CS-8
AF -218

A COMPUTER SYSTEM
FOR
TRANSFORMATIONAL GRAMMAR

by.
JOYCE FRIEDMAN

This research was supported in part by the United States Air Force
E lectronic Systems Division, under Contract F19628-C~-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT
JANUARY 1968

e

rw_i,.

— r

—

A COWUTER SYSTEM FOR TRANSFORMATIONAL GRAMVAR

by

Joyce Friedman

r-

r— r— r

AF - 21
cs - 84 January 1968

A Conputer System for Transformational G ammar

by

Joyce Friedman

Abstract

A conprehensive system for transformational grammar has been designed
and is being inplemented on the | BM 360/67 conputer. The system deals
with the transformational nodel of syntax, along the lines of Chomsky's
Aspects of the Theory of Syntax. The mgjor innovations include a ful
and formal description of the syntax of a transformational grammar,

a directed random phrase structure generator, a lexical insertion
algorithm and a sinple problemoriented programmng |anguage in which
the algorithm for application of transformations can be expressed. In
& s paper we present the systemas a whole, first discussing the

phi | osophy underlying the devel opment of the system then outlining
the system and discussing its nore inportant special features,
References are given to papers which consider particular aspects of

the systemin detail.

r-

r— r—

r—

—

Tabl e of Contents

[ntroduction

A netal anguage for transformational

Basic concepts

Tree
Anal ysi s
Restriction

~ Anal ysis al gorithm

Conpl ex synbol

Conpl ex synbol operations .

Conponents .
Phrase structure .
Lexi con .
Transformations .

Conponent al gorithns .

Phrase structure generation

Lexical insertion .

Control of transformtions

The Program .

Directions for future work .

gr amar

Other transformational grammar systens

Acknow edgment

Ref erences .

Page

11
12
13
14
16
16
17
18
19
19
20
22
2k
25
27

28

29

. | NTRODUCTI ON

f o The computer system for transformational grammar presented in this
| paper is the outcone of an attenpt to wite conputer prograns as aids
to research in transformational grammar, in particular, as aids to
witing gramars.

In the course of this work it soon became apparent that an
o essential prior task was the formalization of a general and inclusive
notion of transformational grammar. The basic nodel is that of Chonsky's

Aspects of the Theory of Syntax [3]; we have extended this nodel to fill

in the many mssing details and have formalized it to make it precise.

The systemis inplemented by a FORTRAN program on the |BM 360/67
Ki_ computer. However, as a formal statement of transformational grammar,
A it can be considered independently of the program W have therefore
- rel egated to one section and to occasional fcotnotes all matters related
directly to the program
- This paper may 'be considered as both a summary of and an introduction
_ to the system W have stressed the ways in which the systemis new,
and have left the details for other papers, which will be cited.
— In devel oping the system our primry exanples have 'been the MITRE
grammar- [18], the IBM Core Grammar [13] and the UCLA work on syntax [17]%/
- However, we have not limted the systemto matters treated in these
_ exanpl es, but have tried to be conprehensive.
yThe UCLA work has kindly been made available to us in its prelinnary
bt stages through unpublished working papers and nmenmoranda. W wish al so
to thank Barbara Hall Par-tee of UCLA for nunerous discussions which
ﬁ have helped to clarify our ideas about transformational grammar.
-
- 1

P—

-

T

-

r—

r——

A transformational grammar may be sketchily described as foll ows.
The conponents of a transformational grammar are phrase structure
rules, a lexicon, and a set of transformations,, The process of generating
a sentence consists first of the generation of a base tree using the
phrase structure rules. Lexical itens are then attached appropriately
by a lexical insertion algorithm Finally, the base tree with its lexica
itens is mapped by application of the transformaticns in sone order into
a surface tree. The terminal string of the surface tree represents the
sent ence

From the outset we have felt that it was essential to consider a
transformational grammar as a whole. A rule of a grammar may behave
as intended in isolation, but in the grammr its interaction with other
rules is crucial. It is precisely these interrelations which are nost
difficult to control, and we believe it is here that a conputer system
can be nost hel pful

