
cs-95
AF -24

.

. .

A FORMAL SYNTAX FOR TRANSFORMATIONAL GRAMMAR.

--. BY

JOYCE FRIEDMAN and ROBERT W. DORAN

This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F19628-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT

COMPUTATIONAL LINGUISTICS PROJECT

MARCH 1968

.

A FORMAL SYNTAX FOR TRANSFORMATIONAL GRAMMAR

t
i

bY

--

Joyce Friedman and Robert W. Dora@i
I,

L

L

t

This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F196828-C-OO35.

*Present address: Mathematics Department, University of Bristol,
Bristol, England.

L
I
L

I

L

i

cs - 95
AF - 24

February 1968

. .

A FORMAL SYNTAX FOR TRANSFORMATIONAL (3AMMAR

bY

Joyce Friedman and Robert W. Doran

L
,

i

t

i

L
f
L

Abstract

-=.
A formal definition of the syntax of a transformational grammar is given

using a modified Backus Naur Form as the metalanguage. Syntax constraints

and interpretation are added in English. The underlying model is that

presented by Chomsky in Aspects of the Theory of Syntax. Definitions are

given for the basic concepts of tree, analysis, restriction, complex I

symbol, and structural change, as well as for the major components of a

transformational grammar, phrase structure, lexicon, and transformations.

The syntax was developed as a specification of input formats for the

computer system for transformational grammar described in [&I. It

includes as a subcase a fairly standard treatment of transformational

grammar, but has been generalized in many respects.

Remark

A major purpose of formalization is to provide explicit subject matter

for discussion. Any comments on the material here will be gratefully

received. A revised v@rsion will be submitted for publication.

i

i

i

L

c

L

CONTENTS

Page

ABSTRACT . . . 0 e m ii

INTRODUCTION 1

METALANGUAGE . . o o e - . o e 3

Transformational Grammar e 8

BASICFORMATS - - 9

1. Tree..*. n ., 9

2. Analysis e o . e e . o 0 . . o . . e o 0 . 12

3. Restriction e 18
-=.

4. Complex symbol 0 23

5. Structural change . . . 0 26

COMPONENT FORMATS . . . 0 30

6. Phrase structure . . 0 n e ., . . 30

7. Lexicon o . . a . . . 32
L

8. Transformation 0 . . , e D . . a 35

L ACKNOWLEDGMENT.. e a . . *. l * ,38

a REFERENCES r . 9 . - o 39

APPENDIX I ..e e o ..Oe .* ., 42

APPENDIX11e a . ..46

i

ii

INTRODUCTION

i
In Syntactic Structures [3], Noam Chomsky writes: "We can determine

i
the adequacy of a linguistic theory by developing rigorously and precisely

the form of grammar corresponding to the set of levels contained within

L this theory and then investigating the possibility of constructing simple

and revealing grammars of this form for natural languages." While the

i
linguistic theory of transformational grammar has developed and changed

rapidly since this was written, the criterion is still relevant.

In this paper we address ourselves to the first part of the require-

L mentt;, that-is, we develop rigorously and precisely a form in which the

i
i

syntax of natural language can be described by the transformational

model. We do this in a way which we hope will make it easier for linguists

to construct and examine grammars of natural language.

The linguistic theory which we are modeling is transformational

L generative grammar of the syntax of natural language, basically as

presented in Chomsky's Aspects of the Theory of Syntax [4], We have

L also taken into consideration recent linguistic work which is based on

Aspects and which applies or extends the model.

In the development of the syntax it was decided to be inclusive

L and general, rather than to try to limit the power of the syntax to

the exact amount likely to be required. We have tried to make the syntax

L powerful enough so that it will not require augmentation by special

L
devices; as a result, many linguists may find the syntax too general for

their purposes. However, the metalanguage offers a relatively easy way

L to define a suitable and clean subset.

L
1

i

L

.
i
i

L

L

The syntax is described in a metalanguage which is a modification of

Backus Naur Form (BNF), which is widely used in the description of program-

ming languages. BNF is a formalism for presenting a context-free language.

In the first section we describe in detail the modification of BNF used

throughout the rest of the paper.

Following the description of the metalanguage, we proceed irrmediately

to the formal presentation of transformational grammar. We give formats

for transformational grammar; for the basic concepts of tree, analysis,

rest.riction, complex symbol and structural change; and then for the major

components, phrase structure, lexicon and transformations. For each format,
--.

we specify precise interpretations and give examples.

For the parts of transformational grammar which are relatively

standard and well-understood, the presentation is complete0 However, in

one case where the work is frankly experimental (the control program for

transformations), we have referred to other papers for more details.

The formal definition of the syntax of transformational grammar is

part of the development of a computer system for transformational grammar

which we describe in [24]. A prior reading of the system description is

recommended, since it provides a wider context for this paper and also

points out some of the novel features of the syntax, The system is being

implemented on the 360/67 computer so that it can be used to aid in writing

and investigating transformational grarmnars While the present paper may

be considered simply as a definition of a syntax for transformational

grammar, it also defines the format in which a grammar can be read into

the computer system.

This paper is a formal presentation of the syntax of a transforma-

tional grammar; it is not intended to be read as an introduction to the

theory. The reader is assumed to be familiar with Aspects.

2

‘The synt;zx Is described in dz. modif icatloc of’ back.us Naur F’o~m (ENF)

brackets by underlining, eUgef “transformation” rather than “(transfoma-*

tion)“, arid u::lnp "opt' ir; p.Y..acc o f ' ' 1 I1 ..

For 1ing~isss wfamiliar wlt,h BNF, it s*hO--.?.;d suffice to say that

lo the modif ied-BNF prodzlction ” A : :Z B C or JI or E ”--.

expresses -?-he context*-free rctilri,$ing TLI~C “+?

2. the noctermfE,al symbols of modified43NF are denoted by the

trarisfoma.tjona1_ff_ra~!-~ar : t- phrase stzw3ure lexicon tra.nsforma.tions $END-b --c-,1d, -- -w+..-. -u-

3 0 symbols not underlined are used autonymoilsly, (2 .g. 9 ” $NKil “) 9

We refer to the constructs of the metal.angwgc as “formats”, because

they are in f&e-t th-1t free-field forrr,ats of a eompui,er s ys -t em. 1 W? have

carried de undw Lin-P:Lg of format Lames iw;.%o the text of the pa.per U

-II--.--,

iThe character set of the object language is rpslric-ted to that of the
IBM 029 keypunch. Th-ils, since the sit lacks square bra,ckets, we we them
only in the mctalanguage, and use only angizlar brackets in the object
language O s

3

Basic to the syntax are the two formats word and integer. A word

is a contiguotis string of alphanumeric characters beginning with a letter;

an integer+ is a contiguous string of digits. Except in these two formats,
. .

spaces may be used freely.

