur in a left to

of an analysis here is fully

are not simply nodes but structures

term : := structure or o rskip ( choice )

choice : := clist [ analysis ]

Any member of the clist will satisfy the choice.

structure : := element opt [ complex symbol ]

opt II 0pt.J  e 7 ] opt C / 1 < analysis > ]

A structure is an element which may optionally have a complex symbol

and may optionally have a further analysis. The analysis of the

element may be negative (%0-t analyzable as", denoted by -I ). The

optional slash indicates that the analysis is not necessarily immediate.

Its absence indicates an immediate analysis.

element

An element may be

. o-

. o- node or * or

a specific node (see definition above) or simply an

unspecified single word indicated by the definite node * . The

underline symbol occurs only in analyses which are contextual features,

9



and indicates the location for

in an analysis always directly

skip ::= % opt [ <

lexical insertion. A complex symbol

fo23ows an element.

structure > ]

The use of skips rather than variables follows the MITRE grammar.

It may be noted that a tree is simply a subcase of structure

in which no integers and none of the special symbols ( $ ) , -I , /
?

* t and 0ccu.r.

10



Restriction

A restriction may occur only in association with an analysis.

It may be a proper part of a transformation, or may be part of a

contextual feature or it may define the Lest for a conditional change

in the structure change of a transformation.



Analysis algorithm

i
L

L
L
L
t
L
L
L
L
I
L
L
I
L
L
L
L

The analysis algorithm will be described in detail in [I$+], The

one linguistic rule so far incorporated in the system occurs here. A

search is not allowed to go below a sentence symbol unless either the

analysis is part of a transformation which has the parameter which

specificalLy allows this, or the analysis itself contains a sentence

symbol for which a further analysis is given. Thus there are two ways

to specify the depth of a search.

Another interesting feature of the analysis algorithm is the

provision for handling the associated restriction, A three-valued

logic is used and the value of the restriction is "undefined" until

the search has proceeded far enough to determine a value of "true"

or "false" for the whole restriction. As the search proceeds or

backtracks the value of the restriction is continually set and unset.

12



i
i

i
i

:

i

I

Complex symbol

Complex symbols occur in trees, in analyses and restrictions, in

the structural change of a transformation, and in the lexical entries

and the redundancy rules of the lexicon.

We distinguish between a feature specification and a feature:

feature specification ::- value feature

Feature specifications occur only in complex symbols.

. A complex symbol is a list of feature specifications enclosed in

vertical bars and is interpreted as a conjunction, A lexical entry

contains a list of complex symbols which is interpreted as a disjunction.

Only the three values + t - and * are allowed,ld Foll.owing

UCLA [17] a feature specification with the indefinite value

that the feature is "marked", without specifying whether it

+ or - . The value * never appears in a complex symbol

and is never used with a contextual feature.

* means

is

in a tree,

A contextual feature is an analysis structure which contains

precisely one underline symbol and whose head element is a node.

It optionally has an associated restriction. The underline indicates

the node where the lexical insertion will occur.A u s e r  w h o  a d h e r e s

to Chomsky's "principle of strict local subcategorization" will use

as the head element of each contextual featurethe node which immediately

dominates the one for which the lexical insertion is to be made, A user

who disavows the principle may choose any dominating node for the head

element, Contextual features appear only in the lexicon and are used

solely in the lexical insertion process.

YGross [6] allows arbitrary words to be declared as values.i
i

13



I <
i
t
i

,

i
L

;
i

n

I11

Complex symbol operations

The basic operations for complex symbols are comparisons and

changes.

The comparisons are for equality, non-distinctness, and two

types of inclusion. The result of the comparison of two feature

specifications A and B is shown in the tables below, where T

represents true and F represents false and abs indicates that the

feature is absent altogether. For the test to be true for complex

symbols it must be true for all their feature specifications.

EQUALITY NONDISTINCTNESS

+ TFF F + T FT '2

FTF F - FTTT
* FFT F * TTTT

absl F F F Tj absl T T T T

INCLUSION-1

FTT F

* T T T  F

absl T T T T

INCLUSION-2

+ - * abs

-i TFF F

F T F  F

* F F T  F

abs T T T T
I

The basic changes of compiex symbols include merging A into B

moving the features of A to B 9 erasing all the features of A from B ,

'and saving in B only the feature specifications which are included-l

in A ; The results of these operations are shown in the tables below.