VW did not wish to try to guess the exact anount of power
required to describe the syntax of natural |anguage, nor to be normative
in our approach. Qur aimis to handle as uniformy and sinply as we
can the sorts of things which do appear in the current work on
transformational grammar. The formalism has been made general enough
so that nmost of the formal grammars and rules which we have seen can be
expressed naturally. On the other hand, there are some devices in the
literature which appear to us to be so different in character from the
rest of the material as to be unacceptable in anything like their present

form and we have not included them 2/

g/As an exanple we mght cite the distance measure included in the ldentity
Erasure Transformation of [13]. This appears to us to be more properly
considered as a linguistic rule, which should be expressible, but which
shoul d not appear as part of a particular transformation. Further
comrents on linguistic rules of this type appear bel ow

2

It is quite likely that at least sone linguists will feel that
the generality of the systemis excessive. But there is no need for any
one user to enploy its full power. In the netal anguage of this system
- a linguist may easily define his own subset of the syntax; we 'believe
such formalization will nake it easier for himto adhere to his conventions,
Al though we have not done so, it would be possible to provide user-

oriented subroutines to verify that the user's additional constraints

-
are not violated.
. The traditional description of a transformational grammar can be
given an alternative presentation in terms of basic concepts, conponents
L and conponent al gorithnms. The basic concepts of a grammar are trees,
§ anal yses, restrictions, and conplex synbols, with their corresponding
‘h_ al gorithms. The conponents are phrase structure, |exicon, and
i~ transformations. The conponent algorithms are phrase structure genera-

tion, lexical insertion and control of transformations. Viewing a
grammar in this way, we are able to see nore clearly the basic problens

to be treated. Itis this breakdown which will be used in the subsequent

—

description.

E_ W\ assune that the reader is famliar with transformational grammar.
The presentation is inconplete; we omt standard itens and enphasize the

- ways in which this systemdiffers fromothers. Wiile the discussion
below is largely informal, it is inportant that it is based on the

.
conpletely formal syntax of [21].

3

-

- 3

i A METALANGUAGE FOR TRANSFORMATI ONAL GRAMMAR

- To describe the syntax of a transformational grammar one nust
first choose a netal anguage, The usual choice by |inguists has been
English. The netal anguage used here is a nodification of Backus Naur
Form (BNF), famliar to conputer scientists as the |anguage used

in the description of Algol60,As we will use the synbols |,

- <and > in transformational grammars, we nodify the usual BNF by

replacing angular brackets by underlining, e.g. "transformation"

rather than "<transformation>", and using "or" in place of "|".
For linguists unfamliar with BNF it should suffice to say that

(1) the nodified-BNF production " A ::= B C or D or E *

expresses the context-free rewiting rule " A - {]? C}" 5
E
;g. (2) the nontermnal symbols of nodified-BNF are denoted by the
v underlined name of the construct;, viz. transformational grammar ::=
= phrase structure |exicon transformations (3)synbols not
| underlined are used autonymously, and (4) juxtaposition in the
object language is indicated by juxtaposition in the netal anguage.
}, - W refer to the constructs of the metal anguage as "formats",
| because they are in fact the free-field formats of the conputer system
. W have carried the underlining of format names into the text of the
" paper.
“
: Basic to the syntax are the two formats wWard and integer.
L word is a contiguous string of letters and digits beginning with a
letter; integer is a contiguous string of digits, Except in these two
= formats, spaces may be used freely.
— 4

If a BNF description is to elucidate a language, it should not
introduce names for intermediate formats which do not have neaning.
In order to avoid additional formats where possible, and to sinplify
the description, we have introduced into the netal anguage the five
operators list, «clist, opt, bool eanconbination and choicestructure.

In each case the operand is given within square brackets follow ng the
operator. nly the first three of these operators are used in this

paper, They are:

1. | st
a ::= list [integer]
allows a to be

1 2 6 9171 3 20

2, clist (comma list)
a c::= clist [integer]
allows a to be

1, 2, 6, 9171, 3, 20

3. opt (option)

a ::= opt [integer] word

allows a to be either

3 NP or NP

It is clear that any occurrence of an operator in a production
could be deleted by the introduction of intermediate formats and
corresponding additional productions, This would not change the object

| anguage

[,
.

r—

r—

r— r—

i i ann i auniil cuc BN el ccndi ean B LI canlN anlN S

A full description of the syntax of transformational grammar is

given in [21]. In this paper we shall give only a few of the productions,

asneeded t0 describe special features of the system

r—

BASI C CONCEPTS

Each of the basic concepts is used throughout a grammar; they

are defined recursively in terns of one another.

