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1. Introduction. In [10] it was shown that a freely ordered relax-
ation process or, in particular, a Gauss-Seidel type of successive "over-
rel axation" nethod converges for certain nonlinear problems. V& wll
show below that this process may be extended to group (or block) relaxa-
tion. In its extreme formthis becomes a modified form of Newton's
method in n dinensions.

W obtain, moreover, a less restrictive choice of the relaxation
paraneters than that given in [10]. It is also shown that the residu-
ally ordered processes given in [11] for linear equations can be extend-
ed to this class of nonlinear problens. Here one obtains an estimate
for the error, as in the linear case. A special form of this method
was outlined wthout proof by Househol der [6, p. 13h4].

.A proof is also given for a cyclic process (sometines referred to
in the scalar case as "nonlinear overrelaxation" [I1]) which is sinpler
than that given for the freely ordered.process.

Sone related work is given in [8] and other results in the direction
of finding asynptotic convergence rates may be found in [7]. These neth-
ods are usually applied to the solution of large systenms arising from
finite difference approximtions of nonlinear elliptic equations as shown
in [10]. Such applications go back at |east ten years (see, for exanple,

[4] and [5]). Some nore recent applications are given in [1], [2],[3],

and [97.



2, Definitions. Let Gu) ¢ CZ(Rn) be a real valued func:ion,

- twice continuously differentiable over the whole Euclidean n space
R% W seek a gl obal mninumof u), that is, a solution W of
|-
; (2.1) r(u) =grad GQu) =0
- T
: where r(u) = (ry(u), . . . . rn(u))T, u = (ay, eee, n)%, ri(a) = Gy (u) =
| 2 L
- qu(u). Let A(u) = (aij(u)) = (Gu f‘1|(U)) denote the n by n Hess-
L ian matrix of G A(A) and A(A) will denote the nininum and maximum
ei gneval ues of a symmetric matrix A respectively. For a colum vector
: 2 T .
|. uwe wite Jul® = (u,u) = u'u and let I'[mHD = sup ue:Dlr(u)l. Wite
1 A>0(>0) when Ais a positive definite (semdefinite) matrix, and
- A>gs nmeans A-61 >0 for the identity I of order n.
’* Let Z = (1,2,...,n) and call g = (il, iy, ..., 1) @ multi-index
—
) of order k <nif 1l<i <i,<. .. <i <n Let g'=2Z-g bethe
L multi-index of order n - k remaining in," Z when g is remved. Denote
. . n
: the set of all nulti-indices of order k by an and | et Qn =Uk=1an‘
- © . .
Any sequence {gP}‘p=0’ g, © Q, will be called an ordering. A n or -
i&. dering covers Z infinitely often if, for each i ¢ Z, i ¢ gP for in-
finitely many p; we then say that it is freely ordered.’
- W use the notation of [11] for subvectors and submatrices. That is,
5 if ge Q,Lm t hen ug is a subvector of u of dinmension k: (ug,)v: uiv
. . . .
wher e LR -2 Simlarly, if h e Q t hen Agh denotes the k by m
} submatrix of A whose (v,u) elenent is a, . , i\fg, jen. If g=h
A leu H
then A is a principal submatrix of A, and let x_ = x(A_),A =
gg g ge’’'g
- A(Agg) for any g e Q.
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For any ordering we denote by S = (hl, C ht) the set of differ-
ent multi-indices that appear in the ordering and is called the mninal

set of theordering. If the ordering covers Z then so does S.

3. Rel axation process. Gven an ordering {gp} and an initial
vect or w0 we may define, for a given sequence of numbers {wp}, the

iteration

(3.1) u§+l = ug o S?Tl = ug

= A~ L P p = roviding the inverses exist
where d Agg(u )rg(u) and g 9, P g :

Ve call (3.1) a relaxation process_w th ordering {gp}. The W, are

called relaxati on paraneters.

This process is well knawn for Iinear problens, especially when the .
gp are :of order one, and has been studied extensively. It is sonetines
called a group or block relaxation process, with the 95 indicating the
"groups". For nonlinear problens, (3.1) was treated in [10] for freely

ordered processes where each gp was of order one (a scalar process).