It is to be expected that other operations will be added later as

required.

L

L



MERGE

+ rn * abs

+ -I-++ +

- - -

* $-* *

abs + - * abs

ERASE

+ abs +, abs

* abs abs abs abs

abs + - dt a’b s

\
AB

4-

<m

*

abs

SAVE

+ II * abs

-I- abs + abs

abs - - abs

+ - 3c abs

abs abs abs abs
l

A redundancy rule A => C applies to a complex symbol B only

if A is included-l in B o If so, then C is merged into B o



COMPOmNTS

The three components of a transformational grammar are- -

phrase structure, lexicon, and transformations.

Phrase structure

The phrase structure of the system is a conventional context-

free grammar. Complex symbols do not appear in the phrase structure:

they.are introduced during lexical insertion (see below). Rules are

accepted in a linearization of the standa-rd linguistic form and are

1/immediately expanded.-, For example, the rule

VP 3

is represented as

VP = (AUX(MV NP),COP((NP,AP;)),S)(ADV)  '

AUX

S

.

> >

.

(ADv)

me expression of rule schemasw  use of the Kleene star * has not

been included, .f
2

uBlair [l] also expands from a compact form.

-/2 Blonde [lo] accepts the Kleene star.

16



I

L

i
i,.

Lexicon

A lexicon contains a preliminary part, or prelexicon, which

contains feature definitions and redundancy rules. The feature

definitions include a list of categorys in the order of lexical insertion.

One may also give names to contextu.a:L  features to avoid having $0 write

them in full in the lexical entries., A redundancy rule is of the form:

redundancy rule : := complex symbol = > complex symbol

The.interpretation is that if a complex symbol includes all the

*feature  specifications of the complex symbol to the left of the

arrow ( = > ) of a redundancy rule then it implicitly contains those

of the complex symbol to the right of the arrow, Explicit expansion

of complex symbols by the redundancy r;;Lles can be carried out in the

system.

In a lexical entry the set of possible complex symbols for a

vocabulary word are given. If several vocabulary words have the identical

set of complex symbols, the vocabulary words appear in a single lexical

entry, Each complex symbol corresponds to a sense of the word. The set

of complex symbols is regarded as a disjun&ion. Since the complex symbol

itself is a conjunction of feature specifications this is in effect a

normal form, Thus the system has %e same power as one which allows

arbitrary boolean combinations of features, (see Lakoff [7]), without

their complexity. For example, to say that a verb must have both an

animate subject and an inanimate object, one may use either one or two

feature specifications in the same somplex symbol. To say that it must

have either an animate subject or inanimate object, two complex symbols

are needed,

1.7



Transformations

The final component of a grammar ccnsists of a list of transformations

and a control program. The discussion of the control program will be

deferred to the section on the algorithm for control of transf'ormationS.

A transformation consists of a transformation identification,

a structural description, and (optionally) restrictions and structural

change, The transformation identification may include, in addition to

the.transformation  name, a group number and various parameters. A

transformation may 'be referenced either-by the transformation name or by

the group number. The parameters indicate whether or not the transforma-

tion is optional, whether (and how) it is to be repeated after a

successful application, and whether or not the analysis algorithm may

search below an unmentioned sentence symbol. Keywords are also given

here.

The structural change is expressed, as in the MITRE grammar [18],

by a list of operations. A new feature of the system is the

conditional change.

conditional change ." := IF < restriction > THEJ!J

< structural change > ELSE

< structural change >

The basic operations for trees and complex symbols have already 'been

discussed.

18



i

COMPONENT ALGORITHMS

The three main algorithms of a transformational grammar correspond

to the three components and are phrase structure generation, lexical

insertion and control of transformations, Our implementation of the

first process is designed to be useful in the testing of a grammar,

The second has not previously been fully described and we give for the

first time an explicit algorithm. Various proposals have been made

for the third algorithm; rather than choosing one of them we include the

specification of the algorithm as part of the grammare

Phrase structure generation

The system can be started with a base tree input by the user.