Tr ee

The format for a tree is

tree ::= node opt [conplex synbol Jopt [<list [tree] >]

wher e

node ::= word or

sentence -synbol or boundary synbol

The optional list of trees is the list of daughter sub-trees of the

node in left-to-right order. For exanple, the tree

S<NPKN>VP<<V>> represents:

NP
N

S

VP
\%

Because a bracketed representation of a tree can easily becone

cunbersone and unreadable, a substitution capability is provided by

the production:

tree specification

::= treel/ opt [,clist [word tree]]

A decurrencead and then searched for an e;/ of the first word

in the list. Then the tree foll

owing the word is substituted for that

occurrence of the word. The process is repeated until the list is

exhausted. For exanple, the tree specification S <81 S2 > ,

SLNP<N>, S2 VP<X >,

above.

XV results in the sanme tree shown

l/In this and other simlar substitutions for a word, it is intended
that the word have exactly one occurrence in the tree.

7

Cccasional ly a tabular representation of a tree is preferable,
and one is available in the system |t is used for inputs to the
random generation routine, and as the output format.

For a detailed discussion of internal and external formats

for trees used in the system see [26],

Tree operations

The basic operations for trees are conparisons and changes.
The. basic tree conparison is equality. The test for equality of trees
can be conbined with a test for either equality or nondistinctness of
their correspondi ng conplex synbols (see below). Trees nay al so be
tested to see if they include a specified node (doni nance)

Changes to trees include the elenentary operations of the
MITRE gramar and the IBM Core grammar. They also include the operation
(tree) SUBST word which substitutes the tree for an occurrence of
word. This can be used to allow a change to refer to a node inserted

by a previous change in the sane set.l/

Y/ The M TRE prograns [5] and Londe and Schoene [10] handle this same
problem in Ot her ways.

Anal ysi s

Anal yses occur in two places in the grammar: in the structura
description for a transformation and as contextual features.

The syntax for an analysis is a strong generalization of the
notion of proper analysis originally given by Chonmsky. A proper
analysis is given by a list of nodes which are to occur in a left to
right cut across a tree. The syntax of an analysis here is fully
recursive; the terms of the analysis are not sinply nodes but structures
which may contain further analyses.

analysis ::= list [opt [integer]term]

Note that this labelling of terns of an analysis allows the |inguist

to nunber only those terns to which he will refer.

term: := structure or ekip r (choice)
choice ::= clist [analysis]

Any menber of the clist will satisfy the choice

structure : := elenment opt [conplex synbol]

opt [opt [= Jopt [/1< analysis >]

A structure is an element which may optionally have a conplex synbo

and may optionally have a further analysis. The analysis of the
el ement may be negative ("not anal yzable as", denoted by -1). The
optional slash indicates that the analysis is not necessarily inmediate
Its absence indicates an inmmediate analysis.

elerent - := node or * or __
An element may be a specific node (see definition above) or sinply an

unspecified single word indicated by the definite node * . The

underline synbol occurs only in analyses which are contextual features

and indicates the location for |eyjcal insertion. A conplex synbol

in an analysis always directly fy150u6 an el enent.

skip ::=% opt [< structure >]
The use of skips rather than variables follows the MTRE grammar.

It my be noted that a tree is sinply a subcase of structure

in which no integers and none of the special synmbols (,) , -1, /

*, and __ occur.

10

[
L

r— r r

-

- ro

r-— r

Restriction

A restriction may occur only in association with an analysis.

It may be a proper part of a transformation, or may be part of a

in the structure change of a transformation.