W will show here that for various 'orderings (3.1) will converge to a
solution of (2.1) for a suitably restricted Qu), {wp} and «°. These
conditions are found to be net by nmany nonlinear elliptic problenms, as
shown in [lo].-

4. Basic Lemmas. W& assume henceforth that' G (u) ¢ Cg(Rn) and

satisfies

(4.1) A(u) >0 for all ue R%
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so that (3.1) is defined. This also inplies uniqueness of w as shown
in [10]. For a given iterate v® and index g = g, of (3.1) we define,

for any Vv ¢ Rn:

o (v) = Agg(v)dp)/(dp’dp)’ a, 70
DP = {u]a(u) < c(uP)}
(4.2)
xg(;P) = min ueDP"(Agg(u)): A(P) xép)

Z (P)
op = llrg D, %P~ 2ep/Ag

whenever DP I's bounded.
For a given g |et Bg be the closed unit ball |v|<lin the sub-

space RS, which is the set of veR® such that v, =0, keg. For

g = gp let DP = t.1p+2|<il};)|Bg = {W‘IW-uplf_Qldp\, wg, = ug,]. When Dp is

bounded we define

AP = g ligp 5 AP = ng
A2 = min A ()]a e D, b e S)
(4 3) AP} = mex (a(A, (a)|ue P, nes)
KP = Dp t op Bg
logly , ¢ = mex Gp(n)Iv ¢ By v - ab)
and | et
(. 1) vp = 0,(0")/lo,llpe if ay £ 0,
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but if dP: 0, set Yp =L

It then follows that

)\ép) (2 (P

g
(4.5) AS(p) SOE ﬂ%{,ﬂK_ Svp st
g D

For the special case when g = Zwe wite

* * * *
Pz ”rZ”DO = ”‘rHDo , o =20 (0 ¢ Dy + o B,

where now B, is the full unit ball-in RY. | f {gp} is an arbitrary
ordering (with 8> 1N mrticular, any nulti-index) we let A* be the
nunber obtained Dby replacing D° in the definition (4.3) of 1(0), by
K.,  Let 'y* = xéo)/l\*; then this constant depends only on @ and the
mniml set of the ordering. Fram (4.5) it follows that y* < Vo

Ve will showthat for a suitable choice of u® and wp t he relaxa-
tion process will be well defined and the -G(up) (and t he Dp) will be
nonincreasing as p - o,

Lemma 4.1. Let oOeRP be such that

(4.6) Do i s bounded.

Let g = g, be any multi-index in Q and let vy be a constant such

* . .
that 0 < vy < vy SYOSL” w~ 1S chosen in the interval

0]

(4.7) 0<ygwy<2yy-vy<2

then, for ot defined by (3.1),

(4.8) -0G,

6(e) - o(uh) 2 eolr, ()] > 0

5
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wher e eo=wo(co+%‘v)/1\éo)20,
o =2l logl I )/ (Hlagl 159 2 0
and uleD0 o) Dl’ D1 c K*, v < 'y* < Yy

Proof. Let do 4 0 and 1ét I(uo,ul) denote the open |ine segment

j oi ni ng u0 and u 1 Then Taylor's theoremin n dinensions gives us

(4.9) el - ¢(®) = (), ot - O
3 (- O, Az)(d - u0))

for some zeI(uO,ul). From (3.1), (&.2), and (4.7) we get that
1 0 (0
o™ - w’| < Qldol < 290/}\53- ) - o
. 1 0 , 1.0 .
Since 'u- and u- differ by a vector in Rg ueD” and therefore zeD-
From (4.9) we get

0
-6, = wol(Agg(a7)ag,dg) | 3 woldgs 8 (2)ag))
= % wy(agyd,) (2a(a”) - wguy(2)):
Si nce Zor = ug., we get from (4.3) and (.7) that
-0G, = & vy (dg,d) lleglip0 > o

Thus uleDO and al so zeD e Ve may then estimate further from

%%u)s@%-vm%mwg=ay£xl-%>-w%%wg

-1, > wo(go?o(“p) + % YHGSLDO,g)(do’Agg(uo)do)/mb(“p)

6



> ay(gy + & e, (00 A0 = ¢ 1 () |
> ¥l () |7/

If &, = 0 then r(uo):OandtheIermais valid. Thus from

0
. 0 0 0 % ‘ *
D, O Dy, we get that kéi):)‘;)z)‘é )27\( ) and that o 50" ar oy <o
=) -~ * .
This inplies that D" cX and A;l) < A. From(ks)it follows that

AL
Yy 2 y* which conpl etes the proof.

. *
Lemma 4.2, Let an ordering {gp} be given and | et u0 »YsY 5V

satisfy the hypotheses Of Lemmm 4.1. Then there exi st {wp} satis-

fying

(4.10) 0<y <o

*
<2 - < <
p_YP Y Y Y__,Y

Y

such that the iterates (uP} of the relaxation process (3.1) satisfy

(k.11) -AGp = g(u") - G(up”l) 2 ep Irg(up)l2
wher e g = gp;
€ = wp(gp + & y)//\ép) > % Yg/l\* ¢ >0

ch
Il

1-( HcppHDp g/ Uleyllpe) > o,

for P=0,1,2,... .
proof.  The proof follows by induction by using Lemma 4.1 as the
initial and inductive step.

