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1. I NTRCDUCTI ON

These notes are neant to provide an introduction to System/360 which
will help the reader to understand and to make effective use of the
capabilities of both the machinery and sonme of its associated service
programs. They are largely self-contained, and in general the reader should
need to make only occasional reference to the "System/360 Principles of
Qperation" manual (IBM File No. 8360-01, Form A22-6821), and to the
"Qperating System/360 Assenbl er Language" manual (IBM File No. $360-21,

Fom C28-6514).

A digital conputer can be considered froma variety of viewpoints; for
convenience we will mention five possible ones, each of which treats the
inner workings of the conputer in successively less detail. To an engineer
concerned with the design of its logical circuits, a conputer mght be
consi dered basically a collection of devices for controlling and ordering
the flow of electrical inpulses. At another level a person concerned wth
nmethods to be used to make these logical circuits performcertain operation8
such as division nmight treat a conputer as a collection of registers, swtches,
and control mechani snms which, when provided with the appropriate data, are
to performa series of steps |eading eventually to the conputation of a
quotient. At the next level one nmight consider the basic operations of a computer
to be those operations which performa single arithnetic operation, a
sinple data novenent, or a test of a single piece of data. Another viewpoint
(typical of "higher-level |anguages" such as FORTRAN, ALGO., and PL/1)
is to consider that the basic operations of interest are the novenent of
bl ocks of data, the evaluation and assignment of mathematical expressions,
and the control of counting and testing operations. At yet another |evel
as in certain applications such as traffic or production sinulation, data
reduction, and network analysis, the conputer is considered as a device
whi ch accepts information in a formwhich closely approxi mates that of the
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probl em under consideration, sad produces output directly applicable to
that probl em

Each of these ways of viewing a conputer is of course not especially
distinct from its neighbors. In this treatnent we will be prinarily concerned
with the mddle |evel, nanely that of considering the basic operations, or
instructions, that we want the computer t0 performto be eingle arithnetic
or logical operation*, sinple data trensmission operations,. etc. V& will
from time to time have occasion to consider the canputer from "neighboring"
viewpoints: in some circunstances it wll be useful to know some details of
the internal sequencing of operations sueh as nul tiplication and division;
at other times it will be convenient to consider instructions to the machine
which will performoperations in a larger context than that ordinarily
consi der ed.

This level of programmng which will be our primry concern is usually
known as "machine |anguage" programmng; however, since the process of
actual ly getting the desired instructions into the computer requires the
aid of a nunber of other programs, the first of which is called an assenbler,
the terms "assenbl er languege" programming or "assenbl er coding" are al so
used. Thus the service programof most concern will be the Qperating
Systen 360 Assenbler; other progrems of interest will be the Linkage Editor
and the Resident Supervisor, each of which will be considered in the
appropriate context.




2. BINARY AND HEXADECI MAL NUMBERS

System/360, |ike most other digital conputers, makes heavy use of
binary nunbers for internal arithnetic. Because digits in a base two
representation can take on only the values 0 and 1, it is relatively sinple
to build a mechanical or electrical device which represents the digit. For
exanple, a 1 digit may be represented by the presence or absence of a
current through a given circuit conponent or by the presence of a positive
or negative voltage at some point. Because facility with the use of binary
nunbers is fundamental to an understanding of-the basic operation of
System/360, it is useful to summarize the properties of the binary nunber
representation. For the tinme being, all numbers will be assumed to be integers.

In base ten, when we wite a nunber such as 1735 we nean the quantity

1% 10° + 7x 102 + 3 x 10* + 5 x 10°.

That is, each digit position as we move to the left is weighted by another
power of the base, ten. Similarlv, when in binary arithmetic we wite the
nunber 11010 we mean

1x2%*+1x2°+0x2%+1x2*+0x 2°

which of course is not the same as what is meant by the decinal nunber

11010, where powers of ten are understood. In fact, the binary nunber 11010
Is the representation (in the nunber system with base two) of the decinal

number 26, which i S obtained sinply by performng the sumin the above
exanpl e.

To clarify which base is intended when we wite nunbers, it wll be
convenient to attach a "subscript" at the right end of the nunber to
i ndicate the base being used:

2630 110102, 110 = 1g,

1010

10102, 10002 = 810 .
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As the deci mal nunbers being represented become |arger, the nunber of
binary digits required becomes larger also

Thus,

99910 = 11111001112

It is therefore convenient to find a nore conpact notation for binary
numbers. If we consider groups of four binary digits at a tinme, the possible
deci mal values that can be represented run fram zero to fifteen, If we then
choose to represent each of these groups by the digits 0, 1, 2, 3,4, 5,6,
7, 8, 9,A B C D E P, we can establish the following table of correspondences:

Binary Digits Deci mal _Val ue Base 16 Digit
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

TABLE |.

Hexadecimal, Decimal, and Binary Digits
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We Wi Il call the base sixteen digits in the third col unm hexadeci nal
digits, and will generally use themin situations when we have occasion to
refer to binary numbers. As before, a "subscript'" of 16 will be used to
indicate that the given set of digits is to be understood to have base 16:

2610 = 110102 = 1lh16, 2616 = 1001105 = 3810, 110 = 12 = lie,
1010 = 10102 = Az, 1002 = 810 = 8;6, 10010 = 6416 = 11001002.

Converting nunbers between binary and hexadecimal representations can
be seen to be quite sinple: to convert a hexadeci mal nunber to binary,
sinply substitute for each hexadecinmal digit the four binary digits it
represents; to convert a binary number to hexadecinal, group the binary digits
four at a time starting fromthe right, and substitute the corresponding
hexadeci mal digit. For exanple:

D5B1e = 1101 0101 10112, (hexadecimal to binary)

11 1110 1002 = 3E8:6. (binary to hexadecimal)

In the second of these exanples it was assumed that two extra binary
zero digits could be added at the left end of the nunmber without affecting
its value; thus we can wite

1116 = 100012 rather than 0001 00Qlz.

Conversion between decinmal and hexadeci mal representations is somewhat
nore cunbersome, but if a conversion table such as the one in the Appendix
is not available, the following nethod is usually sufficient for hand
cal cul ation.

In the positional notation we are accustomed to using, a string of

digits 4 a4 _ . d d a4 is the representation in sone base D of the
n nil 2 1 O
nunber X
n
X = Z dek = o + &bt + @20 + . . .+ 1"
k=0
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Suppose we want to convert from this representation in bare D to the
representation in a new base B:

X = i kak = boB’ + byB' + baB® 4 ... 4+ me’ .
k=0
The known quantities are the old and new bases D and B, ad the digits 4
of the old representation; then to find the digits bk in the new representation,
the follow ng schene is used.
Divide X by B; save the quotient, end the remainder is bo. That this
is so can be seen from the definition of the quotient and remsinder:

X = Remainder + BX Quotient = bo + Bx [by + b2B + bsB® + ... + mem'I]‘.

Divide the saved quotient by B; save the new quotient, and the new remai nder
IS bi. Continue this process until a zero quotient is obtained, and the
successive remainders are the digits bo, b, . . . b ; note that they were
obtained in order of _incressing Significance.

Examples
1. Convert 1950 to base 2.

4 2 1 0
2)19 2)9 2% 2)2 21
-5 —5— 4= 2 0

bo = 1

by =1 bo= 0 bs =0 by =1
Hence, 1910 = 10011o.

2. Convert 100050 to base 16. (Note that the conversion arithmetic is
done in base 10.)

62 3 0
16)1000 16)62 16)3
Q% 48 0

bo = b1 = 1% or Eis b2 =T

Hence 100010 = 3E8;6.
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Convert 62710 to base 9.

69 7 0
9)627 9)69 9)7

621 63 0
bo = 6 bl = 6 bg =7

So that 627,0 = 7669.

Convert T766s to base 7. (This is sinple once you' ve nenorized the
mul tiplication table in base 9, which is the base used for the
conversion arithmetic.)

108 13 1 0
T)766 7)108 V13 1
762 103 0

bo = & b1 =5 ba =5 bx =1

Thus 7669 = 1554, .

This can be done in nore roundabout (but conprehensible) fashion by
converting to base ten first and then doing the arithmetic in decinal,:

T66s = 7 x 81 +6 Xy + 6 =567 + 54 + 6 = 62710

89 12 1 0
7)627 7)89 )12 (O
623 84 0
bo = % b1 =5 bg_’jj: bz =1

So that T66s = 15547 agai n.
Convert 1413s to base 10. This is nost sinply done by expanding the
positional notation:

14135 = 1x 125 + 4 x 25 + 1 x 5 + 3 = 23310.

Alternatively, using the fact that 1050 = 205 in base 5 arithnetic,

43
2051E13 2 0
130 20)53 20)2
113
110 _40 0
bo = 3 b1 = 3 b = 2

gi ving 1413s = 23330.
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6. Convert 3E81¢ t0 base 10. In this case it 4s usually sinplest to use
the positional notation used earlier:

3E816 = 3 X 16 +14x 16 + 8x 16°,

and then this sumcan be evaluated in deciml. Thus we find

3816 = 3 X 256 + 14 x 16 + 8 = 768 + 224 + 8 = 100010,

This type of conversion is considerably sinpllfied by the use of the
table of multiples of powers of 16 in Table Il or (for small nunbers)
by the use of the conversion table.

Discussion of binary arithnetic -- addition, subtraction, multipli-
cation, and division -- wll be deferred until later.

VW will use several abbreviations regularly: a bit wll mean a
binary digit, and we will use_hex as short for hexadecimal.



L e

Hex

x16*

Digit X1 X162 x16> x16* x16° x16° x16"
1 1 16 256 L 096 65, 536 1,048,576 16,777,216 268,435,456
2 2 32 512 8,192 131,072 2,097,152 33,554,432 536,870,912
3 3 48 768 12, 288 196, 608 3,145,728 50,331,648 805,306,368
4 4 64 1024 16, 384 262, 144 L 194,30k 67,108,864 1,073,741,824
5 5 80 1280 20, 480 327, 680 5,242,880 83,886,080 1,342,177,280
6 6 96 1536 24,576 393, 216 6,291,456 100,663,296 1,610,612,736
7 7 112 1792 28,672 458, 752 7,340,032 117,440,512 1,879,048,192
8 8 128 2048 32, 768 52k ,288 8,388,608 134,217,728 2,147,483,648
9 9 144 230k 36, 864 589, 824 9,437,184 150,994,944 2,415,919,10k4
A 10 160 2560 40, 960 655, 360 10,485, 760 167,772,160 2,684,354 ,560
B 11 176 2816 45,056 720, 896 11,534,336 184,549,376 2,952,790,016
C 12 192 3072 49, 152 786, 432 12,582,912 201,326,592 3,221,225,472
D 13 208 3328 53, 248 851, 968 13,631,488 218,103,808 3,489,660,928
E 14 224 3584 57, 344 917, 504 14,680,064 234,881,024 3,758,006,384
F 15 240 3840 61, 440 983,040 15,728,640 251,658,240 4, 026,531,840
TABLE I1.

Mul tiples of Powers of 16







3. STRUCTURE OF SYSTEM 360

It is usual to describe the structure of nost digital computers in
terms of four najor components: nenory, arithmetic, control, and input-
output units. It should be understood that an actual machine my not
have conponents which can be separately identified in this way, but that
for conceptual purposes it is possible to think of themas distinct units

Menory
Uni t i
0 zéés
Arithmetic | nput - Qut put
Uni t [ nstructions Uni t

\ ’
ﬁ\ ;1

\NC

\\Oi?t'bo V ,Q{C’S\} /

~ \J Control EO‘) d

Figure 3.1 Structure of a Typical Conputer

The solid arrows in the figure represent schematically the possible paths
of data flow anong the various units, and the dashed arrows indicate the
flow of control signals. As indicated, the instructions for the contro
unit are contained in the same menory as the data used by the arithmetic and
input-output units; this property is what gives nodern digital conputers
their flexibility and power -- the conputer can, on the basis of certain
conputed results, nodify the instruction sequences which control the way it
wll treat other data

In-the System 360 conputers many of the functions perforned by the
control and arithnetic units use the sanme internal conponents, so that it
is easier to make no special distinction between the two and sinply cal
the conbination the Central Processing Unit, or CPU




Menor'y Dot

Uni t
\
I nstructions | nput - Qut put
and Data Uni t
y .

CPU < - - 6"0;&.;01

Figure 3.2 Structure of System 360

- These units will be described in varying detail: the menory and
arithmetic unit are of mjor concern to the machine |anguage programmer
certain features of the control unit will be examined closely while others
will be ignored for the time being; the input-output unit, which is sinply
a term which collectively denotes devices such as card readers, printers,
magnetic tape units, etc., wll be described only as necessary to make use
of the computer in certain elenentary ways.

The termnology introduced here is by no neans fixed in the literature
and everyday usage of the conputing profession. For exanple, it is conmon
to refer to magnetic drums as menory devices even though they are accessed
through what we have called the Input-Qutput Unit. Wat we will call
"menmory" can be nore accurately described by calling it the H gh-Speed
Rendom Access Magnetic Core Menmory, but the econony of a single term is
apparent.

Menory

The basic unit of data in System360 is a group of eight bits called
a byte. The bits in a byte are by custom nunbered from0 to 7, beginning
on the left with the nunerically most significant digit. The definition
of the "left" side of a byte will become clear shortly.

1101 P o 110
012 3 4 5 6 7

Figure 3.3 A byte containing the 8 bhinary digits 11010010
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The

menory unit is arranged so that it will hold a certain nunber of bytes

in such a way that each byte may be accessed as rapidly as any other. The
bytes may be considered to be individually nunbered in order, beginning at
zero; the nunber associated with each byte is its address or location in

t he

nmenmory unit. The menory may be thought of as a linear string of bytes

arranged in order of increasing addresses.

4 addr ess
N (O 702 703 TOk 2) 706 o7 708 709
f byte |byte |byte |byte |byte |byte |byte []byte [byte ;

Figure 3.4 A portion of menory

Many of the machine instructions which refer to bytes "in nenory”

(which is an abbreviation for "in the menory unit") actually refer to a
group of consecutive bytes. In such a situation the group, or "operand",
is always addressed by referring to its leftnost menber, nanely the byte

with

the | owest address in the group. Furthernore, certain instructions

require that the address of a group of bytes (which, as stated, is the
address of the leftnost byte) also be a multiple of the length of the
group: the possible values for these instructions are 2, 4 or 8, and in

such

cases it is usual to refer to the groups of bytes whose addresses and

| engths satisfy this condition as half'word, fullword, and doubl eword data
respectively.

8E7

8e8 B8E9 ©8EA B8EB ©8EC S8ED 8EE S8EF 8r0 8F1 8F2 8F3

k- halfword—|- halfword—s} halfword— |«halfword—fe- halfword-k- halfword- |

| « fullword - | « fullword — « fullword - '

|
| - doubl eword - |

Figure 3.5 A portion of menory
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Note that if (for exanple) a halfword operand (that is, a group of
two bytes whose address is divisible by 2) were specified for sme operation,
and the address of that 16-bit operand were 8EAis, then bit 0 of the byte
at 8EBy¢ woul d be considered to follow imediately after bit 7 of the byte
at 8EA;g. It is in this sense that bit 0 is taken to be the 'leftnost'
bit of a byte: it follows (for certain operations) immediately after bit 7
of the byte at the next |ower memory address.

The data contained in bytes or groups of bytes in memory can be
mani pul ated in nmany different ways, depending on the intentions of the
progranmer.  These will be discussed |ater.

Central Processing Unit

There are three things in the crv of interest to the programer: the
general purpose registers, the floating-point registers, and the Program
Status Wrd. There are sixteen general purpose (or sinply general) registers,
nunbered from zero to fifteen, each one of thembeing 32 bits (or 8 hex

~digits or 4 bytes or 1 fullword) in length. They are represented schematically
-in the figure bel ow.

|<- 32 bits nunbered 0 to 31 —1|
0 31

Figure 3.6 A'single General Purpose Register

RO . R1
R2 R 3
R4 RS
R6 RT
RS R9
R10 R11l
R12 R13
R14 R15

Figure 3.7 CGeneral Purpose Registers
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Figure 3.7 is arranged with the registers in pairs, the left being
an even-nunbered register and the right being the next higher odd-numered
register. This is because certain of the machine operations (such as
shifting, nultiplication, and division) require the use of a pair of
registers, and in such cases it is always such an even-odd nunbered pair.
Ve will have many occasions to refer to the general registers, so that it
is convenient to introduce a short notation: we will wite Rn to refer to
general register n, so that RO neans register 0, Rl4 means register 14,
and so on.

The presence of floating-point registers in the CPU is an option for
certain nodels, but we will assunme that the user of the machine we are
discussing wites his prograns for a conputer that includes the floating-
point feature. There are four floating-point registers, each 64 bits (or
16 hex digits or 8 bytes or 1 doubleword) in |ength. They are nunbered
0, 2, 4 and 6.

« 64 bits -

FO
F2
F4
F6

Figure 3.8 Floating-Point Registers

In certain circunmstances the floating-point registers are used to
contain operands 32 bits long, in which-case they use only the left half of
the register, and the rightrmost 32 bits of the registers are ignored; this
will be discussed in the chapter on floating-point arithmetic. As in the
figure above we will use the abbreviations FO, F2, F4, and F6 to refer to
the four floating-point registers.

In many cases it will be easier to use the term "register” for either
a general purpose register or a floating-point register; which is neant
will be clear fromthe context of the discussion.
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The Program Status Word (or psW for short) is not of direct concern in
mos: programmng applications, so that we need not be concerned at present
with examning it in detail. The PSWis a double-word (and hence it is
actually a Program Status Doubl eword, but nobody really cares about the
difference) which indicates in a conpact form certain inportant details of
the operation of a programin the Systent 360 CPU.

System Mask Key | AMWP | nterruption Code 1
0 78 1112 15 16 31
Qi § cc I'fR&™ Instruction Address |
32 33 34 35 36 39 40 63

Figure 3.9 Program Status Wrd

The various pieces of the BsW (which resides in the CPU, not in nenory,
and is therefore pretty much inaccessible) wll be explained in various
contexts later. For the present, however, the items of interest lie in the
rightmost 32 bits: the portions denoted "IL¢" (Instruction Length Code),
"CC' (Condition Code), and "Instruction Address" (which we will abbreviate
"|A") are the parts of the psw which will be treated in nost detail. The
Condition Code indicates the result of certain operations (e.g., that a sum
is negative) and the two bits of the CC can be tested by certain instructions.
This right-hand portion of the PSWwill be of nore interest than the first
32 bits for nmost of the follow ng discussion; the 1c and IA will be dis-
cussed in the next section. The reader is cautioned that there will be
omi ssions in the discussion of the psw until the treatnent of interruptions,
where the subject will be covered in greater detail.

| nput - Qut put

The process of data transmssion between the menory and external devices
such as card readers, printers, card punches, magnetic tapes, magnetic drunms,
disc files, etc., is handled in system/360 by channels. These are capable of
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transmtting bytes of data in such a way that the CPU can continue with the
execution of a processing program at the sane tine that the channel is
moving information to or froma different area of menory. The problens
involved in synchronizing the transmission of such data with its use by
the processing programin the CPU are quite conplex and will be avoided for
the tine being, but will be touched upon later during the discussion of
interruptions.
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4. INSTRUCTIONS (1)

As was indicated in the diagrans of the "structure" of a computer in
the previous section (Figs. 3.1 and 3.2), the instructions obeyed by the
conputer are held in nenmory along with the data to be processed. Instructions
in System/360 can be 2, 4, or 6 bytes long, depending on what the placenent
of the data to be operated on happens to be, and on what the instruction
causes to be done with the data. [Instructions are always aligned so that
the leftnost byte is on a halfword boundary:- that is, an instruction
address must always be divisible by two. Cherwise, it doesn't matter, for
instance, that a L4-byte instruction begins hal fway between two fullword
boundari es.

The actual process of performing the instructions in a program may be
visualized as in the following figure.

FETCH DECODE EXECUTE

A\

N 1

Figure 4.1 Instruction Cycle

In the "Fetch" portion of the cycle, the CPU causes the instruction
in menory which begins at the byte whose address is contained in the rightnost
2L bits of-the PsWw (the Instruction Address or |A) to be brought into the
CPU and placed in an internal holding register where it may be exam ned.
Though this internal register is not accessible to the programer, we will
fromtine to time make reference to it, so we will sinply call it the
Instruction Register, or IR for short. There is a sinple way for the CPU
circuits to know the length of an instruction and therefore how many bytes
to bring fromnenory; this will be explained at the end of this section.
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To conplete the Fetch portion of the cycle, the cPy adds the length in bytes
of the instruction now in the instruction register to the Ain the BsW, so
that it will contain the address of the next instruction to be fetched when
the current instruction has completed itS execution. This nmeans of course
that instructions are packed tightly in menory; there are no |eftover bytes
between instructions.

To decode the instruction, the CPU examines the hit pattern of the bytes
inthe IR to see what action is intended. Since (1) the bytes were brought
fram Menory and (2) the menory contains both data and instructions, it is
quite possible that the bytes brought to the I were intended by the programer
to represent data and not instructions. The CPU, however, has no way of
knowing this in advance;, it sinply goes to the menory address given in the
| A portion of the PSWand puts those bytes into the IR to be interpreted as
an instruction. If this is what was intended, well and good (renenber that
in the beginning of Section 3it was noted that the ability to treat instruc-
tions as data is what gives a conputer its power); otherw se strange things
can occur. Because not all of-the possible bit patterns in the IR represent
"legal" instructions (i.e., actions the CPU can actually perform, the
decodi ng mechani sm can occasionally detect a confused situation before too
much danage has been done, and cause the appropriate renedial actions to be
Initiated.

Assunming that the bytes in the m® do indeed contain a valid instruction
sone further actions may be necessary before the decoding is conpleted, such
as the calculation of addresses of data to be operated on during the "Execute"
portion of the cycle.

It is during this final‘execution phase that the actual operation is
performed. The operation may be a sinple one which could, for exanple,
cause the contents of one general register to replace the contents of
another, or it may involve many intermediate steps of conplicated |ogic or
arithnetic. If no errors are detected during the execution phase (such as
attenpting to divide something by zero), the CPU then begins the cycle again
by returning to the "fetch" portion of the cycle. It should be noted that




the time required for all this is very small even for a relatively slow
conputer: the entire cycle takes only mllionths of a second, so that with
this tremendous rapidity it is possible to perform calculations far too
| aborious to be done by hand.

The instructions which can be executed by the System/360 CPU can be
grouped into five general classes:

1) Register-to-Register (RR),

2) Register to Indexed Storage (RX),

3) Register-to-Storage (RS),

4) Storage-lmediate (Sl),

5) Storage-to-Storage (SS).
The letters RR. RX, RS, SI, and SS are abbreviations which wll be used
regularly to indicate the class of instructions being discussed; the specific
instructions belonging to each class will be treated in later chapters.

RR instructions are always two bytes |ong.

Qperation Regi ster
Code Speci fication
0 78 15

RX, RS, and Sl instructions are always four bytes |ong.

R Qperation Regi ster Addr essi ng
—_ Code Speci fication Syl | abl e
0 78 15 16 31
RS Qperation Regi ster Addr essi ng
— Code Speci fication Syl | abl e
0 78 15 16 31
ST Qperation | mredi at e Addr essi ng
- - Code ~ (per and Syl | abl e
0 ) 15 16 31
The RX and RS instruction formats differ only in the interpretation
given by the CPU to the bits in the "Register Specification" byte.
8S instructions are always six bytes |ong.
as [ Operation Regi ster Addr essi ng Addr essi ng
— Code Specification Syl l abl e Syl lable
0 78 15 16 31 32 L7

Figure 4.2 Instruction Formats
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It can be seen that the operation code, which specifies what action
is to be performed, occupies the first byte of the instruction. The second
byte contains information necessary to the details of the execution of the
instruction; its interpretation differs for instructions in the various
classes. For all instructions except RR instructions an addressing syllable
is used by the CPU to compute the address of an operand in nmenory; this
process will be discussed in the next section.

The first two bits of the operation code contain the information which
tells the cry how many bytes are needed frommenory to obtain the conplete
instruction. Since a minimum of two bytes per instruction nust always be
fetched, the CPU can check these two leading bits to tell how many nore
bytes are required. The bit patterns are as shown in the figure bel ow
the xxxo 1S meant to indicate the remaining six bits of the eight-bit
operation code.

00xxxxxX Olxxxxxx | 10xxxxxx 1Ixxxxxx

RR Rx RS,SI SS

Figure 4.3 Bit Patterns for Each Instruction Type

Thus if the first two bits are 00 the instruction is two bytes |ong;
if the bits, are 01 or 10 the instruction is four bytes long; and if the bits
are 11 the instruction is six bytes long. Before proceeding with the
decoding phase of the instruction cycle, the cP places the nunber of pairs
of bytes in the instruction in bits 32 and 33 of the PSW(nanely in the
position labeled "Instruction Length Code"). If an error is detected during
the decoding or execution of the instruction, and if the PSWat the tine of
the error is saved sonewhere, then the progranmer can deternine (by
examining the 1A and 1c) what instruction caused the error. (This is of
course precisely What is _done; we will note for now that if the IIc were
not saved, it would not be possible to determine the exact |ocation of the
offending instruction, since the location of the next instruction to be
executed is what appears in the PSWand the length of the bad instruction is
variable. This is a subject with many ranmfications, to be covered later.)
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5. ADDRESSI NG

To refer to items in menory such as data or instructions, the programer
must usually make use of one of the general purpose registers. This is due
to the way the CPU uses the information in an "addressing syllable", which
al ways occupi es a halfword in menory.

Base Regi ster Di sol acenent
Speci fication Sp
el Dris----- S, — 12 bits 2>

Figure 5.1 Structure of an Addressing Syllable

The 4-bit field at the left of the addressing syllable contains a single hex
digit which can take values from 0 to 15 and which specifies a general

purpose register. The 12-bit field in the rest of the addressing syllable
contains a nunmber called the displacenent which can take values fromO0 to 4095.
To generate the address or‘ an operand, the CPU does the follow ng:

Step 1) The 12-bit di splacenent is put at the right-hand end of a
2h-vit internal register called the Menory Address Register
(abbreviated MAR), and the leftnost 12 bits of the MAR are

cleared to zeros;

Step 2a) If the base register specification digit is not zero, t hen
the rightnost 24 bhits of the general purpose register
specified are added to the contents of the Menory Address
Register, and carries out the left end of the MAR are
ignored (the register used is called the base register);

Step 2b) If the base register specification digit is zero, nothing
is added to the MAR (so that RO cannot be used as a base
register).

At this point the quantity in the MAR may be used as the address of an
operand in menory. However, if the instruction is of type RX a further
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step called an indexing cycle is needed. The second byte of an RX-type
instruction (labeled "Register Specification" in Fig. %2) contains two
b-vit fields, the second of which is called the index register specification:

«——  Code-+-+- 4 bits—><—4 bits < 16 bits —————>
To be [ ndex
OLx00xxxx Descr i bed Regi ster Agydffggligg
Lat er Specification
0 78 11 12 15 16 31

Figure 5.2 RX Instruction Showi ng Index Register Specification

Step 3) If the instruction is of type RX _and tte k-bit index
register specification digit is not zero, then the right-
nost 2k bits of the general purpose register specified by
the index register specification digit are added (again
ignoring carries out the left end) to the contents of the MAR

The resulting quantity in. the MAR is called the effective address.

(Binary arithmetic will be discussed in detail in Section 7. For the

following exanples, it should be sufficient to note that 0 + 0 = 0;
0+1=1+0=1 1+1=0andcarry 1. These exanples go into

consi derably nore detail than is necessary for a working understanding of
addressing, and the arithnetic is included just for the sake of conpleteness.
Since addressing will reappear in several later places, don't worry about
absorbing all the fine points immediately.)

Exanpl es

1. Suppose the addressing syllable of an SI-type instruction is {1011§001011010101}
in binary (or B2} in hex) and suppose that the contents of general
purpose register 1l iS
1100 0111 0011 1110 1001 0000 1010 1111 in binary (or CT3EQCAF in hex).
Then the effective address of the instruction is (giving both binary

and hex):
0000 oooco 0000 0010 1101 0101 000205  di spl acenent
+ 0011 1110 1001 0000 1010 1111 + 3EQOAF  base (from R1l)
0011 1110 1001 0011 1000 01002 3E930%16
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Suppose the addressing syllable of the sane instruction is_.
Then the effective address is 0004681e, Since RO cannot be used for
a base.

Suppose an RX-type instruction is {:3foaj7{468) , and that the
contents of R7is 1234567816 and the contents of R10 i s FEDCBA98:e.
(Note that the base register specification digit, namelyT7ie,

means that R7 will be used. The instruction chosen for this and
the next two exanples would, if execu ced vy the CPU, cause the
contents of the byte at the memory loce+ina given by the effective
address to replace the rightnost byte of R0.) Then the effective
address is

0000 0000 0000 0100 O11C 1000 000468  di spl acenent
+ 0011 0100 0101 0110 0111 1009 + 245678 base (from R7)
0011 0I00 0101 I0I0 ITI0 JGCO 3L5AEG
1101 1100 1011 1010 1001 100C + DCBAﬁ% i ndex (from R10)
+ 0001 0001 0001 0101 0111 Clils 11157 378 15 effective address

of register 7 is as in exanple 3.

0000 0000 0000 0100 0110 1000 200468  displacemant
+ 0011 0100 0101 0110 0111 1000 + _3W5678 base
0011 0100 0101 1010 1110 00002 345AE( e effective address

Suppose an RX-type instruction is {43§07§j0%468 § and that the contents
of register 7 is as in exanple 3. Then the effective address is

0000 0000 0000 0100 0110 1000 000468  di spl acenent
+ 0000 0000 0000 0000 0000 0000 i- 000000 base
0000 0000 0000 0100 0110 1000 000468
+ 0011 0100 0101 0110 0111 1000 + 345678  index
-0011 0100 0101 1010 1110 00002 3L5AE0,¢ ef fective address

In this exanple the values of the base and index register specification
digits were interchanged fromthose in exanple 4, so that the indexing
cycle was required in exanple 5 to conpute the sane effective address
O-the smaller nodels (30, 40, and 50) of the System/360 series, extra
time is required to performthis additional arithmetic, so that in

some cases it may be worth trying to avoid unnecessary indexing cycles.
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In a situation where only one register is used in the calculation of
the effective address (as above, where the base register specification
digit was 0 and the index register specification digit was 7) it is
customary to speak of that register as the base register, even though
it may be the index register in an RX-type instruction. This allows

us to refer to this addressing scheme as a base-di splacenent addressing

t echni que.

The effective address in the MAR can have a nunber of uses, the
primary one being to address operands in nenory; it is also used for shifting
and branching (which will be discussed later). However, three further
observations may be nmade about effective addresses which will be used to
refer to data in nenory.

First, the presence of 2% bits in the MAR neans that a System/360
computer has the capability of addressing 2%* or 16,777,216 bytes. Now it
will alnmost always be the case that the nodel being used will have a
smal | er menory, since nenory is one of the nore expensive parts of the
computer. Thus, suppose (for exanple) we are programming for a machine wth
2% = 10000;6 = 6553610 bytes of menory, and use an instruction which
generates an effective nenory address-which is larger than 1000016. Since
this effective address cannot refer to anything accessible to the CPU, some

sort of error-recovery procedure must be initiated; this error condition is
known as an addressing exception, and causes a program interruption to

begin the error-handling sequence

Second, it was noted in the earlier discussion of the menory that
certain instructions which operate on groups of bytes such as fullwords
require that the address of the leftnost byte be divisible by the length
(in bytes) of the operand. If this condition is not satisfied, another
error condition known as a specification exception is recognized. For
exanpl e, the RX-type instruction [58[%#0]0J123} specifies that a fullword
operand is to be transmitted from nenory and placed in R¥. Since the
effective address for this case is 00012316, the proper (i.e., |eftnost)
byte of the fullword is not being addressed, so that a specification
exception is recognized during the execute portion of the instruction cycle,

and a program interruption will initiate the error-recovery sequence
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Third, because the only part of the nmenmory which can be referred to
without the use of a base register is the area with addresses 0 to 4095,0=FFFie,
the programmer will alnost invariably be required to refer to operands in
menory with the help of a base register. (One mght think that he need
only fit his programinto those first 4096 bytes and then not have to worry
about all this base-register trouble, but that area of memory and nore will
usual |y be occupied by the routines which provide error handling, input-
output operations, and the like; it's called "The Systenf. So we just have
tolive wwth it.) This neans that if we are to address a byte in menory
at address Q there nust be a base register available (that is, one of
registers 1 to 15) which contains a nunber between Q and Q 4095, since we
could then generate an effective address of Q by using a displacement
between 0 and 4095. |If there is no such nunber in a register, then the
byte at Q is not addressable. Thus, if all the general registers contain
zero, only the first 4096 bytes of menory are addressable! Usually what
must be done is to place some constant in a register which then allows us
to address the desired region of memory; that is, that register then provides
addressability for that region. However, if the constant itself is in
anot her portion of menory which is not currently addressable, we are back
to where we started, needing another constant to address the first constant.
In fact, it is possible for the CPU to be executing instructions in a
portion of nenory, and the instructions cannot address themselves!

(Renenber that the IAis in the PSWw, not in a register.) Fortunately,
there are sinple solutions to the problens of addressing, and these wl|

be the subject of several later discussions
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6. TWO'S COMPLEMENT REPRESENTATION

Up to now we have discussed the binary representation only for positive
nunbers, in which it was inplicit that any positive integer may be preceded
by an arbitrarily long string of zero digits, which are then ignored. The
representation of negative nunbers requires further consideration. To use
a practical case, we will illustrate the discussion by using whole numbers
of length 32 bits, corresponding to the Iength of a fullword in nenory and
of a general register

To begin with, suppose all of the binary digits of the nunmber being
exanned are taken to be the rightmost 32 bits of any positive integer

Then
0 is represented by 000000001¢,
1 is represented by 0000000116,
130 is represented by 00000082;¢,
21 is represented by 800000006,
272.1 is represented by FFFFFFFF;e,
27241 is represented by 000000011, and so on.

Thus, if the number is less than 2°% its value can be correctly held
inthe 32 bits we have made available, and if it is greater than or equal to
272 sonme significant bits are lost off the left end. (That is, the value
of the nunber is represented nodul 0 2°2.) There are machine instructions
which allow the cPu to performaddition and subtraction with operands of
this form -such arithnetic (modulo 2°2) is called |ogical arithmetic.

Hence we call this the logical representation of binary nunbers, where al
the bits of the operand are interpreted as having "positive weight". (A
"negative weight" for a digit will appear later in discussing negative
numbers.)- That is, if the 32 bits are (fromright to left; note that this
tenporary scheme is the reverse of the numbering convention introduced

earlier) bo, b1, . . . bzo, bzi, then the value X represented by the digits
bi is 31
X = E bi 2t (1 ogical representation)
i =0
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This representation is the nost c-on way to interpret a string of bits.
There are several representations used for numbers which can assune both
positive and negative values, the most common Of which are the sign-magnitude,
one's conplenent, and two's conpl ement representations. Since the |ast of
these representations is used for nost integer arithmetic in System/360,

we Wil investigate its properties in detail. Actual arithmetic using

binary nunbers will be covered in subsequent sections.

The two's conplenent representation (the name will be explained shortly)
of a positive integer x is (if x satisfies 0 £ x < 2**-1) sinply the usual
binary representation with the least significant digit at the right-hand
end; eand iS the sane as the logical representation. The upper limt of
2’1 is chosen because it is the largest-integer which can be represented
using 31 binary digits; the remaining 32nd digit at the left-hand end is
zero, and will be used for the sign digit. The two's conplenent representation
of a negative i nteger x which satisfies -2®* < x < -1is the followng:
the leftnost bit is now set to 1 to indicate that the nunber is negative,
_and the remaining 31 bits are aet to the binary representation of the
positive integer 2° + x, which satisfies 0 ¢ 2* + x g 23*-1. In effect
we have done the following: if xis positive, the sum Zbiél.gives t he
val ue of x, because the leftnost bit, being zero, does not contribute to
the swm. If Xx is negative, the sumof the rightnost 31 bits is 2> + x and
the leftmost bit is always a one, so that we can combine these to obtain

30

x = -271psy + Z bi 28 . (2 conpl enent )

i =0
Thi s formula 1s almost the same as that used for the logical representation
except that the leftnmost hit (bsy) contributes negatively to the sum --
that is, has "negative weight". W will occasionally call the two's
complement Iepresentation, where positive and negative nunbers are allowed,
the arithnmeti c representation.

The relationehip between the |ogical and two's conpl enment representation
s quite sinple, which may be seen by rewiting the above sumfor X

30

X = 4215 4+ E biei i
i =0
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If vs1is zero, the logical and two's conplenent representations give the
sane value, and x = X. If bsp is one, then X = x + 2 x 2% = x + 272,

But because we can only represent nunbers |ess than 2% in the |ogica
representation, x + 22 for positive x is the sane as X, with the extra bit
being lost. Thus, for 0 £ X £ 2°2-1 and -2°* < x < 2°*-1, we have

X = 2°2 + x (nodul 0 232).

(The above equation is the original source of the term'two's complement”.
In the earliest conputers it was customary to treat such fixed-point
numbers as fractions -- the representation was the sane as the one just
deseribed, except that the "binary point" (the binary equivalent of the
decimal point) was assumed to lie just to the right of the sign bit rather
than at the right-hand end of the number. The equation giving the relationship
between logical and arithnetic representations was then witten X = 2 + x,
so that the representation of a negative nunber was obtained by finding its
conpl ement with respect to two.)

The actual calculation of the binary two's conplenent representation
of a negative nunber can be somewhat cumbersome. |f the previous rule is
foll owed, we nust calculate the binary representation of the positive
quantity 2% + x for some negative x, and the conversion can be tedious
It turns out, however, that getting 2 + x by calculating (2°* -1 + x) + 1
is relatively sinple, because the representation of 2**-1 is 31 one-bits.
Since x is negative, 2>*-1 + x = 2°*-1 -Jxf. Thus the nmagnitude of X is
subtracted froma string of 31 ones. But wherever |x| has a one bit, the
resulting difference bit will be 0, and vice versa. Thus the subtraction
need not be done: sinply change each bit into its opposite (nanely the
result of subtracting it from1), and we have 2°*-1 - |x|. (The result
is called the one's conplenent of |x}.) Then add 1 in the rightnost
position to get 2% + x, set the leftnost bit to 1, and there it is. And
since |x| when treated as a 32-bit nunber always has a |eading zero digit,

we can include the treatment of the sign bit in the follow ng two-step
prescription.

6-3




Gven Y. find the two's canpl ement representation of -y.

1) Take the one's conplenent of Y (change all 0 digits to 1 and
all 1 digits to 0).

2) Add a 1 digit in the loworder (rightnost) position, and

ignore carries out of the leftnost position.

To illustrate this process, consider the followng two exanples in
which the arithnetic is done with eight binary digits for the sake of
sinplicity.

1. Find the two's conplement representation of -2.

1) Representation of +2: 0000 00102

2) One's Complement: 1111 1101
3) Add one: +1
1111 11102

2. Find the two's complement Of +75.
1) Representation of +7%: 0010 1011z

2)  (ne's Conplenent: 1101 0100
3) Add one: +1
1101 01012

The above prescription also works in the opposite direction, which
can be seen from the follow ng exanple.

Find the 8-bit two's conplenment of 1111 11102.

1) (ne 's Conplenent: 0000 ooo1
2) Add one: +1
0000 00102

which is the binary representation of #. Thus the two'S complement Of the
two's conplenent of a nunber is the original number.

