
CS 92

MLISP

. BY

I

HORACE ENEA

TECHNICAL REPORT NO. CS 92
MARCH 14, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

-

L

MLISPl

bY

Horace Enea

March 14, 1968

Computer Science Department

School of Humanities and Sciences

Stanford University

1This research was supported by Grant MH 0664546 from the National
Institute of Mental Health.

L

!
!-

L
L

Introduction

Lisp is an Algal-like list processing language based on Lisp 3,5.

It is currently implemented on the IBM 36~/67 at the Stanford Collxlputation

Center, and is being implemented on the DEC ~~3-6 at the Stanford Arti-

ficial Intelligence Project. The translator produces an object program

in Lisp l,$ S-expressions. at a speed of 1800/'2000 lines of M1isp per

minute.

The principle reason for writing Mlisp was to provide a good list

processing language with a convenient notation, a higher degree of

machine independence, and string facilities. The balance of this paper

will be a very informal presentation of the language so that the reader

will be able to run programs in Mlisp with a minimum of effort, The

language has an extremely simple syntax which is presented in Appendix I.

The style of presentation will be by example, It is assumed the reader

knows Lisp 1.5 and is familiar with Algal, All the functions of the

underlying Lisp processor are available to the user, and therefore, the

user should consult the Lisp/360 manual in addition to this presentation,

Additionally, the storage conventions are, of course, those of the under-

lying processor; that is, iimitations on the length of printnames of atoms,

conventions for numbers, handling of bindings, etc. These points are

generally not important to the JKLisp user since the translator knows

these conventions and produces appropriate S-expressions.

-l-

i

i

i
L

i

t

!
1

Line No.

3

2

3
4

5
6

7
8

9
10

11

12

13
14

15

16

17
18

19
20

21

22

23-
24

25

26

27
28

The Saqle Prografn

Text

$ THIS PROGRAM IS AN EXAMPLE $

BEGIN

NEW A,B,C,D,,I,J,L,ST;

MACRO OFF "VERBtX (NIL)";

C:=(607*4)/3 + 2*4;

A:=C CONS D;

B:=a,2,p;

B:=C:=CDR(A);

B:='B;

C:='(B (C.A));

PRINT (ST:="m/,' 7"@DBQUOTE)*>
PRINW'R(ST SUBSTR c-52>);

C:=HAXEATCbrl("ASDFj/'/");

LAST:=&,:

IFiL THEN NIL

ELSE IF --I W(L) THEN CAR(L)

ELSE LAST(CDR(L));

REVERSE:=#L:

BEGIN NEW I,J;

FOR I I-N L DO

IF ATOM(I) Ti53N J:=I jz$ J

ELSE J:= REVERSE(I) e' J;

m-c J) ;

END;

-2-

Line No. Text

29

30

31

32

33

34

35

36

37

38

39

40

41

h-2

43

44

45

46

47

RR:=#:acAD(),READ()>;

A:=DO I :=I+1 UNTIL FN(1);

B:=COLLECT <I:=F'N(I)>UNTIL I EQ 'END;

WHILE ,((A:=READ()) EQ 'END) DO INFUT(A);

C:=WHILE 7((A:=READ()) EQ 'END) COLLECT 4.b;

FOR I ON L DO FN(1);

J:=FOR I IN L DO FN(I) UNTIL QN(1);

FOR I IN 1 BY 4 TO 13 DO FN(1);

FOR I IN 1 TO 10 DO FN(1);

J:=FOR I IN L COLLECT FN(1);

J:=FN(FUNCTION(+), FUNCTIC!N(TIMES));

J:=<g,2>,<4,<6,8>>> SUB ~,l>;

J:=q(a Y 2 ., 3 9 4 ? 5 Y 6 Y 7 Y 8 Y g Y o>);

OFF;

END.

(Input follows end.)

Explanation of Sample

Lines 1 to 47 represent a collection of all the features of Lisp.
The program does not compute anything.

Line No.

1

4

5

Text

Comments --

Anything except a '$? between two 'st(s is a comment

and is ignored by the translator.

Blanks --

Blanks may be used between any identifiers or special

symbols to improve readability.

Programs --

Mlisp programs generally start with a BEGIN and

finish with an END (See Appendix I for a definitive

specification of the syntax,). Each BEGIN-END pair

constitutes a program. The value of a program is NIL

unless there is a RETURN within the B3EGIN-END pair.

(See line 26 for an example.) All BEGIN-END pairs

are translated into Lisp programs, and therefore,

return a value even if they have no local variables,

NEW --

Program variables are bound by the NJ37 declaration.

Their initial value is NIL.

M A C R OS - -

A simple substitution macro facility is provided so

that line 45 will be expanded into:

VERBCS(NIL);

-4-

Line No.

5

6 Arithmetic --

7

Text

and then translated. If another macro call is dis-
covered it is expanded, therefore, recursive expansion

is possible. Macros must be declared before they are

used.

Line 6 translates into:

(SETQ c (QUOTIEIVT (TIMES 6.74)

mJJs 3 mm 2 4)>>>
Notice that hierarchies are right to left. Unary

operators (- + 7) are translated before binary

operators. Any operator that is not unary is binary.