Anal ysi s al gorithm

The analysis algorithmw |l be described in detail in [24k], The
one linguistic rule so far incorporated in the systemoccurs here. A

search is not allowed to go below a sentence synbol unless either the

analysis is part of a transformation which has the parameter which

specifically allows this, or the analysis itself contains a sentence
synbol for which a further analysis is given. Thus there are two ways
to specify the depth of a search.

Another interesting feature of the analysis algorithmis the
provision for handling the associated restriction, A three-valued
logic is used and the value of the restriction is "undefined" unti
the search has proceeded far enough to determne avalue of "true"
or "false" for the whole restriction. As the search proceeds or

backtracks the value of the restriction is continually set and unset.

12

r—-

e

r

r

Conpl ex synbol

Conpl ex_synbols occur in trees, in analyses and restrictions, in

the structural change of a transformation, and in the lexical entries

and the redundancy rules of the |exicon

Ve distinguish between a feature specification and a feature:

feature specification ::= value feature

Feature specifications occur only in conplex synbols.

A conplex synbol is a list of feature specifications enclosed in

vertical bars and is interpreted as a conjunction, Alexical entry

contains a list of conplex synbols which is interpreted as a disjunction.

Only the three values + , - and * are allowed.i/ Following

UCLA [17] a feature specification with the indefinite value * ppans

that the feature is "marked", without specifying whether it is
+ or -. The value * never appears in a conplex synbol in a tree,

and is never used with a contextual feature.

Acontextual feature is an analysis structure which contains

precisely one underline synbol __ and whose head elenent is a node.
It optionally has an associated restriction. The underline indicates
the Aode wheres the lexical iwserhionowill cacurd h e r e s
to Chonsky's "principle of strict local subcategorization” will use

as the head el ement of each contextual feature the node which inmediately

dom nates the one for which the lexical insertion is to be nade, Auser
who disavows the principle may choose any domi nating node for the head

element, Contextual features appear only in the lexicon and are used

solely in the lexical insertion process

gfkioss (6] allows arbitrary words to be declared as val ues.

13

el

Conpl ex synbol operations

- The basic operations for conplex synbols are conparisons and
changes.

The conparisons are for equality, non-distinctness, and two
types of inclusion. The result of the conparison of two feature
specifications A and B is shown in the tables bel ow, where T
— represents true and F represents false and abs indicates that the

feature is absent altogether. For the test to be true for conplex

synbols it nust be true for all their feature specifications.
- EQUALI TY NONDI STI NCTNESS | NCLUSI O\ 1 | NCLUSI ON- 2
; \N+—*absAB+-*absN+'-*absAB+-*abs
| -
+|TFF F | + [T FT 7| +]|T F F| 1 |T F F F
FTF F - |F T T T F T F FTF F
* | FFT F T T T T *| TTT F| *|FFT F
abs| F F F T|abs| T T T T{avs| T T T T |abs TTTT
P) —
L_ The basi ¢ changes of compiex symbols include merging Ainto B
, nmoving the features of At B , erasing all the features of AfromB ,
- "and saving in B only the feature specifications which are included-|
j in A . The results of these operations are shown in the tables bel ow
-
It is to be expected that other operations will be added |ater as
L required.
-

N+ - o abs Nl + - * abs N°| o+ - * abs
— \
o+ o+ o+ F + | abs - - abs + | + abs + abs
o - - - + abs + abs - | abs - - abs
* + - X% * | abs abs abs abs * + - * abs
, abs| + - * abs abs + - * gbs abs| abs abs abs abs
- A redundancy rule A =>c¢ applies to a conplex synbol B only
if Ais included-1 in B. If so, then Cis nerged into B.
-
., -
L
—
-
.
L
- 15

O A

r—

— — r

r—

COMPONENTS

The three conmponents of a transfarmational grammar are

phrase structure, lexicon, and transformations.

Phrase structure

The phrase structure of the systemis a conventional context-
free grammar. Conplex synbols do not appear in the phrase structure:
they .are introduced during lexical insertion (see below). Rules are
accepted in a linearization of the standard |inguistic formand are
i medi atel y expanded,-%/ For exanple, the rule

MV (NP)
AUX

cop ({)
WP - ¢ {ae \ (ADY)

is represented as
VP = (AUX(W NP),COP((NP,AP;)),S)(ADV) ~

e expression of rule schemasiy use of the Kl eene star * has not

- 2
been included.—/

yBI air [1] al so expands froma conpact form

??/Londe [10] accepts the Kl eene star.