There are two unusual cases which arise in the two's conplement
representation: the conplenent of zero and of the largest negative nunber.

1. Find the 8-bit two's conpl enent of o0ooo 00002.
1) (One's Canplenent: 1111 1111
2) Add one: +1
(carry one) 0000 o000
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To the 8-bit accuracy chosen, the result is zero, and the carry of a 1 hit
out the left-hand end is lost. Thus the negative of zero is still zero
which is a mathematically satisfying result; there is no such quantity as a
negative zero, which can be the case in sone other representations

2. Find the 8-bit two's conplenent of 1000 00002.
1) One's Conplenent: 0111 1111
2) Add one: +1
1000 00002
It can be seen in this case also that the conplement of the
nunber is the same as the original nunber.

Thus we see that the two unusual cases which arise during conplenentation
are those for which all the bits except the sign bit are zero, and it is
found that the conplemented result is the same as the original operand
For a zero operand this is desirable, but for the negative case we have a
situation in which there is no corresponding positive value available for
a representable negative value. Such a situation is described by saying
that we have generated an overflow condition -- that is, the result is too
large to fit into the number of bits allotted for it. Overflow will be
treated in nore detail in the following section on two's conplenent arith-
metic. We Will note in passing that the number of quantities with negative
representation is the same'as the number of quantities with positive
representation, since the non-sign bits of the nunber nmay be chosen arbi-
trarily. It is sonetimes said that the set of negative values in the two's
conpl ement representation has one nore menber than the set of positive
val ues; what is meant is sinply that the l|argest negative magnitude is
| arger by one than the largest positive nagnitude




Decimal Val ue 32-bit Two's Conpl enent Representation

0 0000 000016

1 0000 000116

256 0000 010016

5000 0000 138816
2147483647(231-1) TFFF FFFF1e
-2147483648( -231) 8000 000016
-2147483647( -27141) 8000 00011ie
-5000 FFFF ECT816

- 256 FFFF FFOO1¢

-2 FFFF FFFE1e

-1 FFFF FFFFie

Figure 6.1 Exanples of Two's Conpl ement Representation

As was nentioned earlier, it is inplicit in the representation of
positive nunbers that an arbitrary nunber of zero bits may be added onto
the left end of a number without affecting its value. For exanple, the
8-bit and 16-bit representations of the decimal value +9 are 0000 10012
and 0000 oooo 0000 10012, respectively. Sinmilarly, the 8-bit and 16-bit

two's conpl enent representations of -9 are 1111 01112 and 1111 1111 1111 Oullp,

respectively. Thus, for nunbers which can be correctly represented in a
given nunber of bits, the correct representation using a |arger nunber of

bits is found by sinply duplicating the sign bit toward the left as many
places as desired. This process is called sign extension.

Length of Representation Representati on of +1 Representation of -1
8 hits Olis FF16
16 hits 00011¢ FFFY1 ¢
32 hits 0000 0001ig FFFF FFFFie
64 hits 0000 0000 0000 00011 FFFF FFFF FFFF FFFFie

Figure 6.2 Exanples of Sign Extension

Sign extension will eppear |ater in the discussion. of instructions which
perform shifting, and which do arithmetic with halfword operands.
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7. TWO S COWPLEMENT AR THMVETIC

Arithmetic operations on numbers in a binary representation are a
basi ¢ capability of alnost all conputers. Though the details of the nunmber
representation may vary slightly from one nmachine to another, the nethods
for performng additions, subtractions, multiplications, and divisions
remain nearly the same for all machines. Thus the discussion which follows
will ve slightly nore general than would be necessary if only one
particul ar nmodel of the System/360 series were being discussed.

W have already used some exanples of binary addition in the treatnment
of addressing, in which the addition was straightforward. The rules for
the addition of binary digits are summarized in the follow ng short table.

+] of 1
ol of 1
0, carry 1

The addition of nunbers in the logical representation is the nost straight-
forward, since the bits are all nuneric digits and do not represent signs
Thus the only unusual condition to observe in such an addition is whether
or not a carry occurs out of the leftnost position, which would indicate
whether the resulting sumis or is not representable by the number of bits
available. In the two's conplenment arithmetic representation, the addition
is performed in the same way, but the result is interpreted somewhat
differently. (1) Al _bits of each operand are added, including sign bits,
and carries out the left end of the sumare lost. (This is the same as for
logical addition.) (2) If the result cannot be correctly represented
using the number of digits available, an overflow condition is said to have
occurred. Note that overflow is possible only when adding operands of |ike
sign: adding nunbers with opposite sign always produces a representable
result (or, as is often said, the result is in range). \Wen an overflow
occurs, the sign of the result is always the opposite of the sign of the
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two participating operands.

The actual method 'used on most nachines to

detect overflow is sonewhat sinpler, since the sign-change detection woul d
require renenbering the signs of both operands for conparison against the
sign of the sum
carries into and out of the sign bit position disagree, to be able to detect .

overfl ow
differ,

of the nunber to be subtracted.

In practice,

the adding circuits need only note that the

that is, if the carries out of the two leftmost hit positions
an overflow has occurred.

Subtraction is performed in the machine by adding the two's conpl enent

That is, A-Bis calculated using A + (-B),

where (-B) is the two's conplement of B. A few exanples using 8-bit

arittmetic W | |

1.

5-3:

3-5:

- -17):

(-17)-25:

-17-( - 25):

67-( -93) :

(-93)-67:

-128-(-93):

0000 0101
-0000 0011

000000l |
-0000 0101

0001 1001

-1110 1111

1110 1111
- 00011001

1110 1111
-1110 0111

0100 0011
-1010 0011

1010 0011
-0100 0011

1000 0000
-1010 0011

becomes
(carry lost)
becomes
(no carry)
becomes
(no carry)
becomes
(carry lost)
becomes
(carry lost)
becomes
(no carry)
becomes
(carry lost)
becomes

(no carry)

7-2

0000 0101
+1111 1101
0000 0010

0000 0011
+1111 1011
1117 17110

0001 1001
+0001 0001
0010 I01I0

1110 1111
+1110 0111
T10T 0110

1110 1111

+0001 1001
0000 1000

1

0100 0011
+0101 1101

1010 0000

1010 0011
+1011 1101
11

1000 0000
+0101 1101
1101 1101

illustrate the nethods of addition and subtraction.

210

= =210

. = b2y0

= -k2)0

= 810

= 9610 (overfl ow)

= 9610 (overflow)

= -3510




9. 3-3: 0000 0011 becones 0000 0011
-0000 00112 +1111 1101
(carry lost) 0000 0000 = 0
The above exanples illustrate addition and subtraction and give the
expected results. However, there is one case in which the nethod as given
above fails to detect correctly the presence or absence of overflow, and
this occurs when the maxi num negative nunber is being subtracted from

sonet hi ng
10. 1-(-128). 0000 0001 becones 0000 0001
-1000 0000 +1000 0000
(no carry) 1000 0001 (no overflow found)
11. -1-(-128): 1111 1111 beconmes - 1111 1111
-1000 0000 +1000 0000

(carry lost) 0111 1111 (overflow indi cated)

In each of these two |ast cases the overflow indication is incorrect.
This is because the process of taking the two's conplenent of the maxi num
negative nunber has already generated an overflow condition. To see how
‘the conputer can still use the overflow detection scheme described above,
it is worth examning in slightly nore detail the actual addition process
in the machine. (The next paragraph may be omtted by those uninterested
in such details.)

Remenber that the two's conplement of a nunber is found by inverting
each bit of the nunber and then adding a one in the |loworder position. It
Is very easy to build circuits which invert bits; simlarly, the addition
of a1l bit to the loworder position is also easy, for the follow ng reason
Each digit position of the adder circuits nust add the corresponding bits
of the two input operands and the carry-bit from the next |ower-order
bit position.

bit n from A bit n from B

Y 7

Adder position n
I

Carry bit to Adder
position n+l

Carry from Adder
position n-1

A

A%}
Sum bit n
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In the I owest-order position of the adder there of course can be no carry
froma lower-order bit position; if an identical adder circuit is used
however, the carry input is still there, and can be used to insert the 1 to be
to be added to the |oworder position. Thus subtraction is sinply a matter
of passing the second operand B through a bit inverter which forms the one's
conpl enent, and then activating the loworder carry input to the adder to
add the 1.
Thus we arrive at the follow ng rule:

Subtraction is performed by adding the one's conplenent of

the second operand and a loworder one to the first operand.

It is easy to denonstrate that the correct algebraic result is obtained
by sinply adding all the bits of the operands in the two's conpl enent
representation as though they were |ogical operands. Since the |ogica
representation X corresponding to an integer x satisfies (assum ng 32-bit
operands) X = 2°% + x (nodul 0 2°2), then the sum of two operands X and Y
(S N
(x +Y) =272 +2° ¢ (x +y) (modulo 2°8) = 22 + (x +y) (nodul 0 232),
Thus the arithnetic and logical sums give the same binary result; the bits
are just interpreted differently for each representation.

One further observation may be nade concerning the addition and
subtraction of nunbers in the logical representation. From the exanples
given above it can be seen tlmt if the second operand is logically smaller
than or equal to the first (see exanples 1, 4, 5, 7,9, and 11) then there
will be a carry out of the leftnost bit position. It may be seen in
exanples 2, 3, 6,8, and 10 that if the first logical operand is logically
smal ler than the second operand subtracted fromit, there is no carry out
of the left end. In these latter cases we have in sone sense generated a
"negative" logical answer, since the result is not correctly represented
to the given nunber of bits. A nunber of exanples illustrating these cases
wll be given later, when the instructions for logical arithnetic are
di scussed.
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There is a sinple pictorial representation of the two's complement
representation which is helpful in seeing what happens when two such
nunbers are added or subtracted. The circle is visualized as having
points on its circunference, arranged as indicated. Arithnetic values are
on the outside of the circle, logical values on the inside

232

k. 930

If we begin at 0 and add 1 to a nunber, we wll nove around the
circle in a counter-clockwi se direction until 2°-1 is reached. Wen 1 is
added again, we reach -2°% and an overflow condition exists. Cont i nui ng
to add 1 then brings us back to 0. It can be seen that adding a positive
nunber to or subtracting a negative nunber from an existing nunber (say, A
as on the circle) causes us to nove in a counter-clockw se direction. If
in noving in this direction we go past the point |abeled -2, an overflow
occurs. Simlarly, adding a negative nunber to or subtracting a positive
nunber from an existing nunmber (say, B, on the circle) causes us to nove
in a clockwise direction; and if the notion carries us past the point
| abel ed- -2, we again have an overflow condition
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8. BINARY MULTI PLI CATION AND DI VI SI ON

Before we discuss the actual machine instructions which perform
mul tiplication and division using integer argunments, it will be useful to
examne a fewsinple illustrations of the basic method used by typical
conputers to form products and quotients of binary nunmbers. A detailed
under standing of the nmethods is of course not necessary to be able to use
the corresponding instructions, but will help in remenbering a nunber of
conventions that these instructions require;

Mul tiplication

To illustrate the nethod used in nultiplication, let us first work an
exanple in decinal arithmetic. Suppose we have a "nachine" with registers
which will hold j-digit decimal nunbers, which we will assune are positive.
et the nunbers to be multiplied by 126 and 213. First of all, since we
are nul tiplying tw 3-digit nunbers, the product will be either 5 or 6
digits long. Thus if we are to be able to correctly represent it, the
product register nust be at least 6 digits long. Since we assuned the
nunber registers were 3 digits long, it appears that we need a double-length
register (or a pair of registers connected in some way) to hold the
product. So we will assune there is a 6-digit register sonewhere, the
right and left halves of which will hold an ordinary 3-digit nunber. Now
let us examne the way in which we normally form such a product, as when
working with pencil and paper. By taking the product of the multiplier and
each of the multiplicand digits in succession, we generate a series of

partial products which nust be properly
aligned and then added. (Note that we are

mul tiplier . -
_ P _ 126 using the terms "nultiplier" and"multiplicand”
mul tiplicand X 213 : - - ;
— in the reverse of their normal neaning; this
parti al 1%8 Is done so as to be consistent with the
product s 252 term nol ogy used in other descriptions of
product 26838 System/360.) This manual process can be
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broken down even nore, by witing the sequence of operations in a different

vay.
initial register contents 000 213
add multiplier to upper end +126
that's 1 time 126 212
add multiplier +126
that's 2 timnes 252 211
add nultiplier +126
that's 3 times 378 210
shift right 1 place 037 821
add nmul tiplier +126
that's 1 tine 163 820
shift right 1 place 016 382
add nmultiplier +126
that's 1 tinme 142 381
add multiplier +126
that's 2 tines 268 380
shift right 1 place 026 838

W place the nultiplicand in the right half of the double-Iength
register and clear the left half to zero. Then by examning the rightnost
digit of the nultiplicand we know how many times to add the multiplier
to the left half of the double-length register. \Wen the rightnost digit
has been counted down to zero, the partial product of that digit and the
mul tiplier has been added to the accunulating result. Then the entire
doubl e-length register is shifted to the right one digit position, at which
tine the zero digit at the right-hand endis | ost and a zero digit is inserted
in the vacated position at the left. The process of adding the multiplier
and counting down on the nultiplicand digit then continues until the proper
partial product has been added to the accunulated result. This process is
repeated for as many steps as there are multiplicand digits. Wen conpleted,
the result in the double-length register is the product, and all the
mul tiplicand digits have been shifted off the right-hand end. The nain
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points to observe are that (1) the multiplicand is placed in the right half
of the double-length register, (2) the left half is initially cleared to
zero, (3) the nultiplier is added to the left end depending on the multipli-
cand digit at the far right, and (&%) the decimal point of the result (that
is, the position of the least significant digit) is at the right-hand erd
of the double-length register, because the number of right shifts was the
sane as the nunber of digit positions in a single-length register.

The above exanple onmits one rather inportant detail which is not
actual |y necessary to an understanding of the basic process. (These two

paragraphs concern technicalities, and may be skipped with little | oss of
continuity.) Wien the multiplier is being added to the Ieft half of the
doubl e-length register, it is possible that an overflow can occur. |f the
mul tiplicand had been 219 rather than 213, the first partial product
(126 x 9 = 1134) woul d have been too large to hold in the three digits
provided. Thus provision nust actually be made for an extra digit at the
leftnmost end of the register. This extra digit can be thought of as
hidden from the user of the registers, since when the right shiftis
performed at the conclusion of each cycle, the contents of this "overflow
digit" position nove into the leftmst digit of the double-Iength product
register. Since the exanple was carefully contrived to avoid the necessity
of worrying about this detail, the presence of a zero digit at the left end
after the right shift is seen sinply to be an-indication that there was no
overflow in the formation of the partial product. The assuned presence of
this extra digit position will be useful in the discussion of division.
This smal|l but annoying difficulty can al so be handl ed by having the
extra "digit position" attached after the rightnost digit of the double-
length register. Then instead of adding and then shifting, we could first
shift and then add. Thus the extra digit position will hold the nunber
of times the multiplier is to be added. However, the additions of the
mul tiplier must then be realigned so as to add to the second, third, and
fourth digits of the double-length register rather than the |eftnost
three. Either way, the whole business is a necessary nuisance. (These
comments will of course apply to the binary nultiplication exanple which
fol | ows.)
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The above scheme, when used for nultiplying binary nunbers, is
conceptual Iy very easy to inplement since a test of the rightnost bit
determines in sinple yes-no form whether or not the multiplier is to be
added -- no counting of additions is required. To illustrate this, suppose
we have y-digit binary nunbers and registers and wish to nmultiply 001102
by 010012 to obtain a 10-bit product in a double-length register. Then the
sequence of steps shown bel ow indicates the method.

00110 miltiplier (in separate register)

Initialize 00000 01001 mul tiplicand in right half of
doubl e-length register

Step 1. rightnmost bit = 1, 00110 01001
add multiplier

Shift right 1 00011 00100 (1 bit lost)
Step 2: rightnost bit =0, 00001 10010

no add.  Shift

right 1
Step 3: rightmost bit =0, 00000 11001

no add. Shift

right 1

Step 4 rightnost bit =1, 00110 11001
add nultiplier

Shift right 1 00011 01100 (1 bit lost)

Step 5: rightnost bit =0, 00001 10110 final product = 1101102 = 5430
no add.  Shift
right 1

It is nost inportant to observe that the product is really a double-
| ength number, and not sinply two single-length nunbers stuck end to end.
If we were to consider the contents of the left and right halves of the
doubl e-length register as ordinary single-length two's canplenent operands,
we would find the result in the right, or loworder half, to be negative!
Since the product (which was conmputed from two positive nunmbers) nust be
positive, it can be seen that the need for a double-length register neans
that no special significance can be attached to the loworder result, unless
it is known in advance that the product is correctly representable in a
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single register. The leftnost bit of the right-hand register is therefore
not a sign bit -- it has positive weight in the double-length result.

In the exanple above, the two operands were purposely chosen to be
positive so as not to introduce any problens with signs. Since the operands
actually used may be positive or negative two's conplement integers, there
are other steps which nust be taken to find the correctly signed product.

For all practical purposes, however, we may assune that the CPU perforns the
mul tiplication by using the magnitudes of the operands, and then conpl ements
the double-length result if a sign-bit analysis of the original operands
indicates that the result is negative

It is al so conmon in nodern conputers to gain speed by considering
not the rightnost single bit of the multiplicand (as on the IBM 7090), but
to consider the rightnmost two bits (IBM 7094), three bits (Burroughs 5500),
or even four bits (larger nodels of System/360). This of course brings us
back to a situation sinmilar to that in the decimal exanple, where the
proper nultiple of the multiplier nust beaded to the left end of the
devel oping product. In these cases, where the arithnetic can be considered
to be of base 4, 8, or 16, the "proper nultiple" is of course not found by
counting down by ones on the multiplicand digit, but by having the interna
circuits generate the proper factor in a very much snmaller nunber of steps
This serves to increase the speed of nultiplication considerably, since
then a separate addition is not required for each 1 bit detected in the
mul tiplicand.

Di vi si on

Division works the same as -multiplication, only backwards. |nstead of
adding onto the high-order half of the accunulating product, we subtract;
instead of counting down in the rightnost digit position, we count up
instead of shifting right, we shift left. As before, an exanple using
"decimal arithmetic will illustrate the process

Since we start with a dividend and divisor and wish to find a quotient
and renai nder which satisfy the equation

dividend = quotient x divisor + remainder
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it is apparent that the dividend nust be a double-length nunber. Again
supposing that the basic register length is three decimal digits, another
requirenment becomes apparent: since (a) the quotient, to fit in a register,
can be at nost three digits long (that is, not exceeding 999) and (b) the
remai nder nust be less than the divisor, we must not have a dividend |arger
t han

999 x divisor + (divisor - 1) = 10°xdivisor = 1.

(The factor of 10° is the base raised to the nunber of available digits.)
Since multiplication by 10% in this exanple is equivalent to shifting left
three places, the above relation nmeans that if the division is to produce
a valid quotient, the high-order half of the dividend nust be |ess than
the divisor. (If for instance the divisor were 456, then any dividend not
smal | er than 456000 = 10°x456 woul d require a L-digit quotient; if the
dividend is not greater than 455999 = 10" x456 - 1, the the quotient can
be held in the three digits allotted. Note that the three high-order
digits, 455, are now | ess than the divisor.)

Suppose we want to divide 162843 by 762. In ordinary |ong division
we would do the follow ng sequence of steps. At each step we determne

213 how many nultiples of the divisor can be subtracted
762)1225 3 from the leftmost part of the dividend, and enter that
o number as the quotient digit. Wwen the subtraction
—%%%3 process has been conpl eted, the remainder, from which
2286 no further subtractions can be made, is 537, and the

537 quotient is 213, Just as a check, we find that

762 x 213 + 537 = 162843. On a machine, the process is alnost identical.
Using the above schene of uecimal registers, the division works as follows:
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162 843 H gh-order part of dividend snaller than divisor,

762 division may proceed.
1 628 430 Shift dividend left once; save leftnost digit in an
=762 "overflow digit" position. Since dividend 2 divisor
0 866 431 subtract, and count up at right end
=762 dividend 2 divisor; subtract again
0 104 432 di vidend < divisor; no subtraction
1 okk 320 shift dividend |left again
_-T762 dividend 2 divisor; subtract and count up
0 282 321 dividend < divisor; no subtraction
2 823210 shift left for last tine-
-762 dividend 2 divisor; subtract
2 061 211 subtract and count up by 1
-762 dividend 2 divisor; subtract
1 299 212 subtract and count
-762 di vidend > divisor; subtract
537 213 dividend now < divisor; stop

As the successive digits of the quotient were devel oped, they appeared
at the right hand end of the double-length register, and were shifted |eft
as the division progressed. Thus at the conpletion of the division, the
quotient is to be found in the right half of the register pair, and the
remai nder, from which no further subtractions could be made, is in the |eft
hal f

As was the case for multiplication, binary division is sinplified by
the fact that at nost one subtraction need be made for each quotient digit
generated. To illustrate, consider this exanple using a five-bit divisor
and a ten-bit dividend. Let the dividend be 0000111011~ = 59;0, and let the
di vi sor be 00110-. Note that the two halves of the double-length dividend
are not two five-bit nunmbers stuck end to end: the l[eftnost bit of the
right half of the dividend is not a sign bit (with negative weight) but an
arithmetic digit (with positive weight). The quotient and reminder,
however, are ordinary (i.e., signed two's conplement) five-bit nunbers, so
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that when the division is conplete the proper rebults are found in each
register . This leads to the follow ng schene.

1 Shift the dividend left once. If the high-order (left) part
of the dividend is not smaller than the divisor, an illegal
division is being attenpted

2. Shift left one bit position. If the high-order part of the
dividend is greater than or equal to the divisor, subtract
the divisor fromthe dividend and insert a 1 bit in the
rightnost digit position. Cherw se do nothing

+3.  Return to step 2 until a total of 5 shifts has been done
including the shift of step 1.- (For 32-bit operands this
cycle repeats 31tines.)

00011 10110 shift left once
(00110) dividend < divisor, OK to continue
00111 01100 shift left once (second time)
00001 01101 subtract divisor, insert 1
00010 11010 shift "left once (third tinme)
dividend < divisor; no subtraction
00101 10100 shift left once (fourth time)
dividend < divisor; no subtraction
01011 01000 shift left once (fifth and last tine)
00101 01001 subtract divisor, insert 1.

Thus the remainder 001012 = 510 in the left half, and the quotient 01001z = 930
in the right half are as expected.

The exanple given assunmed a positive dividend and divisor; if either
I's negative some further steps are necessary. The division can be thought
of as proceeding with the nagnitudes of divisor and dividend, and afterward%
the quotient is made negative if the signs of the divisor and dividend
differed, and the remainder is nade negative if the dividend was negative

As in the case of multiplication, there are techniques used for speeding
up the division process which are used on some nodel s of System/360. These
details are of concern only to the machine designer, so that the programmer
can think of division as proceeding through the sinple steps shown above.

8-8




9. ASSEMBLER LANGUAGE

As was indicated in the introduction, the service program which will be
of nmost use in setting up instruction sequences for execution by the machine
is the Assenmbler. The collection of conventions and rules established for
use of the Assenbler is known sinply as Assenbl er Language, even though
there is no resenblance to what we usually nean by the term "lLanguage".
Before describing some of the basic conventions used in communicating
with the Assenbler, it may help to consider first the overall process of
running a machine-language program on the conmputer. This process may be
broken down into five mpjor parts, as follows: (1) job initiation, (2) assenbly,
(3) linkage editing, (4) execution, (5) job termnation

1 Job initiation will usually involve the checking of the job informtion
provi ded by the programmer, such as charge nunber, tine and page estimates

and so forth, as required by the particular computer installation. |f these
details are acceptable, then preparations are nade for the execution of a
series of job steps, which in this case will include assenbly, |inkage

editing, and execution.

2. The assenbly step is represented schematically in Fig. 9.1. The
Assenbler is a processing program (a previously prepared set of machine
instructions) which is placed in the nenory of System/360 and is allowed

to begin execution.

System/360
lquource Program in
f Ob t
Assembler Language e’ Assembl ) Jec
guag ’ embLer -’ Module
\\\ X
Library of Macro- ] i?o%iam P
Instructi ons, etc. ___:S ne |
J T N

Figure 9.1 Sinplified Schematic of Assenbler Processing
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The Assenbler reads the statements (to be described shortly) of the programer's

Assenbl er Language program processes them -- possibly with the help of sonme
pre-stored data in the library of macro-instructions (also to be described
later) -- and eventually produces as its output an object nodule, which will
usual ly be witten onto some storage device such as a magnetic drum or disk.
(The object nodule may also be punched on cards, so that a programmer coul d
then have his programin both its original formand in its assenbled form)
Usual Iy the progranmmer will want a program listing, which is printed output
giving the source program and pertinent details of the Assenbler's processing,
along with indications of any errors detected by the Assenbler.

3. The linkage editing step is shown schematically in Fig. 9.2. The
Linkage Editor, like the Assenbler, is a processing program which is placed
in nmenory and allowed to begin execution.

q‘ System/360

Object Module(s)
from previous = § Linkage «f§ Losd

Assembly step(s) Editor Module
7~
Printed
) 4 Listing

l Library of l
Obiect Modul es

Figure 9.2 Sinplified Schematic of Linkage-Editor Processing

The Linkage Editor reads the object nodule (or nodules; cases in which

several my appear will be described later) and combines it with other object
nodul es that may be necessary for proper program execution. The output
produced is the conpleted program and is called the |oad nodule, which is
witten onto a storage device for later use. A printed [isting of information
pertinent to the link-edit step may also be produced.




L. The execution gtep requires that the load npdule produced by the
Linkage Editor be placed in (or "loaded" into) nmemory, in such a way that
it will execute correctly (essuming, of course, that the programer has
made no blunders!). An essential feature of this process is relocation,
details of which will be treated in several later sections

' System/360

4 Resident
Supervisor

Printed Outpuf
from Program

Relocated
Program

Figure 9.3 Sinplified Schematic of Program Loading and Execution

When the program has been | oaded and relocated, the Resident Supervisor
transfers control to the program (that is, sets the Instruction Address to
the address of whatever instruction Was specified as the one with which
execution is to begin). Thé—progran1then performs whatever processing

was specified by the programmer, and when it is finished returns control
to the Supervisor (that is, sets the 1A to an agreed-upon val ue so that
the Supervisor may continue processing the next job).

5. Wen the Supervisor program has regained control it perfornms any
necessary "cleaning-up" operations such as noting the anount of time used
by the job, -the nunber of pages printed, and so on. [|f nore jobs are to be
done, the Supervisor reverts to step 1 (Job Initiation) and the entire
cycle repeats.

The brief description of job processing given above will help in under-
standi ng same Of the constructs necessary to the witing of a correct
Assenbl er Language program since certain of them apply during each of the
assenbly, link-edit, and execution steps and nust be used with the different
steps in mnd.
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A programis prepared for the Assembler in the formof statenents
punched on cards. Statements are of four general types: comment Statenents,
machine instruction statenents, assenbler instruction statements, and
macro-instruction statements. Conment statements are used by the programrer
to insert explanatory material in the programso that it will be easier to
read and understand the program listing. Machine instruction statements
contain instructions which the conputer may execute during the execution
step of the job. Assembler instruction statenents contain information of
use to the assenbler during the assenbly step; these can be as sinple as a
statement specifying that four blank lines are to be left in the program
listing, or can be nore conplicated such as a statenent which inforns the
Assenbler that it may assume certain registers may be used as base registers.
(This latter case will be treated in detail in Section 12.) Finally,
macro-instructions provide a convenient neans for specifying sequences
of statements (all four types are allowed) in-which various parts of the
specified sequence can be changed to suit the needs or desires of the
programmer. W will see later that the ability to process macro-instructions
~is a very powerful and useful feature of the Assenbl er Language.

The Assenbler provides a nunber of other capabilities which considerably
sinplify the progranmer's task. For exanple, we saw in Section 5 that a
typi cal machine instruction mght consist of 8 hexadecimal digits. Rather
than having to remenber that the operation code 43,6 causes a byte to be
transferred from menory to the right-hand end of a general register, a
menoni ¢ operation code is provided which gives an easily-renmenbered
abbreviated description of what the operation code does. |n the above case,
the menonic is.Ic, which stands for."Insert Character”, character in this
case being synonymous with byte. Another useful feature is that the
Assenbl er allows us to specify information in a variety of fornms: as decimal,
hexadeci mal, and binary nunbers, as strings of characters, as arithmetic
expressions, and so on. Thus we will find that if we want to designate
register 15 for some use, we can use the decimal nunber 15 instead of having
to use the hexadecimal digit F, which is what may eventually appear in the
instruction itself. Athird and nost inportant feature of the Assenbler
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is the provision for symbols which may be used by the programmer to name
places in nemory. Thus, if a program needs to nmake reference to a fullword
area in nemory which contains a particular piece of data, the Assenbler
will permt the progranmer to name the fullword and then to nake references
to the data by using the name. A discussion of synbols and certain aspects
of their use will be given in the next section. |In the reminder of this
section we will give sone exanples of statenments, and define or illustrate
terms which will be used in describing statenents.

In general, statenments occupy colums 1 through 72 of a card, with colum
72 having a special neaning: if colum 72 is not blank, it means that the
next card is to be considered as a continuation of the card with the
non- bl ank character in colum 72, in such a way that colum 16 of the second
card is considered to follow imediately after colum 71 of the first.
(These nunbers are actually under the control of the programer, who may
specify with an assenbler instruction statenent that other card colums are
to be used for the start and end of a statement. The nunbers given are
sinply the usual ones which the Assenmbler will assume are to be used if it
is not told otherwise.) (It is a comon error for beginning programers to
punch characters in colum 72 unintentionally, so that the next statement
I's processed in an unexpected way.) Colums 73 through 80 are ignored by
the Assenbler when it processes the statement, and may be used for identifi-
cation or sequencing information

A conment statenent is identified by the presence of an asterisk (*)
incolum 1. Any information desired may appear in colums 2 through 71.
An exanmpl e of a comment statement appears below, as it woul d be punched
on a card.
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99999988
12345670

L)

Figure 9.4 A Comment Statenent

The machine instruction statenent, assenbler instruction statenent,
and macro-instruction statements each have four parts called_fields. They
are respectively the nanme, operation, operand, and comment fields; of these
an entry in the operation field nust always be present, and for certain .
types of statements entries in some of the other fields may or nust be
omtted. |If there is a name field entry in the statenent, it nust begin
with a non-blank character in colum 1; it is termnated by the first blank
colum after colum 1. If no name field entry is desired, colum 1 must
be left blank. After the nane field, and separated fromit by one or nore
bl ank colums, comes the operation field entry; it ends with the first
bl ank-colum after the start of the -operation field. After the operation
field entry and separated fromit by one or more blank colums comes the
operand field entry which, like the name and operation field entries,
termnates (except for one unusual case to be described later) with the
first blank colum detected after the start of the operand field. The
rest of the card is treated as coments (that is, it is ignored) by the
Assenbl er, and does not influence the processing of the statement (unless,
of course, the comment field extends into colum 72 indicating a continuation
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on the next card).

Note that with the exception of the nane field, no

requirement is nmade regarding the colums in which the other three fields

must start; they sinply end with a blank col um.
called free-field statements, in which the programer nay arrange the
information on the cards of his programas he desires, with the only
restriction being that the fields appear in the proper order.

This allows what are

The figure below illustrates a machine instruction statement in which

entries in all four fields appear,
cause the contents of genera
of general register 3.

will be discussed |ater.)

and which if executed in a program woul d

register 7 to be replaced by the contents
(The particular form of the operand field entry
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Figure 9.5 A Machine Instruction Statenent

An assenbler instruction statement (in which the name and comment

field entries are omtted) which would cause the Assenbler to |eave four

blank lines in the program listing is given in the followng figure
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10. SELF-DEFINING TERMS AND SYMBOLS

In using the Assenbler Language, two constructs of inportance are
self-defining terms and symbols. Each has a value; in self-defining terns
the value is inherent in the term whereas values are assigned to synbols
by the Assenbler (under control of the programer, of course).

There are four types of self-defining terms: decinmal, hexadecinal
binary, and character; the value of each is always taken to be positive.

A decimal self-defining termis sinply an unsigned string of decinal
digits. 12345, 98, and 007 are exanples of deciml self-defining terns.

The size of a decimal self-defining termis linited by the fact that 24 bits

are allotted by the Assenbler to hold its value; hence a decimal self-

defining termnust (a) contain 8 or fewer digits and (b) be less than or equal to
2%%.1 = 16777215,

A hexadeci mal self-defining termis witten as the letter X, an
apostrophe, a string of up to 6 hexadecimal digits, and a second apostrophe.
X'123456', X FACED , and X'001B7' are exanples of hexadeci mal self-defining terns.
As above, the value of a hexadecimal self-defining term nust be at nost
2241 = X FFFFFF' .

A binary self-defining termis witten as the letter B, an apostrophe
a string of up to 2+ binary digits, and a second apostrophe. B'110010',
B'0001', and B'1111111100001100' are exanpl es of binary self-defining terms,
Because 24 hits are allotted for the value of self-defining terms, at nost
2k digits may be specified between the apostrophes. Note also that the
value of the termis assumed positive even though the |eftnost position
contains a one bhit. '

A character self-defining termis witten as the letter C an apostrophe
a string of up to three characters (except for two cases to be described
nomentarily), and a second apostrophe. Thus, C'A', ¢'...', and C'A B' are
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valid character self-defining terns. The third exanple, in which a blank
appears, 18 the exception to the rule nmentioned in Section 9 that the operand
field is termnated by the first blank colum after it starts: if the
blank 1s part of a character string as in a character self-defining term
it doesn't count. The two unusual cases which arise in character strings
concern the apostrophe and the anpersand. It is clear that if apostrophes
areto be used to delimt the character string, some means must be found
to get an apostrophe @nt$ theecharactarpserirngs a n d h as a
special USe in macro-instructions which will| be treated later.) The
tectmique used in the System/360 Assenbler Language is to represent an
apostrophe (or empersand) in a character string by a pair of apostrophes
(or ampersands) -- a character self-defining termcontaining a single
apostrophe (or ampersand) woul d therefore be witten c'''' (or c'&&').
This can lead to cryptic constructs such as ¢'''''"''' and C'&Ma&&', but
they are valid character self-defining terms.. The probl em now arises as
to howv a val ue is associated With character self-defining terws; it is
clear that this wll depend on the internal representation assumed for

- characters. In System/360 the conventional representation is called the
Extended Binary Coded Decimal Interchange Code, or EBCDXC, or even EKCD,
for short. Each character is represented internally by a single byte --
two hexadecimal digits -- as indicated in Table Ill. Note that the characters
$, #, and@are considered to be letters in the Assenbler Language. This
wi |l have bearing on the definition of symbols, which will be discussed
shortly.
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Character  Representation f| Character  Representation || Character Representation
bl ank 40 C C3 T E3
. 4B D c4 U E4
( 4D E c5 v ES
+ 4E F cé w E6
& 50 G c7 X ET
$ 5B H c8 Y E3
* 5C | c9 Z E9
) 5D J D1 0 (digit) FO
- 60 K D2 1 Fl
/ 61 L D3 2 F2
) 6B | M D4 3 F3
# B N » 4 F4
e (o p (letter) D6 5 105)
' D P DT 6 F6
- TE 0 D8 7 F7
A a ‘R D9 8 F8
B c2 S E2 9 F9
Table Il11. EBCDIC Character Representation

Thus the value associated with the character self-defining termc'"'
is the same as that of the hexadecimal self-defining tem X'k, the binary
sel f-defining termB'1000000', and the deci mal self-defining term ék.

Wi ch type of termis chosen by the programmer is largely a matter of
context; certain types Will be nore natural than others in sone places.

In practice, we will find that decimal self-defining terns are used so
extensively that it is easy to forget that any other type of self-defining
termof the same value could be used as well.

In the previous section,

Fig. 9.5 is an exanple of an instruction in

whi ch the operand field entry contains the decimal self-defining ternms 7 and 3.
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Synbol s are a sonewhat more intricate matter, even though their use
will be seen later to be as. sinple and natural as the use of self-defining
terms. A synbol is a string of fromone to eight letters or digits, the
first of which nust be a letter. (Remenber that $,@, and # are "letters"
to the Assenbler.) No special characters are allowed (nanely "“(", ")",

M, ot e e g e e onomgt and " (blank)). The
following are all valid synbols.

A AGENTOO7 A1B2C3Dh4

#235 goex APPPLEXY

JAVES KSF@ PRURI ENT

$746295 WONKA - ZYZYGY99

The following are not valid symbols, for the reasons given.

$7462.95 (deci mal point not ellowed)
BPND/007 (no division sign allowed)
SET af (no blanks all owed)
235¢ (does not start with a letter)
CHARACTER (too many characters)

- TEN*FIVE (contains the special character )
C'WPNKA' (no apostrophes al | owed)

Symbol s have the follow ng six attributes: value, relocatability,
length, type, scaling, and integer. O these, the first three will be our
main concern, and the last three will be discussed |ater.

A-synbol acquires a value by virtue of its appearance as the nane
field entry in a statement of an appropriate type. The relocatability
attribute depends on several factors, one of which will be nentioned shortly;
.we usually say sinply that a synbol is relocatable or absolute (not
relocatable). The length attribute of a synbol depends on the type of
statenent in whose nane field the synbol appears. W will give a nunber
of exanples of the use of synbols in statements which are typical of actual
prograns. The reader should bear in mnd that these are sinply exanples and
that the instructions described here will be covered in detail later.
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Synmbol s are mainly used as nanes of places in nemory. In Fig. 9.5
the synbol 1fap is the name of the location at which the instruction (whose
menonic is LR) begins. In the machine instruction statenent

GETCENST L 0,4(2,7)

the symbol cETcgNsT is the name of another machine instruction which |oads
a fullword from NMenory into general register 0. In the assenbler
instruction statement

TEN DC F'10'

TEN iS @ name for a fullword area in nenory into which the assenbler will
place'the integer constant 10. In the macro-instruction statement

EXIT RETURN (14,12),T

the symbol EXIT is the name of the beginning of the macro-instruction. It
is clear that no synbol can be given a value in a comment statenent.

Two further questions will be discussed in this section: how do
synbols get their values, and of what real use are they anyway? A
partial answer to the second question is that their use greatly sinplifies
the progranmming task, and we will be in a position to appreciate this
soon. To answer the first question, it is useful to examne briefly the
pertinent part of the assembly process

When a programis ready to be assenbled, one of the first steps the
Assenbl er must performis the assignnent of a relative origin (or starting
location). In the discussion of job processing it was mentioned that at'
the beginning of the execution step the user's program (in load nodul e
form had to be loaded into menmory. MNow it will alnost invariably be the
case that the programmer has no a priori know edge of where the Supervisor
program wi || begin loading his program and in fact the place where it
begins may change each tine the programis run. Thus, during the assenbly
"step, the best that the programmer (and therefore the Assembler) can do is
assign a relative origin for the program which will act as an assumed
| ocation for the beginning of the program (The program nust of course be
witten so that it will work correctly even if the assumed relative origin
differs frem the actual origin assigned by the Supervisor.)
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Usingthis assumed origin as the initial value of the Location Counter

(which we will abbreviate LC), the Assenbler begins scanning the statenents
of the source program As each statenent is read, the assenbler determnes
(a) whether a synbol appears in the nanme field, and (b) the length of the
area in nenory which will be occupied by the instruction. |If there is a
synbol, the value assigned to it will (except for one unusual case) be the
value of the LC at that tine. The LC is then increnmented by the |ength
just computed. For exanple, suppose the value of the LC was 7B6is When the
statement given in the first exanple above was scanned. Then the value of
the synbol GETCANST woul d be TB61s, and because the instruction whose
menonic is L is an RX-type instruction of length 4 bytes, the ICis
incremented by four and will be TBAie when the scan of the follow ng
statement is begun. In this way the Assenbler scans all the statenents of
the program and assigns values to all symbols appearing as nane field
entries. It should be noted that there are other methods for assigning
values to synbols, but the method described is what will nost often be
used, and that there are also assenbler instruction statements which allow
the progranmer to change the value of the Location Counter. This usua

met hod of synbol definition provides the sinplest definition of a

rel ocatabl e synbol: suppose the relative origin is changed by some fixed
amount; if the value of the synbol changes by the sane anount, then that
synbol is relocatable. Ve will see later that it is also possible to
define synbols whose values either do not change or which change in
different ways. (The reader should also note that there is a definite
difference between the LC, which is maintained by the Assenbler programin
the course of processing the statements of the source program and the
Instruction Address in the PSW, which gives the location in nenory of the
next instruction to be executed during the execution step of the program
They are not at all the sane.)