Corollary 4.1. Under the hypotheses of Lenmas 4.1 _and 4.2_it fol-

| ows that for any ordering (gP}, r, (WP) -~ 0 as p = «.
Proof. This follows fromthe fact that all the iterates u* lie

in D, SO that {G(uP)} is a sequence bounded from below. Since these.



r-r—r— r—rmrr QO r M T

r— r—

are nonotone nonincreasing with p, G(u®) - G_, which inplies that
A(]i_) - 0. The result then follows fromLemma k4.2,
Renmarks. W note from the proofs that Lemmas 4.1, 4.2, and the coro-
Ilary are valid even if we only assume A(u) > O but require that
Agg(u) >0 for all u and all g = gpeS, and repl ace A(O) by Aéo) in g

For the scalar case we get a sinple form for YP:

Yp = e‘ii(up)/”aii”Dp’ i=ip)
wher e
p
lagsllpp = max fa;, (s 5505 Lil’ui’u3.+l""’ ui) laeT )}

I, = {uillui- u?‘ < 2|dpl?.

In [10] it was shown that for a free ordering with scalar indices
the rel axation process converged for a choice of Vb whi ch was sone
fixed constant less than 'y*. Ve will show bel ow that the rel axation
process converges in the nore general case of (4.7) for a free ordering.
Since the cyclic orderings are nore inportant and easier to prove, we
give first a proof of their convergence.

5 Cyclic Oderings.. W assume that.a finite set of t multi-
indices S = {hi1§=1, h, «Q, is given such that UE:lhi o Z If a

sequence {gp? runs through the list Sin a cyclic fashion, i.e.,

(5-1) g =h

D p(mOdt) 1 p - 0,1,2,..-

then we say that the ordering is cyclic with S as nminimal set.

*
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Theorem5.1. Let u) aﬂdiusofy (4.1) and (L4.6) and__let

{g.} be_a cyclic ordering with nininal set S. JIhen, if the )}
D N -
i@gt}i sfoy &.10), the 3 . 1 ) Ctonverge to the solution u _O_f_
(2.1).
proof. FromCorollary 4.1 we get that rgp(up) -~ 0 as p - = and

that 6(u®) - G_. It follows fromlem k.2 that for any p <aq

-1 *_.0-1 vy 12
(5.2) a(dP) - a(u?) = -E?FPAGV > e T _,fgv(u )"

This inplies that for all p,q such-that |p - q| <'t,

gd-1

ol

g\)(u.\))| - 0.

2 ". .
Furthermore, since GeC (Dy) there exists a constant M depending.

only on, u0 and G such that for any i, 1<i <t,

h .(qu) =T, (\lv)\ < M\qu-uV\ = M‘u\;l— u; \

\r
| | Y, \Y

< Ml‘rg (u\)) ‘

wher e M = em/)\éo)_ This inplies that the left side of

lrhi (uq) - rhi(up)l < }T‘,%;;lrhi('u\’*'l) - rhi (u\))l

-1
<3 3l 00

goes to zero for |p-a| <t as p and g - = For i fixed and any
p>0set q-= [%]t +1-1 (where [%] is the greatest integer con-

. . . /.,Fl) —
tained in p/t), then |p-a| <t while g, = h.. Thus Tp A0 =

q

Ty (u) which goes to zero as p - =, whence rhi(up) - 0 and
q
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r(uP) ~ 0 as p ~ «.

This inplies that every limt point of {u.p} is a stationary point
of G(u), and since Dy is bounded there is at least one linit point.
It follows, however, as in [10], that there is at nost one stationary
poi nt u*, so that u® - u* and the proof is conplete.

Corol lary 5.1. Let G(u) and v’ satisfy (4.1) and (4.6), o
satisfy (410), then a nodified Newton's method:

(5-2) R LR LG

*
converges to the solution u of (2.1).

Proof. This follows from Theorem5.1 by taking t = 1 and S to
consi st of the set Z
Ve will see in the next section that we can estimate the convergence

rate of (5.2).