If a BNF description is to elucidate a langtiage, it should not intro-

duce names for intermediate formats which do not have meaning. In order to

avoid additional formats where possible, and to simplify the description,

we have introduced into the metalanguage six operators. In each case the

operand is given within square brackets following the operator. The

operators are: 1, 2
--.

1 In the LISP la5 documentation [13] a similarly modified BNl? is used.
There are notations corresponding to the first three operators above,
as follows:

list[i~nteger J
clist[intege,r]

integez *.. integer
integer,

optl int,eger I +(integer)
".*I integer

2Modified BNF includes BNF. It is (weakly) equivalent to BNF, although
it does not give the same structure. It is easy to show that each
occurrence of an operator can be deleted, possibly by the introduction
of one

1.

2,

3.
4.

5.

6.

or more intermediate formats.

list[2 1 can be replaced by the new format bl, where bl is
definedby E ::=Q or blk.
clist[b] can be replaced by the new format
isdefinedby bl::=b or E,b.

bl, where bl

sclist[b] is-gimilar to
optI 'b]

clist[-g] .
can be removed by replacing any string CY opt [b] s

by ~!bs or Qf3 (for any strings Cy, is in the metalanzuage).
booleancombination[b] can be replaced by ba, where
bl ::= 2 or 'bi 1 bl or 'bl A bl or I bl or (bl) if we
are not concerzd wzh obta~ing?&uctureor2 if we are, by
Boolean expressioz defined as in Algol 60:

Boolean primary ::= b or (Boolean expression)
Boolean secondary ::L Boolean primary or -I Boolean primary:
Boolean factor ::= Boolean secondary or

Boolean factor A
Boolean term ::= Boolean factor or

Boolean term 1 Boolean factor
Boolean expression::= Boolean term
choicestructure[k] can be replaced by b& where bl ::= b
or (clist[E, J), and clist[bl] is then replacedas ab&.

4

i -

1. list

a : :F- 1is-Q integer J.-

i . .e

t
i

would allow a to be

12 6 g’s71 ,3 20

A list may be of length L but may not be empty*

2. c1ist (comma list)

a :: gz cli~tac ibeg!: 3

--.

allows 41. to be

L
1, 2, 6, 9171, 3, 20

L A clist may be of length 1 ‘but may not be empty,

I 30 sclist (semicolon list)
L

ii

allows a to be

CAT; DOG1 ; MOUSE

A schist may be of length 1 'but may not be empty.

4. opt (option)

a : :trrC opt[integer] yard

allows 2 to be either

5. booleancombination

a ::= booleancombination[word 1

would allow 5 to be -S

The logical operators 79 b9 1 (not, and, or) are allowed in

a boolean combination. Parentheses may be used to override the

precedence order. The precedence order of the operators is:

-I is stronger than & is stronger than 1 .

6. choicestructure

rule right ::= choicestructure[list[word 1 1

would allow rule right (the right-hand side of a phrase struc-

ture rule) to be

B (C)((D E,F))

The choicestructure operator is used to represent choices and

options in the object language. An entity within parentheses

represents an option; two or more entities within parentheses

. and separated by commas represent a choice. The expression

above could be used as part of an object language rule

A = B (C)((D E,F)) to ab'breviate the six subrules A = B,

A = B C, A=BDE, A=BF, A= BCDE and A-BCF,

The usual, linguistic representation for this rule is

* A -* B (C) (iDFEj)

6

.

I
L

i 1

L

Syntax constraints. In various places below, the syntax description

is augmented by syntax constraints. In almost all cases, the use of

constraints could have been avoided. However, where the choice appeared

to be between a simple constraint and an alternative introduction of

several intermediate formats, we have felt that clarity was best served

by the use of the constraint.

?

Transformational Grammar

The model of transformational grammar we use is a version of the

one presented by Noam Chomsky in-Aspects of the Theory of Syntax {4].

The components of the grammar are a set of phrase structure rules, a

lexicon, and a set of transformations. The phrase structure rules are

used to generate base trees, the lexicon to insert the vocabulary words

and complex symbols into a completed base tree, and the transformations

to transform the base tree into a surface tree with terminal symbols

which represent a sentence of the language. Since the remainder of the

paper is essentially an expansion of this brief description, we proceed

immediately to the first rule of the syntax:

0.01

transformational grammar :;= phrase structure lexicon transformations hD

Basic to the formats for the three components are trees, analyses, restric-

tions, complex symbols, and structural change. We will define these basic

concepts first (in terms of one another) and then give the definitions of

the components.

For each set of formats the presentation follows a fixed order:

syntax description in the metalanguage, syntax constraints in English,

examples of the syntax, and interpretation of the formats, Remarks are

interspersed between these sections.

Appendix I contains an example of a transformational grammar.

Appendix II is a listing of the full syntax.

8

r
!L

i

L
i

i

i

t

i

i
e

i

i
i

i
L

i
i

BASIC FORMATS

lo Tree

Syntax

lo01 tree specification

1,02 tree ::= node opt[.--

lo03 node ::= word or---- _yI

. .

: :-- tree opt[--) clist[, word tree]] D1_1.-

complex symbol 1 opt[(.- list[tree 1)]

sentence symbol or boundary symbolI__Iy

1.04 sentence syrribol :a= S-_I__

LO5 boundary symboL ::= #---

Constraint++

Lob- -The sentence symbol is distinguished._ It may not be used

as a word.--

Interpretation%-Y_-

LO1 The tree specification tree0 word1 tree1 word2 tree,, ooo-- -e d

wordn treen is interpreted to mean that the occurrence of word
1

in tree0 is to 'be replaced by tree1 o The process continues,

always applying to the result of the previous steps.

l,W A complex symbol foliowing a node is attached to that node

as a list of properties, A list of trees within brackets following

a node is the cleft-tc-right) iist of the daughter sub-trees of the

node.---,

Exam&es%I-- --

iOO1 treexecification---w--w

Constraints-Y-mr inwrpy~tatior~s,-ml and exampIles are numbered to correspond.m---
to the syntax, e

9

i

F
i

P
t

I L

s (s1 =9, Sk NP (N), S2 VP (A), A v ti

represents the tree

,iL

1,02 tree

S

N

-n

VP

N v

S (NP (N) VP h>>

T%i.s represents the same t given above:

NP

tree

SC#NP(NI +N +HuMANI (GEORGEHVP(V(+vI (S A W)

DET] (THE) N 1 =+ N 4NZMATE - ABSTRACT i

10

1
i

I
i

i

i

L

N
ANIMATE

I
ABSTRACT

Note that a complex symbol following an element is attached

to that element as shown in the diagram, The vocabulary word_

GEORGE is treated as a daughter node of the category sym'bol N,

while the complex symbol I+ N + HUM&NI is attached to N rather

than to GEORGE D The alternatives would have been to attach the

complex symbol directly to the vocabulary word or to include the

vocabulary word as part of the complex symbol0 The advantages to

be gained from our treatment are first that it allows complex sym-

bols to be attached to any node of the tree, and second that it

makes the vocabulary words into node names which are then available

for mention in a transformation

Reference

Formats for trees are discussed further in [$11-l where a

fixed-field format is also given.