After this brief discussion of how synbols get their values, we turn
to the question of their utility. Suppose we want to wite an instruction
which will load the integer constant ten into RO (renenber that this is an
abbreviation for general register 0). Suppose also that we also know that
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sone other general register will contain an address which will provide
addressability for the fullword area of menory containing the constant.
Then we coul d cal cul ate what the exact displacenent woul d have to be and
wite the instruction with the base and displacenment given explicitly.
|f, for exanple, these were 6 and 4ECis respectively, we could wite
(the details of witing the operand field will be discussed in the next
section)

L 0,X'4EC'(0,6)

|f, however, the fullword area containing the constant were given the nane
TEN (as in the exanple earlier), we could wite instead

L 0, TEN

and let the Assenbler figure out what base and displacenent to use. To do
this the Assenbl er needs only to be inforned of the address it shoul d
assume will be in register 6 (the nethod will be discussed in Section 12),
and the cal culation of the displacement will be done for us. It may seem
that this is a relatively small return for so nuch effort; it can be seen
however, that if the program'is nodified slightly so that the constant no
longer lies in exactly the same position relative to the assuned given base
address, then all imetructions which refer to the constant nust have their
di spl acenents recalculated. (It is of course inplicit in this discussion
that (a) no programworks just the way we want it to on the first try, and
(b) even if it did we'd think of some changes to make before we got done
with it. If this were not so we could dispense with assenblers and be
content with produci ng programs consisting of strings of hexadeci ma

digits -- but even those who programmed the earliest machines that way are
agreed that assenbly |anguages arean inprovenent.) Thus the main function
of the Assenbler will be to provide a convenientneans for witing and

nodi fying a given programand getting it to execute correctly, by performng
many of the details of the progranmng process for us.
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11. INSTRUCTIONS (I1), MNEMONICS AND OPERANDS

In this section we will consider sone of the problenms of witing actual
machine instructions, using a nunber of instruction formats and giving some
sinple exanple6 of actual code sequences. The use and detail6 of the
functioning of the individual instructions-will be the subject of many
| at er discussions, S0 no effort should be made to menorize the mmenonics,
operation codes, or descriptions of any of the instructions at this point.

Menoni cs provide a short abbreviation for a descriptive word or phrase
whi ch designates the action of each operation code. They may range from
sonething as sinple as "A' neaning "Add", to "BXIE" neaning "Branch onlndex
Low or Equal". To sinplify the presentation, we w |l discuss each class of
instructions separately, and sometines give exanples of how they are witten.
A nunber of abbreviations such as ri, sz, |, etc. will be explained as we
go al ong.

RR Instructions

Instructions of RR format are given in Table IV, several things should
be noted about the instructions |isted there. First, not all of the
available digit conbinations between 0016 and 3Fie (in the columé6 |abeled
"opcode") are used as actual operation-codes. Second, all of the instruction6
in the second colum refer to the floating-point registers, the uses of
which will be described in detail later. (The floating-point instructions

operate on data in a format which is interpreted differently fram the

I nteger representations discussed in Section 6.) Third, two of the instructions

(nanely SSK and ISK) are not normally available to the programmer and their

descriptions will therefore be deferred (they are called privileged operations).
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Wpeode Opcoda
fiex) Mhenoni ¢ Instruction (hex)  Mnemonic  Instruction

oh SPM Set Program Mask 20 LPDR Load Positive
05 BAIR Branch and Link 21 LNDR Load Negative
{ 06 BCTR Branch on Count 22 ITDR Load and Test
- Q7 BCR Branch on Condition 23 LCDR Load Ccmplement
08 88K Set Storage Key 2k HDR Hal ve
09 ISK Insert Storage Key 28 LDR Load
0A sve Supervi sor Cal 29 CDR Conpare
| 24 ADR Add Normal i zed
{10 LPR Load Positive 2B SDR Subtract Nornalized
11 INR Load Negative 2¢ MDR Ml tiply
12 ITR Load and Test 2D DDR Divi de
13 LCR Load Conpl enent 2E AWR Add Unnormal i zed
| Lk NR Logi cal AND 2F SWR Subtract Unnor nal i zed
15 CIR Conpare Logical . 30 LPER Load Positive
16 #R Logi cal R 31 LNER Load Negative
|17 XR Excl usive ¢R 32 LTER Load and Test
| 18 IR Load 33 ICER Load Conpl enent
19 CR Conpar e 34 HER Hal ve
1A AR Add 38 LER Load
{13 SR Subt r act 39 CER Conpar e
{1 MR Ml tiply 3A AER Add Normal i zed
11D DR Divi de 3B SER Subtract Normalized
118 AIR Add Logi cal 3¢ MER Ml tiply
1 1lF SIB Subtract Logi cal 3D DER Di vi de
| 3E AUR Add Unnormalized
3F SUR Subt ract Unnormalized
TABLE 1v.

RR Instructions

Yor all but two of the RRinstructions, the two operands of the operand
fleld entyy in a nmachine instruction statement nust be witten in the form

i, rz

where the operands r1 and raz will be described shortly. The exceptions,
which have only a single operand in the operand field entry, are SPM (in
which case the operand is witten in the form »; ) and SVC (in which
case it is witten in the forml ).

To explain the neaning of the notation "ri,r2", it is perhaps useful
to refer to the exanple of a machine instruction statement in Fig. 9.5, in
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]

which the operation and operand fields were "Lk 7,3 .
the description of the figure that exseution of this instruction would cause

(It was noted ia

the contents of R7 to be replaced by thecontents of R3.) In this case,

] et %

ri" is "7" and "rz" ig "3". In fa ot tbeguent ities vz ond vz rust simply

’j’!

be absolute (i.e., non-relocatable; expressions of valus less than 165 a

more formal definition of the tewmn "¢ ¢ ression” Wl be givean shortly.

Thus, we coul d just as well have written IR X'7',B'11' in this
exanple. For RR instructions, the values of the expressions in the operand
field are placed by the Assenbler intc two adjacent hexadecimal digits,

call ed operand register specificaticn digits, in the second byte of the
instruction (which was | abel ed "Regi ster Specification" in the first diagram
of Fig. 4.2), as in the follow ng figure. .

Operation
Code
0 78 11 12 15

Tri ra

Figure 11.1 RR Instruction Showi ng Register Specification Digits

The subscripts on the quantities "ri" and "r2" are sinply a way to distinguish
whi ch operand is being referred to; in general we will find that using the
terms "first operand", '*second operand", etc. in a consistent nmanner will
help in renenbering what actions are being performed by each instruction.

W woul d therefore say for nost of the RRinstructions that the operand ri
specifies the register centaining the "first operand". It will become
apparent that the word "operand" is used here in tw different senses: as
part of the operand field entry of sone instruction statenent, an operand i S
an expression which will eventually be-translated by the Assenbler into

sone part of an instruction; we also call an operand one of the quantities
inaregister or in nenory which at execution time participates in the given
operation. The difference is not terribly inportant but can be confusing,
and which is meant will normally be clear from context. Thus the operands
(first meaning) in the operand field entry of the instruction IR 7,3
are 7 and 3, whereas at execution time the operands (second neaning) of the
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IR instruction will be found in general registers 7 and 3. Using Table IV
to find that the operation code corresponding to the menonic IR i s 186,
the two-byte instructionwhich would be assenbled from the statement as
given would be [R8]73] in hexadeciml.

For the case of the SPM instruction the digit labeled r2 in Fig. 11.1
s ignored when the instruction is decoded; and for the SVC instruction,
the entire second byte of the instruction is occupied by an 8~bit nunber
whi ch is specified by the absolute expression "I", as indicated above,

Thus SPM 14 and svc 255 are acceptable forns of each instruction,
in which decimal self-defining terms are used for the operand field entries.

Before discussing RX format instructions, we wll discuss in nore
detail the conplexities of what is neant by an "expression". Since nost of
the material of the next several pages will be illustrated in fairly sinple
exanpl es to be given later, it is not inportant that sone of these conventions
of Assenbler Language remain unclear for now.

An expression is an arithnetic conbination of ternms (and we will also
give a definition of the term "ternt) which can be evaluated by the Assenbler
to produce a neaningful value for the operand. Mathematical operators allowed
‘include +, -, *, and /, indicating addition, subtraction, nultiplication,
and division respectively; the rules used in performng these operations are
descri bed bvelow: The quantities used as the basic elenments of an expression
are ternms, which can be one of the five followi ng itens:

sel f-defining tem (absolute);

synbol (absolute or relocatable);

Location Counter Reference (relocatable);
literal (relocatable);

Synbol Length Attribute Reference (absolute).

L v v 9 Q@

Bach of the latter three will be described later. An expression using a
gymbol and a self-defining term is  GETCANST+X'LA' and an expression
using only self-defining ternms is X'12'+C'.'-B'1010001'+7 which the
reader -can verify to have the val ue 19:0.

To illustrate the definition of an absolute symbol (up to now we
haveillustrated only the use of relocatable synbols), we will make brief
mention of the EQU assenbl er instruction: the assembler instruction statenent
"symbol EQU expression" gives to the synbol in the nane field the attributes
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(including value and relocatability) of the expressionin the operand field.
Thus the statenent

ABSk25 EQU k25

serves to define an absol ute symbol with value 4%25i0. (This is the unusual
case nentioned in Section 10 where ths value of the synbol is not the value
of the IC when the synbol was encountered.)

Parentheses in an expression may be used, as in ordinary mathenatical
use (and as in algebraic procedural |anguages such as FORTRAN, AIGOL, and
PL/1) to indicate groupings. As one night suspect, an expression may not
contain two operators in succession; a less famliar restriction is that an
expression may not begin with an operator, scthat -5+ABSk25 is invalid,
whereas 0-5+ABSY25 is correct. (The maxinmum nunber of terns allowed and the
maxi mum | evel of nesting of parentheses in an expression both depend on the
size and sophistication of the Assenbler; we will sinply nention an upper
limt of 16 and 5 respectively, corresponding to the 0S/360 Assenbler.)

Expr essi ons

Wth these notational matters nore or less in hand, we can now state
the rules for evaluation of expressions.

1. Each termis eval uated to fullword accuracy, namely 32 bits. The
relocatability attribute of each termis noted.

2. Par ent hesi zed subexpressions are evaluated first, and the resulting
val ue used in computing the value of the rest of the expression.
Thus in the expression (X'100'+2*(ABSk25-420))+1 (where ABSL25 is
assumed to have been defined as above), the value of (ABS425-420)
woul d be evaluated first.

3. As is the case in procedural | anguages, multiplications and divisions
are done before additions and subtractions. Thus the value of the
expression just given would be evaluated as (X'100'+(2%(5)))+L and
not ((X'100'+2)*(5))+1l. Note that relocatable ternms or subexpressions
may not occur in nultiply or divide operations.




Operations are performed in left-to-right order. Thus 5%2/4 means
(5%2)/4, not 5%(2/4).

Mil tiplications yield a 32-bit result which'is the |ow order half of
the doubl e-length product; thus significant bits can be |ost if the

product is too large

Division always yields an integer result; remainders are discarded.
Thus 5*%2/% has the value 2, and 5%(2/4) has the value 0. Division by
zero is permtted, with the result sinply being set to zero

Negative quantities are carried in standard two's conplenent representation

When the expression has been completely evaluated, it is truncated to
the value contained in its rightnost 2k bits, which is then considered
(as was noted for self-defining terns) to have a positive value, even
though the bits dropped off may have all been ones.

The relocatability attribute of the result -is found as fol lows: if
there is an even nunber of relocatable terns appearing in the expression
in such a way that they are paired (that is, they appear with opposite
signs) so that a change in the relative origin assigned to the program
has no effect on the value of the expression, then the expression is
absolute. If there is one remaining unpaired termnot directly

preceded by a mnus sign, then the expression is relocatable and has

the relocatability attribute of the unpaired term (Nunerous exanples
will be given later, so don't worry if this seens obscure at present.)

After this sonmewhat |engthy digression, we return to the problenms of

witing actual machine instructions by noting that the machine instruction
exanpl e at the beginning of the chapter could have been written

14AD IR Crh5t - (T*X12A36" ) +ABSH25%B'11111 ' -235,18/(Q-Q) +3

though the gain in clarity is not obvious. A somewhat nore reasonable usage
mght be as illustrated in the follow ng sequence of statements.

RT EQU 7
R3 EQU 3
IfADL R  RT, B3
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Note that there is a difference between (1) the_notational convenienze"R7"
(meaning general register 7) introduced in Section 3, (2) the definition of
an absol ute_symbol R7tohave the vaiue 7, and (3) the use of the symbol as
an operand in the operand field entry o¢ a machine instruction where the use
of register 7 is indicated. The above exanple is entirely equivalent to
the two bel ow.

Z$RCE EQU 3 R7 EQU 3
ZILCH EQU 7 R3  EQU
L#AD IR  ZILCH,Z@RCH IfAD LR  R3,R7

Just to show that programming with RR instructions is in fact quite
sinple, suppose that at some point in a programwe wish to add the contents
of R2 to Rk, subtract the contents of R9 from the sum and |eave the result
in RO the following three statenents (whose properties wll be discussed
later) would suffice

IR 0,2 M@VE CYNTENTS $F R2 T¢ RO
AR 0,1% ADD C@NTENTS ¢F R14
SR 0,9 SUBTRACT C@NIENTS ¢F RO

RX Instructions

RX instructions are given in Table V. As was the case in Table |V,
not all of the available digit conbinations are used as actual operation
codes; and all of the instructions in the right-hand colum again refer to
operations on the floating-point registers and will be discussed |ater.
None of the RX instructions is privileged, and the format of the operand
field entry is the same for each. It should be kept in nind that RX
instructions always refer to menory in some way. Referring to Fig. 11.2
we see that four quantities are to be specified -- the operand register
specification digit ri1, the index register specification digit xz, the base
register specification digit bz, and the displacement dz. (W are again
entering on a fairly technical discussion, the details of which need not be
assimlated at this point, since many later exanples wll be given in
illustration of the various possibilities.)
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Opcode I“J_ X2 bz da
0 T8 1112 1516 19 20 31

Figure 11.2 RX Instruction Showi ng Register Specification Digits

(pcode (pcode
(hex) Mhenonic I nstruction (hex) Mhenoni ¢ | nstruction
Lo STH Store 60 STD Store
41 LA Load Address 68 LD Load
L2 STC Store Character 69 cD Conpar e
L3 IC Insert Character 6A AD Add
Lk X Execut e 6B SD Subt ract
bs BAL Branch and Link 6¢C VD Ml tiply
L6 BCT Branch on Count 6D DD Di vi de
L7 BC Branch on Condition 6E AW Add Unnormalized
L8 LH Load 6F Sw Subtract Unnormalized
kg CH Conpar e
4A AH Add 70 STE Store
LB SK Subt ract 78 IE Load
ke VH Ml tiply (5 CE Conpar e
LE CVD Convert to Decinal TA AE Add
Ly CVB Convert to Binary B SE Subt r act
50 ST Store TC VE Mil tiply
5L N Logi cal AND D DE Di vi de
55 CL Conpare Logi cal TE AU Add Unnornal i zed
56 g Logi cal ¢R TF su Subtract Unnormalized
57 X Excl usive @R
58 L Load
59 C Conpar e
5A A Add
5B S Subt ract
5C M Ml tiply
5D D Di vi de
5 . AL Add Logi cal
5F SL Subtract Logica

TABIE V.
RX Instructions

There is quite a variety of ways in which the operand field entry of an

RX-type machine instruction statement may be witten, but they all eventually
must yield values for the four needed quantities. Rather than give all the
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forms for the operand field entry imediately, we note first that it is of
the general form

r1,<address Specification>

where <address specification> will be discussed shortly. The operand register
specification digit riis fornmed according to the sanme rules given above
for the ri and r= digits of RR instructions: it must be an absol ute expression
of value |ess than 16.

Suppose first that we wish to specify explicitly the values assigned
to x2, bz, and dz: this is done by witing the second operand (nanely
<addr ess specification™>) as

dz(xz2,bz2) -

For exanple, the instructions in exanples 3, 4, and 5 of Section 5 (page 5-3)
could be witten (giving both the assenbled form and the operation and
operand field entries of the machine instruction.statement) as in Fig. 11.3.

[T3ToA] 7]%68] IC 0,X'468'(10,7)
(L3T00]7]%68) IC 0,1128(0,7)
(E3To7]oT%68]) Ic 0,1128(7,0)

Figure 11.3 RX Instruction with Explicit Operands

In the last of these three exanples, we could have witten the second operand
as 1128(7) and the Assenbler will give the onitted item (the base register
specification digit b2) the value zero.
As was mentioned in the discussion-of addressing in Section 5, the use
of the index register specification digit x2 when the base register specification
digit b2 was intended can lead to prograns which function nore slowy,
though correctly. By specifying only the base digit when no indexing is
intended, the program is both nore efficient and nore easily understood --
the second of the above exanples, where we could have witten 1128(,7) al so,
iIs therefore preferable to the third.
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The utility of the Assenbl er becomesmore apparentwhenwe consi der
all the forma in which the seecond operand of an RX instruction may be witten;
these are given in Mg. 11.4 bel ow.

Bxplicit Addr ess _Implied Address
da(x2,b2) s2(x2)
dz(x2)
da( ;bz) 82

Figure 11.k Address Specification in RX-Type Instructions

In the three cases where an explicit address is desired, each of the
quantities da, xa, and bz (wherespecifieﬁ) nmust be anabsol ute expression;
xaand bg, | i ke r1, must have value | ess than 16, and dz must have value
leesthan or equal to 40950 = FFFg. Rote that the second and third forns
ofexplicit addressinplicitly specify ba = 0 andxa=0, respective&y, as
indicated previously .

Inthe two cases Where an inplied address is desired, the quantity seg
my be either an absolute or arelocatable expresston Of val ue less than 2%,
This means that we may write instructions SUCh as L O,ANSWER and | eave
It tothe Assenbler to compute t he proper base and di epl acenent; how this
IS done Wi || be discussed i N the next section. FOr the moment suppose that
t he Assembler has sufficient | Nformation so that the instruction Ic 0,BYTE
s translated into [B3Jo0[7[%88] as in Fig. 1l.3. Ten i f the index register
to be used is R0, the instruction | C 0,BYTE(10) woul d be transl ated
i nto (BTG

Tis i S the- same instruction used in exanple 3 in section 5;the
exanpl e given there was simply meant to illustrate an address celeulation
at execution time rather than (as above) the method used by the Assembler
to specify the base and index digits. We will find that the noet common
'means -of address Speci fication in sinple programs iS through the use of
implied addresses, Where the Assenbler conputes the proper displacenent for us,

To gi ve asimple example Of a sequence of statemerts which increment
by one the fullword integer stored in memoryin an addressable area
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named by the synmbol N, we could use the following:

o,N LPAD FREM N INT§ RO
0, ADD | NTEGER cgNsTANT 1
ST o,N stdre RESULT BACK AT N

>

where it is assuned that an addressabl e fullword area naned @NE whi ch
contains the integer constant +1 has been defined in the program W will
see later that there are several ways to define such constants.

B8 and 8I Instructions

" The Rs-type and Sl-type instruction6 listed in Table VI are somewhat
varied both in application and in the ways in which the operand fields ere
specified. Note that there are nine privileged instructions: 884, LPSW
WRD, RDD, SIf, TIf, HI, TCH, and “Di agnose”, for which there is no memonic.

code . Cpcode
ex) Muenonic__ Instruction (hex)  Mnemonic  Instruction
80 8SM Set System Mask 90 STM Store Multiple {
82 LPSW Load Psw 91 ™ Test Under Mask
83 Di agnose 92 MVI Mre
84 WRD Wite Direct 93 T8 Test and Set
85 RDD Read Direct ok N Logi cal AND
86 EXH Branch on Index High 95 CLI Conpar e Logi cal
87 BXLE Branch on Index Low 96 @1 Logi cal

or Equal 97 X Excl usive #r
88 SRL Shift Right SL 98 M Load Multiple
89 SLL Shift Left SL
8A SRA Shift Right S 9c sIg start I/p
88 SIA Shift Left S 9D 71 Test I/
8c SRDL Shift Right DL 9E HIf Hal t 1/¢
8D SLDL-  Shift Left DL - 9F TCH Test Channel |
8 SRDA Shift Right D
8F SLDA Shift Left D

TABLE VI.

. - RS and Sl Instructions
(For Shift Instructions, S =Single, L = Logical, D= Double)

8ince the operand fields of RS and S| instructions cannot be described in as
uniforma way as was possible for RX instructions, the details will be |eft
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to the discussion of the individual instructicns.A simple exanple of an s8I
instruction is ~ MVI .FLAG,0  which would cause the byte naned FrAG
(which is assuned to be addressable) to be set to zero.

88 I nstruction6

The instructions of SS type are given in Table VII. There are no
privileged SS instructions. As was the case for the R and S| instructions,
discussion Of the operand field formats will be deferred. The |ast six
instructions in the right-hand colum ere decimal instructions, which operate

Opcode . (pcode
(hex) Menmonic  Instruction - _(hex) Mnemonic  Instruction
D1 MVN Move Nuneric F1 MV Move with Offset
2 WC Move F2 PACK Pack
D3 MVZ Move Zone F3 UNPK Unpack
Dk NC Logi cal AND
% CLC Compare LOgi cal F8 ZAP Zero and Add
D6 gc Logi cal ¢R F9 CP Conpar e
DT XC Excl usive #Rr FA AP Add
e TR Trans| ate FB SP Subt r act
DD TRT Translate and Test FC MP Ml tiply
DB ED Edi t FD DP Di vi de
IF EIMK Edit and Mark

TABLE VI [,
SS Instructions

ondatawhich is stored in a different format (called packed decimal) from
that described earlier for fixed-point integers in tw's conplenent
representation; deciml instructions will be treated later. An exanple of
an 88 instruetion Whi ch woul d cause five bytes'to be noved from a menory area
naned AREA to an area whose first byte is named FIELD is
MVC FIELD(5),AREA

To conclude this short presentation of the instruction repertoire of
System/360,asummary i S given in the figure bel ow of some of the overall
characteristics of the instructions as they depend on the first four bits
of the operation code. As was illustrated in Section & the first two bite



determ ne the type and length of the instruction. The second pair of bits
determ nes (depending on the instruction type) the operand length or the

general functions perforned by the instructions.
: Second Bit Pair
First —_—
it Pair 00 01 10 11 .
00 Branching and Fullword Fi xed- Fl oati ng- Floating-
(RR) Status Switching Point and Logi cal Point Long | Point Short
01 Halfword Fi xed- Fullword Fi xed- Fl oat i ng- Fl oati ng-
(RX) Point and Branching| Point and Logical Point Long | Point Short
10 Branching, Status Fi xed- Poi nt ,
(Rs, Swi t ching, and Logi cal, and
SI) Shifting | nput / Qut put
11 Logi cal Decimal
(s8)

Figure 11.5 General

[nstruction dassification

A closer exanmination of a conplete table of operation codes reveals a great
deal of symmetry in the specification of the codes used for sinmlar functions.

For exanpl e,
(nanely, NR, N N,

and NC) all

the four instructions which perform the Logical
have operation codes in which the second hex

AND operation

digit is 4 and the first hex digits differ by nultiples of & (nanely, 1k,54,

9k, and D4).
use of menonics,

Since we will

make reference to instructions slmost entirely by
these details are only of passing interest for our purposes.

The reader who is interested in a broader discussion of these topics --

col lectively known as system architecture --

Journal, Vol.

3, Nos.

vol. 8 No. 2.

2 and 3, and the | BM Journal

should consult the IBM Systens

of Research and Development,
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12. ESTABLI SHING AND MAI NTAINING ADDRESSABI LI TY

In this section we will give an exposition of some sinple methods for
providing addressability for a program and how the Assenbler makes use of
some programer-provided information to cal cul ate displacenments. Rather
than give a set of rules and show how they work, we will start with what we
want and work backwards to some techniques which can be used to get it.

One particular instruction is central to the discussion, namely BAIR.
For the tine being we will be interested -only in the situation where we
wite BAIR 1r3,0 (so that the second operand register specification
digit rais zero). The effect of this instruction when executed is to
repl ace the contents of general register ry by the rightnost 32 bits of the
PSW the ILC, CC, and Program Mask occupy the |eftmost byte of the register,
and the rightnost 2k bits contain the value of the IA (which will be the
address of the instruction follow ng the BALR because the |A is incremented
by the instruction length (2 for BALR) during the Fetch portion of the
instruction cycle). This is one solution to the problem posed at the end
of Section 5, where addressability was first discussed; the BAIR instruction
gives us a way to find out where in nemory a programis |ocated.

Suppose that the follow ng short sequence of statements is part of a
program which is in menory and ready to be executed, and assume for the
moment the Supervisor has relocated the programso that the first instruction
(the BAIR) happens to be at menory |ocation 50005¢.

Location Nane Qperation Qper and

5000 BALR 6,0

5002 BEG N L 2,N  IL$AD CONTENTS ¢F N INT@ R2

5006 A 2,fNE ADD C@NTENTS @F ¢NE

500A ST 2,N  STYRE CENTENTS ¢F R2 INTG N
- twenty-two additional bytes of instructions, data, etc. ---

502k N DC F'8'  FULIWPRD | NTEGER 8

5028 @NE DC F'S  FULIWGRD | NTEGER1

Figure 12.1 A Sinple Program Segnent
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Sone expl anation of the itens in the examplé may be helpful. The imgtructions
L, A, and st respectively (1) put the contents of a fullword from memory
into a general register (i.e., Load the register), (2) Add the contents of
a fullwvord area in menory to the contents of a register, and {3) replace
the contents of a fullword area in nenory with the contents of a general |
register (i.e., STore the register). The IC statements, which are treated
in the next section, are meant sinply to provide two fulbword areas Of
nmenory with names "N" and "gNE" which contain the fullword i nteger val ues
desired; we have arbitrarily set the contents of the fullword at N to the
integer 8 even though in an actual program any value mght be possible.

All of these instructions will be covered in detail later.

Wien the program has begun and after-the BAIR has been executed, R6
w1 contain xx005002;6, Where xx stands for two hex digits whose values
are of no concern at the mament. To deternine the proper displacenment for
the L instructiom at 500235, We can use the kmown contents of R6 (since
the xx digits are ignored in address computations) t0 conpute a displacenment
of 502416 - 500216 = 022;¢; then the assembled machine instruction (using
the operation code 58 for the menonic L) should be [58]20]6]022]. Then
when the instruction is executed, the computation Of the effective address
yi el ds 022 + 005002 = 005024, which is what we want. If we continued in
this fashion for the rest of the instructions, we would find that the
followng "assenmbl ed" quantities in the indicated |ocations would give the
desired results.

Location Assenbl ed Contents Original  Statenent
2000 ggfganfm BAIR 6,0
BO9E 54206026 BEG N lA 2,8 2,1
500A 50206022 ST 2,N
5024 00000008 N BC F'8'
5028 00000001 g DC Fr1t

Figure 12.2 Bimple Program Segment with Assenbled Contents




So far, so good: we have constructed a sequence of statenents which
will give a desired result if it is placed in nemory at the right place.
It is natural to ask at this point what woul d happen if the program had
been put el sewhere by the Supervisor. So, assune that the same program
segment begins at 8L4E8i¢, as in the figure bel ow

Location St at enent
84E8 BAIR 6,0
84EA BEG N L 2,N
8L4ER A 2, INE
8hr2 ST 2,N
--- the same 22 bytes of odds and ends ---
850C N DC Ft8r
8510 BNE DC Fr1t

Figure 12.3 Sane Program Segnent, Different Menory Location

Now, the contents of R6after the BALR is executed woul d be xx0084EA;¢. TO
access the contents of the fullword at N, using R6as a base register, the
necessary displacenent is 850C - 84EA = 02216 (as before!) and the dis-
pl acement necessary in the A instruction is 8510 - 84EA = 026;6. Thus

the assenmbl ed program would appear as in the figure bel ow.

Locati on Assenbl ed Contents
8LE8 0560

8LEA 58206022

8LEE 54206026

8hr2 50206022

850¢ 00000008

8510 00000001

Figure 12.% Same Program Segnent with Assembled Contents

The identical assenbled program would be used in each case to perform the
desired calculation. It therefore appears that so long as the sane fixed
relationship is maintained between the various parts of -the program segnent
(nanely that there be 22 bytes between the ST instruction and the fullword
named N, and that N and ¢NE name areas that fall on fullword boundaries, the
segnent could be placed anywhere in nenory and still execute correctly.
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This is because the displacements of the three RX-type instructions were
calculated on the assunption that at the time the programis executed
there would be an address in R6 (nanmely the address of the L tnstruciion
naned BEGIN) which could be used for a base address. Indeed, we coul d
have assuned that the program began at momory |ocation zero (even though
an actual program would not be placed there) because the contents of R6
after the BAIR woul d then be xx000002 and the displacenents woul d be
calculated exactly as before. In the first exanple, the actual origin of
the program segnent was 500016; We coul d by chance have assigned that value
as a relative originin the programand had the val ues of the Assenmbler's
Location Counter correspond identically to the actual |ocations |ater
assigned by the Supervisor to each instruction. In that case, we would
need to informthe Assenbler that the quantity to be used as a base is
500236, and that it would be found in R6 at execution tine. Simlarly, in
the second exanple, the relative origin would be 84816, and the contents
of R6 that the Assembler should assune in order to calculate the correct
di spl acenents woul d be 84As. If the value of the actual originis
assigned to the rel ative origin by the programrer, and if the Assenbler
knows that the contents of R6 at execution tinme will-also be the val ue of
the synbol BEGIN , then the correct displacements will be found.' However,
in each of the above exanples, the conputation of the displacenments actually
depended not on a know edge of the actual locations of the instructions
at execution time, but only on their locations relative to one another and
on the value assumed to be available for addressing purposes. Thus, the
technique used is to assign a relative origin for the program and then to
give sone value relative to that relative origin which may be used for
computing di spl acenents; although this seems conplicated, we will find it
quite sinple in practice.

The assenbl er instruction which provides this information is the
USING instruction. It is witten

USING s,r1

where s is a relocatable or absol ute expression (usually just a synbol.
wi Il be used) whose nagnitude is |ess then 224, and ry is an absol ute




expression of value less than 16 which specifies the register to be used as

a base. (As usual, there is nore to using USING than has been stated here,

but we will use this sinplified explanation for the tine being.) Thus, the

st at enent USING BEG N 6 would inform the Assenbler that register 6 may

be assumed (for purposes of conputing displacenents) to be a base register
which will contain the value of the synbol BEGN. W could rewite the
sanpl e program segment to include the USING statenent as in the figure bel ow

BALR 6,0

USI NG BEGIN, 6
BEG N L 2,N

A 2, PNE

ST 2,N
N DC F'8"
aNE DC F

Figure 12.5 Program Segment with USING | nstruction

If the relative origin assigned by the programmer is zero, the value of the
synbol BEGAN is 2, and the values of the synbols N and fNE are 2416 and
2816 respectively. To complete the addressing syllable of the ST instruction,
the Assenbler need only note tha-t the difference between the value of the
synbol N and the value that the USING instruction specifies will be present
in R6,is 24 - 2 = 221¢5; this is the required displacenent. |t should be
noted at this point that the value provided by the USING statenent nust
allow the Assenbler to conpute a |egal displacenent. [|f the calculation
yields a negative value or one greater than %095, the location referred to
by the-synmbol in question is still not addressable, and further steps would
have to be taken.

Two inportant features of the program segment in Figure 12.5 should
be noted. First, the USING instruction does absolutely nothing about
actually loading a value into a register; it nerely tells the Assenbler
what to assume will be there when the programis executed. Second, if the
BAIR instruction had been omtted, there is no guarantee when the program
is executed that the correct effective addresses will be conputed. The
exanpl e below will help to illustrate this.
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Suppose an error had been made in punching the 'card with the L
instruction, such that it appeared

BEGN L 6,N  IfAD CENTENTS ¢F N INTP R2

(the first operand was incorrectly punched as 6 instead of 2). The
assenbl ed program woul d then appesr as in Figure 12.6, assumng a relative
origin of 0 had been assigned to the BAIR instruction.

Location Assenbl ed Contents St at enent
0 0560 BAIR 6,0
USING BEGIN,6
% 58606022 BEGN L 6,%
54206026 A 2, !
A 50206022 ST 2,N
2l 700000008 y DC 18"
28 00000001 NE DC F'S

Figure 12.6 Sanple Program Segnent with Erroneous Statenent

It is apparent that thfs program will assenble correctly, as did the one

in Figure 12.5, since all quantities are properly specified. However, at
execution time, things go rapidly awy. Suppose again that the actual
loeation assigned by the Supervisor to the BAIR i S 500016, SO that when the
L instruction is executed, R6 contains xx00500216. Now, the L instruction
transmts a fullword from the menory location at the effective address given
by the second operand into the register specified by the first operand,
which in this case is R6. Wen the effective address of N is being calcul ated,
R6 will contain the correct base address; but when the execution of the L
instruction is complete, the contents of Ré will have become 000000081, and
not xx005002. Wen the next instruction 1 executed, the effective address
cal culated is 261 + 816 = 00002E1¢ and not 502816, Which is where the
desired operand is to be found. In this case, the generated effective
address is not divisible by 4 so that it refers to the incorrect byte of
the required fullword operand; hence a specification exception occurs, and
renedial action can be initiated inmediately. This does not by any neans
inply that at any time we have the nmisfortune to destroy the contents of a




base register that the CPU will be able to detect the error. Indeed, if

the contents of the fullword at ¥ had been the integer 2 instead of 8, then
the effective address woul d have been conputed to be 2 + 26 = 2816, which

is a perfectly acceptable address for a fullword. The subsequent instructions
woul d thus have gone their way, adding the contents of the fullword at
menory | ocation 2816 to R2, and storing the result at location 2k, which
is obviously not what is intended. It is partly a matter of chance as to'
how nmuch further damage such a program error can cause when the programis
executed; indeed, when the CPU finally (if it ever) detects an error, all
evi dence pointing to the offending instruction may have been |ost (R6 may
have been changed several times!), making error tracing difficult. Thus
the programrer nust take care to insure the integrity of the contents of
registers being used for base registers, -since the Assenbler makes no checks
for instructions performng operations on registers.designated in USING
instructions as base registers. This warning should not be taken lightly;
the errors caused by mshandling base registers are anong the nost
destructive of program continuity and the nost difficult to find.

There is one further method in conmon use for establishing addressability,
which is sinply to require that when "eontrol” reaches a certain point in
the program (where a specified instruction is about to be executed), an
agreed-upon address be in an agreed-upon register. Thus if the program
segnment used in the above exanples were part of a larger program we could
then require that at any tinme that control reaches the statement named
BEG N, the actual address of that instruction must be in R6. Then the BAIR
could be omtted, and the USING instruction would specify that R6 nmay still
be assumed to contain the correct value. The problem of how one part of a
program knows where the others are, so that it can pre-load the correct
address into the agreed-upon register, will be discussed later; the solutions
to this problem are basic to the use of subroutines, which is an inportant
programing topic.

In many of the follow ng sections we will have occasion to exam ne
short segments of coding which illustrate the use of various instructions.
Rather than indicate explicitly the assignment of a base register and its
contents, we will assune that each segment is part of a larger programin
whi ch addressability has been taken care of. W wll also assune that all
symbol s used have been defined and are addressable, and that the base register
is different fromany registers used or changed in the exanple
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13. (CONSTANTS, STORAGE AREAS, AND LITERALS

In several places in the preceding sections we have nade occasional
use of the DC assenbler instruction to indicate that a constant was to be
constructed and placed in the program by the Assenbler (DC is a mmenonic for
"Define Constant"). In this section we will elaborate on the definition of
constants and describe a technique which sinplifies their use

As indicated in'some of the exanples given previously, the DC instruction
may have name, operation, operand, and comment field entries, of which the
operation and operand field entries are mandatory. Since the comrent field
entry is optional, its use will be ignored in the follow ng discussion.
Rather than give all the rules for defining constants inmmediately, it is

- perhaps sinpler to examne a few sinple cases which illustrate the principles

i nvol ved.

The statenent DC r'8' defines (as stated in a nunber of earlier
exanpl es) a fullword integer constant of value 810 placed on a fullword
boundary. That is, four items have been specified:

(1) the value of the constant (in this case +810)

(2) the type of internal representation to be used for the given
value (in this case tw's conplenent integer);

(3)the length of the-constant (in this case four bytes); and

(4) the alignment _in nmenory of the constant (in this case on a
fullword boundary).

Because the Assenbler does no placing of data in menory, it is probably
difficult to see at present how a given sequence of four bytes can be placed
after processing by the Assenbler, Linkage Editor, and Resident Supervisor,
on proper boundaries. W wll see that there are a few sinple conventions
which nake this easy to acconplish. Some other types of conversion we wll
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di scuss here, and the letters which specify/the types/are Character (C),
Binary (B), Hexadecimal (X), Halfword Integer (H), and Address Constant (A).
The first three of these were encountered in the treatment of self-defining
terms, and their use in the DC instruction is quite similar.

For the larger System/360 Assenblers, the operand field entry my
consi st of a nunber of operands which. are separated by commas; however, for
nost of the cases which will be of interest, a single operand will suffice.
There are four parts to an operand: (1) a duplication factor, (2) a letter
specifying the type of representation, (3) modifiers, and (4) the value of
the constant or constants. O these only the second (type) and fourth
(val ue) are required, as in the exanple above where, F'8' was specified.
The duplication factor is a relatively sinple concept which will be treated
shortly. There are three types of nodifier, nanely length, scale, and
exponent, of which emly length will be treated here. Because there is an
i nportant relationship between boundary alignment and the' use of a length
nodifier, we will disecuse the techniques tied to obtain the proper alignment
of constants and dat a.

Wien the relative origin is specified by the programmer at the start
of his program the Assembler checks whether the val ue given is exactly
divisible by eight; 4f not, it is 'rounded w" to the, next larger multiple
of eight, which s then used as the relative origin of his program  Thus
the Assenbler insures that the program begins with the nost restrictive
possi bl e boundary aligment. Then if a constant is defined which nust fall
on sone particular kind of word boundary, the Assenbler need insure only that
1ts Location Counter bhe divisible by the proper power of two (that Is, by
2,4, or 8) at the locatlon of the leftnost byte of the constant. The
Li nkage Editor and Resident Bupervisor 'must then respect this assumed
alignnent for the begiming of the progranm this ensur es that data and
Instructions will fall on the proper boundaries when the program is finally
| oaded into nemory for execution. Ve will of course assume that this is
exactly what happens in the rest of our discussion; some of the implications
of this method of handling progranms will be treated in later discussions
which give nore details of the processes of linkage editing and | oading.