However, it also has the capability of "directed random" generation of

trees from the phrase structure grammar. This scheme, which is described

in detail in [20], allows the user to specify a "skeleton" around which

a tree is generated at random. The skeleton may also bear constraints

of dominance, nondominance and equality, The scheme was designed to

make it possible for the user to generate trees which are "interesting"

rather than simply random; in particular, which will test a specific

transformation. It should be noted that there is a restriction on the

phrase structure grammars which can be handled by the algori%hm:

the rules must be ordered so that no symbol is introduced below the

rule-which expands it, with the exception of course of the sentence

symbolo

i

Ic

19



Lexical insertion

The algorithm for lexical insertion is an interpretation of one

of the two alternatives presented by Chomsky in Aspects,, Complex

symbols are introduced from the lexicon only after the phrase

structure generation of the base tree is completed. In order to

fomal.ize the process, we have had to make decisions on many points

not treated explicitly by Chomsky. The details are presented in [22];

we.note here some of the salient features.

A contextual feature is simply a sbecial case of analysis; thus

much of the work in lexical insertion is done by the same analysis

algorithm used for transformations.

Lexical insertion begins with the lowest embedded sentence, and

works upward.J1 Within a sentence the order of lexical insertion is

determined by the list of categorys in the prelexicon. This order may

have considerable effect on the efficiency of the process, However,

from a formal point of view, all categories are alike.

The basic criterion for lexical insertion is non-distinctness:

the tree may already contain a complex symbol; a word and its complex

symbol can be inserted only if the complex symbol is non-distinct from

the one already in the tree, But this is only a necessary condition;

each feature specification for a contextual feature must be checked by

the analysis algorithm. If the value is + the analysis algorithm

must succeed, and if - it must fail0

c

r/Although complex symbols are not introduced in the phrase structure,
it is possible that a skeleton input to the phrase structure generation
routine already contains some words of the lexicon, In this case,
the complex symbols for those words are looked up in the lexicon and
inserted prior to the process described here.

20

L



Once a vocabulary word and complex symbol have been selected (at

L
random from those meeting the above tests), one additional step is

necessary before lexical insertion takes place. The possible side

L effects of the contextual features must be taken care of. If, for

I

L.

example, a verb has been selected which takes animate subject and

inanimate object, feature specifications may need to be added to the

complex symbols for the subject and object, Then contextual features

are dropped from the complex symbol, since they have served their

L function, a I- or - value replaces the indefinite value * , and

i
i
L

the vocabulary word and complex symbol go into the tree.

c

i

i

21

I
i



Control of transformations

Each transformational grammar that has discussed at all the matter

of order and point of application of transformations has presented a

slightly different algorithm, From the available examples, it was

possible to abstract the basic ideas involved and to write a simple

programming language in which the linguist can express the algorithm

for a particular grammar.J1 The control program refers to transformations

either individually by transformation name or by group number, The

language contains a repeat-instruction which allows a list of control

instructions to be repeated either for a fixed number of times or until

they all fail. One innovation is the IN-instruction. The statement

IN transformation name ( integer ) DO

causes the integer-th term of the transformation to be used as the

starting point for the search algorithm. Such notions as "highest

sentence", "lowest sentence", etc. can be expressed by the IN construct.

The notion of keyword has also been implemented.J2

The control language allows branching on the success or failure

i

I
e

1e
e
i

of a transformation, The use of this conditional instruction makes it

possible to write transformations with less attention to certain types

of interaction, For example, suppose transformation T2 is to apply

only if Tl has failed to apply, Then the instructions

u - ~-~
In- addition to controlling the grammar, the control Language also
provides TRACE inst,yuctions  which govern the amount of output,

-.I2 Keywords were first used in the MITRE programs [5]. They were
implemented in a slightly different form by IBM [91e

L 22



i
i

ic

IF Tl THEN GO TO A ELSE GO TO B,

A: T2,

B: .*a

will cause T2 to be bypassed if Tl fails., This instruction may

be considered excessively powerful., It is available because the

alternatives frequently seem to be either to alter artificially the

structural description of T2 or to include a restriction on T2

such as: "applies only if Tl has failed to apply".f1

For a detailed discussion of the control language and examples

of control programs see C23l.