16

r; —

o
'

Lexi con

A lexicon contains a prelimnary part, or prelexicon, which

contains feature definitions and redundancy rules. The feature

definitions include a list of categorys in the order of lexical insertion

One may al so give nanes to contextual features to avoid having to wite

themin full in the lexical entries., A redundancy rule is of the form

redundancy rule ::= conplex synmbol = > conpl ex synbol

The - interpretation i S that if a conplex synbol includes all the

feature specifications of the conplex synbol to the left of the

arrow (= >) of a redundancy rule then it inplicitly contains those

of the conplex synbol to the right of the arrow, Explicit expansion

of conplex synbols by the redundancy rules can be carried out in the

system

In a lexical entry the set of possible conplex synbols for a

vocabulary word are given. |f several vocabulary words have the identica

set of conplex synbols, the vocabulary words appear in a single lexica

entry, Each conpl ex symbol corresponds to a sense of the word. The set

of conplex synbols is regarded as a disjunction. Since the conpl ex synbo

itself is a conjunction of feature specifications this is in effect a

normal form Thus the system has the sane power as one which allows
arbitrary bool ean conbinations of features, (see Lakoff [7]), without
their conplexity. For exanple, to say that a verb nust have both an
animate subject and an inanimate object, one may use either one or two

feature specifications in the same complex synbol. To say that it nust

have either an animte subject or inanimte object, two conplex synbols

are needed

17

-

Tr ansf or mat i ons

The final conponent of a grammar cmsists of a list of transformations

and a control program The discussion of the control program will be

deferred to the section on the algorithmfor control of transformationg,

A transformati on consists of a transformation identification,

a structural description, and (optionally) restrictions and structura

change, The transformation identification may include, in addition to

the transformation Name, a group nunber and various paraneters. A

transformation may 'be referenced either-by the transformation name or by

the group nunber. The parameters indicate whether or not the transforna-

tion is optional, whether (and how) it is to be repeated after a
successful application, and whether or not the analysis algorithm may
search bel ow an unnentioned sentence symbol. Keywords are also given
here.

The structural change is expressed, as in the MITRE grammar [18],

by a list of operations. A new feature of the systemis the

condi tional change.

conditional change ::= |F < restriction > THEN

< structural change > ELSE

< structural change >

The basic operations for trees and conpl ex synbols have already 'been

di scussed

18

COVPONENT ALGORI THVS

The three main algorithns of a transformational grammar correspond
to the three conponents and are phrase structure generation, |exica
insertion and control of transformations, Qur inplenentation of the
first process is designed to be useful in the testing of a grammar,

The second has not previously been fully described and we give for the
first time an explicit algorithm Various proposals have been nade
for the third algorithm rather than choosing one of them we include the

specification of the algorithmas part of the grammar.

Phrase structure generation

The system can be started with a base tree input by the user
However, it also has the capability of "directed randont generation of
trees fromthe phrase structure granmar. This schene, which is described
in detail in [20], allows the user to specify a "skeleton" around which
a tree is generated at random The skeleton nay al so bear constraints
of dom nance, nondonmi nance and equality, The schene was designed to
make it possible for the user to generate trees which are "interesting"
rather than sinply random in particular, which will test a specific
transformation. It should be noted that there is a restriction on the
phrase structure granmars which can be handl ed by the algorithm:
the rules nust be ordered so that no synbol is introduced bel ow the
rul e-whi ch expands it, with the exception of course of the sentence

symbol.

19

e

P

r-

Lexi cal insertion

The algorithm for lexical insertion is an interpretation of one
of the two alternatives presented by Chonsky in Aspects,, Conpl ex
synbol s are introduced fromthe lexicon only after the phrase
structure generation of the base tree is conpleted. |n order to
fomalize the process, we have had to nake decisions on many points
not treated explicitly by Chonsky. The details are presented in [22];
we note here sone of the salient features.