13-2




W nust now investigate what it is that the Assenbler actually does to
ensure that its Location Counter is indeed divisible by the desired quantity.
Suppose in some program that after a sequence of instructions has 'been
processed the value of the IC is 12F1s, so that if another machine instruction
were assenbled at this point it would begin on a halfword boundary between
two fullword boundaries (recall that instruction addresses need only be
divisible by 2). Suppose also that the next statenment is not a machine
instruction statement but is ¢ a8 instead. To assenble the four
bytes representing the constant (namely 000000081¢) begi nning at 12Eie woul d
be incorrect, since an instruction which referred to the constant m ght
require that its nmenory address be on a fullword boundary. To avoid such
an erroneous situation, the Assenbler will automatically skip enough bytes
to obtain the desired boundary alignnent. Thus in this sinple exanple the
LC woul d be increased to 13016 before the fullword constant is assenbled
into the program and the LC woul d have a val ue of 13416 after the constant
s processed rather than the value of 13216 which woul d be the case if no
autonmatic alignnent had been perforned. An automatic alignment is not
performed in the follow ng circunstances:

1) it isn't needed (that is, the LC happens by chance to fall on
the desired boundary); or

2) the type of constant specified doesn't call for it (which is
the case for types C, B, and X); or

3) alength nodifier is present.

A length nmodifier allows the programrer to specify the exact |ength of
a constant, and is witten inmediately following the letter which specifies
the data type, in the form.

In

where n is either an unsigned decimal self-defining term or a positive
absol ute expression enclosed in parentheses. For exanple, the statenents

DC FL3'8! and DC  FL(2*4-5)'8!

woul d both cause the constant 00000816 t0 be assenbled beginning at the
value of the LC when the IC statement was encountered; no boundary alignnent
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is performed. Because alignment is automatic only when the length is inplied
(that is, no length modifier is given), the two statements

DC F'8! and DC FL4'8

while defining the same constant may give different results since the former
18 automatically aligned and the latter is not. (As usual, there is '
occasionally a little more to the use of a length nodifier than is stated
here, but what has been omitted, nanely, bit-length specifications, wll be
of no inportance or interest until later.)

one further effect of automatic boundary alignnent occurs when a
synbol appears as the name field entry in a DC assenbl er instruction statement.
Suppose as before that the value of the 1c is, 12Ee When each of the following
statenments is encountered.

IMPLIED DC F'8'
EXPLICIT DC  FI4'8!

Figure 13.1 Inplied and Explicit Length Specifications

Because no boundary alignnent is performed in the latter case it is clear
that the value of the symbol EXPLICIT will be 12E1. |In the former case,
however, two bytes nust be skipped by the Assenbler to achieve the required
boundary alignment Inplied by type F. Since we will want to be able to
refer to the constant by using the synbol IMPLIED, it is also clear that it
shoul d have the value given to the location of the |eftnost byte of the
constent, namely 1301e. Thus if a synbol is to be defined, it is given its
value after bytes are skipped to achieve boundary alignment. |n fact, a
general rule may be stated: the Assembler will never automatically assign
the value of a synbol to the location of skipped bytes. (The programmer can
find ways to do so if he is so inclined.) This includes the case where a
byte nust be skipped to ensure that an instruction begins on a halfword
boundary. \Wen bytes are skipped to achieve alignment of a follow ng
constant.or instruction, the Assembler will insert zeros into the bytes

ski pped.
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W are also in a position now to describe the length attribute of a
synbol, which was first nmentioned in Section 10. [If a synbol appears in
the nane field entry of a DC instruction, then the length attribute of the
symbol is the length in bytes of the first constant assenbled. (Cases where
more than one constant may be assenbled will be treated shortly.) Thus in
the exanples in Figure 13.1, both synbols have length attributes of %; and
in the machine instruction statement given in Figure 9.5 the length attribute
of the synmbol L@AD would be 2, since IR is an RR-type instruction of length
two bytes.

A duplication factor (sometinmes called a nmultiplicity, replication, or
repetition factor) specifies the number of times the constant is to be
duplicated, and is witten inmediately preceding the letter which specifies
the constant type. It may be either an unsigned decinmal self-defining term
or a positive absolute expression enclosed in parentheses. For example,
the statements DC 3r'8! and D ¢ (5/2+1)F'8" are equival ent
to witing the statenent DC F'8! three times in succession. And
because nore than one operand may (for the larger Assenmblers) be witten
in the operand field entry of a DC instruction, we could also achieve the
sane result by witing DC F'8',r'8',F'8! . There is still one nore
way of defining nultiple constants (again, for the larger of the Syétem/360
Assenbl ers) which we will nention after discussing some of the other types
of constants which will be of use in future exanples.

The type H constant is quite simlar to type F, in that two's
conpl ement integer conversion is specified. The only difference is in the
default values assuned for length and alignnent, which assign a halfword
integer to two bytes aligned- on a halfword boundary. Thus the statement

DC H'-10! woul d cause the constant FFF6ig to be assenbl . and
placed on the next available halfword boundary. If an explicit length is
given, there is no difference between constants of types H and F, so that

FL3'8' and HL3'8! are for all practical purposes identical
oper ands.

The fol lowing discussion deals with numerous technical matters in a
fairly loose way -- rather than give explicit rules at once we wll continue
to use exanples to illustrate the problens involved. The rules will be
sunmarized in a short table at the end of the'section.
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‘The three useful constant types ¢, X, and B differ fromF and H in that
no default values are assuned for either length or alignment. For exanple
the five bytes required to store the constant generated by the statement

DC cr'123k5! w il be placed by the Assenbl er at the next aveilable
address given by the current value of the . If a particular boundary
alignment is desired, extra steps nust be taken which will be described |ater
in this section. The nmethod of writing such constants is, as mght be guessed
the sane'as for witing character, hexadeciml, and binary self-defining
terns, except that the limtations on length and value are different. In
the case of self-defining terms, the value of the tem was restricted to
being |ess than 22, whereas much |onger constants can bve' defined with the
DC instruction. Thus one can define constants in statements such as in
Fi gure 13.2 bel ow.

TITLE DC  C'THIS | S A I#NG CHARACTER C@NSTANT'
DA TS DC  X'84624FCB9T5310"

Figure 13.2 Exanples of Character and Hexadeci mal Constants

In the discussion of data converted according to types F and Ht was
reasonabl e that the resulting binary nunbers should be placed with the
| east significant digit at the right-hand end of the desired storage eres;
and that the sign bit should be extended to the left. In all the exanples
given, the constants were small enough to fit safely in the allotted space.
The problem may arise as to what should be done if (1) the constant is too
smal | to occupy fully the nunber of bite allocated for it by the length
specification (whether an explicit length nodifier or the default length is
used), or if (2) the constant is too large to fit in the allotted space
Scme exanpl es of such cases are given in Figure 13.3, along with the
constants actually stored by the Aasenbler. The rules used to determne
the final values of the constants are given bel ow
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Const ant Assembl ed Const ant Assenbl ed
too Large Val ue too Smal | Val ue
~'65537’ 000116 H'2! 000216
FL1'-300' Dhyg FL1'-6! FAie
CL3'SMITH' E2DUC916 CL3'S! E240401 ¢
X12'56789' 678916 X'56789' 05678916
BL1'100100100" 001001002 B'101! 000001012

Figure 13.3 Exanples of Truncated and Padded Constants

For all of the constants on the left, some part of the true value nust be
truncated to make it fit into the allotted space, since a length is specified
in each case. For all the constant types we are discussing except C, excess
information is dropped at the |eft end of the constant, and the rightnost
portion is what is eventually assenbled; for character constants the excess
is trimed off the right end, as may be verified in the exanple above. Note
that the special rules concerning the apostrophe and anpersand in character
self-defining terns also apply to character constants

For the constants on the right side of Figure 13.3, the opposite
situation occurs: in each case the space allotted (either explicitly or
implicitly) is more than is required to hold the significant bits of the ,
given. constants. For the exanples of types H and F, the assenbled value is
sinply the rightmost part of an indefinite-length representation in which
the sign bit has been extended to the left; this is as has been custonary
up to now. In the character exanple, the single letter "s" has been padded
with two blanks (with EBCDI C representation 4016) on the right side to fill
out the constant to the required three bytes. The last two exanmples in the
right colum require further explanation. As was mentioned earlier in this
section, no default lengths are assuned for data of types C, X and B; the
general rule is that in the absence of any limtations, the Assenbler will
use just enough bytes for the constant to ensure that no information is |ost,
and no nore. Thus the lengths of the constants in Figure 13.2 are 33 and 7
bytes respectively (these also are the length attributes of the synbols
TI TLE and DIGITS); no information has been |ost, and no padding was required.
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In the Last two exanples in Figure 13.3 samé padding with zeros wes required
et the left end of the constants to fill out the partially-specified byte.

Bef ore di scussing literals and the definition of storage areas, wcwill
introduce another type of constant which is'of great use and broad applicability
In Assenbl er Language progranming: this is the type A or address, constant
(sometimes abbrevi ated "edecon"). An address’ constant is witten differently
frem the other types we have considered, since the constant is delimted by
parent heses rather than apostrophes, as in A(10). The utility of address
constants is a consequence of the fact that the constert may be_any expression,
absolute or relocatable. The latter case of course requires usiy ot her
consi derations having to do with processing by the Linkage Editor and
Resident Supervisor, so for the time uv:lng we will restrict our attention
to cases where the constant in an address constant is an absol ute expression.

The A-type constant is simlar to F-type constants in that a length of
four bytes and a fullword boundary alignment are inplied; thus A(10) and F'10'
are equivalent operands, as are AL4(10) and FL4'10' . A major
difference lies in the ability to specify constants such as A(X'12E')
and  A(C ') (which are the sane as F'302' and F'64' respectively), in
"which the use of such expressions may greatly sinplify the programmng task.
In particular one may define constants using operands such as  A(ABS425)
where the symbol ABsk25 may have heen defined in an EQU statement (as in
Section 11) to have sone particular value. Though the utility of such
constructs is not apparent now, we will see through later exanples that
clarity and sinplicity can be gained through their use.

One further facility is provided by the larger System 360 Assenblers
for conversions of types A F, and H the value specified may actually be
a sequence of values separated by comes (and no blanks), as in Dc ¥'8,8,8'
which, as was indicated earlier, is equivalent to DC 3F'8' and
oc F'8',r'8',F'8" . \Wich one is used is largely a matter of taste and
convenience; for exanple, it is sinple to specify a group of constants by
the use of a statenent such as TABLE DC F'1,2,3,4,5,6,7,8,9,10'
where each generated constant is a fullword i nteger aligned on a fullword
boundary. In all such cases where nultiple constants are specified, the
synbol in the name field entry (in this exanple, TABIE) is given a val ue
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and length attribute associated with the first constant generated.

[t is

not possible to specify nultiple values in constants of types B, C, and X
The short table in Figure 13.% summarizes sone of the rules given above

for witing operands in DC instructions.

sunmari zed in the Appendix.

The conplete set of rules is

Maxi mum | Inplied | Inplied Value is Delimter | Truncation, |Mltiple
Type | Length | Length [ Alignnent Specified by Used Paddi ng on | Values?
H 8 2 halfword | decimal digits '' | ef t yes
F 8 i fullword | decimal digits "' | eft yes
A 4 L fullword | any expression () | ef t yes
B 256 . * none binary digits v | ef t no
C 256 * none characters T ri ght no
X 256 * none hex digits vt | ef t no

(* the inplied length is the mni numnunber of bytes required to

contain al

the given information)

Figure 13.4 Sunmmary of Rules for Certain DC Qperands

It often occurs that a storage area is needed in a program which need

not be initialized to some value by the use of a DC instruction
facility is provided by the DS ("Define Storage')
which is al nost

i dentica

in use to the DC instruction.

assenbl er

Thi s
instruction,
The rules for

witing the operand field entry are the same, with the exception that the

specification of a value is optionai.

DS F'8¢

fullword boundary, but no_constant will

Thus the statenents DS F

and

will both cause the Assenbler to reserve a four-byte area on a

specified in the latter case
reserve an area whose length is conputed by the Assenbler from the length
of the given constant (7 bytes), but there will be no constant assenbl ed

into the reserved area

such as -
STPRAGE

whi ch reserves one hundred aligned full words and assigns to the synbol

S

100F
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be assenbl ed, even though one is
St at ement s-such as DS

Wl

Large blocks of storage may be reserved by statements




STYRAGE the |ocation of the first. Note also that the two statenents
AREA1 DS 8oc and AREA2 18 C180

both define storage areas of length 80bytes, but the length attributes of
the synbol s AREAL and AREA2 are 1 and80respectively, which may be of
interest in a program Note in the former of these cases that in the absence
of either a constant or an explicit length, an inplied length of one byte

is assumed for the C-type specification; the sane is true for types E and X,
so that DS B and Ds x  would both cause a single byte to be
reserved.

One special case arises in the use of the DS instruction when a duplication
factor of zero is specified. In such a case any necessary boundary alignment
inplied by the type is performed, and then, if a nane field synbol is present,
the adjusted value of the Ic is assigned to its value and its length
attribute is deternined from the operand; no space is reserved. Thus a D8
instruction with duplication factor zero can be used to force a boundary
alignnent which would not be available otherwise. For exanple, the two sets
of statenents

WPRD DS OF and Ds OF

DC  C'W@RD' WPRD DC ¢ '"WgRD'
both serve to define a four-byte character constant on a fullword boundary
addressed by the symbol WgRD, which would not in general have been the case
if DC C'WgrD' oOr DC CL4'WgRD' had been specified. Note that

DC A(C'WgRD') is incorrect: because the operand in parentheses must
be an expression, and because C'W@RD' contains more than the allowed
maxi mum of three characters which is required by the rules for formng self-
defining terms, the expression which-forms the value for the address constent
is invalid.

If a duplication factor of zero is used in a DC instruction, it behaves
just as would the corresponding s instruction. Wen bytes are skipped to
performalignnents inplied by DS statenents, the Assenbler does not put zeros
in the skipped bytes.

This brings us finally to the subject of literals: It often occurs in
prograns that some constant nust be defined which is used only as a constant.
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In the sanple program segment in Figure 12.1, the two quantities in the
fullwords named N and @NE are both defined by DCinstructions, but it is
inplicit in the use of the synbol "gN" that the contents of that fullword
should retain the integer value +1 throughout execution of the program It
s of course possible to use constructions such as EIGHT DC F's!
inaprogram but this cannot be of nuch help in making the program easier
to read or understand, particularly if some part of the program stores data
of varying values in that area. The Assenbler provides a sinple and
conveni ent neans for sinultaneously defining constants and referring to them
through the use of literals.

“Aliteral is a special kind of synbol, where the value of the contents
of the storage area referred to by the literal is contained in the litera
iteself. Aliteral is witten as an equal sign (=) followed by an operand
whi ch conforms to the rules for operand field entries in DCinstructions.
The following are exanples of literals.

=F']’ =C' LYNGLITERAL' =Bl2'111101"
=H'1' =CL7' BLANK' =X'T65L4324"
=A(1) =F'1,2,3,4' =AL3(5,X'D7'/C'.")

Literals may be used in nost places where synbols are permtted, with the
following exceptions:

(1) aliteral is a termwhich may not be conbined with other terns
(thus 1 C 0,=F'1'+3 isillegal);

(2) aninstruction may not store or nodify a literal (thus ST 7,=F'1!
s illegal);

(3) a literal may not be specified in an address constant (about which
nore later) (so that A(=F'1*) isillegal);

(4) nultiple operands may not be specified, but multiple values nay;
(5)the duplication factor may not be zero;

(6) the alignnent of the data described in the literal is that inplied
by the constant type (so that L 2,=X'28B' will probably cause a
specification exception).
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To illustrate the use of a literelin,a program segment, We oould
remite the exanple in Figure 12.1 in the form gi ven in Figure 13.5 below.

BAIR 6,0
USING BEGIN,6
BEGIN L 2,N
A 2,=F'1!
LT 2,N
- ____m.__|_
N DC 78!

Figure 13.5 Sanple Program Using a Literal

In this case the programmer has been relieved of the duty of defining a
constant and creating a symbol by which to refer to it, as was the case
previously. For this gain in ease of referring to constants there is a
corresponding | 0SS in the precision with which ene may specify exactly where
the constant is to be |ocated, since this nust now be determned by the
Aggembler (a small amount of control is left to the programmer). As literals
are encountered by the Assenmbler in the course of scanning the source program
-aseparate i nternal table -- called a literal pool -- is formed which
contains al|l the literals encountered, with duplicates eliminated. This
allows the programmer to nake |iberal use of 1literals wWith some small assurance
that he will not generate an excessive number of constants. These are placed
inthe programat an appropriate location, and the Assenbler then conputes
the required displacenents which allow the constants to be addressed. W
Wi ll use literals in many places throughout this presentation, and it should
be borne in mind at all times that a literal is a special synbol, and not a
piece of data, a storage area, or a value, which are common misconceptions
in the use of literals.

\\ nhave now covered enough basic material to be able to exam ne many of
t he instructions Of System/360 in the context of actual programs. In the
next several Sections we will discuss the use of the general registers for
a variety of purposes, and give some exanples of progrem segments which
11lustrate typi cal uses of the instruction set.
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14. GENERAL REGISTER SH FTING AND DATA TRANSM SSI ON

In this section we will discuss the instructions which cause data to
be transmtted anong the general purpose registers, between the registers
and menmory, and within the individual registers thenselves. Sone of the
instructions will be treated in detail,- since they are the first of the RS
type to be exam ned.

A notational convenience will be introduced here: because we wll
often have need to use the phrase "general purpose register ri" where ry
i ndicates the value supplied for an operand in the operand field entry of a

nachine instruction statenent, we will use the abbreviation "Rri" instead.
Thus if ry has the value'5, the register being referred to is R5.

Ve will first examne the instructions which transmt data between the
GPRs and nenory. The nost inportant of these are the L (Load) and ST (Store)
instructions, which were encountered in several earlier exanples. Both are
of type RX; both require the effective address to be divisible by 4, so that

the use of a fullword operand is indicated. The instruction

L r1,d2(x2,b2)

causes the fullword second operand to replace the contents of Rri. The
original contents of Rry are lost, and the contents of the fullword area in
menmory remain unchanged. As a reninder, the term "operand" was used here

to mean the data referred to at execution tinme by the effective address,

whi ch was computed from conponents of the instruction determned during
assenbly from the second operand in the operand field entry of the instruction
statement. As nentioned before, which neaning of the word "operand" is
intended will usually be clear from context.
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For exanple, to set the contents of R to zero we could wite
L 9,=F'0'
and to set it to the maximum negative nunber,
L 9, =F'-21L4T7483648"

woul d suffice.
The inverse operation ST is witten explicitly as

ST r1,d2(x2,b2)

and causes the contents of Rry to replace the contents of the fullword wrea
of menory at the effective address of the second operand. ' The contents of
the regi ster are unchanged, and the original contents of the fullword area
of menory are lost. For exanple, to duplicate at B the contents of the
fullword at A, we could wite

L o0,A
ST o,B
and to exchange the contents of the fullwords at A and B, we could wite
L 1,B L o0,A L o0,A L o0,A
L o,A or L 1,B or L 21,B but , ST 0,B
ST 0,B ST  o,B ST 1,A not L o,B
ST 1,A STI,A ST 0,B ST o0,A

where we have assumed that Rl is not being used as a base register. The
use of L and ST in situations where indexing is desired will be treated
later. Both of these instructions are subject to interruptions due to
specification and addressing errors, which were mentioned in Section 5; one
further interruption may be caused by nenory-protection, en optional feature
avai | abl e on System/360 which allows some degree of supervision over the
areas of memory acceaeible to a given program W wil| exemine memory
protection in nore detail when interruptions are discussed.

|t is occasionally necessary or desirable to be able to transmt
i nformation between nemory and several registers. This can be done with a
sequence Of L or ST instructions, as in

L 1,A ST 1,B
L 2,A++ or ST 2,B+4
L 3,A+8 ST 3,B+8
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[f the nunber of registers is large, however, this can be cunbersonme and
slow, and it is nore convenient in nmany cases to use the IM (Load Miltiple)
and STM (Store Miltiple) instrugtions. Each of these is an RS-type
instruction for which three operands nust be specified in the operand field

entry, as follows:
IM (or STM r1,rs,d2(bz2)

where the components of the assenbled instruction are pictured in Figure 14.1.

operation
code

0 78 1112 15 16 19 20 31

ri rs ba dg

Figure 14.1 Conponents of an RS Instruction

As usual, ry and rs nust be positive absolute expressions of value 15 or
|l ess, and the base and displacement may be given explicitly or left for the
Assenbl er to conpute from the value of a synbol or other relocatable
expression. The meanings of the register specification digits in the STM
instruction are as follows: beginning with Rry, transmt the registers in
order of increasing nunber to the successive. fullwords in nenory which start
at the effective address of the second operand, until Rrs has been transnitted.
If rsis equal to ri, only one register is transmtted. If rsis less than
ri then Rry through R15 will be transmtted, followed by RO through Rrs;
thus RO may be considered to follow after R15, so that the general registers
"wrap around” fromthe highest to | owest nunbered. The LM instruction
follows the same rules except that the registers are |oaded in sequence from
successive fullwords in nenory.

For exanpl e, IM 2,6,=5F'0' woul d cause the contents of R2, R3,
R4, R5, and R6 to be set to zero. Sinilarly, STM 0,15, SAVE woul d
cause the contents of all sixteen registers to be stored beginning at SAVE
which could be defined in a statement such as SAVE DS 16F whi ch
ensures that the proper boundary alignment will be specified for the second
operand address. Ifwe assume that RL contains the address of a |ist of
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four fullword constants, we coul d load them into R7 through RLO by executing
the statenment M 7,10,0(1) and if we assume that R13 contains the
address of a register save area, then ST  1k,12,12(13) woul d store
R14, R15, RO,...R12 in successive fullwords, beginning with the fourth
fullword Of the area. These last two exanpl e8 illustrate certain conventions
commonly USed in comunicatingwith Subroutines, which will be treated in
detail later. As a final exanple, suppose we wish to exchange the contents
of RO through R7, as a block, with the contents of B8 through R15. W coul d

then wite

ST 0,15,8AVE g™ 8,7,SAVE
IM 8,7,SAVE or | M 0,15,SAVE
SAVE Ds 16F -SAVE D8 16F

ome small but inportant detail in this exanple should be noted: one of the
general registers nust have been specified as a base register so that SAVE
could be addressed. The STM and LM instructions wilwork correctly, since
the calculation of the effective address is performed before the execute phese
of the IM instruction cycle begins. \Wen execution is conpleted, however, the
base register has been changed, so either the Assenbler nust be infornmed that
the base register is changed, or the correct value nust be put back into
the original base register.

The transm ssion of halfword data between memory and registers is
somevhat nore conplicated, because a halfword requires only half of a general
register. The relevant instructions, I# (Load Halfword) and STH (Store
Halfword) are simlar to L and ST, both are RX instructions, and the operand
field entry is witten the sane way. STHis the sinpler of the two: the
rightnost 16 bits (the right half) of Rry replaces the helfword at the
effective eddress of the second operand, and Rry remains unchanged, If the
contents of the register represent an integer too large to be correctly
represented as a 16-bit two'S complement integer, some significance is lost;
no indication is made that the halfword in memory may not have the desired
value. (An exanple illustrating this will be given shortly,) Conversely,
when data is being transmtted from menory to a register by the LH Instruction,
it is reasonable to assune that the progranmer wants to performsone arithnetic

operations On the value transmtted, so that the data should occupy the entire
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register with the least significant bit at the right-hand end. To give a
correct representation in the 32-bit register, the sign bit of the 16-bit
halfword operand nust therefore be extended to the left to occupy the |eft
hal f of the general register. One nmay visualize this process as taking
place in two steps,. The halfword operand is brought from menory and pl aced
in the Menory Data Register (MDR), which is an internal register used for
communi cating between the CPU and nemory. The leftnost bit of the halfword
is duplicated to the left by 16 positions, providing a 32-bit representation
of the original 16-bit two's conplenent operand. The resulting 32 bits
are then transmtted to the designated general register. Though none of
the nodel s of System/360 use the MDR inprecisely this fashion, we will find
that the descriptions of many instructions can be sinplified considerably
by supposing it to take an active part in the handling of data passing
between nenory and the CPU.  Note that there is also an instruction with
menoni ¢ MDR, we will indicate which is neant if there is a possibility of
confusing the two. Thus the statenents LH 0,=H'1' and LH o0,=H'-1'
woul d cause the contents of ROto be set to 00000001~6 and F¥FFFFFF1g
respectively. As long as the value of the halfword operand X invol ved
satisfies -2'%X < 25 it can be correctly represented in 16 bits and will
therefore be correctly transmtted by LH and STH instructions. If this is
not the case, situations such as those illustrated in the next two exanples
can arise.

Suppose the sequence of instructions given in Figure 14.2 is executed.
The contents of the registers is given in the coments field of the instructions;
the notation C(R0O) means "contents of RO', and X'n' neans the sanme thing as
nis, as in the definition of hexadeci mal constants.

L O0,B C(R0O)=X"00010001"
STH 0,A C(A)=X'0001"
LH 1,A ¢(R1)=X'00000001"
A DS H
B DC F'65537"

Figure 14.2 Loss of Significant Digits when Using STH
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The contents of RO and Rl are different because the quantity in RO being
stored by the second instruction is too large. Anore awkward result is
illustrated in Figure 14.3.

L 0,=F'65535" C(RO)=X"'0000FFFF"
STH 0,A C(A)=X'FFFF'
IH 1,A C(R1)=X'FFFFFFFF'
A DS H

Figure 14.3 Loss of Significant Digits when Using STH

In this case the result in Rl has a different aign and considerably different
magni tude from the original operand. Fromthese two exanples it is clear
that the programer who chooses to use halfword data nust exercise care to
be sure he understands what can happen when storing or |oading such quantities.
Two further instructions used for transmitting data between the general
registers and menory are IC (Insert Character) and STC (Store Character).
(IC was used in the addressing exanples in Section 5.) The operand field
—entry iS witten in exactly the same formas for L and ST, and no particul ar
boundary alignnent is required for the address of the second operand, since
the data being nmoved in this case is contained in a single byte.
The instruction STC ri1,dz(x2,b2) causes the rightnost byte of
- Rry to replace the byte at the effective second operand address. The inverse
operation is called "Insert Character' rather than "Load Character", because
the specified byte from menory is placed in the rightmost 8 bits of the
register without disturbing the remaining 24; no sign extension is perforned
Aean exanple, the instructions below can be used to reverse the order of
the two-characters in the character constant at X and place the result at Y.
IC 0O,x
STC 0,Y+1
IC  0,X+l
STC 0,Y

X DC C'AB
Y Ds CI2 BECMES C'BA'

14-6




Occasionally when menory space 1s at a premumit is convenient to use e
single byte to contain a small integer constant; its value may be placed in
a register using the following instruction sequence.
L 1,=F'0' CLEAR REG STER
IC 1,LITICAN | NSERT C@NSTANT
LITICYN DC  FL1'53'

None ofthe instructions discussed up to now has had any effect on the
Condition Code (CC). W& now turn our attention to five RR-type instructions
which transmt date among the general registers, four of which can change the
value of the CC. The instructions are IR (Load Register), LIR (Load and Test
Register), LCR (Load Conplement Register), ILNR (Load Negative Register), end
LPR (Load Positive Register). The IR instruction was used in the machine
instruetion statenent in Figure 9.5; it is the one instruction of these flve
whi ch does not set the CC. The operand field entry, as noted in Section 11
is witten ri,r2 and the action of each instruction is summarized in
Figure 14. 4 below, Note that rz need not differfran ri.

I nstruction Action CC Val ues
LR C(Rry) « C(Rrz2) not set
LTR C(Rry) « C(Rrz) 0,1,2
LCR C(Rry) « -C(Rrz) 0,1,2,3
LPR C(Rr1) « |c(Rr2)] 0,2,3
LNR C(Rr1) « -|C(Rrz2)| 0,1

Figure 14,4 Action of Certain General Register Instructions

The neanings of the CC settings are given bel ow

cC Meani ng

0 Result is Zero

1 Result is Negative

2 Result is Positive
3 Result has Overflowed

Figure 14.5 Condition Code Settings
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As can be seen fromFigure 14.4, the actions of IR and LTR are identi cal
except that LTR al so sets the ¢C. It is notiuncommon t0 test the contents
of a register by witing an instruction such as TR 4,4  which has no
effect Other then to set the CC, which may then be tested by e B or BCR
instruction, which will be discussed | ater, 'For the other three instructions,
the arithmetic operations are those inplied by a 32-bit twe's conpl enent ,
representation; thus overflow can occur during execution of LCR or LFR only
if C(Rr2) i s the maxinum negative number, -2°%, and no overflow can occur
during execution of INR because sll representable positive values have a
corresponding two's conpl enent representation of their negative val ues.
The following short instruction sequence illustrates possible uses of the

instructions.

LM 2,3,=p'1,0' C§R2g=l, C{R3)=0, CC NgT SET
IR 17,3 C(R7)=0, CC Ngr SET

IR 2,2 ¢(r2)=1, cC=2

INR 1,7 C(R1)=0, CC=0

ICR 4,2 R4) =-1, CC=1

LFR 0,4 C(RO)=+1, CC=2

INR 5,2 C(R5) =-1, cC=1

- Figure 14.6 Bxample of Use of Certain RR Instructions

Two common errors for beginning programers are to confuse the IR and L
instructions, and to try to use an "STR" instruction to "etore" one register
into another. By substituting L for IR, one can occasionally generate
aoding errors Which are undetected by the Assenbler: ‘for exanpl e, L 5,8
isavalidinstruction referring to location 8 in menory, which is probably
not the progranmer's intention. As an aid to remembering the difference
between rel ated instructions of differing types, note that alnmost eil of the
RR instruections end in the letter "R", and the RX, SI, or B8 instructions
endi N other |etters,

The shifting instruetions t0 be described next are nore interesting,
gine¢ they allow the progremmer t 0 nani pul ate data in more varied weys that
t he instructions described up to nowv. Al of the ei ght shift instructions
are RS-type; they differ from IM and 8IM in the inportant respect that the
rs register spacificetion digit (see Figure 14. D) is ignored when the
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instructions are executed, and thus the operand field entry for shift
instructions is witten

I, d2(b2)

with the rs operand omitted. For all of the shifting instructions, the
nunber of bit positions to be shifted is determ ned fromthel ow order six
bits of the effective address; this allows for the specification of shift
anounts between 0 and 63 inclusive. The sinplest shifting instructions are
SRL (Shift Right Logical) and SLL (Shift Left Logical); we will exam ne
these first.

The basic operation in shifting is the unit shift, in which each bit
moves to the right or left by one binary digit position; the vacated bit
position on the left or right end is handled differently for |ogical and
arithmetic shift instructions. For the logical shifts, the vacated bit
position is always set to zero, and any bits shifted off the opposite end
are lost and ignored; for arithnetic shifts this is true only at the right
end. Thus, if the contents of B8 are 8765432116 and the instruction

_ SLL 8,1 is executed, the result in R8 will be OECAB64216. Note that we .

could have witten S1LL 8,1(0) al so, because the explicit use of 0 a6
a base register specification.dig3.t causes no base register to be used in
the cal cul ation of an effective address. Again supposing R8 to contain
8765432116 and R3 to contai n 82F3A2B516, execution of the instruction
8RL 8,16(3) woul d cause the contents of R8 to be shifted right
xxxxxxB516+1016 = 0516 (NModul 0 4016) bit positions, |eaving O43B2A19:6 a6
the result.

For a sinple exanple of the use of the single-register logical shift
instructions, suppose we have a |arge table of data, where each entry is
six byte6 long and is aligned on a halfword boundary. Suppose also that the
first three bytes contain character information of sonme sort, and the
remaining three bytes are to contain a 2k-bit two's conpl enent integer val ue
associated with the characters. W want to |oad and store the integer value
into and fromR5, where it will be used for sone purpose in the program
Now it is clear that L and ST cannot be used, since it is not possible to
obtain the proper alignment of the operand in nenory; simlarly, L and STH
handl e only two of the three bytes. A sinple solution is to pack the integer
val ue so that its rightnost eight bits occupy the first byte, and the
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leftmost 16 bit6 occupy the second and third bytes.  Suppose RS contains
FFFA620B16, and R12 contains the address of the first byte of the particular
6-byte data entry under consideration. Then the sequence of instructions
below can be used t0 peck the number into nmenory. (The letters XXyyzz are
meant to represent the hex digits of the three characters in the da-ta enty.)

sTc  5,3(0,12) c(paTA ENTRY) = XXYYZZOB~w-=

SRL 5,8 c{ns) = OOFFFAG2

STH 5,4(0,12) C(paTa ENTRY) = XXYYZZOBFA62
To show that the desired value can be correctly retrieved, we execute the
inverse i nstruction sequence.

LH  5,40,12)  C(R5)=FFFFFA62

SLL 5,8 C§R5§=FFFA6200

IC 5,3(0,12) C(R5 )=FFFA620B

This exanple al so illustrates a situation where the need for efficient
use 6f memory apace outweighs the extra tinme required to access and Store
the needed vealue. |f the data entry were expanded to eight bytes, Wi th the
characters ocoupying the first three bytes and the associated val ue in the
last four, then sinple L ‘and ST instruetions coul d be used, with a considerable
increase in speed (an approximate factor of 3) for thia segment of code.
Such considerations nay be q"u(ite important for progrems which prosess | arge
emounts of data -- the exanple typifies what is called the trade-off’ between
space and epeed. \% will see a nunber of exanples where the expenditure of
memory space NBYy result in increased processing speeds.
Wecoul d al so have arranged the data so that the three-byte integer

val ue occupied the first three bytes of the data entry, and the characters
occupied the |ast three byte6. The integer value would then be stored in
memory- with itS bits in the -proper arithmetic sequence; the instructions
needed t0 | 0ad the value into B would be as follows, assum ng thet the data
entry conteined PAGROBXXYYZZ.

SL C(R5 )=FFFA 6200

LH g,g(o,la) c§35§=mw1\62
¢ 5,2(0,12)  C(R5)=FFFA620B

It is apperent that theparti cul ar arrangenent of the data in memory nay
dependon t he progremmer's inclinationa, as well a8 on considerations oOf
ease. of programming or speed Of executi on.
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The double-1ength logical shift instructions SLDL (Shift Left Double
‘Logical) and SRDL (Shift Right Double Logical) work in exactly the sane
way as SLL and SRL except that a pair of registers is shifted. The register
specified by the first operand (Rri) nust be an even-nunbered register
otherwi se a specification exception will occur. The next higher nunbered
register is the loworder half of the double-length register pair, with bits
shifted out the right end of Rry entering the left end of Rri+l, and vice
versa. (This is one of the reasons for showing the general registers in
pairs in Figure 3.7.)

To illustrate a trivial application of these two Instructions, suppose
we wish to reverse the order of the halfwords at A and a+2, where A is on
a fullword boundary. Then each of the follow ng code sequences will perform
the desired task.

LH 2,A LH 2,A L 2,A IH 2,A
SRDL 2,16 SRDL 2,16 STH 2,a LH 3,A+2
LH 2,A+2 LH 2,A+2 SRL, 2,16 STH 2,A+2
SLDL, 2,16 SRDL 2,16 STH 2,aA+2 STH 3, A
ST 2,A ST 3,A

(The third and fourth exanples illustrate that when the data happen to be
aligned in a particular way, there nmay be sinpler ways to arrive at the
sane result.) To take a less trivial exanple, suppose that in a certain
application we need to access sone integer data which has been packed so
that four positive integers fit into a fullword, as shown in Figure 14.7.

1st integer | 2nd integer 3rd integer 4th integer
9 bits | ong % bits Iong 13 hits long 6 bits |ong
0 89 12 13 25 26 31

Figure 14.7 Four Integers Packed in a Fullword

A sequence of instructions which unpacks the integers and places themin

t he fullwords | abel ed FI RST, SECgND, THI RD, and FgURTH, fol | ows; assume that
R9 contains the address of the data word. The comment statements give the
binary contents of RO and Rl: the bits of the integers are labeled A B

C, andD; X represents a bit whose value is unknown, and 0 is a 0 bit.
The " . " is sinply to indicate the boundary between RO and Rl.
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L 0,0(0,9) GET DATA FULLWORD
AAAAAAAAABBBBCCCCCCCCCCCCCDDDDOD  XXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX

SRDL 046 SHIFT OFF 6 BITYS
0000C00AAAAAAAAABBBBCCCCLCCCCCCCC. DDDDDDXXXX XXX XX XXX XXX XX XXX XXX XXX

SRL 1,26 MOVETORIGHT END Of R1
000000AAAAAAAAABBBBCCCCCCCCCCCCC,.00000000000000000000000000N00D0DD

ST 1,FOURTH STORE FOURTH INTEGER

SRDLOs13 SHIFT O F F138ITS
0000000000000000000AAAAAAAAABRBB.CCCCCCCCCCCCCN000000000000000000

SRL 1019 MOVE YO RIGHT END OFR1
0000000000000000000AAAAAAAAABBBB.0000000000000000000CCCCLCCCCCCCCC

ST

L¢ THIRD

SROLO r 4 ‘
# 00000000000000000000000AAAAAAAAA.BBBB0000000000000000000CCCCLLCCC

ST
SRL

0¢FIRST
$.28

STORE THIRD INTEGER
SHIFTOFF 48ITS

STOREI1SYINTEGER FROMR]
POSITION SECONDINTEGER

* 00000000000000000000000AAAAAAAAA,00000000000000000000000000008BB88

ST

19SECOND

STORE SECOND INTEGER

Another code sequence t0 do the same task is:

L 2+8F*0! GET A 0 CONSTANT FOR CLEARING RO
L 1,000,9): GET DATA FULLUORD

LR 042 CLEAR RO

SLOL 049 A SHIFT 9 BITS INTO RO

ST OsFIRST STORE F IRST I NTEGER

LR 002 CLEAR RO

SLDL 044 SHIFT 4 BITSINTOR O

ST 0, SECOND

LR 0,2 CLEAR RO

sLoL 0,13 SHIFT13B | T S INTORO

ST 0y THIRD STORE THIRD INTEGER

SRL 1,26 REPOSITIONFOURTH INTEGER
ST 1,FOURTH STORE FINAL VALUE

Inthis example the

SRL 1,26

replaces the IR end 8LDL used in the

firet three steps, because |t results in less coda and slightly faster

execution.

The overall raving is quite Small, but the choice serves €san

exsuple Of a small econamy which, if applied in several key places in a large
progrem, could result in significant savings,

T h e arithmetic shift instructions are almost identical tO the logical
ghift instructions, With the differences being in the setting of the CC and

the treatment of the sign bit.

The instructions afre SIA (8hift Left
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Arithnetic), SRA (Shift Right Arithnetic), SLDA (Shift Left Double Arithnetic),
and SRDA (Shift Right Double Arithnetic). On right shifts, the sign bit is
duplicated in the vacated sign position after each unit shift; thus the
arithmetic integrity of the shifted operand is maintained. To illustrate

the difference between |ogical and arithnetic shifts,
of two places is perforned on a register containing FFFFFFFG;¢:

suppose a right shift

L 0,=F'-8' L 0,=F'-8'
SRL 0,2 SRA 0,2

After the logical shift, C(RO)=3FFFFFF21s, and after the arithnetic shift
C(RO)=FFFFFFF216. For positive operands, the SRL and SRA instructions will
| eave identical results in the register shifted; SRA will set the CC but
SRL Wi ll not. The instruction SRDA is sinilar to SRA except that an even-odd
register pair is shifted

For arithnmetic left shifts, the situation can be a little nore conplicated.
Wien an operand is shifted left there is the possibility that one or nore
significant bits will be lost. This situation is detected by (1) retaining
the original sign bit, and (2) indicating an overflow if any bit shifted
out of the bit position just to the right of the signis different fromthe

sign bit. The follow ng code sequence would produce the results indicated.

