CS 98

ALGOL W IMPLEMENTAT ION

BY

H. BAUER
S. BECKER
S. GRAHAM

TECHNICAL REPORT NO. CS 98
MAY 20, 1968

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

ALGOL w | MPLEMENTATI ON*

By

H. Bauer
s. Becker
S. Gaham

*This research is supported in part by the National Science Foundation
under grants GP-4053 and Gp-68kk.

- ALGOL W | MPLEMENTATI ON
- Table of Contents

- I. INtroduction L L e,
Xl. Ceneral Oganization i, .
- IIT. Overall DeSign . . o i e e,
| A Principal Design Considerations.*.. .. % &
= B. Run-Time Program and Data Segnentation .,..,... 6
C. Pass ONe. e, veeres 7
- D PaSS TWD . o o it 8
1. Description of Principles and
Main Tasks............... Ceeeneean 8
— 2. Parsing Algorithm *+ 8
3. Error Recovery ...vivvvenrennnn, ceees I
L. Register Analysis*t......*. .. 1
- 5. TableS ittt i e 13
O V1 | 13
E Pass Three. . cvriviiiiiiienieeeeneannnnnnnns, 16
Iv. Conpiler Details
. A Run-Tinme Organizationveeviieeneoeneonnans 17
1. Program and Data Segmentation ..,... 17
2. Addressing Conventions,....... 20
- 3. Block Marks and Procedure Marks ..., 20
L. Array Indexing Conventions Lt 22
5. Base Address Table and Linkage to
_ System Routines 23
6. Special Constants and Error Codes ., 24
7. Register Usage veel 21
8. Record Allocation and Storage
— Reclamation 27
B. Pass Oneccoiviiiiiiiiiiiina,. Ceeieeeas 33
— 1. Table Formats Internal to
Pass One |oiiniinenn. erereees 2
2 The Qutput String Representing
L an ALGOL WProgram...... e cees 36
3. The Table Qutput of Pass One 39

L. Introducing Predefined ldentifiers.. 41

E

Appendi x |
Appendi x Hi

9. Subscripted Variables 89

10. Passi ng Subarrays as Parameters ..., 91

11. Arithnetic Conversion ,,,........... 9

12. Arithnetic Expressions ...,,........ 97

13. Logical Expressions,. 108

. String Expressions,,............... 115

15. Bt Expressions,, 117

16. Record Designators 118

17. Field Designators _, 119

18. Case Statements and (asé ’
Expressions Ceseeae e 120

19. 1r Statement, If Expression, and
Wile Statenent 122

20. For Statement cosoanae 123

21, Goto Statement veeseesaes 12

22. Assignnent Statenents 13

23, Card Numbers S . T

Trace Facilities 0.0.0...... 1%

Exanplecoiiiiii..L, cevens

Sinple Precedence Gammar ...,.......... ceeees

Jable of Contents (cont.)

TWO v ioiooconoabonoososoaonncsssns. oo soaes
Storage Allocation ceceaaaa 43
Value Stack ...oveuvooeccesocoss. seo 45
Interpretation Rules 45
Pass Two Tables cevsssacans D1
Output of Pass TWO .ovounusssvoesss. Sha
Three .ov.vooovonn 6oesa0cncoe ceocsaaa o
Regi ster Allocation.,,............,. 62
Block ENtry...ccveeeeeeennnnnnnn..., . 65
Block EXit ..oivirrinrnnnnnnrnnnnn,., 69
Procedure Statenments and Typed
Procedure Designators 70
Procedure ENtry .,, veveseoes 13
Prozedure EXIT ..., P < 0

Formal Parameters in Expressions
and Assignnents 81
Array Declaration ceeess. 83

Fi gures
Reserved Word TablesS socscococococcoococossocsaocosse 35
Jdentifier Tables:coecoo coc0ano seccasccacacassase 36
Pass One Output Codes cevovococcoaan soacssacase 38

Exanpl e of BLOCKLIST and NAMETABLE ..ccvovoevas b1

Format of NAMETABLE and field contents after
PaSS TWO +eoavaoosaacconcosososasnsasssassnse 52 [f

Pass Two Output Vocabulary.:ccccosssoosscscsoss 56 Ff

Rt

I, I NTRCDUCTI ON

In witing a conpiler of a new language (ALGOL W for a new nachine
(1 BM system/360) we were forced to deal with many unforeseen problens
in addition to the problens we expected to encounter. 1In a few instan-
ces, we gave in to tenptation and changed the |anguage; in many others
we would have liked to have been able to change the machine. This
report descrives the final version of the conpiler, Not surprisingly,
there are several things that in retrospect we would do differently,
both in design of the language and in design of the compiler. W will
not discuss these after-thoughts here.

)

The inplenmented |anguage ALGOL W’ is based on the Wirth/Hoare
pr oposal 2) for a successor to ALGOL 60. The major differences from
that proposal are in string definition and operations and in conpl ex
nunber representation. Consideration was given to including both paral-
lelismand data file facilities in the language but both ideas were
abandoned because their inclusion woul d have necessitated substanti al
changes in those parts of the conpiler that had already been witten,

The project was initiated and directed by Professor Nklaus Wrth,
who proposed many of the ideas incorporated in the conpiler and suggested

ways to bring them about. Joseph w. Wlls, Jr. and Edwin H Satterthwaite,

1) Bauer, H.R., Becker, S. and Gaham S L. ALGOL WLan?uage Descri p-
tion, Report CS 89, Conputer Science Departnent, Stanford University
(March 1968).

2) Wrth, N klaus and Hoare, C.A.R. A Contribution to the Devel opnent

of ALGOL. ‘Comm _ACM 9 (June 1966), pp. 413-L31.

Jr. wote the PL360 Systemin which the conpiler is enbedded, the
linkages to the conpiler, and the |oader. Al though the authors did

the bulk of the programming for the conpiler, valuable contributions
were made by Larry L. Bungarner, ‘Jean- Paul Rossiensky, Joyce B. Keckler,
Patricia V. Koenig, John Perine, and Elizabeth Fong. W are grateful
also for the many hel pful comments and suggestions made by the faculty
and students of the Conputer Science Departnent. Finally, we grate-
fully acknow edge the support given us by the National Science Founda-
tion under grants GP-4053 and GP-684k and the conputer time made avail -
able by the Stanford Linear Accelerator Center and the Stanford Computa-

tion Center.

=

II. GENERAL CRGANI ZATI ON

The conpiler is divided into three passes

Pass One is a scanner. It reads the source program converts the
synbol s to internal codes, deletes comments and blanks, converts nu-
neric constants to internal form builds a block-structured name-table
and |ists the source program

Pass Two does a conplete syntactic analysis and extensive error
checking. It does all static storage allocation. The output of Pass
Two is the conpleted nametable and a binary tree representing those
parts of the program for which code is to be generated

Pass Three generates the object programin reentrant machine code

The three passes are witten in Imj6ol> as separate prograns. The
passes use a conmon data area for data shared by them This area re-
mins in core if sufficient roomis available; otherwise the tree
output of’ Pass Two is witten on secondary storage and read segnent-
by-segnent by Pass Three.

The discussion is divided into two sections. Part IIl describes
the design. of the three passes. Part |V provides information about
the details of the conpiler and is devoted primarily to a di scussion
of the run-tine organization and the object code generated by the

conpi | er.

1) Wrth, Nklaus. "PL360, A Programm ng Language for the 360 Com
puters,” Journal_of the ACM15 (January 1968), pp. 37-Tk.

et

11T. OVERALL DESIGN

A Principal Design Considerations

Fol lowing are the main features we wished to incorporate and some

of the ways they were achieved,

Efficient object code,

Al constant arithmetic (e.g. 5+7)iS done at conpile time. @ obal
variabl es are accessed (at run-tine) with no overhead. The inter-
nedi ate | anguage specifies nearly optimal use of the registers,
resulting in a mninmum of tenporary saves. Optimization which
invol ves rearrangenment of the source program (for instance,
removing conmputations from for loops) is not done.

Code generation only for syntactically and semantical ly correct
progr ans.

A conpl ete syntactic check and a search for all errors detectable
at conpile time are conpleted hefore any code is generated. Pass
Three is called only if no errors are found.

Useful tools for nunerical computation.,

Conplex arithmetic in standard mathematical notation and double-
precision (long) arithmetic are inplenented features of the

| anguage, Facilities to detect overflow and make appropriate
recovery are provided, as is a set of standard functions of ana-
lysis .

Fail-safe reliability.

Run-time checks on such things as array subscript bounds, substring
operations and formal procedure paranmeters prevent |oss of control
(i.e. wild transfers) by the object program.

Bt

Good diagnostics.

Specific error messages are generated at compile~time and at run-
time. All messages give an indication »f where in the source
program the error occurred. A listing of the parsing stack at

the time of a syntactic error can be cbtained as a programmer
option.

B. Run-Tinme Programand Data Segnmentation

Program segments and data segmentm are 'both logically and physi-
cally separate, Program segment8 correspond to the structural unit
"procedure” in ALGDL W The scope of a data segment is an ALGOL W

bl ock containing declarations. program segnents are allocated stat%-
cally (i.e. once only at conpile-tine); data segnents are created

dynamcally (i.e. each tine the block is entered at run-time).

¢. Pass One

- Pass One receives the source program as input in 80 character
records, |Its functions are to -
1. list the character string and assign it line nunbers;

2. recognize basic entities of the language and -place themin
an output string with byte (8:bit)codes;

3. convert constants to internal form

L. make a table of identifiers arranged by blocks and containing
N type and sinple type information specified in declarations,,

The input is scanned until a symbol is recognized - i.e. a delimter,
- an identirier, or a literal,, In response to this synbol a code repres
senting the synbol is placed in the output string. New bl ocks are

noted, and declared variables are placed in the NAMETABLE Which is

g organi zed by blocks, A new block is entered at each begin, at the
begi nning of the formal paraneter list in a procedure declaration, and
at each for statement, A BLOCKLIST table containing one entry for
each block in order of entrance points to the entries in the NAMETABLE
corresponding to the identifiers declared in a given block. A table
of identifier character strings is also filded for use in Pass oOne

and Pass Two.

f
'
{
| -

r._J Juiy

-

Do Pass Two

1. Description of Principles and Main Tasks

The function of Pass Two is to do a conpl ete syntax check of the
source program to do a thorough error analysis and generate all com-
pile-time error messages, to conplete the NAMETABLE, to build the
constant tables, and to convert the program to an internediate |anguage
to be used by Pass Three for code generation. The syntax analysis
is done by means of a sinple precedence anaiyzer. The interpretation

rules of the granmmar specify the other Pass Two actions.

2. Parsing A gorithm

The algorithmfor syntactic analysis is essentially that used by

Wrth in mm,l) Some program nodi fications have been made. First:,
the 1 ook-up to determne whether a string is the right part of a pro-
duction has been changed to include a check on the length of the string
and the length of the right part, Second, the full precedence matrix
is used rather than the precedence functions. This is done in order

to detect errors sooner and to provide better error recovery than is
possi bl e with functions. Third, the relations found when scanning to
the right |ooking for> are stacked, Therefore, they can be easily
retrieved vhen in the process of scanning to the left for <« rather than
having to be fetched again from the matrix. The matrix is packed four

elements to a byte in order to conserve space. Consequently, a fetch

1)

wirth, Ni kl aus and weber, Helmut. "EULER: A Ceneralization of ALGOL
and its Formal Definition: Part I." Comm. ACM 9 (January 1966),
pp. 13-23; 25.

]

——
v

r r— r— r— r

r—

r—

r—-

fromthe matrix is slower than retrieval froma stack, However, every
time a reduction is nade, the relation of the new symbol to the synbol
below it on the parsing stack must "be fetched fromthe matrix and
stacked. If nost of the rules that are appiied have right parts of
length one or two, there is no significant gain in speed by stacking
the relations since few unnecessary matrix fetches would have to be
done. However, there is a gain in efficiency with longer right parts.
For each syntax rule there is a corresponding interpretation rule
which is executed when the reduction is made, For ‘efficiency, | nter-
pretation \rul es are Witten directiy in PL360 rather than in some
metal anguage. Associated with the parsing stack is a parallel value

stack containing information used by the interpretation rujes.

3. Error Recovery

Wien sinple precedence analysis is used, there are two situations
in which a syntactic error can be detected - when a reducible substring
(i.e. one delimted by < and>) is not the right part of any produc-
tion and when the top of the parsing stack has no relation (<, = »)
to the incomng symbor. .

In the first situation, the statement in which the error occurred
is deleted fromthe program To acconplish this in ALGOL w, the stack
I's backed up to <BLOCK BODY> , <BLOCK HEAD> , <CASESEQ HEAD> | or the
file delimter and the input string is advanced to _end, ";", 'begin, or
the rile delimiter. If end is erased fromthe stack, it becomes the
incomng synbol, otherwise the next symbol ou the input string is taken,

If a nonterminal Which affects the value of the bl ock number i S removed

r— r—— r—

r—-

r—

[
4
{
?
§

from the stack, the block nunber is adjusted accordingly,

Special care is taken with begin's, ends and the block number so

that the block numbers conformto those assigned by Pass One, |f the
bl ock structure were to be destroyed, many spurious errors would be
generated, |If Pass One had been done by syntactic analysis, these
special fix-ups would be unnecessary provided that Pass One and Pass
Two recovered in the sane way.

If the top of the stack has no relation to the incomng synbol, a
variety of recovery actions are possible. A symbol can 'be inserted,
the top of the stack can be deleted, asother Synbol can replace the
top of the\Stack, a reduction of the stack can be forced., or the in-
comng symbol can sinply be stacked. The action to be taken is deter-
mned by the symbol at the top of the stack. For each synbol in the
grammar, there is an entry in table =B pointing to a list of recovery
actions in table Errs.

In order for a synbol to be inserted, it nust have a relation to
the incomng synbol and the top of the stack nust have a relation to it.
If the inserted synbol is 4 the incomng synbol, the input string is
backed up and the inserted synbol becones the incom ng symbol, Sim -
larly a synbol replacing the top of the stack nust have a relation on
either side

An inserted or replacing synbol may generate another error message
For instance, an undefined identifier is assumed to be integer although
it may be intended as another sinple type. If the trace flag is set:
the error recovery action is always printed out unless the incom ng

symbol was stacked, A flag is set so that tne same action will not be

10

f
-

r— r— r— r— r—

r—

—

tried the next time through. (e .g. 1If the top of the stack is <BLOCK-
BODY> and it has no relation tO the incom ng synbol, a ";" may be in-
serted, "<BLOCKBODY> ; " reduces tO <BLOCKBODY> . If the error routine
Is called again before the inpuf string has advanced, it nust not

again insert a ";".)