A contextual feature is sinply a special case of analysis; thus

much of the work in lexical insertion is done by the same anal ysis
al gorithm used for transformations.

Lexical insertion begins with the |owest embedded sentence, and
wor ks upmard.l/ Wthin a sentence the order of lexical insertion is
determned by the list of categorys in the prelexicon. This order may
have consi derable effect on the efficiency of the process, However,
froma formal point of view, all categories are alike.

The basic criterion for lexical insertion is non-distinctness

the tree may already contain a conplex symbol; a word and its conplex

synmbol can be inserted only if the conplex symbol is non-distinct from

the one already in the tree, But this is only a necessary condition;

each feature specification for a contextual feature nmust be checked by

the analysis algorithm |f the value is + the analysis algorithm

nmust succeed, and if - it nust fail.

l/AIthough conpl ex synbols are not introduced in the phrase structure
it is possible that a skeleton input to the phrase structure generation
routine already contains some words of the lexicon, |n this case
the conpl ex synbols for those words are |ooked up in the |exicon and

inserted prior to the process described here.

20

i
t
]
(-

r——

Once a vocabulary word and conpl ex symbol have been selected (at

random from those neeting the above tests), one additional step is
necessary before lexical insertion takes place. The possible side
effects of the contextual features nust be taken care of. |f for
exanple, a verb has been selected which takes animate subject and

i nani mate object, feature specifications may need to be added to the

conpl ex synbols for the subject and object. Then contextual features

are dropped from the conplex synbol, since they have served their

function, a + or - value replaces the indefinite value ¥ , and

the vocabul ary word and conplex synbol go into the tree.

21

e

s

r— r r— r—

-

——

— r— rr— r

a——

r—

Control of transformations

Each transformational grammar that has discussed at all the matter
of order and point of application of transformations has presented a
slightly different algorithm From the available exanples, it was
possible to abstract the basic ideas involved and to wite a sinple
programm ng |anguage in which the linguist can express the algorithm

for a particular grannar.l/ The control program refers to transformations

either individually by transformation name or by group nunber, The

| anguage contains a repeat-instruction which allows a list of contro

instructions to be repeated either for a fixed nunber of times or unti

they all fail. One innovation is the IN-instruction. The statenent

IN transformation name (integer) DO

causes the integer-th termof the transformation to be used as the
starting point for the search algorithm Suych notions as "highest
sentence”, "lowest sentence", etc. can be expressed by the IN construct.
The notion of keyword has also been inplemanted.gy
The control |anguage allows branching on the success or failure

of a transformation, The use of this conditional instruction nakes it

possible to wite transformations with less attention to certain types

of interaction, For exanple, suppose transformation T2 is to apply

only if T1 has failed to apply, Then the instructions

;/In- addition to controlling the grammar, the control Language al so
provi des TRACE instzuctions Whi ch govern the amount of output,

g/Keywords were first used in the MTRE programs [5]. They were
implemented in a slightly different formby 1BM[9].

22

A..,.
r-m-,r;».

~ gt

i

-

IF T1 THEN GO TO A EISE GO TO B,

A T2,

B:
will cause T2 to be bypassed if T1 fails., This instruction may
be considered excessively powerful., |t js available because the

alternatives frequently seemto be either to alter artificially the
structural description of T2 or to include a restriction on T2
such as: "applies only if T1 has failed to apply".l/

For a detailed discussion of the control |anguage and exanples

of control prograns see [23].

W have not attenpted to deal with the notion of inplicit ordering

of transformations.

1/ L , , .
The use of the conditional instruction will of course gpeedupthe
processing of atree.

23

THEPROGRAM

The systemis witten as a collection of subroutines which can
be called in various orders. A table of the subroutine structure is
included in the Programrer's and User's Quide to the System[24].

A MAIN program consists of a sequence of subroutine calls.,
Typically a run begins with a call to the initialization subroutine,
followed by calls to input routines for the conponents of the grammar.
Then either a base tree is input, or a skeleton is input and the
generation routine called. Lexical insertion is optional at this
point. Then the transformation routine is called, and the program
executes the user's control program The process can be repeated with
a new tree fromthe skeleton or with a new tree input.