L 0,=F'-8' C(RO)=FFFFFFF8, CC UNCHANGED
SRL 0,2 C(RO)=3FFFFFF2, CC UNCHANGED
SIA O,k C(RO)=TFFFFF20, CC SET TO 3,@VERFLEW

Condi tion Code settings produced by the arithmetic shift instructions are

given in Figure 14.8.

I nstructiop CC = 0 cC=1 cC=2 cC =3
SIA Result=0 | Result<O | Result>0 | Overflow
SRA Result=0 | Result<O | Result>0 | TImpossible
SLDA Result=0 | Result<O | Result>0 Overfl ow
SRDA Result=0 | Result<O | Result>0 Impossible

Figure 14.8 CC Settings after Arithnetic Shifts
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A CC value of 3 1s not possible after the S8RA and S8RDA Instructions. Note
that because the result tested for CC settings for SLDA and SRDA i s a
double-length operand, these instruetions provide asimple means for testing
whet her both registers contain zero: both SRDA 0,0 and SLDA 0,0

W ll set the CCto zero if RO and RL contain zero.

An inportant characteristic Of the arithmetic shift operations Is that
they provideasimple nmeans for multiplying by positive and negetive powers
of two. Since the bite of enoperandshifted|eft by a unit shift appear
with a weight (in the sum formng the value of the operand) which has increased
by two, we can see that 8o | ong es N0 overflow occurs, an arithmetic left
shift of n places corresponds to multiplication by 2". Simlarly, for a unit
right shift eachbit nhas a weight which has decreased by two, so that an
arithmetic right shift of n places corresponds to division by 2°. Because
such a "division" can appear t0 produce fractional results, we nust exam ne
what happene when bit8 ar e lost; consider the two foll owi ng code sequences.

L 3,=F'5! C(R3) = 00000005
8RA 3,1 C(R3) = 00000002
L 3,=F's5" C(R3) = FFFFFFFB = -5
SRA 3,1 ¢(R3) = FFFFFFFD = -3

As we mght have expected, the lost hit in the first case sinply results in
the fractional part of 5/2 being lost, so that the result is sinply 2. In
the second case the result is-3,not-2; this i S because the truncation of
the fraction part of a number int he two's complement representation has the
effect of always forcing the result to the next |ower integer value.

As a sinple exanple, suppose we wish to truncate the integer in R to
the next algebraically lower multiple of 16, unless it is already a multiple
of 16, - Roth of-the followi ng code sequences achieve the desired result.

SRA 9,4 SRL 9,4

SIA 9,4 SLL 9,4
The logical shifts can be used because whatever hit is shifted out of the
sign position by the SRL instruction is put back by slL. |f a CC setting
is desired to indicate the status of the result, then the first code sequence
nust beused; if not, the second is preferable because 'it wll operate
slightly faster, because the CPU need not bother with duplicating the sign
bit nor checking for overflow.
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To conclude our discussion of shifting, we will re-examne the problem
of unpacking the data contained in the fullword pictured in Figure 1%.7,
on the supposition that the four integers are in signed two's conplenent
representation rather than the unsigned |ogical representation assvmed
before. The follow ng code segment stores the four signed integers as
required.

L 0,0(0,9) GET DATA WCRD

SRDA 0.6 SHIFT 6 BITSINTCOR1

SRA 1,26 EXTEND TO RIGHT

ST 1,F3URTH STORE FULLWORD RESULT
SRDA 0,13 SHIFT OFF 13MOREBITS
SRA 1,19 SHIFT WITH SIGN EXTENSION
ST 1,THIRD STORE SIGNED RESULT
SRDAOs4 SHIFT OFF LAST 4BITS

ST OsFIRST STORE CORRECT FIRSTINTEGER
SRA 1,28 EXTEND SECOND INTEGER

ST 1,SECOND STORE FINAL RESULT

Because the nunmber of positions to be shifted by any shift instruction
is determned from an effective address, the number of shifts can be
specified at execution time. For exanple,  SLL 9,0(%) will shift B9
by an anount determined by the iightmost six bits of the contents of R4.

As was the case for the use of relocatable symbols which named areas of
mermory, the Assenbler will conpute displacements and assign bases for
absolute expressions. If we wite the sequence of statements given bel ow,
the instructions would be assenbled as indicated in the right-hand col um.

USI NG 6,2

A EQU 10
SLL 9,12 . 89902006
SLL 9,12(0) 8990000C
SLL 9,A 89902004

Thus we can vary the nunber of shifts at execution by placing appropriate
values in R2. W will find that there are relatively few occasions where
an absolute expression will be used as the first expression in a USING
instruction.
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15. CONDITIONAL BRANCHI NG

In this section we will discuss two branch instructions whose use is
fundamental in alnost all. programs. The ability to choose alternative
courses of action in a program depending On computed results i s one of the
most distinetive feature6 of a conputer, and we will make use of these
instructions in nost of the remaining program exanples. W will exanine the
conditional branch instructions before continuing our treatnent of general
register operations, since we will then be able to give nore extensive and
realistic semple prograns to illustrate the points involved.

Because the Condition Code is contained in a tw-bit field of the PSW,
“the possible values which may be assumed by those two bits are 0, 1, 2, and
3. To test for one of these values, either BC or BCR is used; both are
called “Branch on Condition" instructions, with BC being of type RX and BCR
being of type RR

I'f the con& on for branching is not met (and how this is determined
will be discussed shortly) no action is taken and execution sinply proceeds
to the next sequential instruction follow ng the BC or BCR

If the branching condition is net, the branch address must be deternined.
For the BC instruction, +the branch address is the sane as the effective
address conputed as usual fromthe base, jndex, and displacenent fields of
the instruction; for the BCR instruction, the branch address is given by
the rightmost 24 bits of the general register specified by the ro digit of
the instruction vnless r= is zero, in which case no branch ever occurs. To
camplete the execution of the branch instruction, the IA portion of the PSW
is replaced by the branch address. The next instruction to be fetched will
therefore come fromthe location specified by the branch address. Branch
instructions are also called "junp" and "transfer” instructions, in the sense
that a jumpis made, or control is transferred, to the branch address.




Whether the bremeh condition is met or not is detemmined by examining
the bits of the register speeification digit ry. Bechuse this digit does
g0t refer to Rry, but is treated simply as a bit pattern (celled = mesk), we
will rewrite the opsrend field entries as m,vqn,‘bg) i mp,vrep for
the RX and RR cases respectively. Thus we can wWrite B 7,48,2) aud
BCR 9,4 in which the mask fields are Olllz end 1001z respectively. At
execution time,ametch {9 made between the 1 bits Of the mmsk and the val ue
of the CC, as indicated in Figure 15.1

Instruction Bit | Mask Bit Val ue | CC Value Mutched
8 8 0
9 L 1
10 2 2
11 ' 1 3

BCR O?iu'rab

i

BC ~h7"'lu'x¢“ba' da

value of bit: 211

Ly tests for CC=3
s tegts fOr CC=2
e tests for CC=1
——eep L@@ tE fOr CC=0

Fi gure 15.1 Mask Bits and Correspondi ng CC Val ues

|f the CC has a valuewvhichmatches @ 1 bit in the mask field, the bremehing
condition is met; if the CC has a value which matches & O bit in the mssk,
the branching condition is not met, and no branch oeeurs. Thus in the
exsmples given above, the BC instruction would branch unlees t he CC hod walwe
0, and the BCR would brenchifthe CC had val ue 0 or 3. Further exemplee
are given below.
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1) Branch to X if C(R12)=0.
LTR 12,12 or SRA 12,0
BC 8,x BC 8,x
2) Branch to X if C(RO)#0.
LTR 0,0 or SIA 0,0
BC 6,X BC 7,X
(Note that the CC cannot have value 3 after LTR) In both of the above exanples

the use of LTR is shorter and faster.

3) Miltiply C(R5) by 4 and branch to X if the result does not overflow.
SIA 5,2
BC 14,x

L)  Branch to the address contained in Rl4.
BCR 15,1k (preferred)
or
BC 15,0(0,14) (sl ower)
or
BC  15,0(14%) (sl owest)
Since the CC nust have a val ue which matches a bit in the mask, the branch
alwaysoceurs; this is called an unconditional branch.

5)Place -C(R2) in R8 and branch to X if the result is negative&
ICR 8,2
BC  5,X
It is not sufficient to use a mask of 4 since the result will also be
negative if overflow occurs.

6) A positive nonzero fullword integer at Nis to be shifted right
as many places as necessary to insure that its rightnost bit is nonzero.

a) Saift left into R4 until R5 has been vacat ed:

L 5,N GET | NTEGER
L 4 =pF'0’ CLEAR R4
SHIFT  SLDL 4,1 SH FT LEFT
LTR 5,5 TEST B
BC 7, SH FT BRANCH | F NgT ZERS
ST LN STPRE RESULT
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b) 8hift right, testing "lost" bits:

L | 4N GET INTEGER
SHIFF . SRDL 4,1 BHIFT RIGHT
LTR 5,5 TEST SIGN f§F RS
BC 10, SHIFT  BRANCH IF NgT -
SLoL 4,1 MPVE BIT BACK
ST LN STRE RESULT

Note that this latter exanpl e woul d work for negative integers also if
arittmetic Shift instructions were used.

This | ast peir Of exanpl es illustrates &_loop -- @ sequence of inshruetions
whi ch isrepeated as many tinMesS as i S necassary t0 obtain a desired seadition,
Loops aresuch a comwon aspect Of progremming that special branch instruesions
are provided in System/360 which greatly faeilitate the coding éfloopa
Wi thout either examining or testing the CC; these will be treated in sume
detail 2later.

\\& noted in exanpl e 4 above that a mesk With all 1 bits provides wn
unconditional branch (remenber that we could have witten BCR X'®»' ,14
and BCR s'1111*, 1k al so), since the branch condition must alvays bs
met. There are occasion&when it is useful to be able to execute an instructien
withazero mask fiel d. Thus B 0, X and BCR 0, any as well
a8 BCR any,0 have no effect; they are sonetimes called "no-operation"
instructions, and the Assenbl er actually provides mnemonics for their
specification. The instructions NgP s and NGPR 1 are treated
by the Assenbler as being the seme as BC 0,8 and BCR o,r
respectively.

An inportant use of "no-operation” instruetions iS in obtaining a
desired boundary aligmment for a particular instruction. For exanple, we
may W sh that an imstruction such as BAIR 14,15 be fol l owed by an
al i gned fullword comstant Such as an addressS constant; exsmples Of | uSt this
sort of usage will be illustrated in the treatnent of subroutines. Since
BAIR iS an RR instruction, we nust simply insure that its address lies
between two fullword boundaries. In a small program it is easy for the
programmer to determne the location of the BAIR eimply by counting, and if
it falls on s fullword boundary he can insert a N§PR O - instruction just’
before it. However, if the programis large, or if any changes must be made
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in the code preceding the BALR, it becames difficult to know whether the
NPR shoul d be used or not.

To relieve the programmer of this worry, the Assenbler provides an
instruction CNgP (Conditicnai No-Qperation) which ensures the desired alignnent.
The operand field entry of a CngP instruction is witten b,w wher e
b and w are absol ute expressions; b nay have values 0, 2, 4 and 6, and wmby
have values 4 and 8. No name field entry is pernitted. The second operand,
w, specifies the boundary type relative to which alignment is to be perforned,
and b specifies the desired byte relative to that boundary, as described in
Figure 15.2. The Assenbler inserts fromO to 3 NgPR's to force the LC to
the desired boundary.

I nstruction Alignnent Performed

CNgP  O,4 Begi nni ng of a fullword

cNgP 2,4 M ddl e of a fullword

cNgp 0,8 Begi nning of a doubl eword

CNgP 2,8 Second hal f'word of a doubl eword
CNgP 4,8 Mddl e of a doubleword

cNgP 6,8 Fourth halfword of a doubl eword

Figure 15.2 CNgP Alignnents

To achieve the alignment desired in the current exanple, we would wite

CNgP 2,4 ALIGN T¢ M DDLE @F W@RD
BALR  1k4,15 TW@-BYTE INSTRUCTIfN
DC A(ANYTH NG Ng | NTERVENI NG BYTES

Note that we could not wite

DS H
BALR 14,15
DC A(ANYTH NG

because the alignment to a half'word boundary forced by the DS is automatically
performed by the Assenbler for instructions, so that the BALR could stil




fall on a fullword boundary; the Assenbler woul d then £ill the two ‘byes
between the BAIR and the address constant with zeros (remember that A-type
constants have an inplied fullword alignment). Simlarly, we could not

wite
BALR 14,15
DS OF
c A(ANYTHING )

since the BAIR could again fall on a fullword boundary, leaving two bytes
between it and the constent Whi ch woul d be skipped by the Assembler; the
contents of the skipped bytes at execution tine may be arbitrery, since
the Supervisor does not clear the area into which a programis about to be
| oaded,

Bef ore continuing with our discussion of arithmetic instructions, one
important feature of the use of branch instructions should be noted. Due
to a peculiarity in the design of System/360, invalid branch addresses
(nanely odd ones) are not detected at the time that it is found that the
branching condition is met, but only when the address is presented, as the
IA portion of the PSW, at the next instruction fetch cycle. The error is
duly detected and a specification interruption results, but the IA now
contains the invelid address rather than the address of the instruction
which attenpted the illegal branch. This neans that there is no direct way
to tell where such an error was caused, and therefore that such errors in a
program are correspondingly nmore difficult to detect. The progranmer mnust
exerci se caution in specifying branch addresses in order to avoid this
particular error.
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T~y

00s
013
02%
03*

C4%
05+
06%*
07*

08*
09*
OA%
0B+

0oCx*
oD%
OE*
OF*

1c*
11*
12%
13*

14%
15%
16%
17*

18*
19%
IA%*
18%

1C*
1C*

lex

1F*

417
433

449
465
481
497

2

2
18
34
50

66
82

114

130
144
162
178

194
210
226
242

250
274
290
306

322
338
354
31¢

306
402
418
434

450
466
482

498.

259

307

323
339
355
371

387
403
419
435

451
467
483
499

4

4
20
36

52

6%

100
116

132
148
164
180

196
212
228
244

260
276
292
308

324
340
356
372

388
404
420
436

452
460
484
500

5

5
21

53

69
as
i01
117

133
149
165
181

197
213
229
245

261
277
293
309

325
341
357
373

389
405
421
437

453
469
485
501

246

262
278
294
3io0

326
342
358
374

350
406
422
438

454
470
486
502

7

7
23
39
55

71

103
119

135
151
167
183

199 °

215
231
247

263
279
295
311

327
343
359
375

391
407
423
439

455
471
487
503

24
40
56

72

104
120

136
152
168
184

200
216
232
240

264
280
296
312

320
344
360
376

392
408
424
440

456
472
488
504

25

41
57

73

105
121

137
153
169
185

201
217
233
249

265
281
297
313

329
345
361
377

393
409
425
44-1

457
473
489
5G5

394
410
426
842

458
475

‘490

506

11

'43
s9

75
91
107
123

139
155
171
187

203
219
235
251

267
283
299
315

331
347
363
379

395
err

. %27

443

459
475
491
507

C

12
28
44
60

76

108
124

140
156
172
188

204
220
236
252

268
284
300
316

332
348
364
380

396
422
428
444

460
476
492

13
29
45
61

77

109
125

141
157
173
189

205
221
237
253

269
285
301
317

333
349
365
sl

397
413
429
445

461
477
493
s09

3

110
126

142
158
174
190

206
222
238
254

270
286
302
318

334
350
366
382

398
414
430
446

462
478
494
510

F

15
31
47
63

79
95
111
127

143
159
175
191

207
223
239
255

271
287
303
319

338
351
367
383

415
431
447

463
479
99
211




209
21e
22%
23%

24¢
25%
26%
27+

489
29%
2A%®
£B8%

2C*
20%
2E%
2F%

30%
3)1»
32¢
33+

34
35%
36%
31

38%
39%
3Ax
3B%

3C+
30%*
3E*
3fFx

512
528

$6C

576
592
608
624

€4C
656
612
688

104
12¢C
736
752

768
184
80¢C
816

832
848
864
88cC

856
912
928
944

S6C
Si¢
992
1008

513
528
545

561

577
593
609
625

641
657
673
689

705
721
t37
153

168
185
801
817

833
849
865
881

897
913
S2$

$45

961
$7117
993
1C€0S

314
530
546
562

578
594
610
626

642
658
674
690

706
722
730
t54

776
186
802
818

834
850
866
882

898
914
930
946

962
97s
994
101¢C

515
531
547
563

579
593
611
627

643
659
615
691

707
723
739
155

771
787
803
819

835
851

883

899
915
931
947

963
979
995
1011

516
532
548
564

580
596
612
628

644
660
676
692

708
124
740
156

772
788
804
820

836
852
868
884

900
916
932
948

964
980
996
1012

511
533
549
565

581
597
613
629

645
661
677
693

709
725
741
757

773
789
805
821

837
853
869
885

901
917
933
949

965
984
997
1313

518
534
550
566

582
598
6l4
630

646
662
678
694

710
726
742
758

774
790
806
822

838
854
870
886

902
918
934
950

966
982
99¢&
i0la

519
535
551
567

583
599
615
631

647
663
679
695

711
727
743
759

775
791
807
823

839
855
871
887

903
919
935
951

967
983
999
1315

520
536
552
568

584
600
616
632

648
664
680
696

712
728
744
760

776
792

808

824

840
856
872
888

904
920
936
952

968
984
1000
1016

521
53t
553
569

585
601
617
633

649
665
681
697

713
729
t45
761

77
793
809
825

841
857
873
889

905
921
937
953

969
385
3001
1017

522
538
554
570

586
602
618
634

650
666
682
698

714
730
746
762

778
794
810
826

842
858
874
890

906
922
938
954

970
986
1002
to 18

523
539
555
571

587
603
619
635

651
667
683
699

715
731
147
763

779
795
811
82t

843
859
8715
891

907
923
939
955

971
987
1003
1019

C

524
540
556
572

S88
604
620
636

652
668
684
700

716
732
748
T64

780
796
812
828

844
860
a’é6
892

908
924
940
956

972
988
1004
1020

C

525
541
557
573

589
605
621
637

653
669
685
701

717
733
749
765

781
797
813
829

845
861
877
893

9Cs
925
941
957

973
989
1085
1641

E

526
342
558
5T4

590
606
622
638

654
670
686
702

718
134
750
T66

782
798
814
830

846
862
878
a%4

910
926
942
958

974
990
1006
i 022

527

559
575

591
607
623
639

655
671
6n7
to3

719

751
767

703
799
815
831

847
863
879
895

911
927
943
959

975
991
1007
1023




40%
41%
42+
43%

44%
45%
46%
47%

48%
49%
4A%
4B%

4C*
40%
4E*
4F %

50%
51%
52%
53%

54%
55%
56%
57%

58%
59%
Sa%
5B%

5C#
SO
5E%
SFx

1024
1040
1056
1072

1088
1104
1120
1136

1152
1168
1184
1200

1216
1232
1248
1264

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

1

2

1025 1026
1041 1042
1057 1058
1073 '1074
168% 1090
1105 1106
1121 1122
1137 1138
1153 1154
1169 1170
1185 1186
1201 1202
1217 1218
1233 1234
1249 1250
1265 1266
1281 1282
1297 1298
1313 1314
1329 1330
1345 1346
1361 1362
1377 1378
1393 1394
1409 1410
1425 1426
1441 1442
1457. 1458
1473 1474
14861490
1505 1506
1521 1522

1027
1043
1059
1075

1091
1107
1123
1139

1155
1171
1187
1203

1219
1235
1251
1267

1283
1299
1315
1331

1347
1363
1379
1395

1411
1427
1443
1459

1475
1491
1507
1523

1029
1045
1061
1077

1093
1109
1125
1141

1157
1173
1189
1205

1221
1237
1253
1269

1285
1301
1317
1333

1349
1365
1381
1397

1413
1429
i445
14061

1477
1493
1509
1525

6

1030
1046
1062
1078

1094
1110
1126
1142

1158
1174
1190
12006

1222
1238
1254
1270

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478

1494

1510
1526

8

1032
1048
1064
1080

1096
1112
1128
1144

1160
1176
1192
1208

1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1512
1528

9

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

1225
1241
1257
1273

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449
1465

1481
1497
1513

1529

1034
1050
1046
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

1035
1051
1067

11083

1099
1115
1131
1147

1163
1179
1195
1211

1227
1243
1259
1275

1291
1307
1323
1339

1355
1371
13387
1403

1419
1435

1451

1467

1483
1499
1515
1531

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

F

1039
1055
1071
1007

1103
1119
1135
1151

1167
1183
1199
1215

1231
1247
1263
1279

1295
1311
1327
1343

1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1535




i

-

60%
61%
62%
63%

64%
65%
66%
67%

68%
69%
CA%
6B*

6C*
&D%
6E*
6F%

70%
1%
12%
13%

T4%
15%
163
11+

18%
79%
1A%
8%

7C*
D%
ke
1F*

1538
1554
1570
1586

1602
1618
1634
165C

1666
1682
1698
1714

1730
1746
1762
1778

1794
1810
1026
1842

1058
1874
2890
1906

1922
1938
1954
1970

1986
2002
2018
2034

1541
1557
1573
1589

1605
lo2l
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
id45

1801
L1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
20317

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

A862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

1544
1560
1576
1592

1608
1624
1640
1656

1672
1638
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

1545
1561
1577
1593

1609
1625

1641

1657

1673

1689
1705
1721

1737
1753
1769
1785

1801

1817

1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770

1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
191s

1931
1947
1963
1979

1995
2011
2027
2043

C

1548
1564
1580
1596

1612
1628
1644
1660

1676
i 692
1708
1724

1740
1756
1772
1788

1804
1820
1036
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

1549
1565
1581
1597

16 13
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

1805
1.821
1837
1853

1869
1885
1901
1917

1933
1945
1965
1981

1997
20 13
2029
2045

1550
1566
1582
1598

1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047




sV

80%
81%
82%
83%

84%
as#
86+
87+

gg*
89%
8A%
8B*

8c*
8D*
8k*
8F%

90*
91%
92*
93%

S4%
S5%
96%
9%

sgx*
g9%
SA%
g%

9C*
SD*

SE*

iz d

1

2049
2C65
2C81
2C€91

2113
2129
2145
2161

2171
2193
2209
2225

2241
2251
2213
2289

2345
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

2050
2066
2082
2098

2114
2130
2146
2162

2118
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

2310
2386
2402
2418

2434
2450
2466
2482

2498
2514
2530
2546

2051
2067
2083
2099

2115
2131
2147
2163

2178
2195
2211
2227

2243
2259
2215
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2541

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

2053
2069
2085
2101

217
2133
2149
2165

2181l
2197
2213
2229

2245
2261
2271
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

2054
2074
2086
2102

2i18
2134
2150
2166

2182
2198
2214
2230

2246
22602
2278
2294

2310
2326
2342

2358

2374
2390
2406
2422

2438
2454
24170
2486

2502
2518
2534
2550

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215

2231.

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2518
2535
2551

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
22386

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2211
2233

2249
2265
2281
2291

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

23719
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

C

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2336
2412
2428

2444
2460
2476
2492

2508
2524
2540

2556

]

2061
2011
2093
21C9

2125
2141
2157
2173

2189
22C5
2221
22317

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

25C9
2525
2541
2557

E

2062
2078
2094
2110

2126
2142
2158
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

F

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2527

. 3
2543

2559




G 1 2 3 4 5 6 7 8 9 A 8 c D E F
AO* 2560 2561 2562 2563 2564 2565 256625672568 2569 2570 2571 2572 2573 2574 2575
Al * 2516 2577 2570 2579 2580 2581 2582 2583 2584 2585 2586 2587 250% 2589 2590 2591
A2% 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3%#2608 2609 2610 2611 2612 2613 261426152616 2617 261% 2619 2620 2621 2622 2623
A4% 2 624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5% 2 6 44 2641 2642 2643 2644 2645 2646 2647 264% 2649 2650 2651 2652 2653 2654 2655
A6* 2 656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
AT* 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8+ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 269% 2699 2700 2701 2702 2703
A9* 2 704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2711 2718 2719
AA®  272C 2721 2722 2723 2724 2725 2726 2721 2728 2729 2730 2731 2732 2733 2734 27135
AB* 2 7 36 2137 2738 2739 2740 241 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

AC* 2752 2153 2754 2755 2756 2757 2758 2759 2760 2761 2762 2163 2764 2765 2766 2767
AD®* 2768 2768 2770 2771 2772 27113 2774 27115 12776 27177 2778 21719 2780 2781 2782 2783
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2TST 2798 2799
AF* 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BO* 2816 2817 2818 2819 2820 2821 2822 2823 2824 2025 2826 2827 282% 2829 2830 2831
Bl*# 23832 2833 2834 2835 2836 <2837 28382 8 3 92840 2841 2842 2843 2844 2845 2046 2047
B2* 284 % 2849 2850 2851 2852 2853 2854 2855 12856 2857 2858 2859 2860 2861 2862 2063
B3* 2864 2865 2866 2867 286% 2869 2870 2871 2872 2873 2874 2875 2876 2877 207% 2879

B4* 2880 2881 2882 2883 2884 2885 2806 2887 2888 2889 2890 2891 2892 2893 2094 2095
B5% 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
Bé* 29012 2913 2914 2915 2916 2917 <918 2919 2920 2921 2922 2923 2924 2925 2926 2927
87+ 2028 2%2%9 2930 2931 2932 2933 2934 2935 2936 2937 2930 2939 2940 2941 2942 2943

B8* 2044 2%45 2946 2947 294% 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9* 296C 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA®* 2976 2%$77 2978 2979 2980 2981 2982 2983 2984 2985 2906 ‘2907 2988 2989 2990 2991
BB* 2002 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

8C+ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
80* 3024 3025 3026 3027 302% 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE* 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF* 3056 3037 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071




co*
Cl*
C2%
C3x*

Cax
C5%
Cé*
C7s

ca*
C9*
CA»*
CB*

cc*

CD*
CE*
CF»*

Co=*
D1=*
D2*
D3*

D4*
D5%
D6*
D7*

ce*
Do
DAx
cCe=*

CC*

DO*
pe*
CF*

3073
3089
3105
3121

3137
3153
3149
3185

3201
3217
3233
3249

3265
3281
3291
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3553
3569

3074
3090
3106
3122

3138
3154
3170
3186

3202
3218
3234
3250

3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
3442

3458
3474
3490
3506

3522
3538
3554
3570

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

. 3332

3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556
3572

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3430
3446

3462
3478
3494
3510

3526

3542 .

3558
3574

8

3080
3096
3112
3128

13144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336
3352

3368

33 84

3400
3416
3432
3448

3464
3480
3496
3512

3528
3544
3560
3576

A

3082
3098
3114
3130

3146
3162
3178
3194

32 10
3226
3242
3258

3274
3290
3306
3322

3338
3354
3370,
3386

3402
3418
3434
3450

3466
3482

3498 -

3514

3530
3546
3562
3578

D

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
3373
3389

3405
3421
3437
3453

3469
3485
3501
3517

3533
3549
3565
3581

E

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

3342
3358
3374
3390

3406
3422
3438
3454

3470
3486
3502
3518

3534
3550
3566
3582

F

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3247
3263

3279
3295
3311
3327

3343
3359
3375
3391

3407
3423
3439

‘3455

3471
3487
3503
3519

3535
3551
3547
3583




EQ*
El*
E2%
E3s

E4*
ES*
E6*
ET*

E8*
E9*
EAs
EB*

EC*
ED*
EE*
EFs

FOx
Fl%*
F2%*
F3s

Fas
F5%
F6*
F1%

F8=+
F9*
FA*
FB*

FCe
Fos
FE*
FF+*

3585
3601
3617
3633

3649
3665
3681
3697

37113
3729
3745
3761

3777
3793
3809
3825

3841
3857
3873
3889

3505
3921
3937
3953

3969
3$85

4001
4017

4033
4048
4065
4081

3584
3602
3618
3634

3650
3666
3682
3698

3714
3730
3746
3762

3778
3794
3810
3826

3842
3858
3874
3890

3906
3922
3938
3954

3979
3986
4002
4018

4034
4050
4066
4082

3

3587
3603
3619
3635

3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

3907
3923
3939
3955

3971
3987
4003
4019

4035
4051
4067
4083

4

3588
3604
3620
3636

3652
3668
3684
3700

3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892

3908
3924
3940
3956

3972
3988
4004
4020

4036
4052
4068
4084

5

3589
3605
3621
3637

3653
3669
3685
3701

3117
3733
3749
3765

3781
3797
3813
3829

3845
3861
3877
3893

3909
3925
3941
3957

39173
3989
4005
4021

4037
4053
4069
4085

6

3590
3606
3622
3638

3654
3670
3686
3702

3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894

3910
3926
3942
3958

3974
3990
4006
4022

4038
4054
4070
4086

7

{
3591

3607
3623
3639

3655
3671
3687
3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975

3991
4007
4023

4039
4055
4071
4087

3592
3608
3624
3640

3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896

3912
3928
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

9

3593
3609
3625
3641

3657
3673
3689
3705

3721
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

3594
36 10
3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
40 10
4026

4042
4058
4074
4090

3595
3611
3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

3915
3931
3947
3963

3979
3995
4011
4027

4043
4059
4075
4091

3596
3612
3628
3644

3660
3676
3692
3708

3724
3740
3756
37172

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
402 8

4044
4060
4076
4092

3597
3613
3629
3645

3661
3617
3693
3709

3725
3741
3757
3773

3789
3805
3821
3837

3853
3869
3885
3901

3917
3933
3949
3965

3981
3997
40 13
4029

4045
4061
4077
%033

E

3598
3614
3630
3646

3662
3678
3694
3710

3726
3742
3758
3774

3790
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982
3998
4014
4030

4046
4062
4078
4094

F

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903
3919
3935
3951
3967

3983
3999
4015
4031

4047
4063
4079
4095




16. FIXED-POINT ARI THVETI C | NSTRUCTI ONS

In this section we will discuss the instructions which perform fixed-
point two's conplement arithnetic in the general purpose registers; the
rel evant instructions are tabulated in Figure 16.1.

Mhenoni ¢ Type I nstruction
AR RR Add Regi ster
A RX Add
ALR RR Add Logi cal Register
AL RX Add Logi cal
AH RX Add Hal f' word
SR RR Subtract Register
CR RR Conpare Regi ster
S Rx Subt r act
C Rx Compare
SLR RR Subtract. Logical Regi ster
CLR RR Conpare Logical Register .
SL RX Subtract Logi cal
CL Rx Conpare Logi cal
SH RX Subt ract Halfword
CH RX - Conpar e Halfword
MR RR Mil tiply Register
M RX Ml tiply
VH RX Mil tiply Halfword
- DR RR Di vide Register
D RX Divi de

Figure16.1 Fixed-Point Arithmetic Instructions
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There are severel irstructions missing from the table which one night

expect to find: thereareno |ogical balfwerd instructions, there is no

"Di vi de Halfword", and there are no instructionsfor performing nultiplication
and divison wi t h logical operands. |t isS possible, however,t o compute

| ogi cal products and quotientsusi ng availsble instructions.

Theoperationsof the add and subtract instructiens are straightforward
and are summarized in Figure 16.2below. Remember that the l|ogical add and
subtract produce the samse result as the aritmmetic add and subtract instructions
except that the CC is set differently. For the halfword operations, we may
assume (as in the discussion of IH in Section 14) that the second operand is
brought from nmenory to theMIR,extendedto a fullword, and then used for the
indicated operation. The notation "F2" means the fullvord operand at the
effective menory address in the BX instructions, and"m2" neans the same
for halfword operands.

Instruction Action CC Settings
AR C(Rr1) «—c(nr1)+c(nr2; _
SR ¢(Rry) « C(Rry)-C(Rrz 0: Result is zero
A c(erg « C(Rry)+C(FW2) 1: Result is< 0
S C(Rry) « C(Rry)-C(FW2) 2. Result iS> 0
AH C(Rr1) « C(Rry)+C(HW2) 3: Overflow
SH C(Rr1) « C(Rr1)-C(HW2)
ALR C( Rr1) « C( Rry)+C( Rrz) 0: Zero result, no carry
SLR C(Rr1) « C(Rri)-C(Rr2) 1. Nonzero result, no carry
AL C(Rra) « C(Rry)+C(¥W2) 2: Zero result, carry
SL C(Rry) « C(Rry)-C(FWz2) 3. Nonzero result, carry

Fi gure 16.2 Fixed-Point Add and Subtract |nstructions

The CC settings in the rightmost colum apply to all the instructions in the
same part of the table. It 1s useful to note several aspects of the CC
settings for the logical instructions, which depend on whether a carry occurs
out of the leftnost position of Rry, and whether the resultiszero. By
referring 10 the exanples in Section 7, we can see that

(1) a CC setting of zero is possible for AL and ALR only if both

the first and second operands are zero.
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(2) it is not possible to have a CC setting of zero for SL and SLR
because after the one's conplenment of the second operand and a
loworder 1 bit are added to the first operand, a carry must have
occurred if the result is zero.

Suppose we wish to store at ANS the sumof C(X) and C(Y), unless the
result is negative, in which case we nust also add C(Z) and subtract 2:
the instruction sequence

L 54X
A 5,Y C(RS) = CI(X) + C(Y)
BC 11,ST BRANCH If NOT NEGATIVE
A Sel ADDCI(Z)
SH 59=H?2? SUBTRACT 2
ST ST 59ANS STORE- ANSWER

will calculate the required quantity. Note that ST is used both as a synbol
and as an instruction mmenonic; no confusion is possible, since the Assenbler
identifies the instruction only by its appearance as an operation field entry.

Suppose we want to compute the sum of the first n odd nunbers, where
the positive integer n is stored as a halfword integer at N,. consider the
followi ng instruction sequence.

LH 34N GET N

LM 6999=F'04241,1°" LOADR6=RGW I T HO9291,1
ADDUP A R 6,8 ADD ODD INTEGERTO SUM IN R6

AR 8y7 NEXT ODD INTEGER IN R8

SR 3,9 DECREASE N BY1

BC 7,ADDUP BRANCH N-I TIMES

ST 64y SUM STORE RESULT

One feature of this exanple is that all calculations inside the loop (third
through sixth instructions) are done using RR instructions; this technique
I's occasionally useful in programs where processing speed is inportant, and
enough registers are available to allow all operands to be carried there
instead of in nmemory. The example is of course mathematically nonsensical
because we have expended all this effort to calculate n where a nmultiply
instruction would have sufficed.

To give another sinple exanple of the use of some of these instructions,
suppose we wish to canpute NEWSTPCK fram the formula

NEWSTPCK = PLDSTPCK + RECEIPTS - SAIES
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where all quantities are fullword integers small enough to guarantee that
no overflows occur. Both sets of statenents below conpute the desired
resul t.

2,0LDSTOCK L 2,0LDSTOCK

L

A 2yRECEIPTS AL 2yRECEIPTS
S 2+SALES SL 2,SALES

ST 2 yNEWSTOCK ST 2 «NEWSTOCK

The compare instructions are useful in testing the relative magnitudes
of two operands; the results of the conparison are indicated in the CC
setting as shown in Figure 16.3.

Qperations | CC Settings |
CR :
C 0: CQperand 1 = Qperand 2
CH 1. Qperand 1 < Qperand 2
CLR 2: (Qperand 1 > Qperand 2
C L

Figure 16.3 CC Settings for Conpare Instructions

The CC cannot be set to 3 as a result of a conmpare instruction. It can be
seen for the CR C and CH instructions that the CC setting is the same as
woul d result from performng SR S, and SH instructions with the same
operands, assuming that no overflow occurs. In fact, this is how the
conparison is done by the CPU -- a subtraction is performed internally and
the CCis set to reflect the sign and the magnitude of the difference, which
woul d have been placed back in Rry for the subtract instructions. Further
analysis of the original operands is required in the CPU if the internal
result overflows. The [ogical-conparisons do not give the same results as
arithmetic conparisons, since nunbers in the logical representation are

al ways considered to be positive. The follow ng instruction sequence may
help to illustrate the differences.
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LM 0939=F*140y~14-2147483647"

CR l.e3 cc = 2
CLR 1.3 CC =1
CR 042 cc = 2
CLR 0y2 €CC =1
CR 243 cc = 2
CLR 243 CC = 2
LPR 443 C{R4) = X*T7FFFFFFF'yCC = 2
CR 443 cc = 2
CLR 443 cc =1
C Oy=F'1! cc = 0!
CL 2y=F1+21? cc = 2
CH ly=H®S5? CC =1
CH ly=F?t5¢ cc =0

The last of the statenments in the above exanple is a programming error that
occasionally occurs; note that the Assenbler gives no indication of the
conflicting data types inplied by the instruction and the operand.

As an exanple of the use of a compare instruction, let us recalculate
the sumof the first n odd integers wusing a different schene than before.

- LH 49=H'1" C{R4) = ACCUMULATED SUM
LR Ty4 C(RT) = COUNT OF ADDITIONS
TEST CH 74N COMPARE COUNT TO C(N)
BC 8, STORE BRANCH IF N TERMS ADDED
LR 0,7 COMPUTE NEXT ODD INTEGER
AR 0,40 COUNT + COUNT
AH Oy=H'1? ADD1y9GIVING NEXT ODD TERM
AR 4,0 ADD TERMTO SUM
AH Te=H'1? INCREMENT COUNTBY 1
BC 15 TEST BRANCHT O SEE IF FINISHED
STORE ST 4,4 SUNM STORE RESULT

This exanple is rather cunbersone, but yields the desired result; we wll
see that there are many ways to performthe same conputation with varying
degrees of elegance. It is worth noting that programming is often as nuch
an art as a science, since many different prograns of varying effectiveness
can be witten to achieve a given objective; an inportant part of |earning
to program is understanding where efficiency can be increased.

As another exanmple, suppose we wish to force the value of the integer
inR6 to be a nultiple of 8,in such a way that if it is not already so,
the next higher multiple of 8will be chosen. This would be required of the
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relative origin assigned to a program the Assenbler chooses the next
higher multiple of 8if the programer assigns a relative origin which is
not already a nultiple of 8. Consider the follow ng segment of code

SR 7 CLEAR R7
SRDL 6,3 SH FT 3BITS INTO R7
LTR 7,7 SEE IF THE BI TS ARE ZERO
BC 8,A BRANCH | F YES
A 6,=F'1' |F NOT, ADD 1 TO R6
A SLL 6,3 MULTI PLY BY 8
First, note that we have cleared RT by subtracting it fromitself -- this

is the fastest and sinplest way to do so and will be used generally except
in situations where the condition code must not be set. In such circum
stances, an instruction such as L T7,=F'0' m ght be used, though
there are other ways which are sometimes more efficient. Second, we can

use a shift instruction to divide by 8 and since a double-length shift

is used, the "remainder" bits shifted into the three high-order bit
positions of R7 are not |ost, which would be the case of SRL 6,3 had
been used. The BC instruction branches only if the remainder bits are al
zero -- that is, if the number in R6 was already a multiple of 8. The sane
"cal cul ation can be done nmore sinply:

A T,=F'7" FYRCE CARRY | F PPSSIBLE
SRL 7,3 DRfP @FF 3 BITS
SLL 6,3 MULTI PLY BY 8

where in this case the presence of any 1 bit in the three rightnost bit

positions of the original number cause a carry into the 2> hit position

(that is, bit 280of R6); the result is the same as before except for the
final CC setting.