4 . Regi ster Analysis

Two register counts are kept for each relevant position in the
stack - a count of the integer registers and a count of the floating
registers up to that point, The sinple type of the operation determ nes
the “active” set of registers. The active count resulting froma binary
operation Is determned as follows:

Suppose the active counts for the two argunents are equal - both
have value k. Then k registers will be needed to calculate the first
argunent. At the end of that calculation, one register will be in use
containing the value of the first argunent . That regfster remains in
use during the calculation of the second argunent, Since the binary
operation uses only the register containing the first argunent, the

resulting count is k+l.
Examplekl = active count for i, x, > 0)

Integer a, ’b; aaoa+b voe

k, =k =0 To conpute the sumit is necessary to |oad a regis-

ter with a and add b into the register containing a. Thus

S

Example 2
integer a, b, c, d; ... (atb) = (c+d) ...
ka+b =K 47 1, The result (a+h) occupies one register, This

register holds the value of ath while c+d IS conputed, using an-
other register . Then the register for a# is subtracted fromthe
register for c+d, leaving the result in the register previously

occupi ed by a+b. Thus ,

k(,awb) - (etd) T 2

Suppose the active counts for the two argunents are unequal - the

counts are k. and k, where k, >k Then if the argunent using kI

1 17 e
registers is conputed first, that result occupies one register |eaving
k-1 registers to conpute the second argument . Since kl > ks k2 kot
hence K -1 > k,. Therefore there are enough registers left to conpute
the second argument . Hence ma;x(kl,ke) is the resulting count. (|f the

ot her argument were conputed first, k +1 registers would be necessary.)

1

Notice that the above reasoning assumes that the operators are
commutative (or that appropriate reverse operators exist) . Adjust-
ments NUSt be nmade for some noncommutative operators, For jinstance
pv and REM require a mninumof two registers if the second argunent
has count 0 and three integer registers if it has a non-zero count,

The resulting count of the number of 'inactive' registers is the
maxi mum of the counts for the argunents. The counts for an_if expres-
sion or a case expression are the maxim of the counts of the consti-
tuent express ions . Register counts for function calls are set arbi-
tarily to a large number since all registers in use before a function
call are saved,

12

[

5. Tables

Pass Two conpl et es NAMETABLE, assigning hierarchy nunbers, program
segnent nunbers and addresses for variables and descriptors, and in-
serting array dinensions, local stack origins and record information
A bit string is inserted for every reference variable, indicating posi-
tionally to which record classes it may refer. A run-tine constant
table and a conpile-time constant pointer table are constructed for
each program Information local to Pass Two is kept in the interpreta-

tion stack rather than in tables,

6. Qutput=

The output of Pass Two is a string called TREE representing the
linearization of a nodified structural tree of the program being parsed
Each nonterm nal node has either one or two subtrees.

An n-ary construction is represented as a binary tree by making

the n conponents termnal nodes joined by a binary |ist operator

Exanpl e
program fragment: F(B, 5, C + D, GOTO X)
where F is a procedure, Cis integer, Dis rea
Tree:
AP)
AN
ﬁ)§3§\ GO@EL\ where AP, is an actual paraneter
/ﬁ ’ //+\\ X list operator and AP) indicates
AR, C b the end of the list.
2N
AP, 5

r-—-—-w

Semantic information is not included in the tree because it is contained

i N NAMETABLE.

The order in which the nodes occur in the string is shown in the

foll owi ng diagram

24

It can be seen that the subtrees Of a node precede the node. A
nontermnal binary node contains a pointer to its left subtree; its
right sutree Will directly precede it. Each binary node has a switch
indicating which of its subtrees iS to be processed first. Nodes are
not processed until their subtrees (in mMoSt cases argunents) have 'been

processed. The normal mode is to process the left subtree first,

"thereby preserving the order in which the structures occurred in the

source program The exceptions are binary arithnetic operators and

the assignment operators. For these operators, the subtrees represent
two operands. 1n order to minimze register usage, the operand using

the larger nunber of registers is conpiled first. (Such optinization

is permissible according to the language definition, 1) which states
that:

"If an operator operates on. two operands, then these operands

my be evaluated in any order, or even in parallel, with the
exception of the case nentioned in 6.4.2,2."

Anot her motivation for using the tree rather than reverse polish

was the hope that it would be a natural way to represent parallelismin

the language. This use of the tree was investigated but was not fully
devel oped because it was decided not to inplement the parallel. features

of the |anguage.

A sepafate tree is generated for each program segnent. 1In theory

the program segnents (procedures) could be processed by Pass Three in

any order; in practice they are processed in the order they occur

1) Wirth, N. and Hoare, C.A.R. “A Contribution to the Devel opnent of
ALgoL", Corm ACM 9 (June 1966), 413-k32,

15

—

—

E. Pass Threg

The essence of Pass Three is the algorithm for scanning the Iin-
earized trees, beginning at the root node. theswitch with each binary
operator indicates which branch the scan should follow. The operator
nodes are not otherwise examined at this stage; code generation begins
with the first termnal node encountered,

Pointers to the nontermnal nodes are stacked in STACK as they are
encountered in the scan, STACK also contains a field in which infor-
mation about the first subtree i S kept while the second subtree i S com
pi | ed.

For each binary node there are two phases of code generation. |np
the first phase the operator is considered together with its first
operand; in the second phase the operator and its second operand are
considered . Hence there are two conpilation (output-generation) rules

associated with each binary node, Each unary nonterminal node has one

associated rule .

16

|V COWPI LER DETAILS

A Run-Tine Organi zation

1. Programand Data Segmentation

Since no conpiled code is nodifiable at run-time, all program
segments are re-entrant. Data segnents are created at block and pro-
cedure entry and deleted (by resetting the stack pointer) at block
and procedure exit.

Program segnents are allocated statically at the |ow end of avail-
able core. Data segments are then allocated dynamically, beginning
Just after \"che program segnents and proceeding toward upper core,
Segments for system routines amd their data are allocated statically
at the high end of available core. Record pages are allocated dyna-
micelly downward beginning immediately before the system routines and

systemdata. |If the data stack and the record pages nmeet, the runis

t erm nat ed.

PROGRAM
SEGMVENTS

DATA l STACK

RECORD T PAGES

SYSTEM RQUTI NES
AND THEI R DATA

AVAI LABLE CORE
17

RN

Each bl ock and procedure requires a data segnent. \Wen a bl ock
occurs as the 'body of a procedure, its data segment is merged with the
procedure data segment.

A diagram of a typical data segment is shown bel ow.

TP
RA
DL block/procedure mark 20 bytes
REFVAR (cf. IV.A.3)
REFARY
12 The static link chain - entries hold the

| ocal 11 bases of all currently accessible data
di spl ay : segnents. If n is the number of the re-

n | odister holding the base of this segment:
-] (13-n) * 4 bytes
DPD- dynani ¢
par anet er ¥ (cf. IV.D.5)

descriptors

PV- par anet er % (CQccurs only if procedure has value
val ues result, value/result, or array para-
meters. cf. |V.D.5)

| ocal variables
and array descriptors
| ocal stack . For dunping registers and partial results

array
el enments -

[

Qccurs only for block which is the procedure body of a procedure
with paraneters.

18

i
{
;
—

Each program segment has the following form

ER

NUM N-umber of formal parameters of the
procedure
SFPD's Static formal parameter descriptors

Branch table

Literal t abl e

*Procedure entry code
Procedure body code
Procedure exit code

The static formal paraneter descriptors (SFED's) are one-word
descriptors, one for each formal parameter, giving all information
needed by the system subroutine CHECK to check the formal -actual para-
meter correspondence at run-time. This type of checking is done at
conpi le-time by Pass Two for non-formal procedure calls, but nust be
done at run~time for formal procedure calls.

A branch table exists in the heading of each procedure and con+
tains one branch instruction for each label in the procedure. Wen a
goto_statenent is executed, a branch is nade to the appropriate instruc-
tion in the branch table which then branches to the |abeled [ocation.

The literal table is a table of all literals (contants) used in
the procedure. During execution, each literal is addressed by a dis-

pl acenent relative to the base of the program segment given by RI15.
19

Only one copy of each literal is given
The literal table is obtained fromPass Two and is placed into

the program segment at conpile-time by Pass Three.

2. Addressing Conventions

Because of the structure of the addressing mechanismin the |BM
System 360 Conputer, program segnents and the statically allocated
portion of data segments may not exceed 4096 byt es.

During the execution of a procedure or run-time system subroutine
R15 is a pointer to the base of the procedure or system subroutine.
NIbmmﬁmiMHmlmapmwMMismmeWMWthamwa-
ment relative to the base in R15. Branches between procedures are
acconplished by first setting R15 to the base address of the procedure
being branched to and then branching.

Upon entering each procedure and bl ock, a data segment is allo-
cated and a general register is assigned to hold the base of that data
segment. Al local variables, descriptors, and value and result para-
neters are then addressed relative to the base of the data segment via
the general register. Because the base addresses of all accessible
data segnments are held in registers, all accessible variables are

i medi ately addressabl e.

3. Block and Procedure Marks

At the base of a data segment, a $-word procedure or block mark
is created and filled with all administrative data necessary for the

proper usage of reference quantities in the data segment, for the

20

creation of new data segments while this data segment is active, and
for the deletion of the data segment when its corresponding block or
procedure is exited.

A mark consists of five full-word fields, as shown in the fol | ow

ing diagram

FP

RA

DL

REFVAR

REFARY

FP: The free pointer field points to the first free byte' An the data
stack. \Wen a new array or a new data segment is allocated,
this pointer indicates its base

RA: The return address field holds the return address for pro-
cedures. This field is not used in block marks but is allo-
cated nonetheless f Or consistency.

DL: The dynamic link field contains the base of the data segment

whi ch was the nost recently allocated data segnent before the
current one. \Wen the current data segment is deleted at an
exit fromthe corresponding bl ock or procedure, the stack
pointer is reset to the contents of DL. By tracing backward
through the chain of dynamc links, one may obtain the bases
of all data segments which have been allocated and not yet
deleted. These correspond to all blocks or procedures which
have been entered and not yet exited

REFVAR The upper two bytes of the field REFVAR contain the nunber
of reference variables local to this block. (Reference
value/result parameters are treated as local variables.)
Allreference variables and reference value/result paraneters

21

{
{
}
(-

e

T e

.

are grouped together so that the garbage collector my pro-
cess them The lower two bytes of the field REFVAR poi nt
to the first reference variable or value/result paraneter,
relative to the base of the data segment. |f no reference
variables are declared in the block, the REFVAR field is

Zero.

REFARY : The upper two bytes of the field REFARY contain the nunber of
reference arrays declared in the block. The |ower two bytes
point to the first reference array descriptor, relative to
the base of the data segment. Al reference array descriptors
are contiguous in the data segment. Fromthe array di mension
contained in the first byte of each reference array descriptor,
<he garbage col lector is able to locate all reference array
descriptors and hence all the elements in all reference arrays
If no reference arrays are declared in the block, the REFARY

fieldis zero

4. Array |Indexing Conventions

A data segment corresponding to a block in which arrays are de-
clared contains an array descriptor for esch array. The descriptor
specifies the upper and | ower bounds of the indices of the array, and
a pointer to the first array element. The size of the descriptor is
dependent only upon the number of dinensions of the array; therefore
the portion of the data segnent used by the descriptor is allocated by
Pass Two, At run-time, the bounds are stored into the descriptor
the total number of bytes required for the array elements is calcul ated,
storage is allocated in the data stack, and a pointer to the first
array element is placed into the descriptor.

Wien an array elenment is referenced, the descriptor is used to

calculate the actual’address of the array elenent.
22

F—

r— rr r—— r—

r

5. Base Address Table and, Linkage to System Routines

During the execution of a program, a table giving the base ad-
dresses of all the user’s program segments and the base addresses of
all run-time systemroutines resides at a fixed displacement fromRik.
The displacement for each segnent base is known at conpile-tine,
allowing the conpilation of instructions to |o0ad R15 wWith a segnent
base before branching to that segment,

The standard calling sequence froma user procedure to another

procedure or systemroutine is

L 15, 4 (14)
BALR 15, 1
L 15, dp (14)

wher e 4 is the displacenment of the entry in the base address table
giving the base address of the called procedure or systemroutine and
d, is the displacenent of the entry giving the base address of the
calling procedure.

Because of addressibility problens, the above code sequence is
modi fied when calling certain system routines, The first load instruc-

tion above may be preceded by
WI runtime flag, byte

and the second load instruction may be preceded by a halfword Of in-
Pormation. The relative origin withintte System routine is then established
using the value of the run-time flag or the naifword of data

The instruction BAIR 15,1 i S replaced by BAIR 15,0 for sone sys-

tern routines so that the routines msyuse their paraneters nore effectively,

23

6. Special Constants and Error Code

Certain special constants needed at run-time, as well as sone run-
time error check code, are placed at specified |ocations based off Rik.
The inclusion of the constants makes it unnecessary to insert these
constants in the literal tables thus saving roomin the program segnent

The precise locations relative to R4+ of the constants and various
run-time entry points into the error checking code are known at compile-

tine so that the proper addresses may be conpiled.

Const ant s

SEVEN 7 used to make an address fall on a
DUBLMASK #FFFFFFF8 doubl e word boundary
THREE 3 used to nake an address fsll on a
SINGLMASK #FFFFFFFC single word boundary
AIL@PNES #FFFFFFFF used in bit-not operations
NULLREF #O0OFFO000 the nuil reference
ALLGCERR C 0,LIM used for data allocation; return

BCR <, &4 to point of call (BAL 4,ALLOCERR)

if LIM = (beginning of record pages}
has not been reached

IR 1,4
LA 0, 5(0) error condition
ARRAYERR BCR g, 1 used for run tine array bounds

checki ng

MATINERR L. 15, base of ERROR error routine prints |ocation of
error = RL. ROis parameter to
error routine, giving the type of
error so that appropriate termina-
tion messages may be given.