We have not attempted to deal with the notion of implicit ordering

of transformations.

i/The use of the conditional instruction will of course speed  up the
processing of a tree. 6

i
23



THEPROGRAM

The system is written as a collection of subroutines which can

be called in various orders. A table of the subroutine structure is

included in the Programmer's and User's Guide to the System [~4].

A MAIN program consists of a sequence of subroutine calls.,

Typically a run begins with a call to the initialization subroutine,

followed by calls to input routines for the components of the grammar.

Then either a base tree is input, or a skeleton is input and the

generation routine called. Lexical insertion is optional at this

point. Then the transformation routine is callled, and the program

executes the user's control program, The process can be repeated with

a new tree from the skeleton or with a new tree input.

Alternative MAIN programs to test individual components of the

grammar can easily be constructed, For example, to test the phrase

structure one might simply generate trees at random, Or, to test

lexical insertion one could start with base trees containing incomplete

complex symbols and investigate how they were completed, Transforma-

tions can be tested beginning from base trees with (or without)

lexical items already included,

MAIN programs for a variety of purposes are also given in [$+I.

The system is implemented in FORTRAN IV (H) on the IBM 360/67.

To the user, however, the system does not 1oOk like FORTRAN. All of

the formats are free-field and, externaL.y, .words may be up to 40

characters long, See [lg] for a description of the free-field

input/output subroutine package,



L

DIRECTIONS FOR FUTURE WORK

There are many ways in which the work wh:ich has been done can be

extended, Some of these correspond to interesting open questions in

the transformational theory of syntax., We mention here some areas in

which we plan to begin work soon, We think that the generality of the

system will give us a strong starting point in these investigations.

Conjunction

No means of handling tzansformational schemas such as conjunction

has been provided. In the earlier programs at MITRE a conjunction

algorithm due to Schane [16] was inciuded and we plan to carry this

over into the present system as its first version of conjunction. We

hope then to investigate the alternatives considered in the literature,

Idioms

A common proposal for the treatment of idioms is that an idiom

occurs as a tree in the lexicon. We foresee only minor difficulties

in incorporating idioms in this way, and plan to do so when time allows,

Linguistic rules

The current trend in transformational linguistics includes a

search for linguistic. rules which would apply to all grammars.

Rcss-[lb, l-51, in particular, has been working along these lines. We

:hope later to investigate this 'work 'by devising means of incorporating

4
i

25

f

!
L



proposed rules into the system.J1

Lexical derivation

The recent work by Chapin 621 and Chomsky [4] on lexical

derivation has opened up some interesting lines of investigation

which we are now beginning to explore within the system, A preliminary

study of Chapin's early work was made prior to the development of the

system and is reported in [3Oj.

Dependency grammars

Jane Robinson [12] has recently offered a proposal for transfor-

mational grammars in which the underlying str-ucture is a dependency

grammar, The present system allows complex symbols to be associated

with any node of a tree, but we do not now associate lexical words

with higher nodes as would be required by the ~projectivity"  of

dependency grammars.

7--' ROSS'S rule of tree-pruning has been incorporated by Gross [6].

26



OTHER TRANSFORMATIONAL GRAMMAR SYSTEMS

The earliest computer systems for transformational grammar were

those of Petrick [ll] and MITRE [18], The system here is an outgrowth

and extension of this early work at MITRE. Naturally it embodies

a more recent version of transformational theory.

The partial system of Lieberman and Blair 18, l] represents an

early attempt to deal with the model of Aspects, A lexicon was defined,

and.phrase structure programs and some transformational programs were

written.

Systems developed concurrently with this one include the console-

controlled grammar testers of Gross [6] and of Londe and Schoene [lo]?J

The problems best treated by a system designed for immediate response

to a user at a console differ from those appropriate to an off-line

system such as ours. While there is some overlap in these systems,

we believe ours is the first to ccnsider all phases of transformational

grammar in a unified system,, For example, the three component algorithms

have no correspondents in other systems and neither has included a

lexicon, Various differences in common areas have been noted above.

I/We wish to thank both Dave Londe and Lou Gross for many pleasant
and fruitful discussions, and for a free exchange of ideas from
which our work has benefitted.



ACKNOWLEDGMENT

The system described in this paper was developed with Robert W.