To illustrate the use of logical arithnmetic, suppose we are required to
perform additions and subtractions on 8-byte integers: double-length integers
too large to fit in a single fullword. Such operations are infrequently
required, but an examination of the methods used provides insight into the
properties of some of the pertinent instructions. Double-length integers
will occasionally be encountered as products and dividends. Consider first
the problemof finding the two's conplement of such a nunber. Since we
know that the two's conplenent can be found by adding a loworder 1 bit to
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the one's conplenment of the number, we mght proceed as in the follow ng

exanpl e, where the nunber to be complemented'is stored beginning at ARG.
By C(RO,R1) we mean the contents of the double-length register formed by

RO and R1.

L Osz'—l'
LR 1,0 C{ROyR1) ISALL 1BITS
S 04 ARG 1*SCOMPLEMENT OF HIGH-ORDER PART
S 1,ARG+4 1'S COMPLEMENT OF LOW-ORDER PART
AL ly=Ft1¢ ADD LOW-ORDER 1 BIT
BC 124NC BRANCH IF NO CARRY
A Oy,=F*1? ADD CARRY BIT TO RO

NC s TM 0s1,ARG STORE' COMPLEMENTED RESULT
DS 0D ALIGN ON DOUBLEWORD BOUNDARY

ARG cc FL8'1234567876543211¢

The AL instruction in the fifth statenent nust be used rather than A
because the high-order bit of RLis not a sign bit, but an arithmetically

significant bit with weight 27

if a carry out'of Rl occurs, it nust be

detected and propagated into the |oworder bit of RO since there is no
--provision for having this done automatically. The sane calculation is
performed by the follow ng code sequence, but in a less direct and obvious

way.

LM 0,1,ARG GET DOUBLE-LENGTH OPERAND
LCR 0,40 COMPLEMENTHIGH-ORDERWORD
LCR 1,1 COMPLEMENT LOW-CRDER WORD
BC 84X JUMP IFC(R1)= 0
S Dy=Fe1 SUBTRACT1FROM RO

X STM  041,ARG STGRE RESULT
DS 00 » ALIGN

ARG - DC FLB'9876543456789"

In this case, we use the first LCRinstruction to formthe two's conpl enent
of C(RO) imediately; that is, we have already added a loworder 1 bit to

the one's conpl enent of C(RO).

The foll owi ng LCR complements t he | ow or der

32 bits and sets the CC.  Now if C(Rl) had been zero, its one's conplenment
woul d be all 1 bits, and adding a |oworder 1 bit would cause a carry out
the left end of Rl. For any other bhit pattern, no such carry would have
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occurred, and we nust correct C(RO) by subtracting 'off the |oworder hit
added during the execution of the first ICR.

At this point it should be evident what we nust do to add two double-
length integers; we will sinply wite a code sequence w thout further

expl anati on.
LM Osl,A GET A
AL 1,B+4 ADDLCW ORDER PARTS
BC 12,NC BRANCHIFND CARRY
A Qy=F1" PROPAGATE CARRYBITTO HIGH-ORDER PART
NC A 0,3 A D DHIGH-GRDERPARTS
s T™ 0s1,C STCRE DOUBLE~LENGTHSUM
C DS D RESERVEB BYTES, ALIGNED
B DC FLB*1222333444555"
A ‘DC FLB'BBBTTT666555"

Subtraction is perforned in the same way, except that the condition code
setting after the first subtraction will require explanation.

LM 0s1,A GET FIRST OPERAND
SL 1,B+4 SUBTRACT LCW-ORDER PART OF SECOND GPERAND
BC 3,CAR BRANCH'IF THERE'S A CARRY

- S y=F*1? REDUCEC(RO)BYI(BORROWI)

CAR S 0.8 SUBTRACT HIGH-GRDER PART OF SECOND OPERAND
STM 0,1,C STCRE DOUBLE-LENGTH DIFFERENCE

Cc DS D

B DC FLR' 123456787654321°

A cc FLB8Y234567898765432"

In performng a subtraction, the one's conplenent of the second operand and
a loworder 1 bit are added to the first operand. |If a carry occurs out of
the high-order bit position, then the result is correctly represented; if
a carry does not occur, then the resultcannot be correctly represented,
in the sense that we have tried to generate a "negative" integer in the
| ogi cal representation. Hence we nust "borrow' a 1 bit fromthe next highest
bit position, which accounts for the subtraction of F'1l'if the branch
condition is not nmet. It may be helpful to review the exanples in Section 7
to clarify the cases of "overfiow" in the |ogical representation.

Miul tiplication and division work essentially in the manner described in
Section 8. Except for M4, a double-length register is required for product
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and dividend, and the various operands are placed in the expected registers
before and after the operation

For the nultiplication instructions MR and M the ry digit nust be even
as was the case for the double-length shift instructions, the even-nunbered
register is the high-order half of an even-odd register pair, with the next
hi gher odd-nunbered register being the |oworder half. The multiplicand is
placed in the odd-nunbered register, and the nmultiplier is the second operand.
The product replaces the original contents of the pair of registers. Thus,
the following instructions wll produce the indicated results.

MR 2.7 C{R24R3)} = C(R3)*C(RT)
MR 0,1 C{RO4R1) = C{R1)*C{(R1)
MR 5,8 CIR8,4R9) = C{RB)I*C{R9I)
M 4, X C{R4yR5)= C{RS)*CI{X)

M 12,=F '932’ C(R12,R13) = C(R13)%932
LR 594 MOVE MULTIPLICAND TORS
MR 444 C{R4,R5) = C(RS)*C(R4)

Tne |ast two instructions illustrate a situation where we w sh to square the

integer in R¥ -- the LRis required to place the operand into the odd-
‘numbered regi ster; note that we could have used MR 4,5 al so, giving
C(R5)*C(R5). The presence of the nultiplier in the even-nunmbered register
does not cause it to be lost when that register is cleared at the beginning
of the multiply sequence, since the multiplier must be noved internally to
a separate register in the CPU, we can visualize the nultiplication taking
place after the nultiplier has been noved to the MR

It is inmportant to renenber that the product generated by the Mand MR
instructions is 64bits long. If we were to performthe follow ng sequence
of instructions (note that 65536 =2%¢)

L 1,=A(X*10000") C(RL) = 65536
¥R 0y1 SQUAREIT
ST 1y PRCDUCT

PROCUCTC S F

we woul d find that the fullword Stored at PRFDUCT was zero and that C(RO) = 1
and if we executed the instruction sequence (note that 32768 = 215)




L 1,=A(X*10000") C(R1) = 65536
M Ny=A(X"8000")MULTIPLYBY 327638
ST 1.PRODUCT :

we would find that c(PrgDUCT) = -2°%. There are thus two situations the

progranmmer should be aware of: first,that the size of the product may be
such that it overflows the |oworder register, and second, that whether or
not the high-order register contains significant bits, the leftnost bit of
the loworder register is not a sign bit, but contains an arithnetically

significant digit.

The MH instruction produces a single-length result, which is the low-
order 32 bits of the product of C(Rri) and the hal f' word' second operand.
Because only a fullword result is retained, ri1 need not be even, and a
specification exception will occur only if the effective address of the
halfword operand is odd. Because fewer shifts and adds are needed during
nul tiplication, some small economes may be achieved by the use of M
particularly on the smaller nodels of System/360. Thus, MH 5,=H'100'
is asinple way to multiply the contents of R5 by 100. If X and Y are both
halfword operands, thei r product may be found by writing

LH 9,X

MH 9,Y
and R8 is undisturbed. And to square the halfword integer n at N we
could wite

LH 6,N

WH 6,N
Not e that because both operands are hal fwords of at nost 15 significant bits,
the product will fit in a single register; the only halfword whose magnitude
requires 16 bits (namely -2*°) when squared yields 2°°, which requires only
31bits. W note in passing that none of the nultiply instructions affect
the condition code.

-As an exanple of the use of a nultiply instruction, suppose we want to
calculate A =B+ G* D, where all quantities are fullword integers, and it
is assumed that all results are small enough so that no overflows occur.
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7,6 C(RT) ;= CI(G)

64D C{R6,RT) = GxD
7,8
g

A
&

Si

C(R7) = B+G*D
A STCRE RESULT

Note that we have used the letters AL B, G and D to denote both the nanes
of fullword areas of nmemory and the names of the contents of these areas;
this usage is typical of procedural |anguages, where little distinction is
made between the nanme associated with an area of nmenory, the contents of
the area, and the value associated with the contents. W will explore such
considerations further after nore data representations have been discussed.
As a second exanple of the use of multiply instructions, suppose we
Wi sh to compute the sum of the cubes of the first n jntegers, where nis
stored in the fullword at NBR W will assume that n is a small enough
positive integer that the sumis representable in a single fullword. The
quantity k will be the index in the sum n

2, ¥

k=1
SR 5,5 SUM CARRIED INR5
L Gye=F"1" K CARRIEDINR 4
RPT LR 194 C(R1)= K
MR Oyl CI{ROyR1) =K*K
¥R Oy4 C(ROyR1) = KCUBED
AR 541 ACCUMULA'TE SUM
A 4y=F 1] INMCREMENT K
C 4 4NBR CCMPARETO UPPERLIMIT
8C 124RPT BRANCHIF K N O TBIGGER
ST 5,SUM STORE SUM OF CURES

A slightly different version' of the same program which counts from n down
to 1 follows.

SR 5+5 INITIALIZESUMTO ZERO
L Gye=F1t]1 C(R6) = 1,USEDAS CONSTANT
L 44N3R INITIALIZE K TOC(IN3R)= N

RPT LR l+4 C(RL)= K

MR N, 4 C(RO,R1) = KxK

MR O+4 C{RO,R1) = K CUBED

AR 5v1 ADD TO SUM

SR 4406 DECREMENT K BY1

B8C 2RPT RRANCHIFK STILL POSITIVE

ST 5,SUN STORE RESULT
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Division is always perforned using a doubl e-1ength dividend and remai nder.
As was the case for the fullword multiply instructions, the ry digit nust
be even, and specifies the register pair containing the?. dividend; she CC is
unaffected. As indicated in Section 8,the quotient replaces the i ow order
hal f of the dividend in the odd-nunbered register, and the renainder replaces
the high-order part of the dividend in the even-nunbered register; If a
valid quotient cannot be conputed, a fixed-point divide exception occurs.
For exanple, to divide the double-length number in (B8,R9) by the nunber in
R13, we can wite DR 8,13 and to divide the same nunber by 10 we
could wite D 8,=F'10' . To illustrate the use of a divide instruction
suppose we want to conpute the product of C(A) and C(B), and force the result
to the next largest multiple of 29 if it is not already a nmultiple. W will
assume that the product is small enough-that a fixed-point divide exception
wi |l not occur when dividing by 29, and that the final result is contained
ina single fullword

L 34 A C(R3) = ClA)
) 253 CIRZ2,4R3) = C{A)I*C(1)
o 2y=F129? QUOCTIENT IN F3
LTR 242 , TEST REMAINDER IN R2
20 B iy BRANCH IF C{R2) IS ZERO
A 2y=F"1" INCREASE QUOTIENT BY 1
MPY & 290929 FURM CORRECT “ULTIPLE GF 29
ST 34RESULT STCRE PROPER RESULT

As a final exanple of division, suppose there is a positive integer at
N which we want to divide by 10, and then store a rounded quotient at Q
This neans that if the remainder is 5or larger the quotient must be
increased by 1.

L TeN GE-TNA SLCW-GRDERPART O FOIVINEND
SP €64+6 CLEARHIGH-0ORDERP ART OFDIVIDERD
D) 6y=F*10" DIVIDE BY 10
C 6y=F 51 CCMPARE REMAT NDER TO 5
3C 4 ,0KAY ERANCHIFSMALLERT H AN 5
A Tey=Fr10 GTHERWI SE ROUND UP
OKAY ST 7,0 STCRERGUNDED RESULT

Suppose now that the integer at N might be negative; it is apparent that the
instruction sequence above will not work correctly, for two reasons
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First, the initial value of the dividend would not have a correctly extended
sign bit for negative arguments; second, because the sign of the renainder
is always the sane as the sign of the original dividend, the conpare
instruction would always (when C(N) is negative) cause the follow ng branch
instruction to transfer control to gkAY i ndependent of the mmagnitude of the
remainder. To obtain a correctly represented dividend it is sinplest to

use the SRDA instruction, as shown.

L Ly=Fe1" SETUP ROUNDINGBIT

L 64N CIR6) = CIN)

SRDA 6,32 ClR64RT) = 64—-BITDIVIDEND

BC 11,01V JUMP IF NCN-NEGATIVE DIVIDEND

LR 1,1 CTHERWISE S E TROUNDJOFFTO -1

Clv D 6y=F'10" DIVIDE B-Y1 O

LPK 646 ABSOLUTE VALUE OF REMAINDER

c b4=F'5" CCMPARET O 5

BC 4 4OKAY BRANCH IF SMALLERTHAN 5

AU 7,1 A D DCORRECTLY-SIGNEDRQOQUNDOFF
OKAYST 1+Q STORE ROUNDED QUOTIENT

W note that a sinple check may be nade to insure that a fixed-point
divide interruption does not occur: if the inequality

|¢(Rr1) | < 1/2 | second oper andi

Is satisfied, the quotient can be conputed correctly.
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17. LOG CAL CPERATIONS ANC | NSTRUCTI ONS

The basic capabilities of a computing system are derived from the many
i nterconnections of basic circuits which perform sinple |ogical functions.
Same of these sane functions may al so be performed on operands in nenory and
in the general registers through the use of l|ogical instructions, though
their applications are of course different. We will discuss some of the
instructions which perform logical operations and give a few sinple, exanple6
of their use; other inportant uses of |ogical operations will be treated
when some of the SI instructions are exani ned.

Although it is not what we usually woul d consider a |ogical instruction,
the LA (Load Address) instruction is classified as such, and has many and
varied uses in System/360 programming. It is a very sinple RX-type instructian:
the effective address replaces the contents of Rri, With the high-order byte
being set to zero. Thus, for exanple, a positive integer n between 0 and

4095 can be placed in a register by executing an LAr,n instruction,
where the index and base digits are inplicitly zero and the displacement
contains the constant n. Instead of witing L 2,=F'1' whi ch requires

8 bytes (4 for the instruction and % for the constant), or LH 2,=H'1'

whi ch-requires 6 bytes, we can wite either LA 2,1 or LA 2,1(0,0)
which requires 4 bytes and |ess execution time, because no nenory access is
required. Also, because LA does not affect the CC we can clear a register

wi thout disturbing a CC setting which may be required at a later point in
the-program For exanple, suppose we wish to add C(A) and C(B)' and clear

the result to zero if it overflows, without changing the CC setting. The

two instruction sequences which follow performthe desired task.

L 0,A L 0+A

A 0.8 A 0.8

8cC 14,357 BC 144ST

LA 0.0 L Cy=F'0"
ST ST 0yANSHWER ST ST 09 ANSWER
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Because the LA instruction computes an effective address, it also
provi de6 a simple way to increment the content6 of a register by e emall
positive amount. For exanple, LA %,17(0,4) will increase t he
contents of R4 by 17, 1f the original contents' of Rk are between -17 and
224,18, This restriction is of course due to the fact that the high-order
byte of the register into which the result is placed will be sst to aero;
thug the use of LA for increnenting registers is usually limited to cases
where the quantity being incremented is an address or reasonably small
integer. For exanple, suppose we want to performthe shifting operation
described in exanple 6 of Section 15, where it was required that the fullword
at N be shifted right enough places so that its rightrmst bit %8 a 1 bit;
we will al so require that the halfword at CPUNT contai n the number of
positions shifted.

L 44N GET INTEGER
L 39=F*—-1" INITIAL SHIFT COUNT
SHIFT SRDL 4,1 SHIFT A BITINTORS
LTR 5¢5 TEST SIGN OF RS
LA 3,1(0,3) INCREMENT R3 BY 1
BC 104 SHIFT BRANCH IF RS NOT NEGATIVE
SLoL 491 ‘ MOVEBITBACKINPLACE
ST 49N STYORE SHIFTED INTEGER
STH 3+,COUNTY STORE SHIFT COUNT

By setting the shift count to -1 initially, we guarantee that the correct
value will be in R3 when we exit fromthe loop; the first tine the LA
instruction is executed, the result will be zero and the setting of the
leftnost byte to zero is what we want. The placement of the LA instruction
between the LTR and the ensuing BC was done to show that no adverse effects
are caused; one would normally place the LTR just before the BC becauge the
relation between the two is then clearer to anyone reading the program

A third use of the LA instruction, and possibly the nost inportant, is
in generating addresses for actual operands in menmory. For exanple, we may
require the address of some operand to be in a given register during the
execution ofa segment of code. Suppose we went to add three integers, and
branch after all additions are completed to N#ERR if no overflow occurs, and
to ERRL if one or nore overflows occur. Let the integers be stored in
successive ful | words begi nning at Q.
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LA 9,NOERR SET BRANCH ADDRESS FOR NO ERRORS

L 240 GET FIRST INTEGER

A 29Q+4 ADD SECOND INTEGER

BC 14,0K1 BRANCH IF NO OVERFLOW

LA 9,ERR1 SET BRANCH ADDRESS FOR 1 OVERFLOW
oK1 A 2,Q+8 A DD THIRD INTEGER

BCR 1449 BRANCH IF NO OVERFLOW

BC 15,ERR1 BRANCH, SOME ADDITION OVERFLOWED

It should be noted that the instruction with a mask digit of 15 could al so
be witten BC 1,ERR1  wthout affecting the operation of the code,
since the inetructicmis reached only if the branching eondition for the

I medi ately preceding instruction is not net; by specifying a mask of 15 it
Is clear that the branch nust always be taken. There is one i nportant
assunption underlying the use of the two LA instructions: the instructions
named NgERR and ERR1 nust be addressable, since the LA instruction will
sinply perform the address computation specified by the base and displacenent
assigned by the Assembler. As nentioned earlier, we are assumng that all
synbol s (and expressions 'such as Q8) are 'addressable and that the appropriate
base register information has been established elsewhere in the program

It is occasionally easy to forget that the symbols used in LA instructions
must be addressable, since no reference is being made to any menory

| ocation -- omly an address is being generated, and no checks for the
validity of that address are nade.

Ve will give a nunber of exanples later where the A instruction can
be used to give-the effect of indexing for instructions for which indexing
Is not actually possible, namely RS, SI, and SS instructions.

The three |ogical operations provided by System 360 are AND, OR and
EXCLUSIVE OR These are relations between pairs of bits, which produce a
result depending only on the values of the two bits participating in the
operation. The effect of the three operations is gein the figure bel ow.

AlO]1 vio}|1l @[ 0T 1
5o l0 oo 5T 0T
o1 0 N T )
AND | R EXCIUSIVE OR

Figure 17.1 Logical Functions in System/360
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In the first case, the result bit is 1 only if the first AND the second

operand bits are 1; in the second case the result bit is 1 if either the

first OR the second operand bits (or both) is 1; and in the last case, the
result bit is 1 if either the first OR second operand bits is 1, EXCLUSIVE

of the case where both are 1. Henceforth we will abbreviate EXCLUSI VE OR

by XOR  For the instructions listed in Figure 17.2, the operands are fullwords;
however, the result of the operation is obtained by matching the corresponding
bits of each word, with no interactions between neighboring bits. A few
exanples will help to clarify this. As before, "FW2" means the fullword

second operand specified by the effective address.

Mhenoni c | Type Action CC Settings
NR RR C(Rr1) « C(Rr1) A C(Rfa) 0: all result hits
N RX C(Rry) «C(Rr1) A C(FW2) are zero
#R RR C(Rry) <« C(Rryi) v C(Rrz) 1. result bits are
¢ RX C(Rry1) « C(Rry) v C(FWz) not all zero
XR RR C(Rry) « C(Rry1) @ C(Rrz)
X Rx C(Rr1) « C(Rry) & C(FWz2)

Figure 17.2 Logical Instructions

Suppose C(R4) = 0123456716, and C(R9) = EDA9E521l1e. Then if the
instruetions i ndi cated are executed, the final contents of R4 will be as
shown below the instruction.

NR 4,9 grR 4,9 XR 4,9
012145211 ¢ EDAB65671¢ EC8A2046, ¢

To see in nore detail how these results are obtained, we will exam ne the
fourth hexadecimal digit of each case in binary formin the figure bel ow

3 0011 3 0011 3 I 0011

A9 A 1001 v 9 v 1001 ®9 @ 1001

1 0001 B 1011 A 1010
AND R | EXCLUSI VE OR |

Figure 17.3 Exanpl es of Logical Operations
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One inportant use of the ¥ and MR instructions is for "masking"
operations in which it is desired to isolate or extract portions of a word.
For exanple, suppose we wanted only the third of the four positive integers
packed in the data word illustrated in Figure 14.7. This could be done by
shifting as follows:

L 0+DATANWORD CGET INTEGERS

SRL 06 DROP OFF FOURTH ONE
SROL 1,413 MOVE THIRD INTO RI
SRL 1419 POSI TI ON  FOR STORING

ST 1+ THIRD

or as follows:

L 0+DATAWORD
SLL 0,13 DROP OFF FIRST AND SECOND INTEGERS
SRL 0+19 DROP OFF FOURTH, POSITION FOR STORING

ST 0y THIRD

(1£ the integers were allowed to have negative-values as well, the SRL
instructions would be replaced by SRA ) However, the follow ng instruction
" sequence using a logical AND is considerably faster

L 1+DATAWORD AAAAAAAAABBBBCCCCCCCCCCCCCDDDDDD
N 1+sMASK 000000000000OCCCCCCCCCCCCCOOOO00
SRL 1,6 0000000000000000000CCCCCLCCCCCCCC
ST 19 THIRD STORE DESIRED INTEGER
DS OF ALIGN TO FULLWORD BOUNDARY
MASK D C X®0007FFCO*
First, note that the Ds OF Is required to insure that MASK falls on

a fullword boundary -- type X constants have no inplied alignment. Second,
the mask hes 1 bits only in those positions which correspond to the bits
(label ed "c") of the third integer in the data word. When the N instruction
Is executed, all of the bit positions in which the mesk is zero will be set
to zero, since a O bit ANDed to any other bit gives a zero result. In al
of the mask's bit positions which are 1 bits, the result is the same as the
original bit fromthe data word, because a 1 hit ANDed to any other bit
gives a result identical to that bit.

To illustrate the use of a logical gr instruction, suppose we want to
store a new value for the third integer into the proper part of the data word.
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We can do this by shifting the various pieces into place:

L O¢DATAWORD GET INTEGERS

S R D LOeb MOVE FOURTHINTO R1

L Os NEWTHIRD GET NEW VALUEOGF THIRD INTEGER
SRDL 0913 MOVE IT IN WITH FOURTH

L 0,DATAWORD GET | NTEGERS AGAIN

SRL 0,19 DROP OFF THIRD AND FOURTH
SRDCOs13 MOVE FULL WORD INTO R1

ST 1sDATAYORD STORE NEW DATAWORD

Alternatively, we can use the logical AND and ¢R to do the same:

L 0,DATAWORD GEFT INTEGERS
N 0,MASKA CLEAR SPACE FOR THIRD
L 1, NEWTHIRD GE? NEW VALUE OF YTHIRDINTEGER
SLL 1+6 SHIFT INTYO PROPER POSI TI ON
R 001 I0R' IWD PLACE
ST 0,DATANORD STORE NEW DATAWORD
DS OF
MASKAD C X°FFF8003F "

In this case, the N causes all the bit positions into which the third
_integer will be placed to be set to zero. The grR instruction then forms
the logical OR of all the bits of ROand RL. Since the only bits in RL
which may be |'s are in the 13 positions corresponding to the space provided
inthe word in RO and because the result of ORing a 0 bit to any other bit
Is the value of the other bit, the effect is to insert the new value of the
third integer in its proper position in RO This of course assunes that the
contents of NEWTHIRD is a positive integer of at mpst 13 significant bits;
if not, an instruction such as N 1,MASK should be inserted before
the gr to insure that no extraneous bits are ORed into RO

The- X and XR instructions are used mainly for inverting the value of a
bit or a group of bits: it can be seen fromFigure 17.1 that the result of
XORing a O bit to any other bit is to leave it undisturbed, and the result
of XCRing a 1 bit is to invert it from1l to O or vice versa. Thus, for
exanple., we can formthe one's conplement of the number in R7 by subtracting
it froma word of all 1 bits, or by executing X T1,=F'-1' which does
the sane thing. W can rewite the exanple above to use an X instruction
(though in a sonmewhat roundabout way) as follows:
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L 0,D0ATAWORD GET INTEGERS

0 0+ MASK SETTHIRDSPACETO 1 BITS

X 0sMASK NOW SETYHEMTO ZEROS

L 1.NEWTHIRD ETC

SLL 1+6 ETC

N 1 9MASK BE SURE THERE ARE- NO EXTRA BITS
OR Oy1 ETC '

ST 0+DATANWORD

Ds OF
MASK oC X*0007FFCO"

As anot her exanple of the use of the XCR function, suppose we again want
to force the integer in Ry to be the next larger nultiple of 8 if it is not
already a multiple of 8; consider the follow ng code sequences.

A Ty=FeT? FORCE CARRY SF ANY 1 BITS
N T9=F*-8°* SET LAST 38ITSTO ZERO

This i S the fasted nethod, but space is required for the constants.

LA 0.7 C{RO) = 7

AR 9,0 FORCE CARRY IF¥ ANY 1 BITS
OR 9,0 FORCETHE THREE BITSTO1'S
XR 9,0 NOW SET THEM TO ZERO

In ternms of space required, this nethod is superior to the ones illustrated
previously.

W will find that the |ogical operations have considerable use in
exemining and nanipulating individual bits in menory, particularly through
the use of certain Sl-type instructions. As a final exanple, suppose we
are required to shift the integer contents of R6 (assumed nonzero) | eft so
thet the first significant bit is imediately to the right of the sign bit,
end store at NPRM the nunber of positions-shifted.

SR 8,8 SET SHIFT COUNT TO ZERO
SHIFT SLA 691 SHIFT LEFT ONEBITYTPOSITION
8C 1+FINIS IF OVERFLOW, JUMP
LA 8+1{0,8) INCREMENT SHIFT COUNT
SC 15, SHIFY TRY AGAIN
FINIS SRA 6,1 REPOSITION
X 6,DIGIT RESTORE THE LOST BIT
ST 8,NORM STORE SHIFT COUNT
NOGRM DS F

DIGITD C X*40000000°
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In this case we shift left until the overflow indicates that a bit different
fram the Sign bit has been shifted out of bitpgsition 1. The right shift
moves everything back, but instead of restering the lost bit, extends the
sign bit into tha second bit position of RE6 fromwhich the most significent
bit was just lost, Sinee the sign is known to be the opposite of the lcst
bit, the X operation inverts the second bit to give the desired result.
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18. LOCPING | NDEXING AND SIMPLE ARRAYS

Mich of the power of a digital computer derives fromits ability to
execute sequences of statements repetitively until some condition has been
satisfied. Programmng with loops is therefore basic to nost prograns of any
size and conplexity, we will examne in this section several instructions which
sinplify the coding of loops, and sane typical uses involving arrays of data.

As a sinmple exanple which will be used to illustrate sane of the basic
principles, suppose there is a string--- a one-dinmensional array -- of 8obytes
begi nning at STR and ending at STR+79 which contains character data in the
EBCDI C representation. W are required to scan the string and replace all
speci al (non-al phanumeric) characters by blanks: specifically, any character
with representation |less than C'A' (referring to Table |11, it can be verified
that this is equivalent to 19310=X'Cl') shoul d bereplaced by C'', which has
representation X'40', so that letters and digits wll be unchanged.

First, consider the follow ng code sequence, which perforns the desired
processing in a straightforward but rather clunsy way.

SR 0,0 CHARACTERS INSERTED INTCR 0
LR 1,0 ‘ CHARACTER COUNT| NRly INITIALLY O
LA 29CPA? ClRZ) = X*0CG0000C1*
LA 3,C* ¢ C{R3) = X*00000040°*
LA 44STR FIRSTBYTE ACDRESSI N R 4
GETChAR IC 0,0(0,54) GETBYTEFROMSTRING
CR 042 CUOMPARE TOLETTER®A?
8C 10 ,OKAY BRANCH IFLETTERGRDIGIT
STC 3,0(0,4) - OQTHERWISEREPLACEBY A BLANK
OKAY LA 491(044) INCREMENY CHARACTER ADDRESSBY1
CA 1y1(0,1) INCREASE CHARACTER COUNTBY1
C ly=F*80° CUMPARETOS8 0
BC 4,GETCHAR BRANCHIFLESS THAN 80 TO DO MORE
STR cC CLBO*THISIS*u0)BYTES-TOyBE(SCANNED+FCRASPECIAL=CHAR#

We will see later that this particular problemcan be solved nore efficiently
in a variety of ways. For the time being, note that the character conparisons
are made in the rightmst bytes of registers 0 and 2, and that the address of
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the byte to be examined is regularly increnented in B4 after being initialized
to the location of'the first character. The branch instruction at the end of
the [oop must branch if ¢(R1) is less than sonot if it is less than or equal
to 80,since the final test in the latter case would cause the byte at STR+80
to be exam ned and possibly changed.
A second version of this program which makes use of the indexing capabilities
of the IC and STC instructions follows.

SR 0,0 CLEAR RU FOR CHARACTERS FROM STRING
LR 1,0 INITIALLZEZ IANCEX TO O
L LA 34C1 1 CiR32 = wlLANK AT RIGHT END

GETCHAR IC 0,STR{1) LET CHARACTER FROM STRING
C 0,=A4{C3%A*) CUMPARL T8 LETTER vA¢
B8C 1C.0KAY JUAP LF ONOT LESS THAN X*Cl:t
STC 32871 ARLALACEz 8Y ZLANK '

CKAY LA 142{041) salReneNT INSEX BY 1

: C 1e=F2800" CUMPARE 7C UPPER LIMIT
gc 493GETCHAR srANCH IF NOT. CONE

Atrivial difference in this version is that the fullword containing the
EBCDI C representation of the letter Ais now in nenory, specified by the literal
=A(C'A') rather than in R2 as before: note that =F'193' and =A(X'cl') woul d
give identical results. The addressing of the byte to be examined i S now
conputed using Rl as an index register. The first time the instruction named
GETCHAR is executed, C(RL)=0 and the effective address generated will be the
actual relocated address of STR assumng that the necessary base register(s)
have been set up correctly. On the |ast execution of the IC instruction,
C(R1)=79 and the last byte of the string will be inserted into RO for
exanination. \Wen the LA instruction named ¢kAY is executed, C(RL) will be
increased to 8,the branching condition for the final BC instruction will

not be net, and control will pass to the follow ng instruction.

To illustrate another use of indexing, consider the exanple of Section 17,
where three integers at Q are to be added; in this case, however, after the

sum is conplete a branch to NgERR is to be taken if no overflows occurred, to .
ERRL if exactly ome overflew occurred, and to ERR2 if two.
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SR ls1 SET OVERFLOWCGUNTTO ZERO

L 0,Q GET FIRST | NTEGER
A 0,Q+4 ADU SECOUND
8C 14,A1 BRANCH | F N O GVERFLOW
LA 1,4(0,1) INDICATE ONE OVERFLOW
Al A 0+Q+8 AUV THIRD INTEGER
8C l4,A2 BRANCHIFNO OVERFLOW.
LA 1:4(0,1) INOLCATE A N CVERFLOW
A2 BC 15,B{(1) BRANCHINTOBRANCH TABLE
E 8C 15, NOERR O-ERRUR BRANCH
8C 15,ERR1 Ll—ERRKOR BRANCH
BC 15,ERR2 2—ERRUR BRANCH

When the instruction named A2 is reached, RL contains four times the nunber
‘of overflows. This number is used as an index in conmputing the effective
address of the B¢ instruction at A2, which will be B, B, or B3; the
appropriate branch instruction wll then cause control to be transferred to
the desired location. Note that B need not be on a fullword bouudary; the
index in RLmust Sinply be incremented by 4 to account for the length of the
BC instructions. Such branch tables often provide a fast and effective way
to route control to different parts of a program

W wll now consider the Branch on Count (BCTR and BCT) instructions,
which sinplify counting operations such as those in the above exanple. As .
was the case for the BCR and B¢ instructions, the branch address is obtained
either fromRra for BCTR (unless r==0, in which case no branch can be taken)
or from the effective address for Bcr. In this case, after the branch
address is canputed, the branching condition is determned by first algebraically
reducing the contents of Rey by one, and then branching_unl ess ¢(Rry)=0.
Note that the CC is unchanged and has no effect on the branching condition.
We-can rewite our first'exanple to use a BCT by working backwards al ong
the string of characters fromsre+9 to STR which also allows the use of
the sane quantity both as an index and a counter.

SR 0,0 CLEAR RO
LA 1,80 SETRLTUNUMB E ROFPASSES
CA 243C'A" Clk2) =LETTER A
LA 34Ct ¢ CI{R3) = BLANK
NEXT IC 0,STR=-1(1) GETCHARACTER
CR 240 CUMPARE*A*TOCHARACTER
8C 12 9yOKAY BRANCH IF SATISFACTORY
STC 34STR-1(1) UTHERWISE BLCT | T QUT
CKAY BCT 1y NEXT CUUNT DUWNB8 Y1,JUMPIFN O T 0
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The use of the expression STR-1 in the second operands of the I¢ and STC
instructions is dictated by the fact that the possible values of C(RL) run
between sand 1, rather between 0 and 79 as before. This can be thought
of as reflecting a difference in the enuneration of the bytes in the string:
if we nunmber themfrom O to 79they would be addressed STR(1), and if the
byt es were nunbered (in perhaps a nore natural fashion) fram 1 to 80, they
nust be addressed STR-1(1). On the final pass through the |oop, C(RL)=1;
when the BCT instruction is executed, C(Rl) is reduced to zero, the branching
condition is not met, and control passes to the next sequential instruction.
One immediate gain in program efficiency can be seen sinply by counting the
instructions inside the loop: we have reduced this number from seven to five,
which will give approximately the same ratio in processing speeds.

- The BCT and BCTR instructions are especially useful in situations where
a certain nunber of passes through a loop is, needed, and no special attention
nust be paid to indexing quantities, To illustrate several uses of these
instructions, consider the following variations on sone exanples from previous
sections.

(1) The fullword at NBR contains a positive integer n; conpute the sum of
the cubes of the first n integers,

L 49NBR G(R4) = INDEX 9K*, INITIALLY N
SR 545 INITIALLILE SUM TO ZERO
NEXT LR le4 CIRL) = K
MR 0,1 K¥*K
MR 0s4 K CuBkD
AR 591 ADYD TU SUM
BCT  4,NEXT VECREASE K BY 1, LQOP
ST 59 SUM STURE SUM

(2) The halfword at N contains a positive integer n; store at NSQ the sum
of the first n odd integers.

SR 0,0 CLEARSUMTC ZERO
- Lh 1N GET N FRUM MENMORY
LGOP LA 290(1y1) ( CUUNT+COUNT) IN R2
BCTR2 . 0 2 * CULUNT =1
AR 0.2 AvDJuS UM
BCT 1,L00P REVUCE CUUNT A N D BRANCH
ST 04NSQ
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Because n is contained in a helfword integer, We may use the LA instruction
to conpute (n + n) in one step, since the result is known to fit in the
rightnost 24 bits of R2. The followi ng BCTR instruction cannot branch, since
r2 = 0; hence the only effect is to reduce C(R2) by one, as required.
(Renenmber that the k-th odd integer is 2k-1).

(3) Find the two's conplenent of the double-length integer stored at ARC

LM Oy 1sARG GETVUUBLE~LENGTHNUMBER
LCR 0,0 COMPLEMENT HIGH=-CRDER PART
LCR l,1 CUMPLEMENTLCW~CRDERPART
BC 8.X BRANCH IF“CARRYOUTOFRL
- BCTR 0,0 OTHERWISEREDU C EC{RO)BY 1
X STM 0y 1,ARG STORE CUMPLEMENTEDRESULT

This is identical to the example in Bection 16 except that the BCTR repl aces

S 0,=F'1l' and thus the CC setting may be different when the S is
executed. The BCTR instruction with re=0 may be used in this fashion anywhere
inaprogram it is shorter and faster than subtracting a constant 1 from
memory, but has the possible disadvantage that the CC is not set.

- As a further exanple of the use of the BCT instruction, we present
bel ow two exanpl es of program segnents which store the cubes' of the integers
from1l to 10 in a table of ten successive fullwords, the first of which is
| abel ed CUBE.

LA 4,10 C{R4) =NUMBER TO BE CUBED
MULT LR 314 MUVEITTOR 3
MR 2+3 SWUARE IT
MR 294 AND CUBEX T
CR ly4 SET uUP INDEX IN Rl
SLL 1,2 MULTIPLYBY 4 FORFULLWORDLENGTH
ST 34CUBE=~4{ 1) .STUREIN CORRECT TABLE POSITION
BCT 4o MULT BRANCH 3ACK 9 TIMES

In this case we have used the integer argunent being carried in Rk to index
the desired word in the table; since the table entries are fullwords, the
index must be multiplied by four for successive items, which is why the SLL
is used. Because the first entry in the table corresponds to 1 cubed, the
expression in the operand field of the ST nust be CUBE-4 so that the address
of each entry will be correctly calculated . Another nethod of doing the same
calculation is as follows.
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LA
LA
LA
MULT LR
MR
MR
ST
LA
LA
CR
8C

1,CUBE+0%*4
29:CUBE+9%4
3.1

53

493

443
5,0(0,1)
3,1(0,3)
1l+4(0,1)
1,2

12, MULT

ADORESS UF FIRST TABLE ENTRY
ADURESS UF LAST TABLE ENTRY
C{R3) = NUMBER TO BE CUBED
MUVE MULTIPLICAND

SWUARE

Cudke

STurRe IN TABLE

INCREMENT NUMBER TO BE CUBED
INCREMENT TABLE ACDRESS
CUMPARE TO ENC ACORESS
BRANCH BACK IF NGT PAST END OF TABLE

In this case an explicit address in the ST instruction is used, rather than

an inplied address as in the first method

This is because the |oop termnation

condition is determned fromaddress arithnetic rather than from tests on any
of the quantities being calculated in the loop; we will see that cases often
arise where it is convenient to perform such addressing calculations explicitly,
rather than rely on the Assenbler to assign all bases and displacenents. The
"index" of the entries in the table may be thought of as running fromO to 36

in steps of k.

In nost of the programm ng exanples we have exam ned in which |oops

were used to perform some iterative task, the termination condition depended

on some kind of counting cperation. More specifically, many such applications
require that some quantity be established as an index whose val ue is changed

regularly by an increnent,
made depending on some condition established by the conparison.

conmpared to some comparand, and a branch then be

Note that the

term "index" as used here is meant only to indicate the variable quantity which

controls or deternines conpletion of the loop; it may or may not be related

to a quantity to be used as an index (that is, specified by an index register

specification digit) in an RX instruction, as in the two exanples above which

conpute a table of cubes.

In the first illustration, the index of the |oop

(in R4) is also used (in RL) to index the ST instruction; in the second illus-
tration, the index of the loop is the address contained in RL, but no indexing

is performed in any of the RX instructions.