Alternative MAIN programs to test individual conponents of the
granmar can easily be constructed, For exanple, to test the phrase
structure one mght sinply generate trees at random O, to test
| exical insertion one could start with base trees containing inconplete
conpl ex synbols and investigate how they were conpleted, Transforma-
tions can be tested beginning from base trees with (or wthout)
| exical itens already included,

MAIN prograns for a variety of purposes are also given in [24].

The systemis inplenmented in FORTRAN IV (H on the | BM 360/67.
To the user, however, the system does not 1look |ike FORTRAN. All of
the formats are free-field and, externaliy, words may be up to Lo
characters long, See [19] for a description of the free-field

i nput / out put subroutine package,

2k

s
: DI RECTI ONS FOR FUTURE WORK
- There are many ways in which the workwhich has been done can be
extended, ~Sone of these correspond to interesting open questions in
the transformational theory of syntax., W mention here sone areas in
“— which we plan to begin work soon, W think that the generality of the
: systemwi |l give us a strong starting point in these investigations.
~—
Conj unction
“ : . .
No neans of handling +ransformatiomal schemas such as conjunction
L has been provided. In the earlier progranms at MITRE a conjunction
al gorithm due to Schane [16] was included and we plan to carry this
L over into the present systemas its first version of conjunction. W
‘ hope then to investigate the alternatives considered in the literature,
-
: | di ons
.
) A comon proposal for the treatnment of idioms is that an idiom
;
— occurs as a tree in the lexicon. W foresee only mnor difficulties
; in incorporating idioms in this way, and plan to do so when time allows,
“
Li nguistic rules
-
The current trend in transformational |inguistics includes a
- search for linguistic. rules which would apply to all grammrs.
? Ross [1k, 15], in particular, has been working along these lines. W
L hope | ater to investigate this '"work 'by devising means of incorporating
¢
i
{
| -
4.
.

25

r

proposed rules into the system Y

Lexi cal derivation

The recent work by Chapin [2] and Chonsky [4] on | exi cal
derivation has opened up sonme interesting lines of investigation
which we are now beginning to explore within the system A prelininary
study of Chapin‘s early work was made prior to the devel opnent of the

systemand is reported in [30].

Dependency gramnars

Jane Robinson [12] has recently offered a proposal for transfor-
mational grammars in which the underlying str-ucture is a dependency
grammar, The present system allows conplex synbols to be associated
with any node of a tree, but we do not now associate |exical words
with higher nodes as would be required by the "projectivity" of

dependency granmars.

yR@ss‘ s rule of tree-pruning has been incorporated by Goss [6].

26

L

r-r— r— r—

r—

OTHER TRANSFCRVATI ONAL GRAMVAR SYSTEMS

The earliest conputer systens for transformational grammar were
those of Petrick [11] and M TRE [18]. The system here is an outgrowh
and extension of this early work at MTRE. Naturally it enbodies
a more recent version of transformational theory.

The partial system of Lieberman and Blair [8, 1] represents an
early attenpt to deal with the nodel of Aspects, A lexicon was defined,
and.phrase structure prograns and some transformational prograns were
witten.

Systens devel oped concurrently with this one include the console-
control led grammar testers of Goss [6] and of Londe and Schoene [1OL3/
The problems best treated by a system designed for immediate response
to a user at a console differ from those appropriate to an off-line
system such as ours. Wile there is sonme overlap in these systens,
we believe ours is the first to camsider all phases of transformational
grammar in a unified system, For exanple, the three conponent algorithns
have no correspondents in other systems and neither has included a

lexicon, Various differences in conmon areas have been noted above.

L/Vie wish to thank both Dave Londe and Lou Gross for many pl easant
and fruitful discussions, and for a free exchange of ideas from
which our work has benefitted.

27

3
t

R

r—

r—

o

r—-

r

ACKNOALEDGVENT

The system described in this paper was devel oped with Robert W
Doran (netal anguage, basic syntax, free-field input/output, analysis
algorithmy, Thomas H, Bredt (lexicon and lexical insertion),

Theodore S, Martner (analysis algorithm), and Bary Pollack (restrictions,
control language). W have worked closely and well together; while
the primary areas of responsibility are as shown above, there is no

part of the systemthat has not been hel ped by ideas fromothers in the

group.