24

$
L

~— oo e

e ——

-

[" f

r—

F—

BCR 15, 15

UBLBERR BCR <, 1 used in array declarations to be
LA 0, 13(0) sure that upper bound> |ower bound.
BC 15, MAINERR - Error condition.

Regi ster Usage

At run-time the followng uses are made of registers:

RO and Rl are used by the systemas save and link registers for

system subroutines. They are otherwise available for local use.
R2 - R6 and FO - F6 are used in evaluating arithmetic expressions.

R7 - R13 hold the run-time display pointers to all data segnents
which at any given tinme are accessible to the bl ock being exe-
cuted.

R13 always holds the base of the data segnent of the main
program bl ock.

R7 - Theare allocated statically downwards from Ri2.
word "statically" is enphasized since data segnents are created
dynamcally and the size of the data stack is Iimted only by the
physical size of available menory. Any two or nore parallel
bl ocks (or procedures) will have the same display register point-

ing to their data segments, since only one of those data segments

may exist at any one tine.

It should be remenbered that the data segments for a procedure

and its outermost block (if there is one) are nerged into one data

segment .

In the follow ng diagramthe nunmbers represent data segnent base

25

—

=

r— r"’

e

-

e

registers. Each begin is assumed to be followed by one or nore decla-

rations.

13 begin
procedure P
12 begin
11 begin
end
end

procedure Q
12 begin
procedure P
11 begin
end
11 begin
10 begin L:
end

gnd
end
12 begin
11 begin
10 begin
procedure S
9 begin
end
end
end
nd

nd

——

nd

————

Those registers not in use as display registers are available for

arithemetic eval uation, For exanple, at lsbel L in the preceding dia-

26

r—-—.-.‘.‘."-.

r— r— I

r—

gram _R10 - R13 are in use as display registers, and R2 - r9 are avail -
able for arithnetic evaluation.

Rl al ways points to an area in menory which contains

the base address table,

speci al constants,

error codes, and

| ocal data for system subroutines.

Fooo~ e

R15 always hol ds the base of the program segment currently being
execut ed.

At particular points in the execution of a programwhen it is
known that none of the arithnetic evaluation registers are in use
(such as at procedure entry and exit, block entry and exit, and in a

procedure call), they may be used by the run-time admnistration

8. Record Allocation and Storage Reclamation

Space for records is allocated by pages beginning at the end of
core working downward. Size of the pages is a paraneter of the run-
time routines. As each page is allocated, the pages are formatted so
that each record on the page is pointed to by a previous record or by
the FRC (see below). Each page is dedicated to one record class.

Table RCT is prepared by Pass Three and |oaded along with the
conpiled program It contains a 16 byte entry for each record class
declared and is indexed by record class nunber. No record class 0
exists. This allows Rer(0) to be used for a free record page chain

RCT contains the following information about each record class

n
3

— r— r—

RCT (O ‘
(0) | FREPC FRPC - FREE RECORD PAGE

“ CHATN
, . i RCN - RECORD CLASS
| | NUMBER
. FRC - FREE RECORD
CHATN
. PC - PAGF CHATN
6 * . A hi .
16 * RCN FRC RL - RECCRD LoNGTH
16 * RON + 4 PC IN BYTES
16 * RCN + 8 RL, NR N2 - NUMBER OF REFER-
16 % o+ 1z ENCE FIELIG

FRC, FRPC, and PC are initialized to 0, The last entry in the table is

set to #FFFFFFFF when fewer thay 15 record cl asses exist.

FRC is the origin of the Free Record Chain for the given »ecord

cl ass.

wvhere N 1S the record

cl ass number and eack
list el ement is a record

of class n.

28

FRPC IS the origin of the free record page chain. Each page on

the chain is a page whose origin address Es greater than at |east one

of the pages in use. This chain always releases as many pages as

possible to free storage so that free storage may be used by either
data segnents or record pages as needed. A record page which was

allocated and later released may then be used for data segments.

FRPC

A new referenue to a record class is always obteined fromthe
FRC corresponding to that class. If the upper byte of Fc is 0, the

gerbage collector is called, |f the garbage collector cannot free

enough storage for a new reference, execution is termnated.

Storage reclamation (i.e. garbage collection) consists of three

_phases : marking used records, collecting unused records, returning

unused pages. For each call of the garbage collector a11 record classes
are searched and the rrc of each record class is updated.

Records are marked in two steps. First, each reference variable
and each reference array element is tested; for each non-null refer-
ence, the first bit of the record referenced is set to 1. The first

byte - of each record is not allocated for fields and is available.

29

When a record is marked mhichlhad not been previously marked, a
check is made of the m field corresponding to the record class. 1f
this field is zero, nothing nore. needs to be done. [f this fieldis
non-zero, each reference field of the record nust be checked. The
reference fields are checked starting with the last reference field
and ending with the first reference field. Each reference field in
turn IS treated recursively as a reference variable. The |ast reference
field has been processed when the marking bit of the record is encoun-
tered . This test restricts the nunber of record classes to at nost 1e7.

Since-the reference fields of a record are checked when the re-
cord is marked, a backward chain nmust be kept so that the path may be
retraced and all reference fields of each record inspected. This
chain consists only of the three low order bytes of the reference. The
high order byte remains unchanged. Before proceeding to inspect the
fields of a new record B designated by a field of record A the address
of the record inspected previous to A replaces the reference field in
A designating the new record. If the record A had been designated by
a sinple reference variable or a reference array elenment, zero re-

places the reference field in A

e.9. fecopd sanple (refergnce (sanple) one, two)
reference (sanple) R
Let AL B, C D be synbolic names for record addresses of class
sanple and let N be the mul reference. Suppose Exanple 1 represents
the situation when the garbage collector begins. Reference Ris in-

spected and points to record A of class n (i.e., sample). Record Ais

30

marked (first bit on). The last reference field of A (two(A)) is checked

first. Two(A) points to a previously marked record, nanely A Then
one(A) is tested and points to record B which is still unmarked. A
zero is placed in the 24 bit add}ess field of the reference. Record
Bis mrked. Two(B) points to the record C which is unmarked. The
address of A replaces the address of Cin two(B). The process is re-
peated until record Dis marked and its fields tested. Exanple 2 re-

presents this state. A return is mde up the chain until each field of

each record involved is checked and until the zero field in record Ais
encountered and changed, At this point, the result is simlar to
Exanple 1 ékcept the first bit of records A, B, Cand D is on.

Al references in a block are scanned before following the dynanc
links to a previous data segment., \Wen the dynamic link is zero, the
process is conpleted.

Phase ne of the garbage collection is conpleted by |ooking at
each record. The second hit of each record is used to protect records
whi ch have been created but not yet assigned to a reference |ocation
or used in some other manner. Therefore, each record nust be scanned
to inquire if this bit is on; if so, the record is marked and its
reference fields scanned as previously described.

In Phase Two, any record whose first bit is not 1is puf on fhe
free list for its record class. Phase Three is integrated with Phase
Two. |f any record page has no used records, it is returned to the

free record page chain. Furthermore, if the page adjoins the free

31

P,

space for data segnents, the page is returned instead to the free space
for data segments. In this case, the free record chain is checked
for record pages adjoining the free space for data segnments. Those
found are renmoved from the FRPC and given to the free space

After all the storage reclamation is conplete, the garbage collec-
tar must supply a record of the class desired. |f no free record of
the class desired exists, a new page is allocated for this record
class and placed on the class's page chain. |f no space for a new page

is available, execution is termnated.

Exanple 1
| n] A I Aloln B n A
B|O|n D n C
ClO0{0 N n D
DI0 |0 N 0 N
Exanple 2
[n] A 1 A [8o[on 0 n A
B8] On D n A
¢ | 80]00 N n
D [80]00 N 0 N

32

B. Pass (ne

The output of the conpiler's first pass is

1) alisting of the source programw th each |ine nunbered
beginning at 1,

2) a character string representing in detail the origina
source code

3) a nanetable, having an entry for each identifier, arranged
by bl ocks,

L) a blocklist table which indexes the nanetable by blocks,

5) a table listing the record classes to which the declared re-
ferences are bound.

Q her tables are passed on by pass One but have significance only
in producing trace output in Pass Two.

Pass One makes decisions as to the size of the tables based on

the size of the core available, The algorithmused is

CB = commnbase
LC = last core location available
CS = comon Size

¢cs := LC - CB;

If cs > = #30000 then CS := #18000 el se CS := CS DIV 2;
NAVETABLE := CB + NT@RIGIN

| DDLI STBASE := ((cs Div3 + CB + NTPRIGIN) DIV 8) *8;

REFRECBASE := | DLI STBASE + ((Cs DIvak) DIV8) *8;

| DDl RBASE := 2 * REFRECBASE - | DLI STBASE;

INPOINT := | DDIRBASE +3 * ((CS p1v 24) DpIv8) *8;
PASSTWOOUTPUTBASE := (ADDRESS oF END OF PASS ONE OUTPUT) DIV 8 *8;

If the Pass Two output area is not at |east twice as long as the Pass

One output area, a flag is set so that Pass Two output will be on tape.

33

o

1. Table Formats Internal to Pass One

Four main tables direct the work of Pass One. Two are intialized
at entrance. They are the tabl e RESERVED of the EBCDIC representations
of the delimters or reserved synbols and the table CCDE containing
an entry corresponding to each reserved symbol. Two other tables are
partially initialized at entry to Pass One and added to during its exe-
cution. They are the identifier directory 1mpmr which has the EBCDIC
representation of each identifier, and rprList which indexes IDDIR.

The table RESERVED is divided into segments which accomodate the
ALGOL W symbol s grouped (al phabetical ly) by |ength. Hence RESERVEDL
contains all the synbols of length 1 such as :, =, (. RESERVED?
contains all symbols of length 2 such as do, go, iL Thi's arrangenent
continues through RESERVED9 containing -procedure, reference, (nce

a mtch is found in the RESERVED table, a 2-byte entry corresponding

to the reserved symbol is found in CODE. For exanple in Figure 3, the
corresponding CODE entry for if is hexadecinmal éior.

In nmost cases, the first byte of the CODE entry represents the
one-byte output code for the ALGOL Wsynmbol, This code corresponds to
the synbol nunber of the ALGOL W synbol in the syntactic productions
of Pass Two. The exception to this rule occurs with the RESERVED
entries representing the sinple types such as integer, real, logical.
These synbols are represented in the output string by the same charac-
ter. Instead, the first byte of the CCDE entry gives the sinple type
nunber (see Figure 1). In the exanple of if, 64 is its output string

representation.

The second byte of %e CODE entry is used as an index to a case

statenment. The hexadeci mal walue 01 nmeans no special processing takes

ace. ' in of I f, Any value
pl Such is the case in the exanple or if y ot her means

that some special note nust be made of this synbol such as tc enter

declaration node or to declare a control variable. These special situ-

ations are described in the fol | oW ng pages.

IDDIR | S & character array of all identifiers predefined or OCCUI-

ring in the program being compiled. The list is arranged So that if
only the identifiers sqgr, A, TIZpA appeared, the IDDIR table woul d
appear as SQRTATILDA and the irdex to %e table would have a val ue
equal to the nunber of characters relevant - in this case, 10.
1L1sT | ndexes bR by an array of full words with one entry
corresponding to each identifier. The first half word of' each entry
i S the length Of the identifier minus 1. The second half of the
entry 1S @ pointer to the first character of the identifier. Hence,

in Figure 4, the entry (ki) (5) corresponds to TILDA with the length

specification of 4 asd pointer value of 5. Also in Figure 2, note that

IDLIST INDEX IS a pointer tO IDLIST =8.

Figure 1

Reserved Word Tables

RESERVED (in EBCDIC) CODE (in hexadeci mal)
RESERVEDL (+ CODEL 5506 4FQ 5005
RESERVED2 oe | F CCDE2 6301 6401
RESERVED9 PROCEDURE CODE9 8515

3

e

Fi gure2
I dentifier Tables .
IDDIR : SQRTATILDA IDDIRINDEX = 10
IDLIST (3) (o) -~ IDLISTINDEX =8
(o) (&)
(&) (57

2. The Qutput String Representing an_ALGOL W Program

The characters of the output string representing an ALGOL W source
program are the nunbers which correspond to the syntactic elements in
Pass Two. For nost cases, there is a one-one correspondence between
the arcon Wsynbols and their codes. As an exanple, Figure 3 shows
that do is represented by hexadecimal 93. Sone codes represent two
ALGOL W symbols. These are exponentiation, 's', and assignnent, ':=,
and the bound pair colons, '::*. The following list itemzes the
other special situations requiring modification of the normal corre-

spondence between ALGOL W symbols and string representation.

1. The reserved words and reserved word pairs,_integer, real,
| ong real, complex, long conplex, logical and bits receive
the code for <sinple type.

2. Each identifier is replaced by a 3 byte code. The firs%
bytei S a code for <identifier-. The follow ng twe bytes
contain the unique identifier nunber, (Starting from?0).
In Figure 4, the identifier nunber of A would be 1.

3. Each nunber is represented by a 1 byte code for <number>.
followed "by a 1 byte indication of the type of the nunber,
fol owed by the nunber.

26

-

10.

1l.

Each bit sequence (e.g., #Fa12c (in hexadecimal)), results
ina 1l byte code representing <bit sequence, followed by
the 4 byte literal,

A coma appearing in the identifier list of a declaration or
in the record class specification of a reference decleration
recei ves the code designated SPECCOMMA.

In a reference declaration, the |eft parenthesis preceding
the record class specification is omtted from the output
string .

In a string declaration, if the length is specified explicit-
ly, the entire length specification, (number), is omtted
from the output string,

Each new card is indicated in the output string by a 3 byte
code . The firs% byte specifies new card and the followi ng
2 bytes give the card nunber.

The reserved word coment and all characters up to and in-
cluding the next semicolon are omtted from the output string.

An identifier followng the reserved symbol end is omtted
fromthe output string.