The increnent may be a negative

quantity, in which case it mght be nore appropriate to call it a decrenent;
rather than try to use names to distinguish the sign of the quantity to be
added to the index, we will assune that the increnent can be positive or

negative.

For the Branch on Count
implied by the instruction:

instructions, the quantities involved are all
the index is in Rry, the increnent is -1, the
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comparand is zerc, and the condition for brancining is inequality. As might

be inferred from the preceding exauples, this somewhat restricted set of
possibilities is often insufficlent to enable the programmer to code a loop
effectively. Because loops are such a ecricisl part of meny programs, the
System/360 instruction repertcive contnins thes BXH (Bransh on Tndex High)

and BXIE (Branch on Index Low or Egual) instruntions to facilitate coding

of loops. As was the case for BCT and RBCIR, hoth of these instructions provide
the three functions of increnentation, conparison, and conditional branching,
but with nuch greater flexibility.

Both BXH and BXLE are RS-type instructions requiring two register
specifications digits ri and rs, as indicated in Figure 14.1. Like the STM
and IM instructions, the use of registers other than Rry and Rrs may be
implied, but in a less sinple way. The index is always in Rri, and the
increment is always in Rrs. The conparand is contained either in Rra+l
(if rsis even) or in Rrs (if rzis odd), That is, if WC write  BXLE O,k NEXT
then the index is in RO the increnment is in R4, and the comparand i S in R5,
whereas if we wite BXIE °0,5,NEXT the index is again in RO, but both
the increnment and the conparand are in R5. There is a simple notational
device which illustrates the fact that the comparand iS always contaired in
an odd-nunbered register (if rsis even, the conparand is in Rrs+l, and if
rs i s odd, the conparand is in Rrs): we will write Rrsv1 to indicate that the
register containing the conmparand may be determined by ORing a 1 digit into
the rs digit. Thus R8v1l refers to R9, snd R9V1 i S the same as Ry. The
operation of BXH and BXIE, which i S diagremmed in Figure 18.1, is as fol | ows:
the sum of the index and increment i S computed internally and then conpared
al gebraically to the comparand. Whether or not the branching condition is
met is noted -- for BXH this means that the sumis al gebraically greater
than the conparand, and for BXLE that the sumis algebraically less than or
equal to the conparand. It is inportant to observe that the branching
condition is not reflected in a setting of the CC but is determned internally;
none of BCT, BCTR, BXH, or BXIE change the CC.  The gum then replaces
the index, and the branch is taken if the branching condition is nmet. Note
t hat because the branch address is computed during the "Decode" portion of
the instruction cycle before incrementation takes place, the effective




address may not be as expected if ry and bz are the sane (unless both are
zero, which is unlikely since the branch address would have to be less than
k095). Note also that the conparison takes place before the sum replaces
the index; we will give some exanples of situations where this is inportant.

The upper portion of the figure below is a verbal description of the
execution of BXH and BXLE; the |ower portion indicates explicit register
usage by the two instructions.

4

i ‘

&code; | ! |Compute Conpare sum Sum Branch ! ‘
conpute| !, ginday ., + |t 0 comparand; repl acgs+|condition no ‘! ;JFetch
branch|! Elincrement det ermne “li ndex net *?

1
1
address| ! &———— [branch cond. |
[ yes '
- T
i
! E t Branch addr |
: xecut e o C(IA) 3
: ' :
L s e 0 m e e o O o e e m ot o s O e o o e O B e - o O - - - 4

- e o . - AR o O e G e e T e R WS G AR G G A s e S G e G R O S S S S N G e A S R G e S B e e o) A e e R

i ———Ssum > Cc(Rrsvl) 2| no
! BXH ' :
]

Decode| {C(Rra )+ v Jes 4 3

| '
g?anpr;]gthe s C(Rrs) —%@m} Br. Addr. - C(IA) ,%‘szr'l”) | Petch

|
addr ess E - Sum N Jes - E

: BXIE :

! Ysum € C(Rrzv1) ?|” no :

Figure 18.1 Qperation of BXH and BXLE |nstructions

To illustrate the use of BXH and BXLE, consi der the exanple given at
the beginning of this section, where we wish to replace non-al phanuneric
characters by blanks. W will rewite the code sequence to use a BXIE
instruction.
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LM 093s=F*040,y1,79"
* CHARACTERS INSERTED INTOROy INDEXINRLy INCREMENTINRZ,
4 AnccoMPARAND IN R3.

LM 4954y=A(C 'A*,C* *)
8 LETTER ‘A’INR4y AND A BLANK | NR5.

GETCRAR IC 09STR( 1) GET A CHARACTER FROM THE STRING
CR 054 , CUMPARETO LETTER®A"|IN R4
BC 10,ALPHANUM BRANCH IF ALPHANUMERIC
STC 5sSTR(1) OTHERWISESTCRE A BLANK

ALPFANUM BXLE 1+42+GETCHAR INCKEMENTANG BRANCH

Note that the values of the index run from 0 to 79; when control reaches the
BXIE instruction, the increment in R2 (nanmely +1) is added to (RO, and
because B2 is an even-nunbered register, the sumis compared t0 the comparand
C(R3). If the sumis less than or equal to 79, the branching condition is
met and control will. be transferred to the instruction named GEICHAR after
the sumis placed back in Rl.. Wen control finally passes to the instruction
following the BXIE, the contents of R1will be 8010.

To give an exanple where the use of BXIE i S perhaps nore natural, we
Wil rewite the code segment'which computes a table ofthe cubes of the
first 10 integers, starting at CUBE.

CA 741 IiTIALINTEGER=1
LR 8,7 C{r8) =1FO0R INCREMENTING N
SR 494 SET INDEXT 0O ZERO
CA 2.4 INCREMENT Q F +4 F O R INDEX
LA 3,36 CUMPARAND = 36, INR 3
MULTY LR 1,7 N IN R1
MR 0,1 NEN
MR 047 N CUBED
ST 1,CUBE(4) STURE IN TABLE
AR 7,8 INCREASENB Y1
BXLE 4429MULT INCREASEINDEXBY 4 AND COOP

This segment of code has been witten in such a way as to use fewer instructions

inside the loop, at the expense of some extra instructions outside the |oop.
The following two code segments perform the sanme cal culation, but are set
up slightly differently.
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LA 7,1 INITIALVALUE OF N=1

LA 494 SET INCREMENT IN R4 TO 4
LR 234 INITLIAL INDEX IN R2 IS 4 ALSO
LA 5940 CUOMPARAND IN R5 = 40
MULT LR 17 C(R1l) = N
MR 0,1 N SWUARED
MR 0,7 N CUBED
ST 1,CUBE—-4(2) STurke IN TABLE
LA 19100, 7) INCREMENT N
BXLE 2,4,MULT CUUNT ANU LOCP

In this exanple, the index runs from & to 40 in steps of 4, rather than from
0 to 36 as previously. In general there -is no difference between the two

met hods, except that the second nethod can ve conceptual |y sinpler: since
the integer Nruns froml to 10 by steps of 1, the nultiplication by & to
account for the lenzth of the fullword result wmakes it natural to have the
index run from 4 tc 40 in steps of 4. W will. e¢xamine some cases shortly
where such considerations are inportant. The use of the LA instruction can
yield very slightly increased speeds, since it is faster on sone nodels of
System/360 than an AR instruction; the progranmer interested in such details
should consult the instruction timng tables for the particular CPU he i S using.
A variation on the above exanple is given below, where the index and conparand
quantities are addresses.

LA 4,CUBE+Q*4 >cT INUeX TO INITIAL TAELE ADDRESS

LA 2v4 INCREMENT = 4 FUGR FULLACRDS
AA 3,CUBE+9%4 CUMPARAND = FINAL TABLE ADDRESS
AA 791 INITIAL VALUE CF N = 1
MLLT LR 1147 N )
MR 10 ) l 1 SIEN
MR 1C,7 CENEN
ST 11,0(C44) STuke IN TABLE
CA T+1(0,7) iNeREMENT N
BXLE 4,2,MULT laukeMENT ADDRESS AND LCOP

To illustrate the use of the BXH instruction, two of the previous code
segments will be rewitten so that the indexing runs in the opposite direction

LA 1410 Ll T1AL VALUE GF N ,
A 8y=Ft~1" Cixk3d) = =1 FCR INCREMENTING N
LA 44940 LaiTIAL INDEX = 40
L 29=F1—4" Lol zMenNT = =4
S’ 3,3 CumPacaAns = 0
MLLY CR 1o7 N
MR 0.7 NN
MA 0,7 AR VE]
ST 1,CUBE~4(4) STuxE I TABLE
AR 7,8 Avw -1 Tu N
BXH 44929,MULT CuunNT Anw LCCP
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Wien the instruction following the BXH is reached, the index in R will be
zero. In fact, we can use -4 for both the increnent and conparand as in the
fol l owi ng exanple.

LA 7410 INITLAL VALUE GF N IS 10

LA 4436 INITIAL INDEX = 36

L 1=F =4t INCKEMENT AND CCMPARAND ARE -4
MULT LR 1o7 N

MR 047 N SWUAREU

MR 0,7 N CUBED

ST 1,CUBE(4) STURE IN TABLE

BCTR 790 DECREASE N BY 1

8XH 4459MULT CUUNT DUWN AND LOGP

In this' case the rs digit is odd, so RraV 1 is the sane register as Rrs;
the BXH will increment the index in Rk by -4 and branch until the resulting
sum becomes -4 al so, when control will gass to the instruction follow ng.

Sone specialized uses of BXH and BXLE may be obtained by various
conbinations of register specification digits. For exanple, suppose the
contents of an odd-nunbered register such as R9 is zero. Then the instruction .
BXILE 4,9,X will branch to X only if C(Rt) is less than or equal to zero;
simlarly, BXH 4,9,X woul d branch to X only if C(R¥) is greater than
zero. Since the BXH and BX1E neither set nor test the condition code, this
technique can be used in situations where a condition code reflecting the
state of the contents of R¥ is not available, or the current CC setting nust
be undisturbed, or if it is desirable to avoid using instructions such as
LTR fol l owed by a BC.

Suppose we want to perform the inverse of the BCT instruction, nanely
increnent a register by +1 and branch. [f ¢(R7)=1 and the contents of R2
IS some integer greater than zero, then - BXH 2,7,X will branch to X
after increnenting C(R2) by 1 unless the sum overflows. Sinmilarly, if there'
IS some negative integer in R, BXLE 2,7,X will branch to X so |ong
as the resulting sum does not exceed +L. |f C(R4)=1, the instruction
BXH 5,4,X will increment the contents of RS by 1 and then branch to X
iIf the sum does not overflow, this exanple is instructive because the index
and conparand are in the sane register. |f the canparison was made after
the sumwas placed in R5, an equality woul d always be indicated and the BXH
woul d never branch. Tricky usage of BXH and BXIE as described above is
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relatively rare, and these instructions find their major use in applications
such as table searching and |oop control.

In the exanples given up to now of |oops involving indexing in an array,
the choice of a method to performthe indexing arithmetic and the selection
of initial and final index values was |eft open; no formel technique was
described. Since arrays and array processing techniques are heavily used,
we W || exam ne sone general methods for handling arrays.

(ne-di mensional arrays are relatively sinple, since each successive
element MYy be obtained Dy adding the element | ength to the address of the
preceding element. |f for exanple the halfword i ntegers ko, ki, --- ko are
stored starting at K, then K is found at k+en; if the array elenments were
fullwords Or doubl ewords, the corresponding addresses would be K+ arid K+8n
respectively. On the other hend, if ks ... kg are stored beginning at K, and
the length of a single array element is L, then k, Is found at K+L{n-4).

The required subscript aritimetic should be evident »~ if the |owest-subscripted
el enent kmig stored at K then the |ocation of k (where N > M is K+L*(n-m).
(It is also evident that n need not be greater than m it i's nerely custonary
to store arrays this way.) An exanple will help to illustrate this.

Suppose an array of fullword integers xs . . . x7 is stored beginning a
X, and we are required to store their sumat T. The lower and upper subscript
bound6 of 5 and 17 are stored at LOAER and UPPER.

SR 0,0 INITIALIZE SUM
L 1+ LOWER INITIALIZE SUBSCRIPT Ne LOWERBQUND =5
A " LR 291 INDEX CALCULATED IN R2
S 29 LOWER {N-M)
SAC 2.2 4%(N—M)
A 0,X(2) SUM = SUM + X{N)
LA 1,1(0,1) INCREMENT N BY 1
G 1,UPPER CUMPAREN TO UPPER BOUNC
8C 12,A IF NOT GREATERy, BRANCH
ST O, T
LGWER 0C F'5? LOWER SUBSCRIPT BOUND
UPPER CcC Fe17¢ UPPERSUBSCRIPT BOUND
T CcS F
X cC 13F¢1* FUR EXAMPLE

Now, suppose that the Iower and upper subscript bounds of the elenents
forming the required sum do not have known val ues,. but we still know that xs
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is stored at X. W can include a portion of the indexing arithmetic in the
program at assenbly time so that it need not be performed at execution tine,
nanely the factor L*(-n).

SR 0.0 INITLALIZE SUM TG ZERO
LA 4.4 INCREMENT = ELENMENT LENGTH
L 2 9 LOWER GeT LOWEST SUBSCGRIPT
SLL 292 MULTIPLY BY ELENMENT LENGTH
L 5y UPPER GET HIGHEST SUBSCRIPT
SLL 592 4 ALSU
ALC L 0.X-20€¢2) ADD AN ©tLEMENT, CCRRECTLY ADDRESSED
BXLE 2+4.+A0D INCREMENT INDBEX AND LOOP
ST 0.7 STURE TUuTAL ,

It can be seen if C(LfWER) = 5 and C{UPPER) = 17 that the sane result will
be obtained; the first el enent to be added will be at X-20+(4*5) = X, as
desired. The Assenbler will of course require that the expression X-20 be
addressable; this requirement is sonetines a limtation on the use of this
time-saving technique.

Two- and hi gher-dinensional arrays present a few further conplications
which can be handled fairly easily; we wll exam ne two nethods for addressing
é?ray elements. First, it is necessary to find some way to reorganize the
rectangular form of an array into a linear arrangement which conforns to the
machine's natural method of addressing successive bytes in nmenory. A conmon
method is to store successive colums of the array one after another, as
i ndi cated bel ow.

aiy aiz ais

v

Fll azi aiz 8z2| aix | az=23

azi agzza az3

Figure 18,2 Storing an Array in Colum Order

It is apparent that any desired arrangement is actually possible, and that

a choi ce-between possibilities must be based on considerations such as
convenience and the tine and space required to retrieve a particular elenent.
For the exanple above, the arithnetic necessary to retrieve the element aiJ
is as follows, assuming that aiy is stored at A© to obtain the address of
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the first element in a given colum, we need the address A+L*(j-1)*2 where
L is the elenent length in bytes, and the factor of 2 accounts for the
presence of 2 elenents in each colum. Once having obtained that address
the i-th element in the indicated Colum is found by adding L*(i-1) to the
partially conputed address, giving A+L*(2%(j-1)+(i-1)). The quantity added
to Ais sometines called a subscripting function or a mapping function, and
gives the correspondence between the array subscripts i and j of a particul ar
element and the "linear subscript” which gives the difference between the

| ocations of a:Lj and azi. It can be seen that if a colum-ordered array

has r rows, the subscripting function is IL*(r*(3j-1)+(i-1)). For exanpl e,
suppose we have an array of fullwords of 5 rows and 7 colums stored at A

and wish to store aij at X, where i and | are fullwords stored at |1 and J
respectively.

L 69J LGET COLUMNI N D E X J
BCTR6 . 0 FURMJ - 1
MH 69=H'5" MULTIPLYBYNUMBEROF ROWS
A 691 AVDURUWI NDE X1
BCTR6 , O VDECReASEB Y 1
SLL 6,2 MULTIPLY BY ELEMENT LENGTH, 4
L 3,A16) GeT All,J)
ST 3. X STORE AT X
| uc Fe3e PUSSIBLEV ACUEFCRI
J GC Fre? PUSSIBLEV AL UEFORJ
A 0S 35F SUMEBUDYELSE COMPUTES THE VALUES

Aswas the case for one-dinensional arrays, part of the subscripting arithmetic
can be absorbed into the address of the .instruction which references the
array element. Thus, the address of aij becomes A-L*(r+l)+L*(r*j+i), and
only the final term need be computed at execution time; the code sequence
above can be rewitten as follows.

L 69J CULUMN INDEX
MH 69=H*5¢ *¥( NUMBER O F ROWS)
L 641 + RUw INDEX
SLL 642 {ALL)*(ELEMENT LENGTH)
L 3,A-4%(5+1)(6) CIR3) = A(l,J)
s T 34X ‘ STOKEAT X

Figure 18.3 Exanple of Array Subscripting Arithmetic
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The address A-L*(r+l) can be seen to be the address of the element "aoo
(which may not actually exist) and is soretimes called the address of the
"base elenent” of the array or (unfortunately) the "base address" of the
array. Since this alnost always has nothing to do with a base address to
be used by the Assenbler in conputing displacements, it is best to avoid the
| atter term nol ogy.

In the exanples above we have assumed that the subscripts could take
positive values only, and always had a |ower bound of 1; this is not a
necessary condition, and if the |ower subscript bounds on i and j are io and jo
respectively, the subscripting function becones I*(r*(j-jo)+(i~io)). I'n such
cases it is usually nore difficult to include the factor -L¥(r-jo+io) in an
expression at assenbly time, since the result may not be addressable. W
wi || adopt the convention that all subscripts run upwards beginning at 1
unless the contrary is stated.

A second nethod of array addressing is useful when processing speeds
are inmportant, and occasionally also finds application to arrays of irregularly-
spaced or irregular-length data. This involves pre-conputing the addresses
of portions of the array, and storing those addresses in a separate table,
For exanple, suppose the addresses of the elements ajy, a1z, and azz in
Figure 18.2 are stored as fullwords at C@LADIR, as indicated in Figure 18.4,
The notation A(x) nmeans "address of x".

Location Contents
CALADDR A(ai1)
CHLADIR + 4 A( a12) a1l | az1 | 312 | a22 | a1z | a=s3
CHIADIR + 8 Alays)

Figure 18.4 Addressing with Tables of Addresses

The code to store aij at X mght then be as follows.

L 15J otl CULUMN INDEX

BCTR 7,0 UcCREASE BY 1 FCR INDEXING

St 7,2 MulTiPLY BY ACDRESS LENGTH = 4

L 69COLADDR(7) Gul ADURESS CF COLUNMN J

L 591 vl RUW INDEX 1

BCTR 5.0 VLCREASE BY 1

SLL 5.2 MULTIPLY BY ARRAY ELEMENT LENGTH = 4
L 340(5,6) vl AlIzJ)

ST 3,X STure AT X
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The main advantage of this scheme is that it avoids the previously required
nul tiplication by the nunber of rows. The additional expense is In the space
required for the table, and the tinme required for forming it (either during
assenbly or at execution tine). As a final exanple, suppose we want to
store at X the el enent aij of a 5-by-5 array of fullwords stored in colum
order at A, first we will compute a table of colum addresses and store them
at ADDRTAB. W actually compute not the true addresses of the first el enent
in each colum, but that address minus 4, because this then allows us to use
the subscript i directly without subtracting 1 during the accessing of the
desired array elenent. The table contents are shown in Figure 18.5 bel ow,
where the zero subscript indicates the subtraction of one el ement |ength
from the address of the beginning of the colum.

LH 69y NROWS CI{R6} = NUMBER GF ROWS
SLL 692 MULTIPLY FOR INDEXING BY ELEMENT LENGTH
LH 5,NCOLS NUMBER UF COLUMNS IN RS FCR LOOP COUNT
LA 9+ADDRTAB BEGINNING ADDRESSOFTABLE
LA 0yA—4 ARRAY ADDRESS - ( ELEMENT LENGTH)
STALCR ST 0+0(0,9) STURE A N ADDRESS IN TABLE
AR 046 INCREASE ADDRESS TONEXTCOLUMN
- LA 9,4(0,9) INCREASE TABLE ADDRESS TO NEXT WORD
BCT 5,STADR LOUPUNTIL ALL ADDRESSES COMPUTED
NCOLS bC Het5 NUMBER OF COLUMNS
NROk S CcC H'S’ NUMBER OF ROWS
ACCRTAB DC S5F SPACE FOR ADDRESSES
Location Contents El ement Addressed
ADDRTAB A(A-k) a0y
+k A(A-4420) aoz
+8 A(A-bhO) - 203
+12 A(A-k460) a0s
+16 A(A-4480) ao0s

Figure 18.5 Exanple of Addressing Table Contents

To use this table to performthe desired calculation, we can wite the
following code sequence.
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L 21 GET ROUW INDEX

L 39d GEF COLUMN INDEX

SLOL 242 MULTIPLY BOTH BY 4

L 49 ADDRTAB-4(3) G E T COLUNNACDRESS
L 0+0(2,4) GET AfI,4)

ST 0,X STUREA TX

This segment of code gives nuch faster access to the desired elenment; the
subscripting arithnetic (all but the last two instructions) on a System/360
Mbdel 50 requires 18 nicroseconds, while the same arithnetic as performed in
Figure 18.3 requires 33 nicroseconds. It should be noted that the faster
example Uses the SLDL instruction to take advantage of the fact that the array
elements and the entries in the address table (sometimes called an 'access
table") are of the same length, which mght-not be true in general.

In closing this discussion, we Will nention that the address table can
be constructed by the Assembler if the necessary quantities are known in
advance. The itens in the middle column of Figure 18,5 can be used as
operands in DC statements; renenber that in the discussion of A-type constants
(address constants) in Section iB,'it was stated that the abnstant may be
relocatable. Though we are not yet in'a position to be able to di scuss how
the correct addresses are eventually placed in the program W will sinply
write-a sequence of statenents Wich generates the sane address table at
assenbly tinme. .

ARCWS EQU 5 NUMBER CF RCWS
L EQU 4 LENGTHCFARRAYELEMENT
ACCRTABD C A{A-L) ALFIRSTCCOLUNMN=4 .1
GC ALA+L¥{NROWS)—L)  A(SECOND CGLUMN = 4}
o[ ALA+L*(NRCWS%*2)—=L) A ? THIRD CCLUNMN =~ &)
cc ALA+LHRENROWNS%*3)=L) A{FUURTH CCLUMN = 4)
- e A(A+L%*(NRGWS*43—L) A{FIFTH COLUNN = 4)

The expressions in the address constants are witten in such a way that
the programmer need only specify the value to be given to NR#WS in the first
EQU statenent, and the required addresses are calculated by the Assenbler.
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19. S| I NSTRUCTI ONS

Mst of the instructions discussed up to now have referred to data
waich was either in a register or was to be found in memory at a given
location. (ne exception we have encountered is the LA instructions, in which
the operand to be placed in Rry was constructed using part of the instruction

itself. In particular, witing statements such as IA 5,12 provi des
a way to place data into a register without an additional menory reference,
which would be required if we wote L 5,=F'12' instead. Instructions

which contain one of the operands of the operation to be perforned in the
instruction itself are called immediate instructions, in the sense that an
operend i S i nmediately available. Thus, we could call LA a “Load
Immediate" [nstruction in those situations where the base and index register
specification digits are zero, since the immediate operand cones fromthe
di splacenent field of the instruction.

The six Instructions to be discussed here make use of an i medi ate
operand contained in the second byte of the instruction, as denoted by "I"
in Figwe 19 .1.

operatl
l_pzzde on ’ Iz‘ b1 di
0

T8 15 16 19 20 31

Figure 19.1 S| Instruction Format

In witing S instruction statenments, the first operand will usually be a
relocatabl e expression; the second operand nust be a positive absolute
expression Of value |ess than 256, so that it will fit into a single byte.

The instructions are given in Figure 19.2; the notation "cy" is meant to
indicate the single character or byte at the effective menory address conputed
. from the addressing syllable.
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I nstruction Mheroni ¢ Action CC Set?
Move WI c(cy) «1Iz no
AND NI C(C1) «cC(C1)A Iz yes
R ] c(cy) «c(Ca)v Iz yes
XOR X ¢(C1) «c(C1) ® Iz yes
Compare CL1 c(cy) : Iz yes
Test Under Mask ™ Test Selected Bits of €(Cy) yes

Figure 19.2 SI Instructions

The operation of the first four of these instructions is straightforward,
and is illustrated bel ow

(1) MmvI X,0 sets the byte at X to zero
(2) w1 X,255 sets the byte at X to all 1 bits
(3) MvI X,C'X!’ puts an EBCDI C "X" at X
() N X,0 equivalent to (1), except CC =0
(5) g1 X,255 equi valent to (2), except CC =1
(6) g1 X,2 sets hit 6 at Xto1l
(7; NI X,253 sets hit 6 at Xto 0

- (8) xI X,2 inverts bit 6 at X

It is occasionally clearer to use other than deci mal self-defining terns;
exanple (7) could be witten Nl X,B'11111101' with the bit to be
zeroed inmediately indicated. The CC settings after NJ, §I, and Xl are
given in Figure 17.2

The CLI instruction perforns a |ogical conparison between two 8-bit
quantities, which are treated as unsigned integers for the conparison arith-
metic." The result of the conparison is indicated by the CC setting, as given
in Figure 16.3. Thus, the statenents bel ow would result in the indicated
CC settings.

CLI =C'A? , X'C1? CC=0
cLI =X900',0 CC=0
CLI =C¢ #,B8°1000000° CC=0
CLI =X0]10,X02°* CC=1
CLI =C9A?,250 CC=1
CLI =C 9XYZ'yC*Xx*'—-1 cc=2
CLI =X0]1¢,X%0°* cc=2

It is inmportant to renember that the first operand in the comparison canes
from nemory. W can rewite the sanple program from Section 18 which bl anks
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out the special characters in the string at STR by nmaking use of the cLI
and M instructions; the latter sinply stores the second byte of the
instruction at the first operand address.

LA 1,80 INITIALIZELGCOP COUNT

NEXT LA 29STR=-1(1) CONSTRUCT CHARACTER ADDRESS WITH INDEXING
CL1 0(2),C*A* CUMPARE ADDRESSED CHARACTER TOLETTER'A?
BC 10,ANUM BRANCHIFNOTLESSTHAN °A®
MVI 0(2),C* ¢ BLANK OUT IFNON=ALPHANUMERIC

ANUM 8CT 1 JNEXT COUNT DOWNANDLCOP

Because SI instructions cannot be indexed, the LA instruction named NEXT

nust be used to construct the desired menory address for the character to

be tested. The ¢LI instruction compares the eight bits in menory to the

I medi ate operand c'A', and if the byte in nenory contains a bhit pattern
whose value is greater than or equal to 1930, the following BC will branch
around the WI instruction. [|f the branching condition is not met, the I
stores the bit pattern corresponding to the EBCDI C representation of a blank
into the character string. It can be seenthat the use of these two Sl
instructions allows considerably sinpler coding than in the previous exanples
of the sane processing.

The TMinstruction is one of the nost useful in the System/360 instruction
set for applications where individual bits nust be exam ned. Because no
means is provided for addressing individual bits, data in bit form nust be
treated differently. The inmediate operand of the TMinstruction is used
as a mask to indicate which bits of the addressed byte are to be exam ned;
wherever a 1 bit appears in the mask, the corresponding hit position of the
memory operand is examned, and 'wherever a 0 bit appears in the nmask, the
corresponding bit of the menory operand is ignored. The result of the
exemination i S indicated in the setting of the Condition Code, as shown in

Figure 19.3.

cc I ndi cati on -1

Bits examned are all zeros or mask is zero
Bits examned are mxed zero and one
3 Bits examned are all ones

Figure 19.3 CC Settings after ™ Instruction
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one Special case of the TMinstruction can arise if the mask specified by
I is zero (indicating that no bits are to be examned); the CC is sinply
set to zero. To illustrate the use of the TMinstruction, consider the

foll owing exanpl es,

1) Branch to MNUS if the fullword integer stored at NUM is negative.
(This technique can be used to avoid having to load a register.)

™ NUM,Xx*80° TEST LEFTMOST BIT
8C loMINUS BRANCHIF A1 BIT

2) Branch to EVEN if the fullword integer stored at NUM is even.

™ NUM+3, 1 TESTRIGHYMOSTBIT O F FULLWORD
BC 89EVEN BRANCH IF ZERC

3) Branch to MXED if the bhits in the byte at B are not all zero or all one.

™ Be255 TEST ALL 38ITS
8C 44MIXED BRANCH IF MIXED O AND 1

k) Branch to SMALL if the value of the halfword integer at HNUM i S between

-512 and 511.
™ HNUM, X'FE* Teol LEFTNMOST 7 BITS
BC 99 SMALL BRANCH IFA L LOCRL]

Wien used in conjunction with the NI, @I, and XI instructions, T™M
p;r ovides a sinple neans of setting and testing yes-no indicators in a program
For exanple, suppose we wish to add the three fullword integers stored
beginning at Q and afterwards branch to HPERR i1 no overflows occurred and
to ERRFR if one or more overflows occurred.

MVI FLAG,0 SETINDLCATQOR I-CR NO OVERFLOWS
L 0,Q GET FIRSTINTEGER
A 0,Q¢4 A D D SECUNDINTEGER
5c L4 4NEXTA BRANCHIF NO CVERFLOW
)¢ FLAG,1 SETUVERFLOWF L A G*ON*( T O1)
NEXTA A 0,Q+8 ADUTHIRDINTEGER
BG 1y ERROR BRANCH LF OVERFLCWTO ERROR
™ FLAG, 1 UTHERWISEEXAMINEOVERFLOWFLAGBIT
5c 8 y NOERR IFBITWASZERC,NOOVERFLOWS
8c 1 9 ERROR | F UNE9y GVERFLGWCCCURRED
FLAG CS X UVERFLUWFLAGBYTE
< Y 3F INTEGERS JO BE ACGEO
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The #I instruction ORs a 1 bit into the rightmost bit position of the byte
named FIAG, thus setting it to a 1. Note that only the rightnost 'bit of the
byte is being used; the other bits might be used to indicate other conditions
detected el sewhere in the same program

As another representative example of the use of these instructions,
suppose we are required to process a list of n halfword integers stored at
LI ST, where the positive nonzero fullword integer n is stored at N. Suppose
that the processing requires that the elenents of the |ist be added together,
except that alternate elenents of the list are to be added tw ce; the right-
most bit of the byte named SWITCH is set to 1 if the first element is to be
added twice.

LA 49LIST INITTIALLISTADDRESS INRY4
L 3N NUMBER -OF ELEMENTSI N R 3
SR 646 INITIALIZE SUM TC ZERQ
LCAD LH 5+0(044) GET A HALFWORDLISTELEMENTINRS
AR 695 ADDTOSUMONCE
™ SKWITCH,1 TEST SWITCH BIY
8C 8+0NCE BRANCHIFO0, ADO GNLYONCE
AR 645 ADD A SECOND TIME
CNCE LA 492(044) INCREMENT LIST ADDRESS BY 2
Xl SWITCH,1 INVERT SWITCH BIT :
BCT 3,L0OAD BRANCHTO GET NEXT ELEMENT IF NOT DONE

Since the XOR of a 1 bit and any other bit inverts the value of the latter,
the XT instruction alternately sets the switch bit to 0 and 1. The TM
instruction examnes only the rightmost bit. of SWTCH the branching condition
will be met if that bit is zero.

A techni que which occasionally finds use in such an application involves
changing the mask field of a branch iastruction so that italternately
contains B'l1l11l' and B'0000', causing an unconditional branch to alternate
w th a-no-operation. The above code sequence can be rewitten to use such
a technique as shown bel ow.
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L 1N " GET NUMBER OF ELEMENTS TO BE ADDED

LA 0,2 SET UP INCREMENT OF 2 INRO
AR 191 2%N )
SR 140 2%{N~-1)IN R1 = CCMPARAND FQR BXLE LOOP
SR 242 INITIALIZEINDEXINR2TO ZERO
LR 3,2 SAME FOR SUM IN R3
O BRNCH+14X*FO® SET SWITCHFOR SINGLEACDON FIRST PASS
™ SWITCH,1 CHECK SWITCHTO SEE IF SETUP ISCORRECT
BC 84ADD JUMP IF BRANCH HAS BEEN SET CORRECTLY
NI BRNCH+19X'0F* QTHERWISE SET UP TO ADD TWICE QN 1ST PASS
ACC AH 3,LIST(2) ADD A TERM
BRNCH BC OsFLIP MASK FIELD HERE IS ALTERNATED 8Y X1
AH 3¢LIST(2) ADD AGAINIF NECESSARY
FLIP X BRNCH+14X*FO? INVERT BRANCH MASKBITS
BXLE 2,C+ADD CUUNT AND LCGP
ST 3+RESULT STURE ANSWER APPRCOPRIATELY

There. are several features of this exanple to be noted. First, the nmask
field of the second BC instruction must be addressed at BRNCH+L rather than
at BRNCH, because the latter is the nane of the byte containing the operation
code. Second, the instructions preceding the [oop which initialize the mask
field mght be necessary because this segnent of code nmay be part of a |arger
program which executes it many tines, and we have no assurance t hat the nask
field will be preset correctly. Third, the instructions which manipul ate the
mask bits are witten in such a way as to | eave untouched the index register
specification digit in the second byte of the instruction at BRNCH. This is
necessary because we do not want to insert extraneous bits (thereby causing
indexing to be performed), and because in general there can be information
there which nust be unnodifi ed.

The above technique of actually nodifying an instruction in menory can
occasionally yield higher processing speeds, but it is not generally considered
a good programr ng practice for the follow ng reasons:

(a-) the coding tends to be nore. difficult to understand, since a
reader cannot tell with any degree of certainty what is to be done
by a given instruction if it is subject to nodification by other
parts Oof the program

(b) checking out the programis nore difficult, since it is usually
easier to keep track of data (such as at SWITCH in the previous
exanpl e) than parts of instructions;
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(c) if it is necessary to 'rewite a portion of the programit nay be
difficult to find all the instructions which nodify others;

(d) if the program must b©e re-enterable (a property of coding which is
i nvol ved in multiprogremming appiications and interruption processing,
whi ch will be treated later) such a technique is forbidden.

This mght appear to contradict the earlier statenments that the flexibility
of a conputer is derived fromits ability to nodify the instruction sequences
It executes; by this we sinply neant that the program can control its paths
of execution, rather than that it nodifies the actual instructions as was
done here. A degree of instruction nodification is provided by the Execute
instruction, to be discussed |ater.

To show that the above exanple need no-t rely on program nodification,
we give two further code segnents which performthe same cal cul ation nore
rapidly; the first uses two separate add sequences.

L LN SeT UP CUMPARAND IN R1
BCTR 1,0 N-1
SLL 1y1 Zi=2 IN R1
LA 0,2 INCREMENT IN RO
SR 393 INITIALIZE SUM TG ZERO
LR 2+3 ‘ SAFE FUR INDEX
™ SWITCH, TESYT WHETHER FIRSY TERM ADDS TWICE
8c 1, TWICE BRANCH [F BIT=1, MEANING YES
GNCE AH 3,LIST(2) AUU A TERM ONCE
BXH 2104NEXT INCREMENT INDEX AND LEAVE LOOP IF DONE
TWICE Ah 3,LIST(2) ADD A TERM
AH BQLIST‘Z) oaoTHlCh
BXLE 2,0,0NCE INCKEMENT INDEX AND LOQP
NEXT - - CUNTINUATION CF PROGRAM

The second auds all the terms in one |oop and the alternate ones in another.

L 1N GEY N
BCTR 1,0 N-1
AR ls1 CUAPARAND = 2{N-1)
LA 0,2 INCKEMENT = 2
SR 393 INLFTLIALLZE SUM TC 2gR
SR 2492 INLTLIALLZE INDEX TO ZERC
ACLC1 AH 3,LIST(2) ADD ALL TERMS OANCE
BXLE 2,0,ADD1 LaDEX THROUGH ENTIRE LIST
LR 2,0 NUW SET INDEX TO 2 INITIALLY
AR 0,0 St LinCREMENT TO 4 FOR ALTERNATE TERMS
™ SWITCH,.1 Stk IF FiRST TERM ADDS SINGLY
8C 8+ADD2 BRANCH I§F YES
SR 242 UTHLRwI oL RESET INITIAL INDEX YO ZERO
ALCZ AH 3,LISTE2) ADU AN ALTERNATE TERM #CR SECOND VIME
BXLE 240,A0D2 ENOREMENT INCEX BY 4 ANL LCOP
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Thié | ast example i s slightly sl ower than the previeus one, becsuse mors |
branching instructions are executed; in particular, it will not work
correctly if n = 1.

The above exanples have illustrated the use of logical instructions

mai nly for control purposes. Another inportant application is the manipulation

of data in bit form-- that is, data which assume only two val ues. For
exanpl e, suppose that part of the record of a person carrying autonobile
insurance requires the follow ng yes-no information: (1) age less than 257
(2) male? (3) driver training course conpleted? (4) married? (5) any
previous clains? (6) assigned risk?: Let the "yes" answers be represented
by 1 bits in the first six bit positions of the byte named STATUS. The
following tasks may be perforned by the indicated instruction's.

1) The policy holder has passed his 25th birthday.
NI STATUS,B'01111111'
2) The policy holder has married.
™ STATUS, B' 00010000’
Bc 1, BIGAMY
] STATUS, B' 00010000

3) The policy holder has subnitted a claim if it is the first, branch
to TSK, otherw se branch to TSKTSK.

™ STATUS,B*1000"
BC 1, TSKTSK
8C 15,TSK

4) If the policy holder is single, male, less than 25, and has not ccupleted
a driver training course, branch to HIGHCST.

IM STATUSX"30®* TEST MARRIED AND TRAINING

8C 7, NEXT

M STATUS¢X*CO" TEST AGE AND SEX

8C 1yHIGHCOST IF youné MACE, BRANCH
NEXT - = =~

5) If the policy holder is an assigned risk, indicate that he has previou:
claims if he also has no driver training

I M STATUS,X*4?
BC 8 NEXT
T STATUS,X*20*
gL 1. NEXT
ci STATUS,X*8?

NeXY = = =
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6) If the policy holder is married or has conpleted driver training,
branch to L$RISK.

™ STATUS yMARRIED+TRAINING
BC 5y LORISK

MARRIEC EQU 16
TRAININGE Q uU32

As a final exanple of the use of Sl instructions, suppose there is a
fullword integer stored at I!? which we wish to convert to a character string
of decimal digitswhich can be printed, with the sign of the nunber preceding
the first significant digit; if the nunber is zero, the characters "+0"
shoul d be placed at the right-hand end of the character string. 'Since a
fullword i nteger can be at nost 10 decimal digits long, we wll reserve 11
bytes for the result at NBR  The conversion is perfornmed according to the
schene given in Section 2.