i

11

i

F
L

I
1

I e

i

I
i
L

L

I

i

L

!

b

2. Analysis

Syntax

2.01 analysis ::= list[op.t[integer] term 1

2.02 term ::-- structure or skip or choiceu___-

2.0:3 structure :z= element opt1 complex symbol J--

opt[opt[7 J opt[j I(analysis)I

2.04 element :t= node or * or _

2,05 choice ::E: (clistl analysis 1)

2,06 skip

I --.
Constraints

Y “-.0 “L k opt1 0ptC I] opt(Bc] (clistl struetuire 1 > 1

2,01 In the implementation 9 Inte_aers in an analysis must "be

greater than 0 and less than or equal to 50 o

2.02 Two adjacent terms of an analysis,may not both be skips.

2,04 The element may appear only in an analysis in a

contextual feature (4.8) and must appear there precisely once0

205 Each analysis in the clist[analysis 1 of a choice must

contain at least one term which is not a skqp.

Alternative

i,06a skip : ::-: $ opt[optj' 7 J(structure I]

At the present time 2,06a rather than 2,06 has been implemented.

Examples

2001 analysis

12
/
i

2.03 structure

N (3 ++Cl >

N (+ ABSTRACT1

VP(-% >

#

. .

2 . 0 5 choice

(mm? 1

(BE9 I-MT&)

2.06 skip
--.

Remark

A tree (1.02) is a special ease of an analysis in which none

of the symbols () 7 $ & nor integers occur.

Interpretation

An analysis specifies a template against which a tree may be

matched. If the match succeeds, the tree is said to "satisfy" the

analysis. The match may succeed in more than one way--the order

in which the matches are taken is specified by the analysis

algorithm (see [28]).

An analysis matches a tree as follows: Each term in the

analysis matches a section o.f the tree. All leaves of the tree

are part of some term's match. Left-to-right order in the analysis

corresponds to left-to-right order in the tree.

13

L

’ ,

i

-

2.01 The integers in an analysis are labels for the terms which

follow and are used in restrictions and structural changes to

refer to the subtrees defined by those terms. An integer should
. .

not normally be used more than once in an analysis, unless at

most one of the terms so labeled will be matched, viz.

A(lB,lC)D. This is equivalent to A 1 (B, C) D 0

2.03 A structure matches a subtree If:

!

i

,
I

i

/
I
i

I
I

I

i

i
L

i

A. the element is a node which is the name of the top node of

the subtree,

the element is * :,
-v.

the element is and the top node of the subtree is the Loca-

tion at which lexical insertion is currently being attempted,

B. the complex symbol matches the complex symbol of the subtree.

(For analyses in contextual features the test used is nondis-

tinctness, For analyses in the structural description indu-

sion appears to be the appropriate test.)

CL all restrictions referring to the integer, (and to an integer

preceding a choice in which this structure is the first term

of an analysis, etc.) are met.

There is an (analysis > on this structure and:

i. it is /(and the subtree matches the analysis

ii, it is -I/(and the sub-tree cannot match the analysis

iii. it is (and the subtree matches the analysisp with the fur-

ther requirement that each sub-subtree matched by a structure

not inside further (>'s be headed by an immediate daughter

of this subtree's head.

c

14

iv. it is 1(and no type-iii match can be found.

2,04 The element -s is an unspecified single node, which will

match any one node in the %rec. me is also an unspeci-

fied single node, and defines the location for lexical inser-

tion in a contextual feectz;lreO.--

ZO5 A choice -matches a part of the tree If at least one analysis

in its @list matches. If it has only one analysis, it

also matches a null part of the tree.

2,06--.A skip replaces the variable nodes in the more usual treat-

ment.

2,06a A skip matches a region bounded by tk;ro subtrees if:

A0 all restrictions are met [see 2, under structure],

B, there is a (structure 3 and

i, it is (and there is a matching sub-tree somewhere

in this region,

ii. it is --I(and there is no matching subtree in the

region0

Note : An analysis cannot succeed with two adjacent skips;n__

a skip .must be bounded on both left and right by

structures or by edges of (sub)trees.

In a skip the clist[structure 3 is a list of subtrees to--

be matched with the skip. Zf the skip is simply $(clist[struc-

ture] > then at least OLW of the structures must be matched, If

84 clist[structure 3 > then none of them must be matched0 If

-I=-- i

L

I
L

$ 8~ (clist[structure]) all must be matched, and, finally, if

$ 1& (clist[structure] > then at least one must fail to match.

Examples . .

An analysis 46 (A) B (c> (DJ) 2F(G H)(% 7 (I) J,K) 39F with

restriction RES 2 EQ 39. matches the tree0

X A Y

% (A) matches the region L- h9

/n

since this includes a

s A Y
node A . B matches the subtree B O (a matches a null portion

of the tree. CD,@ matches the subtree E o 2F(G H) matches the

subtree F 9

A
since G matches subtree G and H matches

subtree H ., (k fi, (I) J9 K) matches the subtree K o

AJ
Note that only K matches; if $ -T (I> J matches, I would have

to match subtree Jj leaving region I for $1 (I), which would

fail because I matches I O 39F matches the subtree

since this and the subtree 2 are equal.,

t

16

Reference

Analyses and the analysis algorithm will be discussed further

in a forthcoming paper by Friedman and Martner [28].

17

I - ------------ - _ 1_ _ ._._-.. -- I -.-. --. _ -- -_ - - --_.----- ___-
I

3. Restriction

i
L

i
i

(i
i

: f
;,

‘

L

i

f
L

L
T
i

Ii

t
I

i -
L

I

i
L

i

i

i
c

I
!L

Syntax

3 001

3.02

3.03

3.04

3 005

restriction ::= booleancombination[condition]

condition ::= unary condition or binary condition

unary condition ::= unary relation integerc

binary condition : := integer binary tree relation node desig-

nator or integer binary complex relation complex symbol desiq-

nator

node designator :::-: integer or node

3o06 --.complex symbol designator ::= complex symbol or integer

3007 unary relation ::= TRM or NTRM or NUL or NNUL or NONREP

3o08 binary tree relation ::= EQ or NE& or DOM or NDOM

3o09 binary complex relation : := INCl or NINCl or INC2 or

NINC2 or CSEQ or NCSEQ or

NDST or RNDST

Constraints

3o05 For the binary conditions with EQ and NEQ, the subtree

designator must be an integer. For DOM and NDOM the

subtree designator must be a node.

Examples

'j,Ol RES 1EQ 2] 3 NE& 5 .

3002 I~EQ 2 4% 3 NE& 5

3o03 N-m 2

3~07 3 INCl 1 + HUMAN 3

18

i
L

L
L

I

I
L
L

Remark

The conditions listed above are examples; the list can easily

be expanded.