6. Residually Ordered Processes. We will show that the basic |emmas

of Section 4 may be used to obtain an extension of Theorem1 of [11]. A

residual |y ordered process (r.o.p.) may be defined in the sane way as in

[11], as fol | ows:

(p)

by €Q, be a given sequence of

Let T’pz (gip),“-:glgp)'):Np <N <D g
coverings of 2 and {H*Hp} a given sequence of norms on R  Assunme
further that there exist positive constants T, 7, T that satisfy, for
any weRn,

rtphvl® < Il <ol P o= 0,120,

0<-rpT]p_<_Tlp, O<'r_<_.'rp_<_l.

10
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A relaxation process whose ordering {gp} is given by the multi-index
g, such that I i . o

gP p= heTE) h,d!p
is called an r.o.p. For this process we prove

Theoremé.1. Let Qu) and ul satisfy (4.1) and (k.6), then if

t he {wp} satisfy (k.10), the r.o.p. converges to the sol ution ut of
(2.1). The iterates converge |ike a geonetric series; that is, there
exist positive constants g, ¢ such that

2
(6.1) P - 0 [ < 6o |u® - u*|2, 0<a<l.
proof. FromLlemmas 4.1 and 4.2 we obtain
6.2 - Py |2 Py |12
(6.2) 1, 2 eglrg (D172 ey (R,

o
= (eP/NPnP)Thenp”rh(u NG

> (e /M) 2(0P) 1 3 (¢7e/W) |x(e?) |

Thus r(uP) - 0 as Pp -« and, as in the cyclic case, it follows that

*
up—'u‘

To show that (6.1) holds, we set e = P - u'. From (4.9)

v, =6(uP) - 6(u) = 3 (F,A()e") , ve(uP,u”)

On the other hand, there is a zeI(up,u*) such that

(r(up):_ep) = Vp = % (ep,A(Z)ep)'
| f e # 0 we set

u, =1+ i Ny weD ( (eP,A(y)ep)/(epfA(W)ép) )

>1+2000,% -y
and then

[r(up) | Iep| > ppr,

I2(®)|° > & A

11



r— r— r

re-

r-—- oo r

e

| f eP= 0, set by = 2. From (6.2) we get that

-ANG_ = -V > > BV
pVp ™ Vo2 Pgp B

_ @2 _,(0) 2 *
wher e B, = A upeplx_,/g. B =1 ue*r/Nf_BP'
so that le <(1- Bp)Vp < (1 - B)VP.

Si nce G S1- vy then e < wp(z - wp)/EI\éP) and
D

- (P) (P)
0<B<B, < wp(2 mp)wpx /Np[\gp <1

if N >1. If N=1, +then B_< 1.
D P b=

Setting ¢ =1-8, 6 = A*/x(o) we get

b
Vpsavo

or that ep|2 < eozpleol2

which proves the theorem

Corollary 6.1. Under the hypotheses of Corollary 5.1the nodified

Newton's Method (5.2) converges like a geonetric series.

Proof. This follows from Theorem 6.1since for all p, " consists
of the single multi-index Z and is automatically an r.o.p.

7. -Free Orderings. In [10] it was shown that for the scal ar case,
convergence is obtained for free orderings, that is, where a sequence
{ip} is arbitrary but all indices of Z appear infinitely often. On
the other hand, this was proved for group relaxation for linear problens
in [11]). VW will now conbine these two results into one, in which the

| ess stringent condition on wP as given by (4.10)is used.

12



—

r— r—

e

r— r r—

r—

e o

0 . ! .
Theorem 7.1 _Let G(u) and u” satisfy (4.1) and (4.6). Let {gp} be

freely ordered; then if {wp}, satisfy (4.7), the relaxation process

(3.1) converges to the solution u® of (2.1).

Proof. The idea of the proof is sinmlar to that used in Theorem
3.1 of [10]. From Lenma 4.2 and Corollary 4.1 we get that r (up) -0
€p
as p - =,
Let x be a linit point of the sequence {uP}, W may assune that
r(x) # 0, otherwise we get convergences as before. et S be the nini-

mal set of the ordering and set

0 = min{[rg(xx ’1g(x) # 0, geS}.

Let v be the maxi mal order of the multi-indices of S and let ),A be

positive constants such that
Aw,w) < (wyA(u)w) < Aw,w)

for all ueD., and al | weR".

0
Define U to be the neighborhood of x such that

lu - x| <8, 8=yo/2n/v
and let N be sufficiently large that for all p > N

1 %22
-AGP<E<-: 2 & .