Infix operators --

Any function or operator which takes actly two

arguments may be used as an infix operator. The
translator recognizes the following abbreviations:

Mlisp Lisp

fi C ONS

6 APPEND

* TIMES

DIFFERENCE (or MINUS when used in unary position)

&

+ PLUS

/ QUOTIENT

I OR

-5-

Line No,

7

8

9

10-11

12

Text

Mlisp Lisp

1 NOT (this is equivalent to NULL)

WC EXPT

:= SETQ (when used as operator)

Lists --

a, 2, 3>translates into:

(LIST 12 3)

a, Q, 3>>translates into:

(LIST 1 (LIST 2 3))

Multiple assignment --

Multiple assignment statements are allowed,

Quoting S-expressions --

S-expressions are preceded by a single quote mark

and follow the syntax of Lisp except that special

characters may not be used within an atom. (See

line 14 for a description of how to create atoms

containing special characters.)

Strings --

"ABC" is an abbreviation for '(A B C) ; however,

special characters may appear between quotes (")$

and will be handled correctly. DBQUCTE has as its

value:

t ll
(>

therefore, by using the APPEND operator (@) any

string may be created. Line 12 would produce

(>t

-6-

Line No,

J-2

13

14

160 19

Text

CAB// 7”)

as output, By using the intrinsic function PRINSTR

instead of PRINT we would have gotten:

AB// 7"

Substrings --

The intrinsic function SUBSTR takes two arguments;

a string, and a list of two integers (starting position

and number of characters to be extracted). The value

of

"ABCDEF" SUBSTR G&2>

is "CD"o PRINT will print this as:

cc D>

and PR.INTSTR will print this as:

CD

MAKEAT@ and STR --

MAKEATOM takes a string as its argument and produces

an atom with that string as its printname, (See line 12),

STR takes an atom or a number and makes a string of

its printname, -

Defining functions -10

Cn line 16 LAST is defined to be a function. The

name of the function being defined need not be declared

NEW. Sharp (#) stands for LAMBDA. A function with

three arg,uments would start:

FN:=#A,B,C:

Line No. Text

16-19

21-27

The translation of lines 16-19 is:

(DEFINE(Qu~TE ((LAST

(-DA (L)

(COtID

((NOT L) NIL)

((Nor (CDR L)) (cm L))

> >

Remember in Lisp NOT and NULL are the same.

Another function is defined --

This function reverses a list. J is the value of

the function, I becomes successively:

CAR(L), CADR(L),.,.

until L is exhausted. When L is exhausted, the

FOR expressicn (See 37-39) terminates and the value

of I becomes NIL outside the FOR expression, Notice

that a RETURN is needed for each BEGIN-END pair;

for example:

A:=BEGIN

RETURN(BEGIN

-

-8-

Ii

i

L
t

Line No.

29

31

Text

A function with no argument is defined --

RR, a function with no arguments is defined,

BEAD, a function with no arguments is called.

DO-UNTIL --

Every expression has a value including control ex-

pressions,

FORM:

DO expression1 UNTIL expression2

EVALUATION:

A) V c-value (expressionl),

B t value (expression2).

if B + NIL then return (V).

go to A.

COLLECT- UNTIL --

FORM:

COLLECT expressionl UNTIL expression2

EVALUATION:

V +.NIL.

A) V t-V append value (expressionl).

B e value (expression&

if B # NIL 'then return (V),

go to A.

Notice that the value of expression1 should be a list,

and that expressionl may be considered as an "example"

of the value of the COLLECT-UNTIL,

-P- .h

c

i
L

1
t

Line No.

34

35

Text

WHILE-DO --

WHILE-DO is evaluated similarly to DO-UNTIL except

that the test is performed first.

FORM:

WHILE expression; DO expressiow

EVALUATION:

V t NIL.

A) if value (eqressionl) = NIL then

return (V),

V f- value (expression2).

go to A,

WHILE-COLLECT --

WHILE-COLLECT is like COLLECT-UNTIL except the test

is performed first,

FORM:

WHILE expression1 COLLECT expression2

EVALUATEON:

V +.NIL,

A) if value (expressionl) = NIL then

return (V) e

V + V append value (expressiom),,

go to A.

ON -'-

ON may be subc.".-y t,-f-ti -DQ~ llA~lLd for IN in any FOR expression.

When ON is used 'Ir becomes successively L, CDR(L),

CDh of that, et>., until L is exhausted,

-LO-

TextLine No.

36

37-38

39

41

- 43

UNTIL in FOR expression --

By adding an UNTIL clause to a FOR expression an

additional test may be performed. The FOR expression

will terminate if the value of the UNTIL becomes true

(non-NIL). The value of 'I' is the last value

assigned to it.

STEP-FOR --

In line 37 '1' -becomes successively 1, 5, 9, 13.

In line 38 the BY is omitted and is, therefore,

understood to be 1.

FOR-COLLECT --

COLLECT may be substituted for DO in FOR expressions

with the same effect as in WHILE-COLLECT or COLLECT-

UNTIL. Notice that 'FN(1)' must return a list as its

value.