Doran (metalanguage, basic syntax, free-field input/output, analysis

algorithm), Thomas H, Bredt (lexicon and lexical insertion),

Theodore S, Martner (analysis algorithm), and Bary Pollack (restrictions,

control language). We have worked closely and well together; while

the primary areas of responsibility are as shown above, there is no

part of the system that has not been helped by ideas from others in the

group.

28



Cl1

L-23

Csl

c41

c51

C61

f71

C81

[91

[lOI

Lll.3

REFERENCES

F. Blair, Programming of the grammar tester, in [g].

Paul Chapin, On the Syntax of Word Derivation in English,

MIT Thesis, 1967.

Noam Chomsky, Aspects of the Theory of Syntax, M,I.T* Press,

Cambridge, Massachusetts, 1965.

Noam Chomsky, Nominalization, to appear in Peter S. Rosenbaum

and Roderick Jacobs, eds., Readings in English Transformational

Grammar, Blaisdell Publishing CO.

J. Friedman, SYNN, an experimental analysis program for

transformational grammars, WP-229, The MITRE Corporation, 1965.

L. N, Gross, On-line programming system user's manual,

MTP-59, The MITRE Corporation, 1967.

George Lakoff, On the nature of syntactic irregularity, NSF-16

The Computation Laboratory, Harvard University, 1965.

D. Lieberman, Design of a grammar tester, in [g].

D. Lieberman, e&, Specification and Utilization of a

Transformational Grammar, AFCRL-66-270, 1966.

D. L. Londe and W. J. Schoene, TGT: Transformational Grammar

Tester, Systems Development Corporation, 1967.

Stanley R. Petrick, A recognition procedure for transformational

grammars. M.I.T. Thesis. 1965.

I
L

29



ml

1131

[141

Cl51

Cl61

ml

D-81

Jane J. Robinson, A dependency-based transformational grammar,

IBM Research Report W-1889,  Yorktown Heights, N. Y., 1967.

P. Rosenbaum and D. Lochak, The IBM Core Grammar of English,

in [91.

John R. ROSS, A proposed rule of tree-pruning, paper presented

to the Linguistic Society of America, 1965.

John R. Ross, Constraints on variables in syntax, M.I.T. Thesis,

Wi'.

Sanford A, Schane, A schema for sentence coordination, MTP-10,

The MITRE Corporation, 1966.

R. Stockwell, P. Schacter, B. Partee, et. al,, Working Papers

of the English Syntax Project, UCLA, 1967.

A. M. Zwicky, J. Friedman, B. Hall, and D. E, Walker, The MITRE Analysis

Procedure for Transformational Grammar, Fall Joint Computer

Conference 1965, ~7, 317-326. See also MTP-9, The MITRE

Corporation. 1965.

c(

i

i

i
i

30



i

i

r
i

The following references are working papers and reports of the

Computational Linguistics Project, Computer Science Department,

Stanford University.

[lg] Robert W, Doran, 360 O.S. FORTRAN IV Free-field Input/output

Subroutine Package, CS-79, AF-14, October 1967.

[20] Joyce Friedman, Directed Random Generation of Sentences, cS-80,

AF-15, October 1967 (submitted for publication),

[21'] Joyce Friedman and Robert W, Doran, A Formal Syntax for

Transformational Grammar, AF- B forthcorning,

[22] Joyce Friedman and Thomas H. Bredt, Lexical Insertion in

Transformational Grammar, AF- :, forthcoming,

[23] Joyce Friedman and Bary Pollack, A Control Language for

Transformational Grammar, AF- 9 forthcoming,

[24] Joyce Friedman, ., UsersD and Prcgrammers' Guide to a Transfor-

mational Grammar System, This document is not yet complete but

the following sections are available as working papers:

[25] J. Friedman, Subroutine Structure, AF-17, November 1967.

- [26] J. Friedman, Trees, AF-1, September I-966.

1271 J. Friedman, Input routine for transformations, AI?-16,

October J-967.

[28] J, Friedman, Input routine for structural change, AF-18,

November 1967.

[29] Bary Pollack, Routines for restrictions, AF-19, December 1967.

[30] Joyce Friedman, Prcgramming  lexical grapho-morphemic analysis,

AF-3, November 1966.
31