A period (.) following the reserved word gnd is recognized
as Yhe end of program

37

-+

~. %

::ﬁ:—'\/'y/\m

DO
IF
Is
OF
CR

6A
67
99
90
TE
TF
Th
83
69
8F
91
T€
8E
81
87

93
78
7D
7C
80

Figure 3

Qut put Cedes

ABS
AND
DIV
END
FOR
REM
SHL
SHR

CASE
ELSE
FILE
Goro
LONG
NULL
STEP
THEN
TRUE

ARRAY
BEGIN
FALSE
SHORT
UNTIL
VALUE
WHILE

8D
86
8L
6F
9B
85
88
89

7R
TA
6C
O
8c
82
oC
79
8A

6F
97
8B
9F
9D
72
9E

38

RECORD
RESULT

FROCEDURE
REFERENCE

SPECCOLON
SPFCCOMMA
ASSTGNMENT

END OF FILE
EXPONENT!
LINE MARK

NUMBER
TDENT IFIER
STRING SEQ
BITS SEQ

SIMPLETYFE

I&
73

71
68

6D
9A
9A

92
88

FE

T7
65
81
8E

-

3. The | Table. Qut put of Pass One

Three tables are part of the necessary Out put of Pass One:
NAVETABLE, BLOCKLI ST (which indexes NameraBiE), and RCCLI ST,

The BLOCKLI ST table has a one-word entry for each block in the
program in the order encountered. (Each program has a predefined
outer block numbered O containing predefined symbols such as WRI TE and
SqRT.) This full-word entry is divided into two hal f-word fields. The
second field points to the first ‘byteofthe entries in NAMETABLE
corresponding to identifiers declared in the block. The firstfield
is equal to 12 times the nunber of identifiers declaredinthe bl ock
(i.e., the length of the NAMETABLE entry for the block). If noidenti-
fiers are declared, bhoth fields are zero. In Figure 4, the first
BLOCKLIST entry points to WRITE and enconpasses both WRI TE and sqrT
which are predefined. The second BLOKLIST entry points to i, and
enconmpasses i, j declared in the outer block of the program The third
entry corresponds to the control variable i.

The entrance and exit to blocks are defined by the follow ng
rul es.

a) Each 'begin signifies the entrance to a block and the corre-

sponding end signifies the close of the block,

b) Each statenent follow ng a <for clause> is surrounded by a
bl ock in which the control variable is inplicitly declared.

¢) Each procedure body is surrounded by a block in which its
formal paraneters, if any, are declared.

In the vameraBiE all identifiers declared in a block are grouped
together, Therefore the permanent entries in the NAMETABLE cannot ‘be

made until the block closes. 1f viewed byblocks, the identifiers in

39

L

r— r r—

r;_,.u.‘

r—— r

r—

— r— r o —

r——

the NAMETABLE are listed in order of the closing of the bl ocks.

Figure 4, the control variable block closes before the outer vleck and,

hence, appears in the NAMETABLE first.

The layout and field contents of NAMETABLE are shown in Figure 5.

In

Pass One puts in only that information required by Pass Two to check

the semantic correctness of the program Many fields are filied by

Pass Two. The information entered during Pass One consists of the

followng attributes appropriate to the variable.

IDNO

SI MPLETYPE
TYPE

TYPEINFO

SIMIYPEINFO

- The nunber assigned to the identifier.
This nunber is equal to the number of
the IDLIST entry.

- bl ock nunber of the formal parameters of
Sinple type of the argu-
ment of a standard function.

a procedure.

a) Value-result
for formal paranmeter

1. if value
2. i f result

3. if value-result

b) Record class number

for record class identifiers,

record cl ass nunber

t he

for record fields, the record class

-a) for

number .

string, length -1

b) for a reference, a pointer to the

40

RCCLIST.

—

e

ouui e e

r—

Fi gured
Exanmpl e of BLOCKLI ST and NAMETABLE

BLOCKLI ST - NAMETABLE
18 l C entry for MAIN
2 | 30 entry for WRITE
c | entry for SqrT
entry for i
entry for i
entry for j
entry for L

begin integer :

L: end.

Each entry of RCCLIST is a half-word which gives the mno of a record

to Wich the reference is bound. A zero entry signifies the end of
the group. The NaMeTARLE entry for a reference variable contains a

pointer to the first entry of recuzer for that variable,

L, I ntroduci ng Predefined ldentifiers

To introduce in the conpiler new psedefined identifiers such as
standard functions or standard procedures, a series of changes nust 'be

made in Pass One.

1. The EBCDIC code of the identifier and its length nust be
added to array IDLISTFIL..

L1

|

2. Two half-word entries corresponding to the identifier must be
£ added toO IDDIRFILL. The first nelf-word i S the (nunber of
characters -1) in the identifier. The second hal f-word is
the (sum of the preceding pairs of entries +1),

3. IDDIRINDEX nust be initialized.
L L. IDLISTINDEX nust be initialized to be equal to the (sum of
the last pair of IDDIRFILL en®ries +l).
C 5. A 12 byte entry (3 integers) must be added to NAMETFILL-as
described in the description Of the NAMETABLE entries
L (ef. IV.C.5).
For exanple the entry for ROUND iS:
|
L nugber
(
(#0) (#o0000001 § (#0701, 0009)
. type of sta.l‘xdahpe of

par anet er function procedure

6. BLFILL MuUSt be changed to be initialized to ($aaaa000C)
where aaaa is the hexadzcimal representation of the (number

—

of integers -3) declared for NAMETFILL) * L.

} 7. SYMBOLINDEX nust 'be initialized to the (nunber of integers

- decl ared for NAMETFILL) * L.

| 8. In the initialization section of the algorithm the initiali-

— zation o:f 10Dk, 10nIsT, and NAVETABLE nust be corrected to
represent the length changss.

-

1

-

L

{

E

(-

L2

Cc. Pass Two

1. Storage Alocation

All static storage aIIocatiEJn for variables and constants is
done by Pass Two. For this purpose a number of counters and |ink
tables are necessary,

BNC contains the current block nunber (cf. 1v.s). BN contains
the highest block nunber assigned so far (necessary in order to set
BNC when a new block is entered). BLockLIST2 contains static |inks
for blocks. These are necessary to restore BNC to the current block,

Prograi}n segment numbers are assigned by Pass Two. Each proce-
dure constitutes a separate program segnent and is assigned a uni que
nunber. SNC contains the current segment number; SN contains the
| argest segment nunber already assigned, SNLIST contains static
links for program segments.

The hierarchy nunber representsthe |evel of nesting of data and
in actuality is the number of the base register used to access the
data segnent. HN contains the current data hierarchy nunber.

DRELAD contains the address of the first free byte relative to
the beginning of the current data segment. DRELSAVE is a stack used
to save val ues of DRELAD while parsing actual paraneter |ists.
DRELPO NT contains a pointer to DRELSAVE. Wile a record class de-
claration is being parsed, REIAD contains the current address relative
to the beginning of the record class Layout,

Al addresses of variables, array descriptors, and other data are

indi cated in NAMETABLE. An address consists Of the hierarchy number

43

(base register nunber) plus the address relative to the beginning of
the data segment (displacement). Reference variables are grouped to-
gether at the head of the data segment; other variables occur in the
order in which they are declared in a block. A location is allocated
for each control identifier as well

Fields of records are given addresses relative to the origin of
the record. Field addresses are first assigned to reference fields,
then to logical and string fields, then to other fields. The first
byte of the record or the two high-order bits of the first reference
(if there is one) are reserved for the garbage collector

The Iength\in bytes of any record in a record class is indicated
in the naMeTABLE entry for the record class. The length is always a
multiple Of 8.

Label s are given an address relative to the beginning of the pro-
gram segment in which they occur. The location is used for indirect
transfers.

The dimension of an array is inserted in NAVETABLE when the first
array designator or the declaration is encountered (whichever occurs
first) . This information is subsequently used to conpute the length
of the descriptor (and to check the nunber of dinensions each tine
‘that array identifier occurs).

Storage is allocated in the program segment of a procedure for
descriptors of its formal parameters, Descriptors of actual name para-
neters are assigned addresses relative to the beginning of the data
segment of the procedure. Space is allocated in the data segnent for
values Of the actual value and result paraneters, since they are

treated like local variables while control is wthin the procedure
L

body. Value and result parameters of sinple type "reference'! follow
all others so as to be adjacent to the local reference variables.

The first free location following the variables in each data seg-
nment is the origin of the local stack (tenporary storage) for the data
segment. Its address is indicated in NAMETABLE for the outernost data

segment of a procedure and in the associated begin output node otherwse

2. Value Stack

The value or interpretation stack consists of 8-byte el enents.

This stack works in parallel with the parsing stack.

T T
! val| V22 |

vl V2 V3 vk \E

The standard uses for the fields are described bel ow, although
the actual uses vary with the construction being parsed.
vl Sinple type information
ve1 Type
v22 Sinple type
V3 Integer register count
vk Floating register count
vs Qutput pointer
When an identifier is |ooked up in NAMETABLE, a pointer tO NAMETABLE

is inserted invi, V2 is filled, and V3 and vk are set to zero. \Wen

a node is put in the output array TREE, the tree pointer is put in vs.

3. Interpretation Rules

Associated with each syntax rule is a body of code, the interpre-
tation rule, which performs the semantic actions appropriate to the

L5

syntactic construction, The interpretation rules are contained in
procedur es EXECUTEl, MECUTE2, and EXECUTE3 and are accessed via a
case statement indexed by the rule number. (Three procedures rather
than one are necessary because of the addressing structure of PL360.)
The interpretation rules use the value stack for working storage,
Semantic actions and val ue stack |ayouts for major constructions of

the |anguage fol | ow

1. Sinple variable declaration
a. Layout is standard
b. Each identifier is located in NAMETABLE, checked for multi-

ple declaration, and allocated storage, No output is gener-
at ed

2. Array declaration

a. Layout
V1 poi nter to NAMETABLE entry of first identifier
V2 current bl ock nunber of block containing declaration
V3 nunber of identifiers
v4 di mensi on
V5 out put pointer

b. The identifiers are counted, the sinple types of the bound
pair expressions are checked, the bound pairs are counted,
storage is allocated for the descriptors, the array dinen-
sion is inserted in NAMETABLE for all the identifiers, and
output is generated for the structure.

3. Procedure declaration
a.1l Layout of procedure head

V1 sinple type information (if typed procedure)

V21 type (i.e. code for procedure)

vez sinple type (if typed procedure)

v3 & v4 current DRELAD of procedure head (mark, descrip-
tors, etc.)

V5 out put pointer

46

a.2 Layout of procedure body

V1

Ve
v3 & v4
V5

sinple type information of expression (if typed
procedure)

0

DRELAD of procedure body

out put poi nter

The counters and pointers are stacked, storage is allocated
for the descriptors of the formal paraneters, record class
masks are constructed for reference paraneters (cf. IV.C.4),

the relative origin of the label transfer table is computed,
the sinple types (for a typed procedure) are conpared, the
output for the procedure and the literal table aregenerated,
the counters and pointers are restored, and the output is
(optionally) listed.

4, Record class declaration

a.

b.

Layout
V1

Ve

v3 & v4
V5

pointer to NAMETABLE for current field

current RELAD

not used

pointer to NAMETABLE entry of record class identi-
fier

The identifiers are located in NAMETABLE and checked for
multiple declaration, storage is allocated for the record
class identifier, relative addresses are assigned to the
fields and the nunber of fields is inserted in the NAMETABLE
entry for the record class

5. Substring designator

a
b

Layout

is standard

The sinple types of the sinple variable, the index expression,
and the length are checked, the length is checked against the
length of the sinple variable, and output is generated for
the structure.

47

Fiel d designator

a. Layout is standard

b. The sinple type of the reference is checked, a check is made
that the reference expression can point to a record of the
record class containing the field, and output is generated
for the structure.

Array designator ‘
a. Layout (replaced by standard |ayout after structure is parsed),

V1 poi nter to NAMETABLE

val nunber of *'s

vez nunber of subscripts remaining, #FF if dimension
unknown

V3,V4,V5 st andard

b. The subscripts are counted (in NAVETABLE) if dinension is not

al ready known; otherwi se the nunber of subscripts is checked
against the dinmension The sinple type of each subscript

I's checked, register counts are conputed, and output is gener-
ated for the structure,

Function designator and Procedure statenent
a. Layout (replaced by standard |ayout after structure is parsed),
\al sinple type information (if typed procedure)
val contains #FF if too many actual parameters, number
of paraneters yet to cone otherw se
Va2 sinple type (if typed procedure)
v3& v4 pointer to NAMETABLE entry of current fornal para-
meter if it is actual procedure, O if it is forma

procedure
V5 out put poi nter
b. If the procedure is not formal the nunber of parameters and

their types are checked, output for the structure is gener-
ated.

48

e

10.

11.

120

13,

|f expression
Layout is standard

b. Sinple types of then expression and else expression are
checked for type conpatibility, type conversion is indi-
cated if necessary, sinple type of expression in if clause
is checked, output is generated.

Case expression

a. Layout
\al sinple type information
v21 nunber of cases
Va2 sinple type

V3,Vk,V5 standard

b. Simple type of expression in case clause is checked, cases
are counted and sinple types are checked for conpatibility,
register counts are adjusted, output is generated.

argunentl [=, >=, <, <=, >, and, or, +, -, ¥, /, shr, shl, div,

rem **¥] argument 2

a. Layout is standard

b. Sinple types of argunents are checked, type conversion is
indicated where necessary, register counts are adjusted

order of conpilation is indicated, and output is generated

[-, = long, short, abs] argumentl
a. Layout is standard
b. Sinple type of argunent is checked, output is generated.

Record designat or
a. Layout (replaced by standard |ayout after structure is parsed).

V1 pointer to NAMETABLE entry for current field
v21 nunber of fields
Va2 record class nunber

V3,V4,V5 standard

b. The nunber of fields is checked, the sinple type of each field
i's checked, conversion is indicated if necessary, register
counts are adjusted, and output is generated

49

1k,

5.

16.

17.

18.

19.

Bl ockbody
a. Layout
V1 not used
va 0 if no declarations, #F if enclosing block of pro-

cedure body (with declarations), #FF otherw se
v3 & v4 DRELIAD of surrounding 'block
V5 out put pointer
b. At begin BN BNC and HN are stepped, V2 and DRELAD are
set, storage is allocated for reference variables, and record
class nmasks are constructed (cf. IV.B.4). At end, DRELAD
and HN are restored. CQutput is generated for structure.

Label definition

a. Layout is standard

b. Storage is allocated for transfer, SNC and HNV are inserted
I n NAMETABLE, out put is generated.