Functional arguments --

Functional arguments are passed via the pseudo-function

FUNCTION as in Lisp 1.5.

A subscription-function --

A subscripting function called SUB is available,

The value of 'J' in line 43 is 4. The first argument

is the list to be subscripted and the second is a

list of subscripts. An 'out of range' subscript

returns NIL. Subscripts may not be used on the

left of a ':='*

-ll-

TextLine No.

44

46

47

Fields --

A set of functions Fl, FZjesoF9 is available

corresponding to CAR, CADR? . ..CADDDDDDDDR respectively.

The values of 'J' in line 44 is 7e A field function

may not be used on the left of a ':='.

Ending a program --

After the final END in a program put a period (e
> 0

Data --

Input data directly follows the END card.

No special cards are needed af'ter the last

data card.

-12-

Appendix I

The smtax of MlisD

The syntax is in Backus-Naur form with the following

additions:

1 1

c 3

enclosed construction is optional

alternative possibilities enclosed

. . . preceding may be repeated any number of times

-139

i
l-
L

<prog> : := <expr>

<expr> : := -Wmpex> [<opr> <e-r>]...

<simpex> : := BEGIN [<decl>;]..,[<expr>[;

<expr>J .o.]END

: := IF <expr> THEN <expr> [ELSE <expr>]

<expr> eortail>

<expr> UNTIL <expr>

: := WILE <expr>

::= <[<e-r> I, <expr>]...]9
. .. .= "[<any character not">]..."

l .
. .=

bPr>)

+
: :=

i - l
Qimpex>

1

. .. .= t <sexp> .

:::= <id> [<exprl>]

: := Gmrriber>

::= I*l-//l+l/ql/gl@p

::= # [<id, I, <iiD]...]: Csi.mpex>

: :2 a.0

: :z NEW <id> C&d>],.,

* 6.. e== MACRO <id> "[<token>]..."

-14.

Cfortail> ::= [<by Opt>1 g:LlXCTJ
<expr> [UXUL ascpr>l

cby opt>

<token>

<exprl>

Cexpr2>

Cseq>

<se->

<sexpp-

<sexp4>

: := [BY <expr>] TO <e-r>

::= <id>

: := <number>

: := <any special character except " >

::= (<expr2> [,<expEPl.=.)

. .l *= := [#C aDA 3 :] <expr>

l .-
. .- F'UNCTICN (<opr>)

: := <expr>

: := (<sexp2>

: := <token>

: := >

. .. .= <sexp> <sexp3>

::= . <sex@)

l l - <se⌧p4>. .-

: := >

: := <sexp> <sexp4>

-15-

Initial Conditions

The garbage collector printout is turned off; it may be

turned on by saying:

Job Setup

Wylbur --

Appendix II

VERBCS(T);

//xXxX JOB (nnnn, bin, r, &'your name',MSGLEVEL=l

//JOBLIB DO DSNAME=SYS2.PROGLIB,DISP=OLD

//J~BLIB EXEC PGM=LISPA

//LISPOUT DD SYSCUT=,DSNAME=nnnn.pppp,UNIT=23lk

I/ VOlXNE=SER=ww,SPACE=(CYL,(l,l)),

/I DISP=(sss,KEEP),DCB=(,BLKSIZE=l33,REC~=F)

//MLISP DD DsNAME=J629.TRANs,rIT=2314,

VOLUME=SER=SYSO&DISP=(OLD, KEEP)

//LISPIN DD *

OPEN @LISP SYSFILE INPUT)

RESTORE @LISP)

MEmR 0

@lisp program goes here)

~01. 72

C

C

C

-16-

L
Batch --

~01. 72

c
L

L

f

i

f
h

!
L

i

F

i

I

L

L

I
L

I

i

i

//xXxX JOB(nnnn, bin, r, 1),'your name',MSGLEVEL=l

//JOBLIB ~0 ~sNm=sYs2 .PR~GLIB,DISP=OI~

//JOBLIB EXEC PGM=LISPA

//LISPCXJT DD SYSCXJT=A

@LISP DD DSNAME=J629.TRANS,UNIT=231$

VOLUME=SER=SYSO6, DISP=(OLD,KEEP)

I/LISPIN DD *

OPEN (MLISP SYSFILE INPUT)

RESTORE @LISP)

MEXPR (>

where,

xXxX =

nnnn =

bin =

(Mlisp program goes here)

r =

R =

PPPP =

job name

job number

Bin numbgr

Run time

Lines of output

Wylbur output file name

Volume, for example, SYSO~

Status, NEW or OLD

C

L
See Users Manual3 for more detail on control cards. After //LISPIN you

are taking to LISP/~~O. MEXPR() is the call on the translator.

I

i

-17-

i

Bibliography

i

t

/

L-

1. J. McCarthy, et al. Lisp 1.5

programmers manual. M.I.T. Press,

Cambridge, Mass., 1962.

2. J. Kent and R. Berns. Lisp/360

reference manual. @qus Facility Users Manual,,c - -

Stanford Computation Center, 1967.

3. Users Manual, Computation Center,

Stanford University, Stanford, California pk304.
i