Ve get from(4.11) and (3.1) that

-AGP > e*()\/wp)zlup - upi‘l'z

13
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so that

|up-up+ll< 6, p>N

If for all uPeu, p > N, rg (x) =0, then (um'l - dP,r(x)) = o.
By the same argument used in Theorem 3.1 of [10], all the up, p >N
will have to be in Ufromsone point on. If, say, r,(x) # 0 for
sone index », L<x < n, then x can appear at nost a finite nunber

of times anong the inthe ordering. This contradicts the hypothe-

Ip
sis on the infinite covering of Z.
If, on the other hand, there is for sone p > N a wPeU such t hat

r, (x) # 0, then for each xeg. there is a wea(u®,x) such that
P

P

|z, (uP) - r (x)] < |AG) (&P - x)| < ns < o/2/m.

Thus for g = 9 ‘rg(up)_ rg(x) | < o/2 or !rg(’up)l > /2.
Since P I P prl >
- |a - - -
oyl (eP)| = 1A (P) (2 - uP)] < Al - P!
Irg(upﬂ <8Ny = o/3% < % o
we get a contradiction and the proof is conplete.

8. Remarks. i) It follows from the proof given above that instead
of the requirements on Gu) to prevail on the whole of R® we could
sinply assume themonly in some domain containing K*.

ii) Another condition which is sufficient for convergence is as
follows: Assune that G(u)ecg(Rn) and A(u) > 0 for all u. Let there

. . *
exist a point u such that

1L



(a) Gu) >G&(u) for all ueR®,

L

(b) A(«") > 0, and
(c) Agg(up) >0 forg =g, p = 0,L2... .

Then the relaxation processes described above in Sections 5 and 6 will

r—

converge for any starting e

Thus we nust show that for each z the set D, = fula(u) < a(z)}

—

, . *
is bounded. W nmay without |oss assume that u = 0 and assune 9 is
unbounded for some z. Then there exists a ray tv, t > 0, for some

- fixed v, which lies inD,. Setting . o(t) = G(tv), then o(t) is

convex in t and ©'(0) = 0, ¢"(0) > 0. Thus there exists a ty > 0

e
such that co'(to) > 0. Let {tIJ be a sequence of increasing nunbers,
g such that tp >t,p >0, tP—» », Since cp'('tp) > cp'(‘to) > 0 and
- 2 - o(t_ ) > o' (t
_ G(z) - G(0) > (2t ) - ot ) > o' (t )t ,

we get that cp'(tp) - 0, which is inpossible.
This argument may be used to show that the m ninmum @ is uni que,

which then guarantees convergence.

r— r

i) A single comiition which assures convergence for any initial

r-

guess i S the existence of a constant p such that A(u) >u > 0 for

all ueR™ This occurs in the case-of certain uniformy elliptic prob-

r—

| ens, as shown in [10].
Iv) In [10], it was required that a uniform upper bound be avail -

able for the aii(u) for the scalar processes. That is, a » was

— r

sought such that aii(u) <y for all vand i. [f such a bound is
;r available, then an allowable choice of w, would be w = aii(up)/u_g Yo'
- This inplies that the iteration
L 15
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p+l=u.p

WPt = U.? - ri(up)/n, =i, uy it

| p’

woul d converge if any of the sufficient conditions for convergence were
satisfied. In the case of a discrete Plateau problem it was shown in
0] that a._.(u), <4 for all uandi. It was also shown there that
aii(up) > hh6/G(uo)3, where h is the mesh size of the net. If v
is a positive nunber < h6/G(uO)3, then, for exanple, a choice of

w, = 3 aii(up) - v, i =1, would yield convergence for any starting
w®. This represents a considerabl e inprovenent over the allowabl e choice
of of given in [10].

v) If a systemof equations is given by r(u) =0, ri(u)eC'(Rn)

and if the Jacobian matrix A(u) of this systemis symetric for all u,
then there is a Gu) such that r(u) = gradG(u). If A(u) > 0 for
all u, one can check the other sufficient conditions for convergence.
An exanple of this is given by r(u) = Cu + f(u) where Cis a con-
stant symmetric matrix such that C> 0 and f(u) has a symmetric
Jacobian matrix f'(u) >-»3 - X(CO. In this case A(u) >u = h(Q -
x> 0, so that any starting guess will yield convergence for the rel axa-
tion processes described above. This exanple is realized in the approxi-
mate solution of semlinear elliptic boundary problens, when f'(u) is
often a diagonal matrix. Thus if one is to solve the usual discrete
formof -Aw + g(w) = 0 with, say, Dirichlet boundary data, and g'(ew)
> 0, then the relaxation nethods given above will converge from any
starting guess. To determne, say, Yo ONe needs an upper bound on
g'(ui) for uin 00 A times an a priori bound on the solution 0

may be used to bound g! A simlar situation is obtained if -Aw iS re-

placed by a uniformy elliptic self-adjoint, but possibly nonlinear, operator.

16
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