Interpretation

Restrictions are tested during an attempt -to match an analysis.

Where both Nxxx and XXX are relations, NECK is the nega-

tion of XXX 0 It is generally more efficient to use A NXXX B

rather than -I A XXX B, but the result is identical,

Integers in conditions refer to nodes of the tree which match

the correspondingly numbered terms of the analysis, Integers in-v.

subtree designators refer to the subtree headed by the numbered

term,

The meanings of the conditions listed are as follows:

30 03 unary relations

TRM integer means that the subtree corresponding to integer

consists of a single (terminal) node0

NUL integer means that the label integer is unassigned (null).

NONREP integer means that the subtree corresponding to integer

must not be the same for two applications in a set of appli-

cations of the analysis0 This is appropriate to transforma-

tions with the parameter C or CNR .,‘I

30~8 binary tree relations

integer EQ integer means that the subtrees corresponding to

the two integers are equal and have nondistinct complex sym-

b&.

19

- -

L
I
L
L
L
L
L
L
I
L

1
L
L
L
L
L
L

integer DOM node means that the subtree corresponding to

integer contains at least one occurrence of node0 Note that

A/(%Bsa> is exactly equivalent to 1 A KES :L DOM B e
. .

The former is generally to be preferred.

>009 binary complex relations

An integer as an argment of a binary complex relation refers-->

to the complex symbol of the node matching the corresponding

labeled term of an analysis.

Each of the

tihich gives
--.
fixations,

if and only if it is true for all of their feature specifica-

tions. The matrices are given in the Table below.

binary complex relations is defined by a matSrix-

the result of a comparison of two feature speci---

T'he relation will 'be true for two <complex symbols

integer INCl complex symbol designator_-- II___

The complex symbol.--- B pointed to by the integer on the left

includes-l the complex symbol A pointed to by the

complex symb0.l. designator on the right, That is, every

feature specification of A also occurs in B e It is false--

only if some feature for whichc--w A has a specification is

absent from E, or if some feature occurs in one with the

value + and in the other ,with the value - Q

integer lNC2 complex symbol designator

The c-omplex sym'bol b pointed to by the integer on the left

includes-2 the complex symbol A pointed to by the

complex symbol designator on tine right. Includes-2 differs

from inc.ludesL-,.i only in the case of the value * o

L
20

t

L
Includes-2 will be false if A has * where B has

+ or 3 or if B has %* where A has + or - 0

integer CSEQ complex symbol designator

The relation CSEQ holds between two complex symbols if

I
i

i

and only if their feature specifications are identical0

integer NDST complex symbol designator

Two complex symbols are nondistinct (NDST) unless there is

a feature for which one has the value + and the other has

I
_-

L and the other has the value - .,

--.
TABLE

Matrices defining binary complex relations

!
1
IL NONDISTINCTNESSEQUALITY

B

\A

e

*,

abs

E

\A

+

abs

i
i

+ - 36 abe.f - Jc abs

TFF F

FTF F

FFT F

FFF T

T F T T

F T T T

T T T T

TTT T

INCLUSION -I TNCLUSION -2

B

\A
+. P 3c abs=+ - 36 abs

TFT F TFF F

FTF F

FFT F

TTI! Tabs

FTT F

TTT F

a'bs TTT T

,(a Note follows on next page)

L 21

9,I
L

ii
i

Note: T represents true, F represents falsejand abs indicates that:

the feature is absent altogether. For the test to 'be true for

complex symbols it must be true for all of their feature specifi-

cations,

Reference

Restrictions are discussed further in PoXLack [3&],

i

i

L 22

4, Compiex

syntax

4 .Ol.

4oo2

IcOO

4,04

4 Oo5

4005

4007

sy-rnbol

complex symb0.l,9 : :T.m_ I&istj feature specificatSon11 m-m-- I

feature specification f:= value feature--- - ,-- ---

featSure : ::-I-y__, category featurea--or inherent feakre or-yc_-_Y

wit2 featAre--&L=x-?---.w-.- or contextna.i feature iden?ifleru_y_--

category feature :::::' category

category : ;:= word

inherent fearAre r ::: wordYP

rule feature ; '::I transformation name-=. -t ,-

4.08 contextua:2 feature identifier : :- contexttia:I. feature or.-

contextual feature label

(See 7o06, 7,07 for contextual, featLye .Eabei)CI-WI---

4009

4 .:I”0

contextual feature : ::::. (analysis) opt:' restrictions :]

Constrairks

4,02 A ,feature may appear only once in a @ompl.ex syrribo10-3

4003 No more than one eat.egory feature may appear in a complex symm_

bOl0--_y

To avoid ambiguity9 each word shoCld 'have only one immediate->

4,08 The analysis in CI contextual feattire is restricted ‘byvi-

constraint,s -3.04 arJd 5 .O.L a’bove.

23

L

Alternatives

4JOa value

4JOb value

Remarks

: ::-: + or - or 36 or valtie word--

: :: + or *- or value word

. .

he02 The use of "feature specification" tJo denote a signed feature

is introduced in C"homsky 141.

4,lO The value -K was suggested in the UCLA Working Papers [20],

where it is used to mean "obligatory specification".

4.10b is used by Gross 18'j0

--.
Interpretation

Complex symbols appear in the lexicon, in ‘base trees during

and after the lexical insertion process, and in analyses and

restrictions Their use in lexical insertion will be described

in Friedman and Bredt [26]. Their rol~p in analysis is described

briefly in section VI ‘below and in more detail in Friedman and

Martner [28]. Complex syn’bols are implicitly expanded by the

redundancy rules of the lexicon.

4,Ol A complex symbol is an unordered list of properties or

feature specifications,

4,08 A complex sym’bol appearing in a tree may not contain

contextual features*-m1

4 J.0 The value * is defined by its use in the binary complex

relations (J.i.0) and operations (5.10). It can be regarded

as 2; it is nondistinct from bo,th + and - *

24

i
L

Ekamples

4.01 complex symbols

I +N +HUMAN - COMMONi

I +v - TRANS + ANTM$UBJ[

4,02 feature specification-s

+ KllMAN

f ANPMSUBJ

4.06 inherent feature--

IlUMAN

4,07 rule feature

--'PASSIVE

4008 contextual feature identifiers

ANIMSUBJ

S(#NP(%Nl * ANIMATE I> VP (-%>#J

L

25

i

I L

5. Structural Change

$yntax

5.01

5.02

5.03

5.04

5005

5o06

5.07

5o08

5009

5JO

5.11.