LA 2.10 SET UPTUBLANKGUTRESULT AREA
ELANK LA 34,NBR-1(2) CONSTRUCT BYTE ADDRESS
MVI 0(3),C* * STOKE BLANKS IN FIRST 10 BYTES
BCT 29BLANK BRANCHBACKOTIMES
L 1N , GETNUMBERTCBE CONVERTED
LPR 1.1 TAKE ITS MAGNITUDE
LA 3,NBR+10 SET UP ADDRESS OF RIGHTMOST ‘DIGIT
CNVTLP SR 0.0 CLEAR HIGH-ORDER REGISTER
0 Oe=F?10° GENERATE A DIGITB Y DIVISION
STC 0,01043) STURE THE REMAINDERBYTE
ClI 0{3),Ct0" GIVEDIGIT CGRREC]) EBCDIC REPRESENTATION
BCTR3 , 0 MUVECHARACTERPOINTERLIBYTE TO THE LEFT
LTR 1.1 StE IF DUNEy CQUOTIENTGOE S TOZERQ
BC 2,CNVTLP IFf NUTZERO, GENERATE MGRE DIGITS
MVI 0(3),C¢? ASSUMESIGN XS+y STORE THAT CHARACTER
™ NeX®80°" CHECKACTUALSIGNO FARGUMENT
BC 8¢ALLDONE BRANCHIFI TWASINDEED POSITIVE
- MVI 0(3),Ct—* UTHERWISE PLANT A —SIGNINT H ESTRING
ALLCONE - -~ - RESTUF PROGRAM
NBR 0S- CL11 OUTPUT CHARACTER STRING
N GS F NUMBER TO BE CONVERTED
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20. SS Instructions

As the nane inplies, Storage-to-Storage instructions work with operands
which are entirely in nenory; except for TRT end EDMK, the only reference to
or use of the general registers by SS instructions is for addressing purposes.
This allows considerable freedomin the arrangenent of operands in nenory,
particularly since the data to be manipul ated by SS instructions nmay be of
‘variable | ength . Qur concern in this section will be with the first nine
Instructions in Table VII, which are listed for convenience in Figure 20.1.
The remaining SS instructions, which are primarily used for handling data in
pecked decimel format, will be discussed |ater.

Mhenoni ¢ I nstruction Mhenoni ¢ Jnstruct kon
Mc Move . fc R
MVN Move Nunerics NC AND
MVZ Move Zones XC Exelus ive OR
TR Translate CLC Conpare
TRT Transl ate and Test

Figure 20.1 Sone Storage-to-Storage Instructions

All of the above instructions have the format illustrated in Figure 20.2 bel ow,

. Tength
Op%ga’:im Speci ficatiop by d1 bz da
Byte —
78 15 16 1920 3132 3536 47

Figure 20.2 Format Of Some Storage-to-Storage Inatructions
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Bafore discussing the instructions themselves, wa must examine some of
the details involved in specifying the number to be placed. by the Agsembler
in the Length Speaification Byte, the second byte of the instruetion. As can
be seen from Figure 20.2, five operand-field quantities inall must be provided:
the base and displacement of the address of the first and second operends,
and e number which specifies the length in bytes of the date to be manipulated.
To 11lustrate one way of giving this information, suppose we wish to move 23
bytes from the area of memory beginning a A to the area beginning et B; we
could write  MVC B(23),A to perform the task. Note that only t W O
operands are specified in the operand field entry of these instructions, and
that the number in parentheses iS NOt an index register specification but
the nmber of bytes to be moved; it is expected that ‘the Assembler will compute
displacemente and asbign bases for US, since we have used implied eperand
addresses . There are seversl other ways O specify the length spec¢ificetion
byte; these are shown in Figure 20.3. For an explicit length spacification,
the value provided is used; for an implied length, the Assembler will determine
an appropriate value in a way to be described shortly.

| Explicit Length l Implied Length
s1(L),se 81,82 »
d1(L,by),s2 da(,o),02
e1{L),de(ba) 81,da(b2)
d1(X%yb1),d2(ba) d1(,%2),d2{(v2)

Figure 20.3 Lenigth Specification for Bame S8 Ihstructions

To 1llustrate the writing of ah explicit length, suppose we esgeih went to
move 23 bytes from AtoB, and we¢ Krow that if R9 18 used as 8 base, the
digplacements computed for A end B will be 125, and 47Dy g reepectively.
Then {0 achieve the desired result we could write any of the fellowing four
instructions corresponding to the first eolumn of Figure 20.3:

MVC B(23),A

MVE X*'470%{23,9) A

MVC  B(23),293(9)

MVC 1149123,9) ,Xx*125%(9)
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where equi val ent decinmal and hexadeci mal self-defining terms have been used
to specify the displacenents d; and dz.

It is often the case, however, that one does not want to be required to
specify an explicit length, particularly in cases where the length should be
apparent from the operands involved. For exanple, suppose the synmbol B is
defined in a DC or DS statenment as in the program segnent below.

MVC B,=120C" SET FIELD AT B T¢ BIANKS

-

BDS cra3

It is apparent that if nore than 23byteswere nmoved by the WC instruction
that the data or instructions following the byte at B+22 could be overwitten;
thus the length should be determirned from the first, or receiving, operand
rather than the second. This, in fact, is what the Assembler does : if no
explicit length is given, the length attribute of the synbol or expression
inthe first operand is used as the length specification. In the exanple
above it is evident that the length attribute of the symbol B is 23, so that
the correct result is obtained. |If the first operand is an expression rather
-than a single term the length attribute i S determined from the foll ow ng

rule :
L. The length attribute of an expression is the length attribute
of the leftnost temm.
Thus, i f’ we wote MWC  B-l4X'5'-1,=120C" the length specified woul d
be 23, whereas if we wote MVC  X'S'+B-5,=120C' the I ength specified

woul d be 1, because
2. The length attribute of a welf-defining termis always 1.

In this exanple, a knowledge of the bage and displacement to be assigned

when addressing the symbol B (nanely 9 and 47D;g)does not give the correct

Length when an implied length is given: WC  x'47D'( ,9),A specifies

a length of 1 rather than 23, because X'47D' is a self-defining term and
0?2 1f an explicit base and displacenent are given, the length

specification is the length attribute of the expression
Witten for the displacenent.

These rules are summarized in Figure 20. 4.




Form of Addr ess Length
First Qperand Specification Specification | Length Used
81 | nplied implied | engt h &ttribute of sy
s1( L) implied explieit L -
di( ,b1) explicit implied length attribute of 4,
a1(L,ba) explicit explicit L

Figure 20.% Deternination of Length Specification Byte

Because situations occasionally arise where it is useful to specify an implied
length with an explicit base and displacement, and the desired length is not
heseme as the length attribute of the displacement expression, an alternative
technique is provided. W could have witten

MVC B-B+X'47D'(,9),A

nthe exanple above, and the length attribute of the displacenment expression
woul d then be conputed to be equal to the length attribute of' B. Such

~ constructions are cunbersone, and it is preferable to use a Symbol Length
Attribute Reference, which was mentioned in the di scussion of temme In

Section 11.
A Symbol Length Attribute Reference is witten as an L followed by en

apostrophe followed by a synbol, as in L'B; it IS an absolute term with a
val ue equal to the length attribute of the symbol. Because sywbols can be
defined in several ways, the followi ng additional rules are neded:

1. The length attribute of a Location Counter Reference {*) is
the-length of the instruction in which it appears; thus mvc B(L'*),A
W Il gssign a length of six. '
2. Iff%he*g{mbol was defined in an EQU statement with * or a self-
defining tem in the operand field, the length attribute assigned

will be 1.
3. The length attribute of a literal is not defined; thus constructions

such as  MVC B(L'=C'RAY'),=C'RAY' are incorrect,

- Thus we can rewrite Our simple exanpl e above, Whi ch uses ean explicit base
end di splacenent, as MvC X'47D'(L'B,9),A
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Before discussing the various instructions in Figure 20.1, one further
detai| nust be noted. Because the |ength spebification fits in a single byte
it may assune one of the 256 possible values between 0 and 255: these
specify lengths between 1 and 256. This sonewhat peculiar construction is
due to two factors: first, every SSinstruction al ways operates on at | east
one byte; second, while all the instructions listed in Figure 20.1 process
data fromleft to right (in order of increasing addresses), there are other
SS instructions which process data fromright to left (in order of decreasing
addresses). In these latter cases, before performng any operations the
CPU nust be able to construct the address of the rightnmost byte of the operand
string (renmenber that all operands are addressed at the | owest-nunbered
location). It is sinplest to do this by adding the appropriate length
specification to the effective address of the operand in question, because
there are k+1 bytes in a string beginning at location n and extending through
| ocation n+k. Such considerations will normally be of little interest to
the programmer, since he will allow the Assenbler to determne the necessary
quantities from the operands provided in the instruction statement. However,
it is sometimes necessary at execution tinme to conpute the number of bytes
to be manipulated, so that the relationship between the actual contents of
the Length Specification byte and the nunber of bytes involved becones
inportant. An illustration of this is given in exanple (4) later in this
section. Thus, in summary, the Length Specification Byte contains a nunber
which is one | ess than the nunber of bytes to be operated on, unless an
explicit length of zero is given, in which case a zero is assenbled also
The follow ng instructions would therefore be assenbled as indicated, assum ng
the sanme displacenents for the synbols A and B relative to ¢(R9) as previously.

INSTRUCTION ASSEMBLED FORM
MVC 8{23)4A D216 9470 9125
MVC B{l)sA D200 947D 9125
MvC B{O)yA 0200 944D 9125

MVC O(L*%),29(12) D205 0000 CO1D
MVC 15(L*B-4,3),8 D212 300F 9470
MvC BeA uZle 947D 9125
MVC HIL*HyH)yH 0200 8OQ8 0008
MVC H{HsH) pHE H) D207 8008 8008
MvC HeB—A(4G3,4 0200 9360 9125

MVC TsB8-4 D216 941D 9419
MVC B-A+4(3)yA V208 035C 9125
e oS cL23
T EQU B

k eQu 8
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As indicated earlier, the WC instruction noves the specified nunber of
bytes from an area whose |owest-addressed byte is at the effective second
operand address to an area starting at the first operand address. There are
no restrictions on overlapping of the two areas, «that various functions
such as propagating a character through an arca or clLifting the bytes iu an
area may be perforned as in the foliowing exanples; we need only renenber
that all SS instructions are executed in such a way that each byte is ztored
before the next byte to be operated on is retrieved from menory.

{1) Set the 120-byte area beginning at LINE to bl anks.

MVI LINE,C* ¢ STORE EBCODICBLANKAT LINE
MVvCe LINE#1{1192,LEME PROPAGATE THROUGH REMAINING AREA

This requires |ess storage space than
MVC LINE( 120) 4=120C* *
(because space is required for the literal) but slightly nore execution
time
(2) Shift the 80-byte character string beginning at STRto the left; by two

characters, leaving blanks in the vacated positions.

MVC STR(781,STR¢2
MVC STR+781{2) ,=Ct TWOBLANKSTOEND

(3) Exchange the contents of the halfword integers at A and B

MVC TEMP, A MUVEATOTEMPORARYLOCATION
MVC A,B MUVE B TO A
MVC BsTEMP MUVE OLUOCLA)FROMT E M QTO 8
TEMP | s - XL2
A DS H
e DS H

Note that no registers were changed in the above instruction sequence.

(4) R8 and R9 contain respectively the address and length of a nmessage of
| ess than 120 characters. Mve the message to the area naned LI NE

BCTR 9,0 DECKEASELENGTHBY1LFOR CPU
STC GeMVCH1 STURE AI LENGTHBYTEOF MVC INSTRUCTION
MvC MVC LINE(O),0(8) MUVECORRECTNUMBERGOFCHARACTERS
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The BCTR is used to reduce the character count fromits "true" val ue
to the value required by the CPU in the execution of the MVC, nanely
one | ess than the number of bytes to nove.

The MVN and MVZ instructions work in exactly the same way as M/C, except
that only the rightnost % bits (the "Numeric" postion of a character) and.
leftmost 4 bits (the "gone" portion of a character) arc noved, respectively,
Wiile these two instructions are occasionally useful for other purposes,,
their main applications concern data in packed decimal format. To illustrate
some sinple uses, consider the follow ng two exanples.,

(5) Convert the positive halfword integer at Nto a string of 5 EBCDIC
characters beginning at NDEC which give the decimal representation of C(N).

LH 19N GETNUMBERTOBECONVERTED
LA 2+5 CUUNT NUMBER OFDIGITS| NR2
X SR 0,0 CLEAR HIGH-~CORDER FEGISTER
D 0y=F*10°? GENERATE A DIGIT
STC OsNDEC~112) STUREDIGITIN OUTPUTSTRING
BCT 29X COUNTANDBRANCHUNTILDONE
MVZ NDEC{S5) y=5X*FF* ATTACHZONES FOREBCDICREPRESENTATION

- -

NCEC DS CL5

-Note that we could have used the literals =5C'0' or =5C'9' in the Mvz
instruction, with the same results.

(6) Convert the 5-digit decimal nunber in EBCDIC format NDEC to a fullword
binary integer and store it at M

A

MVN TEMP,NDEC RETRIEVENUMERICPORTIONSOFDIGITS
LA 3, TEMP ADDRESSUF CURRENTDIGITIN R3
LA 245 NUMBEROFDIGITS
SR 0.0 CLEARR OF O RDIGITS
LR 1,0 ANDR1 FUR NUMBERBEING GENERATED
MULT NH -~ ly,=H*10°* MULTIPLY ACCUMULATED PART BY10
iC 0+0(0,3) INSERTDIGITFRCOMINPUTyNO ZONES
AR 140 ADDTOPARTIAL SUN
LA 3,1(0,43) INCREMENTODIGIT AGDRESS
BCT 2 MULT CUUNT A N D LOCP
ST 1M STORERESULT
TEMP T i - XLS'0" ZUNESPRESET TOZEROsDIGITS MOVEDI N
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W note with reference to these two exanples that there are instructions
avail abl e in System/360 which considerably sinplify the conversion of
nunbers between binary and decimal fornms; they will be treated later.

The logical instructions NC, #c, and XC performthe |ogical operations
described in Figure 17.1 upon two strings of bytes, leaving the result in
the first operand string, and set the CC as in Figure 17.2. Consider the
foll owi ng exanples.

(7) Cear the 120-byte area at LINE to zero.
XC LINE(120),LINE

Note that we coul d al so have used the same technique as in exanmple (1)
above; the use of XCis usually slightly slower due to the necessity
, for actually performing the XOR operation, but requires |ess space in
the program

(8) Branch to YES if the fullword integer at LUMP is zero.

g LUMP( 4) , LUMP NC TOMP( 4), TUMP

BC 8, YES or Bc 8, YES
In each case the first and second operands are identical so the only
result of the logical operation is to set the CC, no data is changed.
This technique is useful when a register is not free so that performng
the sequence L followed by LTR would be awkward, or when the data is
not aligned; it will usually be slower, however.

(9) Suppose there are two fullwords X and Z in nmenory which contain Pour
positive integers each, packed as illustrated in Figure 1k.7. Replace

the second of the integers in the word at X by the corresponding val ue
fromthe word at Z.

MVC TEMP,2Z MUVENEWVALUE TOTEMPORARY LOCATION
NC TEMP ¢MASK ELIMINATE ALLBUT SECOND INTEGER
oc X ¢ MASK SET ALL BIYS T O 1IN 2D INTEGER POSITION
XC X9 MASK NUW SET THEM JO 2ERO
ocC X TEMP INSERTNEWV A L U E INTO WOGRD AT X
TEMP DS XL4

MASK DC XL4'00780000* MASK BITSFORSECOND INTEGERPOSITION
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The CLC instruction conpares two strings of bytes, one byte at a tine,
until either an inequality is discovered or the required nunber of bytes
has been compared. As was the case for the CLI instruction, the conparison
i's made between unsigned positive |ogical quantities.

(10) Two positive fullword integers are stored at S and T. Branch to TBIG
if C(T) is algebraically larger than C(S).

CLC T(4),s
BC 2, TBIG

(11) Two negative fullword integers are stored at S and T. Branch to TNB
if C(T) is algebraically less than or equal to ((S);.
CLC ™(4),s
BC 12, TNB
(12) A list of 100 names and occupations, each contained in a block of 60
bytes, is stored beginning at LIST. [If any of the blocks matches the
nane and occupation at WHf, branch to FguND.

LA LoLIST INITIALIZE T O ADDRESSOF FIRST BLOCK
LA 2,100 SET CUUNT TO NUMBER OF BLOCKS

TEST CLC 0€(60y1)yWHGC CUMPARE BLOCKS
8C 8 FOUNC BRANCHIFBLOCKS ARE EQUAL
LA 1060(0,1) UTHERWISE INCREMENT ADDRESS BY 60
BCT 22 TEST CUUNT DUWN FRCM 100 A N D BRANCH
8C 154NOTFOUND NO MATCHING BLOCKW A S FGUND

The remaining two instructions to be examned are TR and TRT. These
are flexible instructions which can greatly sinplify many conpl ex programing
tasks; they appear conplicated when first encountered, but in reality are
quite straightforward in their operation. W wll examne TR first.

Like WC, the TR instruction nmoves bytes from the second operand | ocation
to the ffrst operand |ocation, but in a less direct way. The operation actually
perforns a sort of pseudo-indexing, as follows:

(a) an "argument" byte is obtained fromthe first operand |ocation;

(b) the value of that byte (as an 8-bit logical integer) is used as an
index to access a "function" byte fromthe second operand | ocation:
the address of the accessed byte is the effective second operand
address plus the value of the argument byte fromthe first operand;
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(c) the accessed function byte replaces the argument byte frem the

first

operand string;

(@) this process continues until the number of bytes indicated by the

| ength specification byte has been translated.

For exanple, suppose the string of 5 argunent bytes at P contains X'0201040503',

and the character string at G contains C ABCDEF . Then if we execute the

TR P(5),G the final contents of the 5 bytes at P will be
CCBEFD . This is easily seen to be the correct result, as follows: the

first argument byte taken fromthe first operand |location is 02i; the
function byte at G#'02'is ¢'c', and this replaces the first byte at P.
Simlarly, the fifth and last byte at P is 031; the byte at G#'03'is ¢'D',
which is the final byte placed in the string at P. W can use RX instructions
to sinmulate the action of the TR instruction as follows, where it is assuned
that the synbols L, B1, p1, B2, and p2 have the same values as in the TR
instruction being sinulated; frpurposes of the exanple, assune that B1L and
B2 have val ues other than 1 or 2.

instruction

¥ TR
LA

: SR
SR
GETARG 1C
1€

STC
CA

B8CT

D1(L+B1)o02482) IS THE INSTRUCTION BEING SIMULATED

O.L
le1

2.2
2:,01(1481)
290212482}
2+D1(1,481)
191(0,1)
Q+GETARG

SETCOUNTERINROTO NUMBEROFBYTES

SET FIRST OPERAND INDEXT 0 0
FURINDEXINGTABLEA T2NDOPERAND ADDRESS
GET ARGUMENT BYTEy USE AS XNOEX
REPLACEITBYFUNCTIONBYTEFROM TABLE
STUREINSTRING ATFIRSTOPERANDLOCATION
INCREMENT F | R S T OQPERAND INDEX B8Y 1
LUUPUNTILLARGUMENTBYTES ARE PROCESSED

The fuil power of the T instruction can be appreciated if we consider
the first exanple from Section18, where a character string was to be processed
in such a way that all special characters whose EBCDI C representations are
nunerically lessthan c'A' are converted to blanks. By setting up an
appropriate table, the entire process can be done by one instruction, as
follows. The method used toconstruct the 256-byte table i s neither el egant
nor general; better ways will be illustrated later.

TR

STR(80),¥BL

- > >

veL DC
DC
oC
DC
DC
DC
DC
DC
DC

193C* ¢
C*ABCDEFGH]?

7C* ¢
C*JKLMNOPGQR?
cLae ¢
C*STUVWXYZ?
6C* ¢
C*0123456189°
6C* ¢

TRANSLATE ALL SPECIAL CHARACTERS TO BLANK

ANYTHINGLESS THAN C’A’ IS BLANKED
LETTERS A R E UNCHANGED .
dLANKTHENGON—-PRINT ING CHARACTERS BETWEEN
PRINT LETTERS AS IS

BLANK QUT NON-PRINTING CHARACTERS

BLANKS F O R ANY.THING BETWEEN €*2Z* A N D C°0°*
DIGLITS PRINT A SIS
TAIL-ENOERS AREBLANKEDT O O
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As a second exanple of the use of the TR instruction, suppose we want
eventual ly to print the contents of the fullword at Was 8 hexadecinal digits,
and are required to place the 8 EBCDI C characters representing the digits in
a string starting at HEX. (W will see later that the UNPK instruction does
this nmore sinply.)

L LoW GETFULLWORDTOBECONVERTED
LA 2,HEX ADUORESSOFCHARACTER BEING STOREDIN R2
LA 3,8 CUUNTINR 3
CLEAR SR 0,0 CLEARROFOR SHIFTING
SLOL 0.4 SHIFT A HEXDIGITINTOR O
STC 0,0(0,2) STURE INSTRINGA | HE X
LA 29100,52) INCREMENT CHARACTER ADDRESS BY1
8CT 39CLEAR BRANCHUNTILS8 DIGITSARESTORED

TR HEX{8) y=C*0123456789ABCDEF®* TRANSLATE TO EBCDIC

W can also index in the opposite direction, as follows:

L OsW GET FULLWORD TO B E CONVERTED
. LA 2,8 COUNTER AN D INBEXIN R2
SRIFTSRDC 0,4 SHIFTA DI G I TINTQRL
SRL 1,28 POUSITIUN FOR STORING
STC 14HEX=1(2) STURE IN CHARACTERSTRING
BCT 29 SHIFT DECREASEINDEXANDSHIFTAGA.LN .
IR HEX,TAB TRANSLATE DIGITS T O EBCDIC REPRESENTATION

- = -

REX DS CL8
TAB oC C*0123456789ABCODEF*

The TRT instruction is identical to TRin the first two steps which
were |abeled (a) and (b) above; it is quite different in that the accessed
byte fromthe table addressed by the second operand does not replace the
argument byte fromthe first operand string. The accessed function byte is
exanmined instead, and if it is not zero, (1) it is placed in the rightmost
byte of R2, (2) the address of the argument byte (which caused a nonzero
function byte to be accessed) is placed in the rightnost 2k bits of Rl; the
remaining bits of Rl and R2 are unchanged, and (3) the operation termnates.
The CCis set to indicate the conditions tabulated in Figure 20.5.
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CC Setting I ndi cation

0 Al'l accessed function bytes were zero.

1 Nonzero function byte was accessed before the last
argunent byte was reached. ‘

2 The nonzero function byte accessed corresponds to Ukhe

| ast argunent byte.

Figure 20.5 Condition Code Settings for TRT Instruction

As an exanple suppose we are to scan a string of 80 characters beginning
at CARD for punctuation in the form of periods, commas, and apostrophes;
when one of themis found, a'branch should be made to P, C, or A respectively,
with the address of the character in Rl. |f none are found, branch to NPPUNCT.
First', we will wite a program segnent using CLI instructions.

LA 1+CARD INITIALIZE CHARACTER ADCRESS
LA 2,80 NUMBER OF CHARACTERS TO EXAMINE
TESTP cLI 0(1)eCe? CUMPARE TO PERICD
BC 8¢P BRANCH IF FOUND
cLI 0{1)4Ct*,® COMPARE TO CCMMA
8C 85C BRANCH IF FGUND
cLlI 0(1),Cor00 COMPARE T O APCSTROPHE
BC 8sA BRANCH | F FGUND
LA 1:1(0,1) UTHERWISEINCREMENT CHARACTER ADDRESS 8¥ 1
BCT 2,TESTP CUUNT AND. LCGP

8C 15,NOPUNCT TAKE THE BRANCH IF NONE FOUND

The TRT instruction allows us to do the same processing nuch nore rapidly
but at a cost of nmore nmenory space.

SR 242 CLEAR R2 TOBE USED AS AN INDEX
TRT CARD{80),TBL SCANFURPUNCTUATION
- 8C 8 sNGPUNCT BRANCH IF NONE  FGUND
BRCH BC 15,8RCH{2) USE FUNCTI ON BYTEASINDEX FUR BRANCH
BC 15,P PERIUD
BC 15,C CUMMA
BC 15,A APUSTROPHE
TEL cC {C'e")X200%,X* 04"
0C [C*y*—C?.*'=1)X200",X%08"
DC (CryooCo -1 )X*'00,X0C?
DC {255~Craen)xaQe

The three nonzero function bytes are located in the positions of the table
whi ch correspond to the values of the EBCDI C representations of the characters
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bei ng sought; the nonzero values are multiples of 4 so they can be used to
index the branch instruction at BRCH, which could al so have been witten

BC 15,*%(2) . If the conditional branch to NgPUNCT had been onitted,
the program coul d have gone into an infinite |oop at BRCH.

To give a final exanple of the use of several of these SS instructions
to process variable-length data, suppose we are given a string of charadters
at NAMES whi ch contains sone unknown nunber of names separated by commas
and ternminated with a period. Qur first task is to construct a table at
LI ST of fullword addresses of the first character of each name; the first
byte of each address will contain the nunber of characters in the name (which
nust therefore be less than 256 letters in length), and when the table is
cotiplete t he nunber of nanes encountered should be stored in the fullword at
NBRNMS. To protect against omtted punctuation or other errors, branch to
LPNGNAME if no punctuation is found within 256 characters of the start of
a narne.

SR 393 R3 CONTAINS INDEXF O RLIST
LR 293 CLEAR FUNCTICNB Y T ESWITCHINR2
LA L ¢ NAMES INITIALIZE SCAN ADDRESS
SCAN LR G4e1 SAVEINITIAL CHARACTER ADDRESS IN R4
TRT  0125641) TRTBSCANFORPERIOCDOR COMMA
BC 8 LUNGNAME BRANCHIFSQMETHING FUNNY HAPPENED
ST 44 LIST(3) STURE ADDRESS O  F NAME IN LIST
SR le4b CUMPUTE NAME LENGTH
STC 1oLIST(3) STOKE LENGTHOF NAME INFIRSTBYTE
LA 3,4(0,3) INCREMENTLIST ADDRESS
LA lol(4a,1) MUVE ADDRESS TO START OFNEXT NAME
8CT 29 SCAN BRANCHIF A COMMA WASENCOUNTERED
SRL 3.2 IFPERIUDy NO BRANCH. COMPUTE AND STORE
ST 3 oNBRNMS NUMBER OF NAMES FCUND
TRTB . OC (C'.*)X200%yX*%0l* FUNCTION = 1 FOR PERIOD
DC {CO39—Coet~1)X"00%,X%02° . FUNCTION =2FQRCOMMA
DC 1255-C'9%)X?00° ZERU OTHERWISE

NAMES OC C*BROWNyGREEN yWUNKA s OF STRAND 9y JONES  SMEDLEY y DOE» APPLE®
CcC C*yDOEoSMITHWICK s SUFTNARD y SMITHDOELFUL y JONES yLURP & ?

FLAG 0s c

NBRNMS O0S F

LIST DS 50F
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The only unusual feature of the above program segment is in the use of the
function byte as a branching switch; if a period is encountered, the contents
of R2 will be 000000011¢ and the BCT instruction will not branch.

Suppose now that the list of addresses is to be sorted so that the names
pointed to will be addressed in al phabetical order if the addresses are taken
in succession beginning at rIst. We will sort by making repeated passes over
the list, making pairwise conmparisons anong the names and exchanging addresses
when they are not in order, and terminating when no exchanges have been made
on one full pass aver the list.

L 09 NBRNNMS GET NUMBER OF NAMES ,

BCTR 0,0 MINUSL1T OGIVENUMBER GF COMPARISONS
START LR 1,0 INI TIALIZE CCMPARISGN CCUNTER

CA 2,LIST INITIAL ADDRESSINLISTOF ADDRESSES

MVI  FLAG,O SETFLAG TO SHOW NO EXCHANGES YET
'GETACR L 3,0(0,2) GET ANADDRESS FROM THE LIST

L 444(0,42) AND THE NEXT HIGHER O N E

CcLC 00(25643),0(4) CUMPARE THE: NAMES

8C 12 yNOGEXCH BRANCHIFIN CORRECT ORDER ALREADY

ST 3,4(0,2) UTHERWISE EXCHANGE ADDRESSES IN .LIST

ST 440{0,2)

MVI FLAG,1 INDICATE THAN A N EXCHANGE OCCURRED
NOEXCH C A 2+4(092) 7 INCREMENT ADDRESS LISTPOINTER

8CT  1,GETADR JUMP TO 00 ANGCTHER COMPARISON

™ FLAG,1 NUWy SEE IF ANY EXCHANGES WERE MADE

BC 1, START IFYESy BRANCHTO M A K E ‘ANOTHERP A S S

In doing the nane conparison above, we have relied on the fact that the
punctuation character at the end of a name has an EBCDI C representation of
smal  er value than that of letters -- this state of affairs is often expressed
by saying that special characters are |ower in the EBCD C collating Sequence

(the natural ordering inplied by the value of the character) than letters.
Thus "SMTH, " will conpare smaller than "sMITew", and shorter names will

sort ahead of longer ones with the sane beginning letters. |f two identiaal
nanes are found, the comparison Wi ll either branch on equality and no
exchange will be made, or the inequality will be determ ned by whatever

the characters in the follow ng name happen to be; the addresses of the

i dentical names wilstill be adjacent in the sorted |ist.

Finally, suppose we are required to place the names in al phabeti cal

order in a string beginning at s¢rr, agai n separated by commas and terminated
with a period.
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L 1oNBRNMS COUNTERFORNUMBER OF NAMES”

LA 22LIST R2 CUNTAiINS ADDRESS OF CURRENT LIST ENTRY

SR 0.0 ROWILLCONTAINLENGTHGFNAME

LA 4, SORT-1 R4wlLL HAVE ADDRESS OFCQUTPUT NAME
ACRGUT L 340(0,2) GET ADDRESS f-RUM LIST

XC 040(0,2) VET LENGTHBYTE FROM TABLE

STC 0y MOVE+1 STUREINM V CLENGTHFIELD

LA 441(0494) MUVE ADDRESS T O START O F NEXTNAME
MCVE MVC 0(0y4),0(3) MUVE NAME INTGCUTPUT AR E A

AR 490 FURM ADDRESSGCFFCOLLOWING PUNCTUATION

-MVI 0(4)4C*,? STURE COMMA AFTER NAME

LA 294{(0,2) INCREMENT ADORESSOF LISTITEM

BCT 1 JADROLTY CUUNT, ORANCHTGC GET NEXT NAME ADDRESS

Myl U4l 02 0 AEPLA L . 75T CCMMABY A PERIOD

In this portion of the program, the punctuation after each nane was moved
with the nanme, but a comma was stored in all cases because the period after
the iaet name at the end of the original string was likely to appear in a
different position in the final output. Two things should be noted in the
M/C instruction: firs% the explicit length specification of zero is a
conveni ent notation for indicating that the actual length to be used is a
variable quantity to be specified at execution tine; and second, since the

- true length of the name is stored in the Length Specification Byte, one
additional byte (the punctuation) is noved.
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21. THE EXECUTE INSTRUCTION

The execute instruction is one of the most unusual | n the System/360
instruction repertoire, eincc it allows the progremmer to specify that the
execution of another instructian shoul d be parformed. It i S en RX-type
instruction with mnemonic EX which works as follows:

1.  The effective address is conputed, and the ra digit of' the EX inetruction
1S saved.

2. The instruction at the effective address in memory (called the _subject
instruction) is pl aced in the Instruction Register (IR); note that the

IA in the PW &s unchanged, and still contains the address of the
inetruction folléwing the EX.
3. |If the new instruction in the IR | S another EX, a program interruption

-"occurs; we shall see shortly that there is a good reason for this,

-4, If the ry digit which was saved i S zero, proceed t0 Step 5. Otherwise,
the rightnmost byte of Rri iS ORed into the Second byte of the IR
Rr1 remains unchanged.

5. The (possibly nmodified) subject instruection in the IR i s now decoded
and executed as 'though it were the original instruction fetched from
menory.

First, consider a few exanples of the use of EX in which the ry digit
Is zero, sothat no ORing takes place in the IR.

(1) store- at C the quantity 2*c(a)-c(B), where A and B are fullwords.

- SR 1yl CLEAR INDEX TOO
“CA . 204 INCREMENT =49 LENGTH OF EXECUTED INSTNS
LA 3,12 COMPARAND = 12

EX EX 0,INST(1) EXECUTE AN INSTRUCTION

BXLE Le24EX INCREMENT BY4ANDLOOP

INST L QoA LOAD RO FROM A {4-BYTE INSTRUCTION)
AR B,0 : DOUBLE C(RO) {2-BYTE INSTRUCTION)
NGPR 0 PADDING INSTRUCTION(2-BYTE INSTRUCTION)
5 0,8 SUBTRACT ¢ (B) {4~BYTE INSTRUCTION)
ST 0.C STORE RESULT (4=BYTE INSTRUCTION)
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This program segment perforns a sinple four-instruction calculation in a

roundabout way; the list of instructions at INST could of course be executed
qui te independently of the first five instructions, giving the sane result
much more rapidly. It illustrates a way to execute instructions which are

"out-of-line" and not directly in the normal stream of program execution

(2) Suppose we wish to add three fullword integers stored beginning
at Q and branch to NOERR, ERRL, or ERR2 respectively if 0, 1, or 2

overflows occur

SR 212 CLEAR OVERFLOW COUNTER
L 0,Q GET FIRST INTEGER

A 0sQ+4 A DDSECONDINTEGER

BC 14,%+8 BRANCH IF NO OVERFLOW

LA 2v4 INDICATE ONE OVERFLOW

A 0,Q+8 ADDTHIRD INTEGER

BC 14,%+8 BRANCH IF NO OVERFLOW

LA 294(0,2) INDICATEANOTHER OVERFLOW

EX DeXk+4(2) EXECUY E ABRANCH INSTRUCT | ON
BC 15,NOERR O-ERROR BRANCH

BC 154ERR1 1-ERRCR BRANCH

BC 15,ERR2 2-ERROR BRANCH

In this exanple,
branches:

to be executed 'wll

the executed instruction wll
since this results in the I A being changed, the next instruction
be |ocated at the branch address, as expect ed.

be one of three unconditiona

(3) Suppose we are required to place in R6 the address of sone quantity

in memory, and that the desired address is known only to be the effective
address of some RX instruction. To conplicate matters, suppose further that
the addressing calculation inplied by the RX instruction coul d nake use of
any register but R4 and R15; we will assune that R15 is currently being
used as a base register and Rik contains the address of the RX instruction
The technique to be used here will be to construct a LA

base, and displacenent fields as

in question.
instruction in nmenory with the sane index,

the RX instruction, and then execute that instruction

MVC BLDLA(4),0(14) MOVE RXINSTRUCTION TO WORKAREA

NI BLDLA+1,X'0F CLEAR OLDRIDIGITPOSITION

ol BLOLA+1,X'60" SETR1IDIGITTO 6

MVI BLDLA+X*41" INSERT*LA*OPCODE INT O INSTRUCTION

EXECUTE THE CONSTRUCTED ‘LOAD ADDRESS’
R6 NOW CONTAINS THE DESIRED ADDRESS
4 BYTES ON HALFWORD BOUNDARY

EX 0,BLDLA

BLOLA DS 2H
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The above instruction sequence changes noregisters (even though RO was
available) and illustrate6 a technique that can be used when all register
content6 must remai n untouched.

More powerful use can be made of the EX instruction when its ry digit
is not zero, inplying nodification of a part of the instruction placed in
the IR. For exanple, suppose we wish to nove to LINE a nessage whose address
and length are in R8 and R9 respectively, a6 in exanple (&) of Section 20.

BCTR 9,0 DECREASE LENGTH SPECIFICATIONBY 1
EX 9,MOVE EXECUTE THE MOVE INSTRUCTION

- o w

MOVE MVC LINE(O),0(8) EXECUTED INSTRUCTION, LENGTH =0

In this case the Length Specification byte is inserted by ORing into the
groper position in the IR which has been preset to zero by an explicit
| ength specification of zero in the MVC instruction. An advantage of this
method is that no nodification is made of the imstruction in storage.

A6 another exanple, suppose we wish to branch to YES if the right nost
byte of R3 contains 00011111~

EX 3,CLI EXECUTE THE COMPARISON

BC 8y YES RRANCHIFEQUALITY IS FOUND
cL!I cLI CHECK,y0 EXECUTED INSTRUCTION
CHECK D C BeooOO11111" COMPARISON QUANTITY

This .could al so be done by the follow ng nethod, which modifies storage
but does not use an EX instruction.

STC 3,TEMP. STORE THE BYTE TO BE TESTED
(¢ TEMPyX*1F* COMPARE TODESIRED PATTERN
8C 8y YES BRANCH IF EQUAL

- .

YEMP DS c

(4) Store at T the sumof the contents of registers RO through R10.

LA 11410 COUNT IN RI |

COOP &x 11, ADDER EXECUTE THEADD INSTRUCTION
BCT 11,L00P DECREASE COUNTER AND REGISTER DIGIT
ST 0,7 STORE SUM AT T

ADDER AR 0,0 R2DIGITMODIFIED IN EXECUTION

21-3




The rz digit of the AR instruction is nodified in the IR to contain val ues
which run from10 down to 1. In practice it is relatively rare that EX
instructions are used to nodify register specification digits in executed
i nstructions.

As a final exanple, suppose R5 contains tin unknown integer which specifiee
a nunber of bytes to be noved froma string beginning at A to an area whose

address is contained in R7.

LTR 5,5 CHECK NUMREROF BYTEST O B E MOVED
BC 12,FINIS EXIT.IFNOT GREATER THAN ZERO
LA 1,A RI CONTAINS *® FROM’ ADDRESS
TEST c 5y=F1256" SEEIF BYTE COUNT EXCEEDS 256
BC 44LAST I+ NOT, DO LAST MOVE
MVC 00256,7),0l1)MOVE 2 5 6 BYTES
LA 19256(0,1) INCREMENT ‘FROM’ A [QRESS
LA 79256(0,7) INCREMENY *'TO' ADDRESS
S 59=F 1256 DECREASEBYTE COUNT B Y 256
BC 7rTEST IFNOTZERO, TESTFOR FINISH
BC 8yFINIS IF COUNTISZERO, ALL DONE
LAST BCTR 5,0 DECREASE BYTE COUNTBY1 FOR EXECUTE
EINIS EX SeLMVC MOVE LAST PART OF CHARACTER STRING

- - -

LMVC MVC 0t0,72,0(1) MOVES LAST ‘PART OF BYTE STRING

The underlined operands in the instructions listed in Figure 21.1
indicate the nodifiable portions of each instruction type when it is the
subject instruction of an EX. The last form of operand field entry far &8
instructions, in which two Length Specification Digits are provided, wll
be discussed |ater.

Type Operand
RR I, re
RX r1,da(xg,bz)
Rs ri,rs,dz(bz)
r1,dz=(h2)
ST dl(bl)>E§
SS di(L,b1),d2(b2)
a1(Ly,v2),d2(La,b2)

Figure 21.1 Modifisble Portions of Subject Instructions
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Two final comments shoul d be made concerning the execute instruction.
First, the reason that an Ex may not be the subject instruction of an E (as
stated in step 3 of the description above) is that it would be possible for
the-CPU to remain in a Fetch-Decode Loop (conprising steps 1 through &) ir
the EX instruction tried to execute itself, or if a sequence of EX instructions
was circular. This is a very awkward situation to get theCPy out of, and
i's avoi ded nost simply by not allowing the execution of Execute instructions.
Second, the EX instruction is sometimes treated as a brench instruction by
saying that it causes an unconditional branch to the subject instruction
fol lowed by an unconditional branch back to the instruction following the
EX, unl ess the subject instruction is itself a successful branch. This
incorrectly deseribes the contents of the |A which remains at the address
of the instruction follow ng the B, and obscures the nmethod of modificetion
of the second byte of the subject instruction, which is occasionally described
only by stating "the instruction is nodified, but remains unchanged in nenory'.
Wi le the above discussion involving the IR nmay not describe precisely the
method used in a given nodel of System/360 for handling Execute i nstructions,
1t provides a correct description of the effect of the instruction.
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