28

P

(1]

(3]

(5]

(7]

(9]

[10]

[12]

REFERENCES

F. Blair, Progranmng of the grammar tester, in [9].

Paul Chapin, On the Syntax of Wrd Derivation in English,

MT Thesis, 1967.

Noam Chomsky, Aspects of the Theory of Syntax, M.I.T. Press,

Canbridge, Massachusetts, 1965.

Noam Chonsky, Nominalization, to appear in Peter S. Rosenbaum

and Roderick Jacobhs, eds., Readings in English Transfornational

G ammar, Blaisdell Publishing Co

J. Friedman, SYNN, an experimental analysis program for

transformational grammrs, WP-229, The M TRE Corporation, 1965.

L. N, G oss, On-line programm ng system user's manual,

MTP-59, The M TRE Corporation, 1967.

George Lakoff, On the nature of syntactic irregularity, NSF-16

The Conputation Laboratory, Harvard University, 1965.
D. Lieberman, Design of a grammar tester, in [9].

D. Lieberman, ed., Specification and Uilization of a

Transfornmati onal G anmar, AFCRL-66-270, 1966.

D. L. Londe and W J. Schoene, TGT: Transformational G ammar

Tester, Systens Devel opnent Corporation, 1967.

Stanley R Petrick, A recognition procedure for transformational

granmars, M1.T. Thesis, 1965.

29

L

[12] Jane J. Robinson, A dependency-based transformational gramar,

| BM Research Report RC-1889, Yorktown Heights, N VY., 1967.

‘ [13] P. Rosenbaum and D. Lochak, The IBM Core Grammar of English,
!
= in [9].
g [14] John R. Ross, A proposed rule of tree-pruning, paper presented
to the Linguistic Society of America, 1965.
-
[15] John R Ross, Constraints on variables in syntax, M.I.T. Thesis,
L_ 1967.
; [16] Sanford A, Schane, A schema for sentence coordination, MIP-10,
- The M TRE Corporation, 1966.
L [17] R. Stockwell, P. Schacter, B. Partee, et. al,, Wrking Papers
/ of the English Syntax Project, UCLA 1967.
L
[18] A M Zwicky, J. Friedman, B, Hall, and D. E, Wal ker, The M TRE Anal ysis
L Procedure for Transformational Gammar, Fall Joint Conputer
. Conference 1965, 27, 317-326. See al so MIP-9, The MTRE
— Corporation, 1965.
-
-
-
L
i
(.

30

rﬂm»—\

rnr—'w.

-

The following references are working papers and reports of the
o Conput ational Linguistics Project, Computer Science Departnment,

Stanford University.

[19] Robert W. Doran, 360 O.S. FORTRAN |V Free-field Input/output

Subroutine Package, CS-79, AF-1k, Cctober 1967.

[20] Joyce Friedman, Directed Random Generation of Sentences, €S-80,

AF-15, Cctober 1967 (submtted for publication),

- [21] Joyce Friedman and Robert W. Doran, A Formal Syntax for

Transformational G ammar, AF- , forthcoming.

[22] Joyce Friedman and Thomas H. Bredt, Lexical Insertion in

. Transformational Gamar, AF- , forthcom ng,

[23] Joyce Friedman and Bary Pollack, A Control Language for

Transformational Gammar, AF- , forthconi ng,

- [24] Joyce Friedman, ed., Users' and Programmers' Quide to a Transfor-
mational Gammar System This document is not yet conplete but

the following sections are available as working papers:

L [25] J. Friedman, Subroutine Structure, AF-17, Novenber 1967.
-[26] J. Friedman, Trees, AF-1, Septenber 1966.

[27] J. Friedman, Input routine for transformations, AF-16,

- Cct ober 1967.

o (28] J. Friedman, Input routine for structural change, AF-18,

: November 1967.

L [29] Bary Pollack, Routines for restrictions, AF-19, Decenber 1967.
L [30] Joyce Friedman, Programming | exical grapho-norphem ¢ anal ysis,

AF-3, Novenber 1966.

L 5