5.12

structural changes ::= SC structural chan& .. .

structural change ::= clist[change instruction]u1____3_-

change instruction ::= change or---- conditional change

conditional change ::- IF (restriction) THEN (structural-- -,

change > opt[ELSE (structural Ghan= >

change, ::= tree designator binary tree operator node designator

or complex symbol designator binary complex operator

node designator or unary operator node designator

or complex symbol designator ternary complex oper_-

ator node designator node designator;

node designator ::= integer orword

complex symbol designator ::;= complex symbol or integer

tree designator ::= (tree) or node designator

binary tree operator ::= ADLAD or ALADE or ADJLADI or

ALADEI or

ADFID or AFIDE or ADRIA or ARIAE or

ADRIS or ARISE or ADRISI or ARISE1 or

ADIES or ALESE or ADLESI or ALESEX or

SUBST or SUBSE or SUBSTI or SUBSET

binary complex operator ::= ERASEF or MERGEF or SAVEF

unary operator :t= ERASE or ERASE'1---

ternary complex operator 1 : _-.- MOV-EF

3

26

I L

IL

L

L

i

i

i

Remark

The operators listed here are just' examples. They include

those used in the MITRE grammars 1'211 and in the IBM Core Grammar

WI. The list can easily-be expanded0

The changes are to be made in the order in which they appear

in the structural change.

5.11

u

unary operator

ERASE n deletes the subtree headed by n, and furthermore

erases its ancestors until a node with more than one daughter

is encountered.

--a.
binary tree operators

The changes with binary tree operators are adjunctions of the4

form m ADXXXX m and mean that the subtree headed by the node

corresponding to the label m is to be adjoined to the node

corresponding to n .

n ADRPS m (n ADLES m) means that a copy of the subtree headed

bY n is to be adjoined as the rightmost (leftmost) sister of

node m O

n ADFID m (n ADLAD m) means that a copy of the subtree headed

bY n is to be adjoined as the first (Last) daughter node m -

These same operators, when the second letter 03 is missing

and they are terminated by the letter E,9 i.e., ARISE, ALESE,

AFIDE and ALADE, mean that the original subtree headed 'by n

is to be erased in the course of the operation. That is,

n ARISE m is equivalent to n ADHIS m, ERASE n .

27

I
n SUBST m, and n SUBSE m, mean that the subtree n is

ft
L

I

i

i

i
L
I
I

L

i
t
L

I
i

to be substituted for the subtree m 0

The operators with names terminated by the letter I, ADLADI,
. .

ADRISI, ADLESI and SUBSTI, are the similar, but not identical,

operators used in the IBM Core Grammar and defined in [X6].

5.10 binary complex operators--

The binary complex operators modify complex symbols. The

complex symbol pointed to by an integer is thesymbol complex

of the node corresponding to the term of the analysis labeled

with the integer.

n ERASEF m means that the feature specifications of the

complex symbol pointed to by n are to be deleted from the

complex symbol pointed to by m 9

n MERGEF m means that the feature specifications of n are

to be merged into the complex symbol m .

n SAVEF m means that all feature specifications of m are4

to be deleted except for those of n, which are to be saved.

Notice that 1 *SG *PRO 1 SAVEF m will leave in m only

the specifications for SG and PRO, and will leave their values

unchanged.

I
IL 28

IL

i
L

:

L

/
i

i

i

L

e

L

L

Table binary complex operators

The matrices show the values in m after the change_ is performed.

. .

n MERGEF m

n ERASEF m
--.

n

\n

*

abs

4” - % abs

+,* *

+ - * abs

n SAVEFm

5.12 ternary complex operator

n MOVEF m k is equivalent to first evaluating the result of

n SAVEF m and saving it temporarily as r (without changing

m) and then merging this result into m by r MERGEF k . Thus

1 WG 1 MOVEF n m will change the complex symbol m so thatc

the value of the feature SG is the same in m as in n .

29

IL. :
~ i

i
COMPONENT FORMATS

L

j
L

i

I
I

i

t

6. Phrase structure

Syntax . .

6.01 phrase structure ::= PHRASESTRUCTURE list[phrase structure-

rule 1 $END

6.02 phrase structure rule ::= rule left = rule right o

6.03 rule left I:= node

6.04 rule right ::= choicestructure[list[node]]

Constraints

6.03=.The rule left of

sentence symbol.

the first phrase structure rule must be the

6.01 The following ordering constraint is sometimes placed on the

phrase structure: The phrase structure rules must be ordered

so that, with the exception of the sentence symbol, no node

occurs in a rule right below a rule in which it occurs as

rule left.

In the computer system [24], this constraint is imposed

only i f the algorithm for directed random generation of

L

base trees [23] is used.

Interpretation

6.04 The node on the rule left can be expanded to any of the

lists of nodes obtained from the rule ri& choicestructure.

Remark

6.04 The use of the Kleene star to define rule schemata is not

included.

30

I L

i
L

1
I
L

Ii

1

L

.

Example

“ALFRED l A N PROSE -- TRAUGOTT’”
PYRASESTRUCTURE
II fII S

PR;
(PRE) NP VP AUX (ADV) if o

II 1 1 II = (FIEG) (Q).
“Ill” AUX = (AUXl) Te ..
‘llv” T = (PRES,PRST)e
IIV” AUXl = (IHF F4, PP PERF).
“v 1 II PERF = WABB, BE 1.
“VI I” VP = ((ADJ,NP) COP, MV).
“VI I I”ADJ = WP)(IriT)AD,
“lx” MV s (PASS)(!JP)((NP,S))V(PRP BE),
II IIX PASS = PREP P.
“Xl” Np = (DET) N 6).
“Xl I’” DET = (~UA~JTl)(DEM)((~UANT2,~JU~~))(D)(S).

$F.NDPSG

Reference

-'Further discussion of phrase structure is given in Doran [35].

Ii

31

I ii L
7. Lexicon

Syntax

7.01 lexicon ::= LEXICON prelexicon lexical entries $END

7.02 prelexicon ::= feature definitions opt[xedundancy rules]

7.03 feature definitions ::= category definitions

opt[inherent definitions]

opt[contextual definitions]

7.04 category definitions ::= CATEGORY list[category feature lP
i

7.05 inherent definitions ::= INHERENT list[inherent feature I9

i

i

7 006 =_ contextual definitions ::= CONTEXTUAL clistf contextual defi-

7007 contextual definition ::= contextual feature label = contextual

feature

7.08

7.09

7.10

7.11

7,12

7013

contextual feature label ::= word

redundancy rules ::= RULES clist[redundancy rule].

redundancy rule ::= complex symbol => complex symbol

lexical entries :; = ENTRIES list[lexical entry 1.

lexical entry : := list[vocabulary word] list[complex symbol]
I

vocabulary word ::= word

nition I0

32

i

,
!
L

L

i

i
L

1
‘,
t
L

L

L

\
I
L

i

pample

Pt-fIiASESTRUCTURE
S = # NP VP # . VP- = V (NP). NP = (OfTI N.