Assignnent st at ement

a. Layout is standard

b. Sinple types are checked for conpatibility, register counts
are adjusted, order of conpilation is indicated, output is
gener at ed,

Case statenent
a. Layout is same as for case expression.
b. Cases are counted, output is generated.

For statenent

a. Layout is standard

b. Sinple types of expressions are checked, storage is allocated
for control identifier, output is generated.

Wil e statenent
a. Layout is standard
b. Sinple type of expression in while clause is checked, output

I S generat ed.

50

4. Pass Two Tabl es

Pass Two conpl etes NAMETABLE and creates literal tables.
The information entered i n NAMETABLE consi sts of those of the
following fields appropriate to the variable, For field contents and

table format, see Figure 5.

1. IDLOCL
2. IDLOC2
3. SIMIYPEINFO

a. for a record class identifier, the record length is in-
serted

b. for a reference, the pointer to RCCLIST (a list of record
classes to which the reference may point) is replaced
by a 16 bit mask in which each bit position represents
a record class and is a 1 if the reference may point to
records of that class.

4. TYPEI NFO
a. for a label, the hierarchy nunber is inserted
b. for an array, the dinmension is inserted

c. for a record class identifier, the nunber of fields is

inserted.
5. TYPE

a. for a formal value/result parameter, the TYPE code is
repl aced by the code plus 16.

Two tables to handle literals are constructed for each program
segment. The literal table contains all literals (nunbers, litera
strings and bit sequences) occurring in the program segment. At run-

time it is located before the program segnent code. The literal pointer

51

table is used by Pass Three and contains the sinple type, the Iength

(if the literal

each literal.

literal table.

is a string), and a pointer to the literal table for

The integer 1 and the |ogical values occur in every

Pass Two uses the stack CONSPOINTERSTACK to save the

pointers to these tables when a nested program segnent is parsed.

Fi gureb

FORMAT OF NAMETABLE AND FI ELD CONTENTS AFTER PASS TWO

12 bytes/entry

Ingjocl | DLOC2
hi er ar chy prog seg
SI MTYI ElI NFO TYPINFO dimen
- vr — | reel number |
TYPE SI MPLETYPE DN
FIELD KIND OF ENTRY CONTENTS
IDLOCL sinple variable hi erarchy nunber
| abel program segnent nunber
array hi erarchy nunber
procedure origin of local stack
record class identifier hierarchy nunber
record field hi erarchy nunber
control identifier hi erarchy nunber
standard function sintypeinfo of argument
formal paraneter hi erarchy nunber
IDLOC2 sinple variable rel ative address

| abel
array

52

relative address

relative address of des
scriptor

. e

FIELD

hi erarchy

prog seg
SIMTYPEINFO

TYPEI NFO

dimen
rccl nunber

vr

TYPE

SIMPLE TYPE

KIND OF ENTRY

record class identifier
record field

control identifier
formal paraneter

procedure

procedure

string

reference

record class identifier
| abel

procedure (not formal)

array
record class identifier
record class identifier
formal paraneter

standard procedure
sinple variable

| abel

array

procedure

record class
record field
control identifier
standard function
standard procedure
formal nanme paraneter
I nt eger

rea

long rea

conpl ex

53

CONTENTS

relative address

address relative to ori-
gin of record

relative address

relative address of de-
scriptor or value/result

hi erarchy nunber
program segment number
length -1

record class mask
record length

hi erarchy nunber

bl ock number of fornmal
paraneters

di mensi on
record class nunber
nunber of fields

1if value, 2 if result,
3if valuel/result

vr for paraneters

O N NV F W N o

16 + TYPE nunber

FIELD KIND GF ENTRY CONTENTS
| ong conpl ex 5
| ogi cal 6
string 7
bits 8
reference 9

NOTE: The sIMrypEInro entry for a reference variable and the
TYPE entry for a formal value/result paraneter are
changed fromtheir contents at the end of Pass (ne.

The tables PRTB, MrB, and MATRIX: are used by the syntactic ana-

| yzer and are initialized upon entry to Pass Two. MATRI X contains the

sinple precedence relations of the ALGOL W (sinple precedence) grammar

(cf. Appendix 2). The array is packed two bits per entry. PRTB con-

tains the productions of the sinple precedence grammar grouped so

that all productions having the sane |eftmost symbol of the right part

are together. The format for a production is the follow ng

product i on: L ::= R R, ... R 1<n<s5

representation in PRTB (one byte per entry):

production nunber

The sympol #FF indicates the end of a production group, MIB is

an index to PRTB. The entry for a given symbol indicates the beginning

o4

of the group of productions of which that symbol is the leftnmost synbol
of the right part.

METATABLE contains the EBCDIC representation of the synmbols of the
sinple precedence grammar and is used for printing out the parsing
stack. OPTABL contains the EBCDI C representation of the Pass Two
output nodes and is used for printing out the tree. Both tables are

initialized upon entry teo Pass Two

5. Qutput of Pass Two

Each element of the output string TREE consists of a four-byte

word with the follow ng format:

(_, OP Jon POINTER

SWITCH

SWTCH is on (1) if the right subtree is to be conpiled first and off
(0) if the left subtree is taken first. Conversion of arithnmetic type
may be indicated in the source programinplicitly, by mxed-type ex-

pressions, or explicitly, by the operators long or short. In either

case, the sinple type to which the expression is to be converted is
indicated in CONV. For a terninal node POINTER points to NAMETABLE
or the literal pointer table; for a nontermnal it points to the |ast

node of the first subtree.

5ka

-

-~

Exanpl e

program fragment and tree — previous exanple (cf. III.D.6)

out put substring:

—— | R

SWTCH OP CONV POINTER
FUNCID points to table entry for F
VARID points to table entry for B
0 AP, ®
NUMBER points to table entry for 5
0 AP, .
VARID 2 points to table entry for C
VARID points to table entry for D
+ Py
~ AP, [=
LABELID pointer to table entry for X
GOro
0 AP) o

A separate tree is generated for each program segment, wth output

pointers relative to that tree, The output for each program segnent is

of the followng form

I pointer to end of tree \\\\

PROCDC

| poi nter to NAMETABLE
(tree for procedure body)

PCL

| pointer to PROCDC

Qigin of literal table

Length of literal pointer table
Literal pointer table

Length of literal table

Literal table

95

Figure 6

QUTPUT VOCABULARY

|. Binary Operators

f : \
conversi on ; .
. 1first
<i OP1 bits pointer to ! irst argunent

tree
switch

Wiere OF1 can be one of the follow ng binary operators;

OPERATOR CODE REMARKS
- 1
2
- 5
/ 4
*% 5 exponentiation
L := 6 | ogi cal assi gnnment
A := 7 arithnmetic assignment
S := 8 string assignment - conversion field contains
string length
R := 9 reference assignnment - no conversion
STEPUNTIL 12
DIV 13
: REM 14
< 15
< 16
> 17 conversion bits indicate length for string
S 18 conpari son
= 19
20
L :=2 22 mul tiple assignment
A:=2 23
S 1= 2 2l
R:=2 25

56

conversion
L OF2 bits

. I
pointer to | first argunent

(left branch always processed first)
(conversion field may contain-string length for string arguments)

OPERATOR CODE REMARKS

AP) 29 I ndicates end of actual paraneter list. Con-
version bits indicate conversion of result
of function call.

| NDX 30 Indi cates subscripting operation. Conversion
bits can occur only with [ast such operator
and indicate that resulting array el enent
nust be converted.

REFX 31 Indicates conputation of field (1st arg.) of
i record reference (2nd arg.).
IFEXP 32 I ndi cates that | abel should be issued for end

of if exp. and unconditional junp patched.
Conversion bits indicate that resulting ex-
pression nust be converted,

PCL 39 I ndicates end of procedure declaration.

SUBSTRI NG 40

d‘_l OP3 pointer to first argument ‘J

tree (no conversion)

switch

OPERATOR CODE REMARKS
SHL 35 left shift
SHR 36 right shift

S7

[om

pointer to first argunment

(no conversion

OPERATOR CODE

BB

END
|

| TERST
ITERST2

FYRLIST
Fgr CL
ENDF@RLIST
UJIFEXP

ug

CL

| FST

Is

)
WHILEOP
WHELEST
IFg

37

38
41
42
b3
44

45
46

47

48
k9
50
51

52

53
54
95
56
57

58

59

60
61

branch always processed first)

REMARKS

indicates end of declarations, beginning of
bl ockbody.

for actual paraneters

for record designators

for array declarations

indicates end of array declaration
i ndicates end of record designator
indi cates ¢r of |ogical argunents
indicates ¢r of bit sequences

i ndi cates AND of |ogical argunments
i ndicates AND of bit sequences

indicates generation of transfer to iteration
test (for WHLE st and sinple Fgr st)

indicates generation of transfer to iteration
test (for FgR st with FgR |ist)

l'inks control assignment and STEPUNTIL

i ndi cates unconditional junp in IF exp

indicates issue junp to end af case list or
| F st. (to be patched)

indicates |abel should be issued for end of
CASE st and junp addresses patched

i ndicates |abel should be issued for end of
|F statements and junp addresses patched

array bounds COLON

i ndi cates Nggp (statenment separator)

i ndicates issue junp on condition false to
end of |F exp, or IF st.

58

o

e~

Unary Operators

0P

conversion ~

bits

\Were 0p5 can be one of:

OFERATOR CODE REMARKS
UMINUS 67 unary ninus
ABS 68 absol ute val ue
1
[oP6

\Wher e 0P6 can be one of:

OPERATOR CODE

L - 71
BIT — 72
gN 73
prF 74
Gprg 75
. 76
STACKADDR 77

REMARKS

negation of logicel Vval ue

negation of hit sequence

| abel COLON

argument is local stack origin for inplicit

subroutine (statenent

;
source card number

CARD(79)
simple

jCASE(BO) type number of)cases
(if expr. I

59

parameter)

[11. Terminal Nodes

[BEGIN(85) l bl ock no. | local stack origin |

bl ock no. and local staek origin
occur only if begins data seg-

ment
IN?%§§R i nteger val ue
N%ggER CO”E?{:'On pointer to constant table

X1 Con‘éietrg' on pointer to NAVETABLE

Where X can be:

TERM NAL CODE REMARKS

ID 87

LABELID 88 no conversion

ARRAYID 89 no conversion

FUNCID 90 no conversion if proper procedure

RCCLI D 91 no conversion

FIELDID 92 no conversion

CONID 93

PROCDC 95 no conversion (procedure declaration)

RCCLDG 96 no conversion (record class declaration)
SEG(97) program segnent nunber

i ndi cates program segment
occuring in outer segnent.

60

X2

pointer to constant table

Where X2 can bhe:

TERMINAL CODE REMARKS
BIT 98
STRI NG 99
TRUE 100
FALSE 101
!
X3 :
Wiere X3 can be:
TERM NAL CODE REMARKS
| F 111
WHILE 102
NULL 103 i ndi cates undefined reference
NULLST 104 indicates enpty statenent
ARRAYDC 105 array declaration
AR¥ 106 indicates dummy array subscript
l Xl lcongietr:i ONl pointer to;iNAME.‘I.‘ABLE

Where xb can be:

TERMINAL CODE REMARKS
STFUNCID 107
STPROCID 108

61

r...i:l.‘

D. Pass Three

1. Regiszster Allocation

Code generation for arithnetic operations involves the know edge of
which registers are occupied and where each partial result is held,
Tenporary storage nust be provided for dunping partial results from
registers into main nenory when either too few registers are available
or a subroutine call is made. An even-odd pair of general regis-
ters is required for integer multiplication and division.

A1l the floating registers are available for arithnmetic, Sone of
the general registers are reserved for special purposes, The conpiler
variabl e Cty al ways contains the nunber of the |owest-nunbered base
register in the current program segment. Al |ower-nunbered general .
registers are available for arithmetic with the exception of RO and R1,
and R2 in iterative statenents.

The conpiler uses two half-word arrays R and F to indicate which
registers are occupied, To each general register which is free corre-
gponds a flag equal to O in the array R. A non-zero flag indicates
the register is occupied, The array F serves the same function for
the floating registers.

Partial results are |ocated by referring to ISTACK. FEach current
partial result, whether value or address, has an entry in LSTACK.

Trese entries have the following formats:

o|m |m 0

W [
o 8 12 16 21

— = o 7

[Saccmant]

(2) 0 0 N

01 16 20 31

In (1), N, is zero except for one case: a conplex value is in the
floating registers N and N,. N, is the nunber of either a general
or floating register, and bits 16-31are interpreted as a base with
di spl acenent address.

In general, a procedure call involves dunping all partial results,
Al'so, one or nmore partial results will be noved fromregisters to main
memory when ashortage Of registers occurs. Each quantity dunped nust
have its LSTACK entry changed to indicate the new | ocation. Thus
pointers to the LSTACK entries indicating registers are required.
These pointers are in two arrays, FSTACK for general registers and
FSTACK for floating registers. Each RSTACK entry consists of only the
di spl acement field, for indexing LSTACK Each FSTACK entry has this
index and two other bits of information: bit 0is on for type real
and of f for type conplex, and bit 1 is on only if the quantity is not
long. Conplex values are never split between a register and a nenory

call; either both real and imaginary parts are in registers or both

-are in nenory.

A procedure call requiring the saving of registers causes the
necessary store instructions to be generated, all correspondi ng LSTACK
entries referenced via RSTACK and FSTACK to be updated, and RSTACK
and FSTACK to 'be enptied. During Pass Three R2 always points to the
next available word in RSTACK and B: simlarly for FSTACK The pro-

63

cedur es DUMPALLGENREG and DUMPALLFLREG carry out these functions.

When one or two registers are needed @r partial results and
are not availabie; one or two registers "holding ths currently ol dest
partial results are stored, This involves updating at nmost two LSTACK
entries, The relevant RSTACK or FSTACK elenent(s) are elininated,
and all el ements above are noved down. The currently oldest parti al
results in registers are thus always referenced via the bottom entries
of RSTACK and FSTACK, The procedures DUMPGENREG, DUMPFLREG, and
DUMPPRFLREG generate the store instruction(s) and do the necessary up-
dating,

Wien a register or pair of registers is needed, the appropriate
regi ster request routine is called and is one of the follow ng:
GENREG, PRGENREG, FLREG, or PRFLREG. This routine scans the R or F
array to find, if possible, the required single register or pair., If
necessary, it will call the appropriate save procedure as described
above . Having determned or created the requested register(s), the
procedure will flag the appropriate element(s) of R or F, set up
the LSTACK entry at the top of the stack, and create the appropriate
RSTACK or FSTACK entry, A register release is perfornmed by either
RELEASE or ZRELEASE.