SENDPSG
LEXICON

CATEGORY V N OET’ l

I N H E R E N T ABSTRACi ANIMATE COUNT HUHAN l

CONTEXTUAL TR’ANS = <VP<-NP>h COMMON = <NP<OET ,>>,
ABSTSUBJ = <S<#NP<%Ni+ABSTRAC’Ji > VP<,%>#>>,
NAf3SJSUB=<S<#NP<%Ni-ABSJRACT/)VPo)r
ANIMSUBJ=<SC#NP<%N)+ANIMA’JE (>VP<,%>#>>,
NABSTOBJ= <VP<iNP<% NJ -ABSTRACT i >3>,
NHUMOBJ = <VP<,NP<& NbtiUMAN(>>>,
ANIMClSJ * <VP<-NP<& NI+ANIMAJEi>>> l

RULES I+COUNJ~ =:) J+C~MM~NI, ~+HUMANI~>~+ANIMAJE),
I +ABSJRACJ 1 => J+COMMClN -ANIMATE! l

ENTRIES
S I N C E R I T Y V I R T U E i+N -COUNT +ABSTRACTi

-v. BOY l+N + COUNT +COMMON +ANIMATE +HUMANl
G E O R G E NOAM i+N - C O M M O N +HUMANi
THE i+OEJi
G R O W EAT I+V +TRANS -+ANIMSUBJ +NAE3STOB3i
F R I G H T E N 1 + V +TRANS +ANIMOBJ 1
E L A P S E O C C U R bV -TRANS +NANIMSUBi

A O M I R E R E A D i+V +JRANS +ANIMSUkli
B U T T E R I+N -COUNT -ABSTRACT1
60tlK)+N -ANIMATE +COUNTi
BEE i+N +COUNJ +AN?MATE -HUMANi
RE4D W E A R i+V +NHUMOBJ~
K N O W O W N j+V +JRANSi
EGYPT (+N -COMMON -ANfMAJE(
OOG i+N +COMMON - H U M A N +ANIMAJE)
CARROJ I+r\r +ANIMAJE -HUMAN +CO?INTi

R U N i+V -JRANS +ANWSU8Ji.
$ENDLEX

Interpretation

7.06 The contextual feature label is used in complex symbols as

an abbreviation for the contextual feature.

7.09 A redundancy rule (A &+ B) has the interpretation that if

the left-hand complex symbol A is explicitly included in

another complex symbol C, then the right-hand complex sym-

bol B is-implicitly included in the complex symbol C .

33

L

L

t

i

Alternative a

4,09a value ::=, + or - or * or value word

7.0?a feature definitions ::= category definitions---

7.031.a value definitions ::

7.032a value word ::= word

Remark

opt[inherent definitions

optI analysis definitions

opt ": ,valtie definitions]

VALUE list\ value word]

If 4,09a is chosen as an alternative to 4.09, the--.

1

additional

rules 7.03aj 7.031a and 7.032a would be needed for the lexicon.

Reference

The use of the iexicon in lexical insertion will be described

in Friedman and Bredt [26],

L

34 ’

8. Transformations

L

i

f
L

Syntax

8.01 transformations ::= TRANSFORMATIONS list[transformation

8.02 transformation

8.03 identification

dbntrol program $END

I

. 0

. .= identification structural description

opt[restrictions] opt[structural changes]

0 Y
0 .= TRANS opt\ integer] transformation name

optt list i parameter]] opt[key-wards] .

8.04 parameter ;:- group number

or embedding

8.05 =.group number : := I or II or

8.06 optionality ::I OB or OP

8.07 cyclicity ::= NC or C or

8-08 embedding ::= EMB

8.09 keywords ::- (list[node]

Or” optionality or cyc1icity

III or IV or V or VI or VII

CNR

8.10 structural description ::= SD analysis .

(for analysis see 2.01)

8.11 restrictions ::= RES restriction .,

i

L

L

i
L

(for restriction see 3.01)

8.12 structural changes

(for structural change see 5.01)

Interpretation

8,05 Group numbers are for use in the control program. If no

group number is given in the identification, the group number

of the previous transformation will be used, or I for the
L

L

first transformation.

35

8.07

8.~6

8,07

8.09

The cyclicity determines *hethey and how a transformation is

to be retested after a successful application. If NC (non-

cyclical), it will not be retested. If C (cyclic), it will

be retested. If CNR(cyclica1 non-recursive), all analyses

will be found before any changes are made. See also the

discussion of the restriction NONREP.

If no optionality is given, OP (optional) is assumed, rather

than OB (obligatory).

The null option is NC.

The keywords are used by the control program to avoid unnec-

essary analysis. If none of the keywords appear in the tree,

the analysis routine is bypassed.

-v.

Control Program

As long as the theory of transformational grammar is still

changing, grammars are likely to differ in the order of consider-

ation of the transformations, Therefo.ye, to complete the descrip-

i

L tion of a grammar, it is necessary to specify the order in which

the transformations are to b:z considered. Rather than choose a

particular order for this system, we have chosen to include a

control program as par-t of the specification of the grammar.
L

However, since this part of the! syntax is highly experimental and

L

i

subject to more radical change than t'he rest of the syntax, we do

not include it In full in this presentation,

9.01 control program ::= CP sclist[opt[label :] control instruc-

\
;
i

tion J

9,02 label ::=word

i 36

II
L

9.03 control instruction : :z

. .
L

L

, 1

L

L

transformation name- or group number

or transformation list or conditional

instruction or got0 instruction or1

zest instruction

9,04 goto instruction ::= GOT0 label

9 005 repeat instruction ::= RPT opt[integer] control instruction

9,06 conditional instruction ::= IF transformation name THEN (list-.

[control instruction J > opt[ELSE

(list[control instruction J >]

References--.

Transformations are further described in [Q]. A full descrip-

tion of the control language and its use will be presented in Friedman

and Pollack [3&l.

37

ACKNOWLEDGMENT

I L

’ ,

L

Thomas H. Bredt, Theodore S. Martner and Bary PalLack have made

impartant contributions to the formalization of the syntax. Their work. .

has been primarily in the areas of complex symbols and lexicon (Bredt),

analysis (Martner), and restrictions and contra1 language (Pollack),

They have all made many helpful suggestions in ather area8 a@ well.

38

T

i
j .

4

L HEFEZENCES

J. W. Backus, The syntax and semantics of the proposed international
algebraia language of the Zurich ACM-GAMM conference. ICIP Paris)
June 1959. . .

I

L [13

L
Paul Chapin, On the Syntax of Word Derivation in English, M.I,T.
Thesis, 1967.

c 21

Noam Chomsky, Syntactic Structures, Mouton & Co., The Hague, 1957.i c 31

[43 Noam Chomsky, Aspects of the Theosof Syntax, M.I.T. Press,
Cambridge, Massachusetts, 196%

f 53 Noam Chomsky, Remarks on Nominalization, to appear in Peter S.
Rosenbaum and Roderick Jacobs, eds., Readings in Transf'ormational'
Grammar, Blaisdell Publishing Company.