In certain cases of inputs to binary operations, an adjustnent
must be made in the top pointer value of either RSTACK or FSTACK.

Consi der the situation below just before code is to be generated for

an add operation,,

RSTACK LSTACK

.—QL-;\\\\\\\‘__A’ 0 ADDR
- 1 N

It is only necessary to generate one ADD instruction to add the con-
tents of memory location ADDR to register N Afterwards, the situa-

tion nust be the follow ng

RSTACK LSTACK

The pointer at the top of RSTACK nust be decrenmented to point to the
new top of LSTACK, \Menever this is necessary, procedure ADJSTACKS
IS called.

Procedure ASSEMBLE, though used in many parts of Pass Three, was
designed primarily with arithmetic instruction generation in mnd, It
accepts as inputs registers holding two LSTACK-format entries, one of
them al so holding the second half-byte of the instruction code in
bits 4-7. The third input contains the type, Fromthese the routine
can determne the first half-byte of the instruction code and build

each field of the instruction.

2. Block Entry

There are four purposes of block-entry code: First, the data

stack pointer, a systemcell called MP, nust be updated. At any given

65

tinme, MP contains the base address of the nmost recently created data
segnent .

Secondly, space nust be allocated in the data stack for the data
segnent to be created.

Thirdly, the block mark nust be built and placed at the base of
the data segnent.

Finally, the local display nmust be set to reflect the accessibi-
lity of all variables which can be referenced within the bl ock.

The total amount of storage to be allocated for the data segment
is not known when Pass Three encounters a block. pass Two cal cul at es
the static E;‘rfount of storage required for the block mark, |ocal display,
and local variables and array descriptors. This information is given to
Pass Three. However, during conpilation of the block body., registers
with partial resultsmay need to be dunped due to procedure calls, etc.,
and the anount of storage required for this purpose, called the |ocal
stack, is not known until the block is conpiled. Hence at the end of
conpilation of the block the instruction which specifies the total
amount of data storage required for the data segment is fixed up, and at
execution time the total amount of data storage needed is correctly given.

Since the display registers are allocated statically downwards
fromR13, the base register to be used for the data in the block being
entered is nutn' bered one |ess than for the enclosing block. The display
for the block is then identical with the display for the enclosing
block with the addition of the display entry for this block.

The code for block entry is given below n is the nunber of the

register which will be the base of the data segment for this block.

66

IR 2,n+l R2 = base of data segnent of enclosing
bl ock
L 6,FP(2) R6 = free pointer in enclosing data
segnent
A 6,=T = base of new data segment
N 6,X' FFFFFFF8? set data segnent on a double word
boundary
LA 0,length(,6) length is the total anmount of static
storage needed for this data seg-
ment — fixed up at block exit,
RO = new FP
BAL 4 ,ATLL.OCERR see discussion of error code (Sec. IV.A.6)
LA 3,X see discussion bel ow
LA b,y see discussion bel ow
STM ~0,4,0(6) RO = FP
R1 = not used in block mark
R2 = dynamc |ink
R3 = REFVAR
Rl = REFARY
ST 6,MP update stack pointer
LR n,6 R6 = Rn = bhase of this data segment
STM n,12, 20 (,6) store local display (if n=12, then

ST 12, 20(,6))

In the instructions

1A 3,X
LA b,y
X is the relative address of the first reference variable declared in
the block, and Y is the relative address of the base of the first
reference array descriptor declared in the block.
After all code producing declarations (e.g. array declarations)
have been processed, MVI instructions are used to insert the nunber of

reference variables and nunber of reference arrays in their appropriate

67

|
.

fields in the block mark.
Note that if there are no reference variables declared in the

block, the instruction
LA 3,X is replaced by SR 3,3

and no MVI REFVAR+1, ZP is compiled.
Likewise, if there are no reference arrays declared in the block,
the instruction
LA 3,Y is replaced by SR Lok

and no MVI REFARY+l, N, 1s compiled.

2

The tree output of Pass Two for a block with declarations is

declarations
requiring code to

be emitted, e.g.
\\\\ array declarabions

CARD n

/

BEGIN p statements

The tree node BB is present even if there are no declarations reguiring

code tc be emitted, in which case the tree is as follows:

AN

END

N

BB statements

RN

CARD n NULLST

i

BEGIN p

68

e

Bl ocks wi thout declarations have the following tree:

N
END
e

CARD n statenments

BEGIN

The pointer field p in the node BEAN is the amount of data storage
required for the block, Wth the exclusion of the local stack, except
for the outernost 'block of a procedure whose data segment is nerged
Wi th the procedure data segment. In this case, the p-field in the
node BEGN is ¢ and the anmount of storage required for the conbined
procedure-bl ock data segment is given in the NAMETABLE entry for the
procedure,

The second byte in the node BEGIN is a pointer (by 1's) to the
BLOCKLIST table. Hence, the NAMETABLE entries for the variables and
arrays declared in tke bl ock can be scanned., and the count and start-
ing addresses of the reference variables and array-s can 'be obtained
for the inclusion in the blcck mark.

The node CARD n is explained in a following section (cf.1v.D.23).

3. Block Exit

The purpose of the code emitted for block exit is to reset MP to
the base of the data segment for the bl ock tc which control is being
returned .

The tree output of Pass Two for block exit is the same part of the
tree used for block entry. It IS encountered again after all state-

ments i n. the block have been processed. Compound Statenment exit and

69

bl ock exit are distinguishable, as 'before, by the presence or absence
of the tree node BB.

Code enitted for a block exit is as follows: n is the nunber of
the register which holds the base of the data segment corresponding to

the block being exited.

L 1,DL({,n) Rl = dynamic link (field mark block)
= base of data segnment of block re-
turning to
ST 1,MP Reset data pointer stack

L. Procedure Statements and Typed Procedure Designators

The tree output for procedure statement and function designator

paraneters (n > 0) is as followss

AP)

/N

AP, tree for
y4 _ Paraneter #n

\
‘ tree for
// paraneter # n-|
AP,

tree for
parameter # 1

FUNCID(t)

The pointer field t of FUNCID iS a pointer to the NAMETABLE.

70

The tree for a proper procedure wthout paraneters is

/

/ \FUN'CID(t)

The tree for a typed procedure w thout parameters |ooks just |ike
an identifier except that the termnal node is FUNCID(t) instead of ID(t).

The code generated for a proper or typed procedure call, with or
Wi thout paraneters, is as follows where mis the nunber of the regis-
ter which holds the base of the data segnment corresponding to the

bllock in which the called procedure was declared

IR 5,m R5 = base of data segment from which
display will be updated in pro-
cedure entry (after parameters
are established)

L 15, base of procedure
BAIR 1, 15
L 15, base of current
procedure
B SETDI S
SAPD' S
Subrout i nes (cf. Iv.D.5)

SETDIS 1M n, 12, 20(2) Reset the display ~-
R2 = dynamc link | oaded at procedure
exit

= base of current data segnent

n is the nunber of the general register holding the base of the
data segment for the current block. |f n=13, the IM instruction is

cmitted .

Tl

Call of a Formal Procedure

The following code is emtted for the zali of a formal procedure:

M L ,5,DPD R4k = address of subroutine (cf. Iv.D.5)
LA 0, nunber of actual
par amet ers
L 15, CHRCK
BALR 1, 15
L 15, base of current
procedure
B SETDI S
SAPD'S3

Subrout i nes

SETDI' S 1M n, 12, 20(2)

The CHECK routine checks actual-formal correspondence, since this
checking cannot be done at conpile-time, Actual paraneter descriptors
are obtainable via Rl (the 2nd-kth byte of each SAPD). Formal para-
meter descriptors are in the head of the called procedure (sFpp's).

R4 contains the address of the subroutine which will call the procedure;

therefore there is an instruction in the subroutine of the form

L L, base of called procedure .

The CHECK routine locates this instruction (via R4), executes it
and then checks actual-formal correspondence

The CHECK routine saves R+ and R5, and ends with

BCR 15, L

72

5. Procedure Entry

The tree produced 'by- Pass Two for procedure entry is:

PCL
/

CARD n

PROCDC(t)

The purposes of procedure entry code are almost those of bl ock
entry code, and for this reason the codes will be quite simlar.

The additional requirenents of procedure entry are those of set-
ting up dynamc formal parameter descriptors, evaluating value para-
nmeters, and the nore complicated manner of setting up the display.

At procedure call (cf. 1v.D.4), B5 holds the base of the data
segnent surrounding the declaration of the called prosedure. This
data environment i s precisely that which should be valid while the
procedure is 'being executed. *Therefore the display of this surround-
ing 'block plus the display entry for the called procedure constitute

the display While executing the procedure.

73

o

—

e

Procedure entry code is as follows: Rn wili hold the base of the

data segnent to be created.

L 2,MP base of calling data segnent

L 6,FP(,2) R6 = base of new data segment

LA 0,1ength(, 6) add in required storage. RO = new FP.
BAL 4, ALLOCERR check to see that allocation is valid
IA 3,X (Note 1) (cf.IV.A.6)

LA b,X

STM O,4,0(6) store procedure mark

ST 6,MP update stack pointer

SAPD =+-DPD operations

LM n+l,12, 20 (5) (Note 2) update the display
LR n,6
STM n,12, 20 (6) (Note 3)

[DPD + BV operati ons

Note i: X is the relative address of the first reference val ue/
result paranmeter; or if there are no value/result paraneters, X
Is the relative address of the first reference variable local to
t he block whose data segment is nerged with this procedure's data
segnent ; or if there are no reference value/result parameters and
no local reference variables Or NO block, then X is o,

Y is the relative address of the first reference array de-
scriptor in the block whose data segment is merged with the pro-
cedures data segnment If there are no reference arrays or no
block, then ¥ is C.

MVI instructions are used to place the nunmber of reference
value/result paraneters and local reference variables, and the

i7)+

i

number of local reference arrays:, into the fields REFVAR and REFARY,

respectively, in the procedure mark.

Note 2: This instruction is omitted if n = 12.

If n =11, the instruction becomes L 12, 20 (,5)

Note 3: If n = 12, then tuis instruction becomes ST 12, 20 (,6)

Notice that £ < n < 12.

SAPD's — Static Actual Parameter Descriptors and Subroutines

The cal | s of procedures Wi thout paraneters haveno SAPD's or sub-
routines co;'responding to them and the reloading of R15 to the basc
of the current program segment is inmediately followed by the resetting
of the display at procedure call {zf. IV.D.L).

For procedures with paraneters,? each paraneter has associated with
it one SAPD of 8 bytes. According to different forms of actual para-
nmeters, different SAPD's are established. 1In general, an actual para-
meter is represented by a subroutine, and the SAPD gives the address
of that subroutine, If the parameter is an identifier, the SAPD con-
tains the address of the identifier. Note that addresses of subrou-

tines are given relative to the instruction
L 15, base of current program segnent
immediately fcllowing the instruction BAIR 1,15 in procedure
call.
The Pg bits in the 3APD define the character of the actual para-

meter . P specifies whether a subroutine exists or not:

5

P=1 : @&ccessto parameter involves a Ssubroutine call
P=C : no subroutine call

Q specifies whether the parameter May occur in the left part Of an

assi gnment statenent:

Q=P : assignnent i s possitle
Q#P : assignment not possible

The type information field of three bytes is used only by the CHECK

routine when a formal procedure is called.

ACTUAL PARAMETER Is SAFD IS DPD IS
“‘ P
Vil ,
i dentifier I [90] _type 00 [addreds or ia
LA 3, id(n) ST| data base
constant, expression 11 [10] type 10| address of subr.
or statenent A 3, subr(l) ST| data base
TIT [10] type 10| address of subr
rocedure - &4
P IA 5, sube(1) ST| date base
subscripted variable ™ [11] type 1 address of subr.
or field desi gnator LA 3, subr(l) ST | data base
v {co] type | Copy of DPD
formel paraneter , =ObY
ormal p ™ 3.5,0PD(a)

The inplicit subroutines corresponding tO paremeter types II
(expressions and statements) and IV create data segments of hierarchy
level one less than at the point of procedure call. The format of
these data segnents is |ike those created by bl ocks except that for

inplicit subroutines, there are no local variables.

76

[

"

Implicit subroutines correspondi ng toconstantsarecasfollows:

L 15, base of segnent
in which constant
table lies
L 2,MP set R2 for return
LA 3, address of
constant (15)
BCR 15,1 this subroutine branched to via Rl

Implicit subroutines corresponding to proper procedures aund all typed

procedures are as foll ows:

L L, base of called prccedure
IR 15, 4
L 5,=F'(X-CLN+1)*¥4' (5) where
X = hierarchy # of called
procedur e
CLN = current hierarchy
number
BCR 15,15

The purpose of this subroutine is to set RS correctly. Recall that RS
will be used as the base to update the display in the entry code of
the called procedure . R5 cannot be set correctiy at the point of men-
tion of the formal name parameter corresponding tc the procedure for
which this subroutine is set up in certain recursive procedure call
gituations .

Noti ce that the subroutines given above do not set up a data seg-
ment of their own.

All string routines (i.e. string procedures and inplicit sub-
routines returning the results of string procedures) are exited wth

the address of the resulting string in R3. For some string routines

71

o

the string itself may 'be in the data segnent of the string routine.
Wien the routine iS exited, the ddata segment i S relecased, and the re-
sulting string may thus be destroyed if another data segment IS allo-
cated before the string (whose address is in R3) is used.

This situation arises for typed procedures cf types other than
string, but the manner of conpiling expressions of these types insures
that the result of the typed procedure will Se used {i.e. citherplaced
in a register, added to an accumilating sum compared, etc.) before
any new data segnment coul d be created.

This is not the case for strings.

Hence, to insure that the string which is the result of a string
routine is not |lost, the string nust be noved to a data segnent which
cannot possi bly be 'released, until the string is used. In the case
under discussion, the string nust be noved into the local stack of the
data segnent at the point of call of the string routine.

In the description of the DPD's (to be discussed presently), the
address and data base fields are absol ute core addresses. The data
base field is the base of the data segnent of the block in which the
procedure call occurs . This field is used as the base from which to
ipdate the display when executing implicit subroutines or procedures
¢ orres pond ing to the mention of the corresponding formal parameters.

The byte ST IS the simple type of the actual parameter (0 for
proper procedures and Statenments) and is used for type conversion for
va loe/re sult parame ters . Kecall that all name parameters nust match
exact Ly In type .

Implici* subroutines which 'have values are so constructed. that the

e s coans e MR

address of the result is returned.

sapp + DPD Qperations

SAPD : Static Actual Paraneter Descri ptor
DPD : Dynam ¢ Paraneter Descriptor
The SAPD -+ DPD operation consistsS of eneveluation of the static addresses
given in esch SAPDet procedure call; and the transmission Of the type infor-
mation about the actual paraneter including the two-bit code (PQ .
If the actual paraneter is a formal parameter? the DPD must be copi ed.
Each DPD is eight bytes wide and there is a 1-1 correspondence between
- SAPD and DED. The possible formats for the DPD's are given in the
section discussing the SAPD's.
The code for producing the DPD's iS as follows:

Let a = address of DPD to be created (using R6 as base - see, pro-
cedure entry code)

- b = address of SAPD (using Rl — see procedure call code)
LR 4,2 dynamc link = data base for DPD
EX 0, b+ executes instruction in SAPD. For all

types except Vv, this loads R3 with
address of procedure orinplicit sub-
routine.
for type V, (actual paraneter is fornal
parameter), this loads DPD of fornal
N paraneter into B3 and Rk.

STM 3,hk,a store DPD
g a{l),b establish PQ bits
MVC ath(1),b+3 establish ST field

79

DPD =+ PV (perations

[
As stated in the report, each value paranmeter is evaluated and its
- value is stored in the procedure's data segnent, Any further occurrencs
of the parameter uses the parameter value (PV)
- : oo
Since, by definition, arrays are always passed by nane, the DPD
is used to obtain the address of the actual descriptor, which is then
copied into the data segnent of the procedure. The DPD may or may not
N require a subroutine call to obtain the address of the descriptor,
dependi ng on whether or not a sub-array is being passed. Any further
= occurrence of the array parameter uses the copied descriptor, the
L, paraneter value (PV), to conpute the addresses of the array elenents.
| 6. Procedure Exit
Because of the tree scanning nechanismin Pass Three of the com
_ piler, typed procedures with parameters and typed procedures without
parameters are detected as requiring a procedure call at different
- places in Pass Three. For this reason, the node of returning the
result is different,
Por typed procedures with paranmeters, the result of the procedure
o is returned in a register, depending on the type, as foll ows:
i nt eger R3
- real FO
Long real FOP
= conpl ex FO F2
| ong conpl ex FOl-F2%
“ bits R3
reference R3
| ogi cal R3 (address of result)
string . R3 (address of result)

80

r— rr

- NN

For typed procedures without paraneters (which include inplicit
subroutines which return values), the address of the result is returned
in R3,

The addresses of the actual parameters corresponding to result
parameters are evaluated and a validity check is nade to be sure that
the actual paraneter can be stored into. The type of the result is
converted if necessary and the result is stored.

The code emtted for procedure exit is as follows:

1M 1,2,RA(n) R1 = return address
- R2 = dynamc |ink

ST 2,MP

BCR 15,1

Notice that upon return, the display is updated from R2, set

correctly here in procedure exit.

7. Formal Paraneters in Expressions and Assignments

Reference to a formal n&e paraneter requires testing whether a
subroutine call is necessary, or whether the descriptor (DPD) already
contains the absolute address of a variable. Furthermore, a validity
test is performed if an assignment is to be nmade to the formal para-

meter.

81

o

The code emtted for a formal parameter in an expression is

™ DPD{n),K02" test P-bit

Y BC 1,X branch if P=1, i.e. must call subr.
L 3,DPD(n) “no subroutine, R3 = address of id
BC 15,7

X L 5,DPD+4(n) R5 = data base = base to update dis-

play inside subroutine or procedure
L 15,DPD R15 = base cf subr. or procedure
BCR 15,15
L 15 , base of current
program segnent

M n,12, 20 (2) reset display

At z, 83 has the address of the fornmal parameter, and its val ue
is easily obtai ned.

Val ue paraneters are referred to only once as shown abeve, in the
DPD = PV, operations. |f the type of the value paraneter is arithnetic,
a call to a systemroutine which converts the actual paranmeter if
necessary and stores the result in the formal value location is placed
at the label Z. Tf the type is non-arithmetic no conversion is
possible and an instruction to store the value is placed at Z. If the
¥ype is string, instructions to insure that non-significant characters
of the formal paraneter are set to blank are inserted before the store
instruction.

For a formal name paraneter occurring on the left of an assign-

ment statement, the code is as before except for the first instruc-

tion, Which is replaced by:

82

™ DPD(n),X' 03! test P and Q bits

BC B,Y branch if PQbits not mxed, i.e. can
store into

BAL 1,MAINERR ~branch t0 error routine, Rl = | oca-

tion of error

Result parameters are referred to only once in this nanner in pro-
cedure exit.

8. Array Decl aration

Corresponding to the array declaration of n di mensions

<simple type> array X (20 20l By oty eee £ 0 ou “n—l)

in the head-of a block, an array descriptor of length 12n+8 bytes is

built in the data segnent of the bl ock

S| MPLE NUMBER OF BYTES
TYPE PER ARRAY ELEMENT
1 i nt eger 4
2. real 4
3 long real 8
L, conplex 8
5. long conplex 16
6. | ogi cal 1
7. string declared string Iength
8. bits 4
9. reference 4

The size of the descriptor depends only upon the nunber of di-
mensi ons of the array and hence the storage for the descriptor is
allocated statically. The storage for the array elenments thenselves

nust , of course, be allocated dynamcally. The descriptor has the

83

~—

e i e

-

followng format:

Hp- |

I

wher e @, — IS the base address of the array elenents

A, — ig as given in the table above and is the nunber of
bytes per array element

£, — the lower bound of the ith dinension
By = the upper bound of the itE dimension

A, = - + 1) A ,
g = (g g -4y H)X 1-1 i=1,2,...,n

Ve require that A&, 1=0,1, .. 11 fit into 15 bits so that the more

conveni ent multiply halfword (ME) instruction may be used for the

multiplication. Note that no such restriction is required for A,

whi ch represents the total number of bytes required for the array.

The value of 4., 1=1,2, ... 4 is the nunber of bytes required for

the first i dinensions of the arrsy. The restriction that A
J

J=0,...,n-1 fit into 15 bits results in the restriction that A
) n-1
into 15 bits . for if any 8, J=0,...,n-2 does not fit into 15 bits,

fit

then An , will not fit into 15 bits. Therefore, the value of A
| ' n-|

84

must be less than or equal to 32767,,. Chserve that for a |-dinensional
array, this restriction is automatically satisfied,
The following table gives the maxi num nunber of elements for the

first n-l dinensions of an array of the indicated sinple type,

maxi mum nunber of elements

sinple type of array in first n-1 dinmensions
| ogi cal 32767
integer, real, bits,
ref erence 8191
long real, conplex 4095
Iong conpl ex 2047
string 32767 DIV q
where g is the
declared string
| ength

For storage of the array itself upon block entry, An bytes are re-
quested and the free pointer (FP) of the data segment in which the

descriptor resides becomes the base of the array, after which FP is

incremented by An.

In Algol notation: o, = FP

FP

FP+An

In the case of reference arrays, the upper byte of the first word of
the descriptor, the r-field, gives the number of dinensions so that

the garbage collector can find the next reference array descriptor.

85

it >

The tree format for the array declaration <sinple type> array X, X2,

.., Xm (EO gy By tipgs eees Ao sty l) iS as follows:

- \
AR)
///// \E:
N\
AR, !n-l/ l'lrl
/ \

/ 3
4
AR/, lné \un-2

- N\

°
°

3
°

/N

AR, 1 Hy
\O o
/ \
CARD n Ly Bo

ARRAYDC m p

The pointer field p in ARRAYDC is a pointer to the NAMETABLE entry for
Xl; mis the nunber of identifiers. The nodes li and My can be sub-
trees for any integer arithnetic expression.

All. left subtrees are processed first. The descriptor is built
into the descriptor location of the last identifier, in this case Xm
and finally at AR) the conpletely built descriptor is copied into the
descriptor locations for the other arrays. As each descriptor is

e

copi ed, storage for that array is allocated and the base address is

-~

placed in the o, field of the descriptor,

86

Exanpl e:
L 2,=F'0"
ST 2,1,
IlA. 2.71"
ST 2,8,
L 2,=F'10'
ST 2,u0
S 2,4,
BAL 1,UBLBERR
LA 2,1(2)
SLL 2,2
ST 2,4
SLA 2,16
ST 2,4, -
4
L 2,A
A 2,B
ST Z,p,l
S 2,4
BAL 1,UBLBERR
MH 2, ‘(Al + 2)
ST 2,8,
L 0,FP
A 0, THREE
N 0,SINGLMASK
ST O,ao
A 0,4,
BAL L4,ALL@CERR
Mve X(29),Y
ST O,oro
A 0,8,
BAL 4,ALL@CERR
ST O,FP

anteger a y X,Y(0::10,A::A+B)

lower bound of first dinension ‘\\
nunber of bytes per array elenent

upper bound of first dinension

First
¢ di nension
see error code discussion in section IV.A.6
- A
(hg = 4o *+ 1) X &
check if Ai ean fit into a halfword _,/)
| ower bound of second dinension ‘\\
upper bound of second di mensi on
Second
* di mensi on
free pointer
see discussion of special constants
based off Rk (cf. IV.A.6) | ;fig;sfz ggrd
see discussion of special constants boundary *

store base Y in descriptor Y

RO = new FP =‘base of next array

see error code discussion

nove descriptor (30 bytes) from Y to X
store base X in descriptor X

RO = new FP

store new free pointer

*Por arrays of type logiceland string, the free pointer is not adjusted.
For arrays of type long real and long conplex. the free pointer is ad-
justed to a doubl e word boundary. For all other types, the free pointer
Is adjusted to a word boundary. &7

o

At each node "::", the lower bound is placed in the descriptor when

the left sub-tree has 'been processed. After the right gupb-tree has

been processed, tke upper bound is placed in tue descripoor,

A = - R X ’
i+l (ui Ei i l) X Ai i=0y...0,n=2

is calculated, and &, . is placed into the descriptor. For i=0,...,n-3,

1
a test is perforned to assure that Ai+1 will fit into a 'hal f-word, wor
i=0, the mul tiplication by AO | S performed by a shift for all types
except <string>, since AO will be a power of two for these types, Arrays
are stored by columas. At the conpletion of the execution of this code,

t he desmpto;s in the stack woul d |och 1ike the follow ng, assum ng

A=3, B=k (all nunbers in base 10).

220

220 bytes
for ¥

| B 220 bytes

for X

88

9. Subscripted Variables

Consider the following reference to a subscripted variable from

an array A of n dinensions:

A (XO, X0 X

Koy ooy &

nml)
wher e X, may be any integer arithmetic: expression In tree form, the

above construction is represented as:

\

INDK
/\
INDX X,
/' \
Xn-2
/
INDX
/ \ The address « of the array
INDX Xl element is given by

\X n-1
o @ =yt By (X-L) x B,
ARRAYTD(A) = - +

&

where the |eft sub-trees are always processed first. The pointer field
of the node ARRAYID iS a pointer to the NAMETABLE.
Each node Xi may be a subtree for an arithnmetic expression. The

indices are evaluated in order from X, to Xn

0 -1
After the val ue of X, has been conputed, it is checked agai nst
L and. s (the upper and |ower bounds for the i ¥ 4i nensi on). If
ei ther bounds test fails, the run is termnated with an appropriate
error message . If the bounds tests are successful, the |ower bound is

subtracted fromthe subscript and this quantity is multiplied by the

current Ai and added into the accumulating address.

89

As an exanple, consider a reference Y(3,T-27} to an array de-

clared integer array v(0::10, A::A+B}, where T=32, A-3, B=l,

The address of the array elenent is given by

o= oyt (3-0) X 4 + (5-3) X 44 = @y + 10C

wher e @,

the descriptor. (See descriptor given in section on array declarations.)

is the base of array and is obtainable fromthe first werd of

The followi ng code is generated for this array reference:

L 3,010 R2 will be accumul ating address register
L 3,=P1 3" firs% subscript

C "3

LA 0,0(3) sets RO to type of error if bounds check

fails (see discussion of error checking
code [section IV.A.6])

BAL 1 ,ARRAYERR (cf. 1V.A.6)

S
BC <,MAINERR (cf. 1-V. A 6)
I e A
SLL 3,2 (xo 10) X 8,

2,3 add in% accumul ating register

35T
3,=F127" second subscript

1,ARRAYERR
BC < ,MAINERR
MHE 3, (A&42)
AR 2,3

AR

L

S

C 5)“1
BAL

S

At this point, R2 has the addressof Y(3,T-27) ,

90

10. Passing Sub-Arrays as Parameters

The user may pass any generalized row or colum, i.e. any sub-
array of dinension 1,2,...,n-1 of-an n-di nensional array as a paraneter
to a procedure. Since all array paraneters are passed by nane, all
that is needed is to copy certain parts or all of the array descriptor

Atthis point, the reader should famliarize hinself with the de-
tails concerning the building and format of array descriptors, and the
calculation of the address of an array element when the element is re-
ferenced

According to 9%e syntax, an asterisk (¥) i s placed in those posi-
tions of the actual sub-array paraneter to indicate which dinensions
are to be included in the formal array.

In those positions in which * occurs in the source code, the
Pass Two tree output is the node AR¥ For exanple, the tree corre-

sponding to the actual paraneter

A(*,4)

N\

INDX
INDX 4
AR*

ARRAYID(A)

indicating that the firs% dinension of the two-dimensional arayAis
to be unspecified and that the fourth colum corresponds to the one-

di mensional formal array.