L

J, Friedman, SYNN, an experimental analysis program for transfor-
mational grammars, WP-229, The MITRE Corporation, 196%L

L. N. Gross, On-line programing system user's manual, MTP-59,
The MITRE Corporation, 1967*

[?I1

t

[81

c 91

1;. N. Gross, M.I.T. Rule Tester, 1968.

i George Lakoff, On the nature of syntactic irregularity, NSF-16,
The Computation Laboratory, Harvard University, 1965.

D. Lieberman, Design of a grammar tester, in [ll].DOI

[11-l D. Lieberman, ed., Specification and Utilization of a Transforma-
tional Grammar,AFCRL-66-270, 1966.

D. I;. Londe and W. 5. Schoene, TGT: Transformational Grammar Tester,
Systems Development Corporation, 1967.

John McCarthy, et. al., LISP 1.5 Programmer's Manual, MAT. Press,
1962.

i

i

Cl31

*
n41 Peter Naur, e&, Revised Report on the A

International Federation for Information Processing,

Stanley R. Petrick, A Recognition Procedure for Transformation
Grammars, M.I.T. Thesis, 1965.

1151

P, Rosenbaum and D. Lochak, The IBM Core Gramnar of English, in [~J-I.

John R. Ross, A proposed rule of treecpruning, paper presented to
the Linguistic Society of America, 1965.

D-61

Cl71

39

IL
1’i D-81

r191

Pm

I211

John R, Ross, Constraints on Variables in Syntax, M.I.T. Thesis,
xx%'.

Sanford A. Schane, A schema for sentence coordination, MTP-10,
The MITRE Corporation, 1966.

R. Stockwell, P. Schacter,‘B. Partee, et. al., Working Papers of
the English Syntax Project, U.C.L.A., 1967.

A. M. Zwicky, J. Friedman, B. C. Hall, and D. E. Walker, The MITRE
Syntactic Analysis Procedure for Transformational Grammars, Fall
Joint Computer Conference 1965, 27, 317-326, See also Ml'P-9, The
MITRE Corporation, 1965.

--.

The following references are working papers and reports of the

Computational Linguistics Project, Computer Science Department, Stanfoti

I

L

i

L

University.

[22] Robert W. Doran, 360 OS, FORTRAN IV Free-field Input/output
Subroutine Package, CS - 79, AF - 14, October lg&

[23] Joyce Friedman, Directed Random Generation of Sentences, CS - 80,
AF - 15, October 1967 (submitted for publication).

[24] Joyce Friedman, A Computer System for Transformational Grammar,
cs - 84, AF - 21, January 1968 (submitted for publication),

[2$] Joyce Friedman, Computer Experiments in Transformational Grammar,
AF - 22 and AF - 23, February 1968.

[261 Joyce Friedman and Thomas H. Bredt, Lexical Insertion in Transfor-
mational Grammar, AF - , forthcoming.

[27] Joyce Friedman and Bary Pollack, A Control Language for Transfor-
mational Grammar, AF - , forthcoming.

[28] Joyce Friedman and Theodore SI Martner, Analysis in Transformational
Grammar, AF - , forthcoming.

40

. ’
r ’

IL

i .
L

i
L

i
i

[29] Joyce Friedman, ed., Users' and Programmers' Guide to a Transfor-
mational Grammar System- This document is not yet complete,
but the following sections are available as working papers:

1301 J. Friedman, Subroutine structure, AF - 17, November
1967 c

. .
[31] J. Friedman, Trees, AF - 1, September 1966.

[32] J. Friedman, Input routine for transformations, AF - 1.6,
October 1967.

[33] J. Friedman, Input routine for structural change, AF - 18,
November 1967.

[.34] Bary Pollack, Routines for restrictions, AF - 19,
December 1967.

[35] R. W. Doran, Section III 14 of PSGINN, AF - 9, May 1967.

[36] Olasope 0. Oyelaran, AF Test Grammar, AF - 1.3, September 1967.

41

L

i

L

L

;i
L

APPENDIX I

The following is an example of a transformational grammar, based on

one written by Olasope Oyelaran (~61. It is not intended here to be

linguistically correct, but is just an example of the use of formats.

Strings within quotation marks are comments, and are ignored by the

program.

42

* I

i

i

/

i

E
L

L

L

L

i

” Lf TESl OLC-SOC’E iiYi:I;ARAN e PUG. 22 t 1967 l ”

PtiHASE’STR(JCTURE
5 = tf NP VP tt: .
v.3 = (PKE) V ((ltiP) (PP) (AGNT), Sq API 1.
v = AUX (VS q Ct-IP).
AUX = ((DO, (HAVk EN)(BE ING) 1) AUXA.
4tJXA = (:MOi)) (PKES, PCSTI tASPI*
A S P = i IMPERF ,PERF) l

AP = ((PRE) ADJ 01, S1 l

PP = PRT NP.
NP = (NP St (01 N NU, Sl.
NU = (SG,PL).
0 = (PRE) (ART(ADJ1 (S1, 1D) A!)$).
PKE = (NEG)
ART = (WH) GCEF, DEF).
bEhO “END OF YHR AS ES TRUC TlJRF “

LE)llCtir\l
CATEGClKY VR CUP ADJ N DEF INDEF PRT NOMINAl.ILER MOD e
INPEKCNT COUNT PRO ANIMATE HUMAN ABSTRACT M4SC SGi SG2 SG3

LOC TIME PLACE l

CWTEXJUAL
T R A N S = <VP/<%:,NP %>>,
4NIMSURJ = <S< # NP < % Nl+ANIMATEl 7: Wf’/tX3!7%~>,
HUMS\103 = < S< # NP < X N1+MUMANi % >Vf’/<%yXS%>>,
dUSTORJ = <VP <$ NP < % N(+ABSTRACT l Sg > % > >q
VPCOMP = <VP < % ii < AUX _ % > S % > ?v
SGNOUN = <NP /<% SG>>,
LGMM’_)N = <NP<LI_NiJ‘5> t
VPADJ = < VP < % V < AUX _ > 4P < ‘1: AD.) s, > ;K > > .

RULES 1 +COUNT 1 => I+CCMMONJ,
)+ABSTKACTl => I+COMMON -COUNT -ANfM4TE) t
I-ANIYATEi => I-HIJMANI 9
1 +tiUMANj => l+ANIMATEi l

ENTRIES
JOHN CHOMSKY RUSS (+N -CGMMON + HUMAN +MASC 1 q
MARY I+N -CUMQION +HUMAN -MASCI v
GRAMMAR l +N +CUHMON -4BS’TRACT l
ClFf ICE l+N +CDUNT -ANIMATE1 p
MIGHT l+N +AHSTRACTl,
COME 1 +Vt3 -TRANSl ,
,EFEND j +VR +TRANS +ANIMSUBJl I
tiEEP 1 +VS -TKANS +ANI FFSUBJ 1,
I(NCW 1 +V8 +TRANS +ANI iWlHJ! l +VB +VPCOMQ +HIJMSIJBJ 1,
CLAIM l+VB +TKANS +HUt5UBJl

1 +VB +VPCUMP +HUMSUBJ f ,
WRITE 1 +VH +4BSTORJ 1 9
BE {+COP +TRANS/ l+COP +VPADJl 9
BE 1 +VR, -TRANS(9
RIGHT PRIOR I+ADJ~,
FOR AT IN I+PRTl,
CAh /+MODl,
THE /+DfFl, SOME I+INCEF19
WHEN THAT W H Y l+NOMINAlIZER~ l

SEND “END OF LEXICON”

i

TRANSFORMATIONS
“CYCLIC RULES l.*”

43

TRAMS 1. fva4G “Nu/~1tiER AGREEMENT” F CNR OB*
SD % N LNU 2v s: ID
SC 1 AUKIS 20

TRANS 2 RFLNOM “RELATIVE NOMINALIZATION” me
SO % NP V NP/$S/<# LNP V %> %> %,
SC NOMJNALIEER AOCES 1. ,

TRANS 3 PRO1 “PRONOMINALILATION” ,.c FM6 0611,
SD % II)!<% 1N 2NU >% NP<S<# 3N 4NU> V %> % e
RES 1 EQ 3 & 2 EQ 4 I,
SC l+PP.Oj ?!@RGEF 3.

. .

, TRANS 4 PRr32 4aPRONOMINALIZATION” OPO
SC X LO<N NU> V NP< S< 20<3N NU> v % > % > 91.
RES I EQ 2 o
SC i+PROj MERGEF 3.

TRANS 5 NEG “NEGATIVE PLACEMENT” Cl8 (NEG) o
SC % bNfG 2(DO,HAVE EN’ BE ING, NOD! VB X.
SC J1 ADRISE 2,

TRANS b WYPLA “WH PLACEMENT” QB (WH).
96 rp, ART St< % LNP % S/C % 2NP /<QPRE) WH (DEF’INDEF1 N NU > %) % > %a
SC 2 ADLESE 1.. .

TRANS T RELEX “RELATIVE EXTRAPOSl’JI ON” 08 EMB C e
SD % NP W D<ART # lS/<% QPRE) WH %> %> N TNU.
SC 1 ADRISE 2.

“CYCLIC RULES 2 ” “RULES 8 TO 11 ARE OROERED”
TRANS 8 NUMCON “NUMBER CONCORD” irR*

SG 95 N llNU V<2AUX %> %e
SC 1 AORIS 2.

TRANS 9 ASP1 ‘ASPECT SPECIFICATION” OB lfNG ,fMPERF).
SO % VC BE 1ING (PRES, PAST! IMPERF 2%) %,
SC 1 ADRISE 2,

TRANS 10 ASP2 “ASPECT SPECIFICATION” 08 (HAVE EN PERFbe
SD % VCHAVE 1EN (PRES’ P4STZ PERF 28)s
SC 1 ADR’H’SE 2.

TRANS 11 “A” SIMPV “SIMPLE VERB TRANSFORMATION” 064
SO % V<% l(PRES’PAST1 2NU 3(VB,COP)> %,
SC 1 ADRISE 3 ’ 2 AORISE 3,

TRANS 11 “B” MOD ’ “COMPOUND VERB” OB (MOD) e
SD % V<MOD (PRES,PAST) LNUS%.
SC ERASE 1.

TRANS 12 BOUNDE “BOUNDARY ERASURE” TlB*
SD lR,n(2#.
SC ERASE 1 r ERASE 2 a

“PCS1 CYCL XC RULES.” “PARTIALLY ORDERED.”
TRANS 13 WHKEPl “HH REPLACEMENT” II 08 (WH DEFI.

SO % NP<tYKEl 1WH 20EF N NW %.
SC YHtCH SUBS-J 2, ERASE 1.

TRANS 14 WHREP2 “WH REPLACEMENT” 08 (WH INDEFI e
f SC % NP<I PRE) 1WH 2INDEF N NU> %.

SC WHICHEVER SUBST 2, ERASE 1.
JKANS 16 THAT ‘THAT SUBSTITUTIONe” Of’ !WHTCHI l

SC % l*<N NU> g NP< 3 WHICH 4+<N NW> %e
RFS 1 EQ 4,
SC IHAT SilUSi 3 r FKPSk 4 .

f2ANS 17 WHPKOl “WH PRONOMINAL SUBSTITUTION ” OP IhtiICH1.
SC 5: N g NP< 1WHJCH 2NJ+HUMANi %> t.
SC NHlj SUBST 19 ERASE 2.

TRAtJS 18 WHPK02 OP (klHICH1.
SD str N % NP< L’VIYICH 2Nj+AHSTRAC’J! %> Z.
SC h!4AT S!.1-\:;?' 1, F-?'fc;F 2,,

fRP:\lS 20 9 f: (;s;> ":\rF(;,AT IVE St:rjt 1 -d&t* iJb tNfr{G),s
SG %2NEG 4.

L’ ”

i

I
i

r
L

L
*:i
L
I
I
L
L
L
L e

i
L
i
L
i
L

SC NOT SUBST 2.
“PGS? CYCLIC V-TRANSFORMATIONw ORDERED.”
TRAMS 22 V2 OB (BE PPES PC)@

SG % 1BE 2PRfS 3PL %.
SC ARE SUBS’6 lo ERASE 29 ERASE 38

TRAMS 24 V4 OB (PRES SC).
SO 4 N 1 (8Es HAVE9 001 VB) 2PREs 3SG %B

SC S ADRIS 1s ERASE 2r ERASE 30
TRANS 25 V5 OB (PRES).

SCI % (HAVE9 DO, VB) 1PRES 2NU %:.
SC ERASE I, ERASE 2e

TRPNS 26 V6 OB (BE PAST].
SC % 1BE 2PAST 31PL’ SGI %.
SC WERE SUBST 1, ERASE 2, ERASE 30

TRANS 27 V? OR (BE PAST SG%e
SC % 1BE 2PAST 3SG 2.
SC WAS SUBST 1, ERF-SE 2’ ERASE 30

TRANS 28 V8 08 (PAST).
SD % (HAVE’ DO’ V/B1 IPAST ZNCJ %.
SC ED SUBST 1, ERASE 2.

TRANS 29 NSPl “NDUN SPELLING” UB IPL).
SC % N 1PL %.
SC s SUeST--~l.

TKPNS 30 NSP2 OR.
SO % N 1NU %.
SC ERASE I.

CP I II III” “CUNTROL PRCJGKAM”
SEND “END Of TRANSFORMATIONS”

ETEST

45

I

I

f
i

1
i

I1
i

L

ij
i

i
L

L
i
i
L

i

L

L
L
L
1
L
L
1

APPENDIX 11

c”
0IJJwvz

0wI/7v

K
0

,
i

i

L
I
L
L
L
IL
L
L
L
L
I
L
L
L
L

K
5

K
-0 c
-c

c‘
OlK
c o

a