91

— e

It should be recalled that an array descriptor consists of a

‘th . . -
bounds of the i di nensi on, Ai = (“i_fli-l) X Ai-l (except for &q), and
that the first entry inthe descriptor is ap,the absolute address of the first

array element Therefore, to conpose the sub-array descriptor, rules
must be given on how to build the triples {Ai,zi,ui} and how to calcu-

| ate oy These rules are as follows:

If X, is the 1*9 index, then for each position with
X, =% ¢ copy the descriptor triple {Ai,zi,ui}
X, #% @ onit the descriptor triple

To calculate @., the absolute address of the first formal array

el enent :

n- |
o, =& + (z.-4,) x A,
£ 0 1ol i’ ? 2
V\here ZI - El |f XI = ¥

X, if X £

As an exanple of the use of these rules, consider the follow ng

array declaration and the layout of the array elenents in core:

92

-

logical array A(0::1,0::2,0::3)
@, - 000 0
Ay 1 100 1
£ 0 —= 010 2
Hy 1 110 3
Al 2 020 4
21 0 ——=1 120 5
by 2 [>{ 001 6
A, 6 101 7
£, 0 ’ 011 8
Mo 3 111 9
2k 021 PO
total nunber of bytes in array [121 11
— not used in subarray calcula- 002 1
tions or descriptors
102 13
— | 012 14
112 15
022 16
A%12) 122 17
il 003 18
t > | 103 19
° 213 20
= 113 21
223 22
123 23
A(1,%,3) A(1,2,%) A(%,%,1) A(*,1,%)
(= > 1 PY
2 6 1 1
0 0 C 0
2 3 1 1
2 6
0 0
e 3

93

r——

The calculation of the addresses of sub-array elenents is the
sane as for ordinary array elements.

The inplicit subroutine corresponding to an actual sub-array para-
meter builds the sub-array descriptor in thelocal stack of its data
segment and returns the address of this descriptor. puring the
DPD + PV operations, this descriptor is copied into the procedure's

data segnent,

110 Arithnetic Conversion

Type conversion in ALGOL w is inplicit in a nunber of cases.
However ; real to integer, or conplex or |long compiex to real or integer
must be specified by transfer functions,

I. Integer to real or long rea
A quantity of type integer is converted to long real by neans of

a subroutine. The linkage code is

1A 1,X'rii?

L 15, base of segnent 57
BALR 0,15

L 15, current segment base

The quantity placed in register 1 is a paraneter to the conversion
routine. i specifies the register which contains the quantity to be
converted and r specifies the destination floating point register
Therefore, the same conversion routine is called for integer to rea
conversion as for integer to long real conversion. |jkewise, the same
routine is used to obtain the real part in conversion frominteger to

conplex and long conplex, The imaginary part is attained by the in-

ol

struction

SDR Iy Tp

The routine to do the conversion stores the absolute value of register
iin the lower half of a double word whose upper half is #4E000000.
This quantity is loaded into register r to which zero is added to nor-
mal i ze the nunber. Register r is negated if register i contained a
negative nunber. The execute instruction is used to mainpulate
register i and register r.
II. Real to long real, conplex or long conplex
A quantity of type real is converted to long real by two methods
a) If the value Vis not in a floating-point register, the

sequence of instructions used to load V into register r is

SDR rys Ty
LE rl; vV

b) If the value is in register r, the sequence of instructions

used to convert Vis

STE r, TEMP
SDR r,r
LE r,TEMP

A quantity of type real is converted to conplex by subtracting
the second of the pair of floating-point registers fromitself.. If
the conversion is to long conplex, the real value is first converted

to long real. and then the subtract register instruction is emtted

95

[1l1. Conversion from long rea

No instructions are used to convert to real. A conversion to
ei ther conplex or long conplex is done by subtracting the register
representing the impginary part from itself.
Iv. Conversion from conpl ex

A conplex value is converted to Iong conplex by applying the rules
for converting fromreal to long real to both the real and inaginary
parts of the conplex value
V. Conversion from long conplex

No instructions are emitted to convert |ong conplex values to

conpl ex val ues.

The indication for conversion is made in Pass Two by placing the
destination type in the conversion bits (8-15) of the node to which
the conversion is applied. (cf. IV.C.5) If the node is a terninal node,
(i.e. variable, constant), the conversion takes place before the value
is used. |If the node is a non-termnal node, the Conversion takes

place after the operation the node specifies is conpleted,

Exanpl e
INTEGER I; REAL R; T 2,1
R{F I L 1,=X' 022!
A = L, 15, base of seg 52
///\\ BAL 0,15
R 1(2) L 15, curreg base
STE O,R

96

Exanple 2

LONG COVPLEX C, REAL R; LE O,R
C:=R+R ‘ AE 0,R
A = 0
C/ +(5) ;IE oszMP
/ \
R R LE 0, TEMP
SR 2,2
STD 0,C
STD 2,Cc+8

12. Arithnetic Expressions

ADDI TI ON

The tree produced by Pass Two for addition is
+
7Y
Since the addition operator is comutative, the code produced

does not depend on the order in which the subtrees are processed. Let

X be the first subtree and Y the second.

Case I. The result of processing X is not dunped while processing Y.

If Yis in core;

Long Long
| nt eger Real Real Conpl ex Conpl ex
Regi ster(s) hol ding
the result of first
subtree: R2 FO FO1 FO,F2 FO1,F23
Code gener at ed: A 2,Y AE o,y ADO,Yy AE o,y AD o,y

AE 2,vy#+ AD 2,Y+8
I'f the processing.of Y iS in a register(s) then the follow ng code

97

F

sequence is emtted. Assune the register(s) holding the result

of processing X is as shown above

Long Long

| nt eger Real Real Conpl ex Conpl ex

Regi ster(s) hol ding

result of second

subtree: R3 F2 F23 F4,F6 FU5,F67
Code generat ed: AR 203 AER 0,2 ADR 092 AER O,k ADR 0,4
- AER 2,6 ADR 2,6
Case Il. The result of processing X is stored in TEMP while processing Y.

Then the result of the second subtree nust be in a register(s).

Long Long
. Integer Real Real Complex Conpl ex
- Regi ster(s)
hol ding result
of second
. subtree: R2™ FO FO1 FO,F2 FOl,F23
Code , .
gener at ed: A 2,TEMP AE O,TEMP AD O,TEMP AE O,TEMP AD Q,TEMP
AE 2,TEMP+: AD O,TEMP+8
MULTI PLI CATI ON

The tree produced by Pass Two for nultiplication is

x/’\Y

Since the code needed for conplex and |ong conplex multiplication

is lengthy, a run-time subroutine is called for multiplication of

these types. A discussion of the linkage and paraneter conventions is -

found el sewhere in this section

For integer, real, and long real, the situations and corresponding

98

codes are identical with those for addition except for the follow ng

substitutions in the code sequences:

Addition Ml tiplication
A M
AR MR
AE VE
AER MER
AD VD
ADR MDR

All integer nultiplications are followed by SLDA r,32 where r
specifies the even register of the result. This instruction detects

an overflow if it occurred during the nultiplication.

SUBTRACTION

The tree produced by Pass Two for subtraction is

/\

X Y

There are four situations which can arise while processing the
tree9 as in the case of arithnetic assignnent (cf. [V.D. 22).
Case I. Process X first.
A. The register(s) holding the result of the left subtree X is

not dunped while processing Y.

Long Long
| nt eger Real Real Conpl ex Conpl ex
Regi ster(s) holding X: R2 FO FOl FO,F2 FO1, F23
Code generat ed: s2Yy SEOY SDO,y SEO,Y SD 0,Y

SE 0,Y#+ SD 0,7+8

929

r-

B. The register(s) holding X is dunped at TEMP while processing
Y.

The result of processing Y nust then be in a register(s).

Long Long
| nt eger Real Real Conpl ex Conpl ex
Regi ster(s)
holding X: R2 FO FO1 FO,F2 FO1,F23
Code
gener at ed: L 3,TEMP LE 2,TEMP LD 2,TEMP LE 4,TEMP LD L4, TEMP
SR 3,2 SER 2,0 SDR 2,0 LE 6,TEMP+4 LD 6,TEMP+8
SER 4 9 0 SDR 4,0
SER 6,2 SDR 6,2

Case TII. Process Y first.
A The register(s) holding Y is not dunped while processing X
X is then loaded into a register(s) and the appropriate
register-to-register instruction is generated.
B. The register(s) holding Y is stored in TEMP while processing
X. The result of X is then loaded into a register and the

appropriate subtract from storage (TEMP) i S generated.

DIVISION

The tree produced by Pass Two for division is

\
{ N
As in multiplication, conplex aulong conplex division is per-

formed in a run-time subroutine and is discussed el sewhere in this

section

100

Integer division is acconplished using DIV and REM and is al so
di scussed el sewhere in this section. For real and long real, the
situations and corresponding code sequences are identical with those

for subtraction except for the follow ng substitutions in the code

sequences.
Subt raction Di vi si on
SE DE
SER DER
SD DD
SDR DDR
DIV AND REM

The trees produced by Pass Two for DIV and REM are

DIV REM
/\ /\
x Y x Y
The code sequences for both are identical, After the division,
the result of DIV is in the odd register of the even-odd pair required
for integer division, and the result of REMis in the even register.
No matter which subtree is processed first:, the dividend is even-
tually placed in the even register of an even-odd register pair. This
register pair is then shifted right-double-arithnetic 32,0 bit posi-
tions in order to place the dividend in the odd register The division
is then performed with the divisor in a register if it has been placed
there or fromstorage if the divisor is sinply a single variable or if

it has been dunped into storage while processing the dividend subtree.

101

As an exanpl e, consider
A DIV A1(1)

where Al is a |-dinensional integer array. Assume the subscripting

has been acconplished |eaving A1(1) in R2. Then

L I ,A
SRDA 4,32
DR 4,2

The result is then in R5.

If an even-odd register pair is not available, then the fewest
nunber of registers are dunmped (nexinmum of two):inorder to secure the
even-odd pair.

As anot her exanple, consider
A1(1) DV A

As before, AL(1) will be processed first — assume A1(1) is |eft

in R with R3 already occupied.

IR 4,2
SRDA k4,32
D 4 ,A

COMPLEX MULTIPLICATION AND COVPLEX DI VI SI ON

Conplex multiplication and division are carried out by neans of
a subroutine.

For multiplication, one nultiplier nust be in the pair of floating
point registers FOl and F23, and the second in storage. |f neces-

sary., one multiplier will be stored in a temporary location. Separate

102

routines exist for conmplex and [ong conplex multiplication. The

cal ling sequence when one multiplier is in |ocation TEMP isS:

LA 1,TEMP

L 15, base of segnent 62

WiI FLAG,X'02'

BAIR 0,15

X'0001!

L 15, base of current segment

For division, the nunerator nust be in the pair of floating point
regi sters FO1 and F23; the denominator nust be in storage. If neces-
sary, the denomnator will be stored in a tenporary location. gegparate
routines exist for conplex and long conplex division. The calling

sequence when the denominator is in |ocation TEMP is:

LA 1,TEMP

L 15, base of segnent 62

Wil FLAG,X'02!

BALR 0,15

X'0003

L 15, base of current segnent

The al gorithm used for conmplex multiplication X := A*B is

etif := (v+iw *(x +1iy)

M=y *w s =y ¥ v

v ¥ x - r; f w ¥ x + s;

@
i

103

The al gorithmused for conplex division X := ABis:

e +if = (v+iw /(x+iy)
ri=abs Xo s 5= sy
if r > =s then

begin r := y/x;

s ¢=Yy *¥r + x;

(I'*W+v)/s; e ::v*r;

figw - e)/s; e = t;
L end else
begin r := x/y; s i=r *x +y;
te=(r *v + w)/fs; f :=(w *r - v)/s;
L UNARY MINUS

The tree produced by Pass Two for unary nminus is

The result of p

UMINUS

X

rocessing the subtree iS l0aded into a register(s).

Long Long
I nt eger Real Real Conpl ex Conpl ex
Regi ster(s)
hol ding result
qf processi ng
Subtree: R2 FO FO1 FO,F2 FO1,F23
Code
gener at ed: LCR 2,2 LCER 0,0 LCDR 0,0 ILCER 0,0 LCDR 0,0
ICER 2,2 LCDR 2,2

104

EXPONENTIATION

The tree produced by Pass Two for exponentiation is

* %
i

Since the code needed for exponentiation is |engthy, exponentia-
tion for all types of bases is acconplished with run-tine routines. Re-
call that all powers nust be of sinple type integer

One run-tinme routine, EXPoN, handl es bases of sinple type integer
real and long real, converting the base to long real before exponentia-
ting. Input to the routine is the type of the base, the register
hol ding the base, and the register holding the power. The result of
the exponentiation is left in the register of the base if the base is
of sinple type real or long real. |f the base is of sinple type
integer, the result is left in Fol.

Anot her run-tinme routine, CEXPON, handles the bases of sinple
type conplex and long conplex, converting the base to long conplex
before exponentiating. Input to the routine is the sinple type of the
base, the base in FO F2 (or F01, r23), and the register holding the
power. The result of the exponentiation is left in FO1L, F23,

Consider X ** Y, where X is real and in Fx and Y is in R3. Then

the calling sequence for EXPON iS

LA 0,X'24 3 sinple type of base, reg. of base
reg. of power

MVI FLAG,X' 01!

L 15, base of standard functions

BAIR 1,15

X'000L’

L 15, base of current segment

105

The algorithm for real

is in R2. Then the calling sequence for CEXPON is

LA 0,X'502'

WI FLAG,X'01!

L 15, base of standard functions
BATR 1,15

X'0002!

L 15, base of current segnent

Algol W procedure,

LONG REAL X; BITS A, LOGICAL NEGATIVE
NEGATI VE := FALSE;
IF POWER < O THEN
BEG N
POWER := -POWER; NEGATI VE := TRUE

- 8

]

BITSTRING(POWER); X 3= 1L;

:= A, A:= A SHR 1

|F (B AMD #1) = #1 THEN X := X * BASE;
IF A = = #0 THEN

BEG N

BASE := BASE * BASE; GOTO L

o

END;
IF NEGATIVE THEN 1L/X ELSEX

END EXPCN;

real ' s above become |ong conpl ex%

106

Now consider X ** Y where X is long conplex (in Fo1, F23) and Y

exponentiation is given in the form of an

LONG REAL PROCEDURE EXPON (LONG REAL VALUE BASE; INTEGER VALUE POWER);
BEG N

The algorithm for CEXPON is the same as for EXPON except all |ong

— o

ABSOLUTE VALUE

The abs operator has an argument of any arithnetic sinple type.
For the sinple types integer, reai and long real, the quantity nust
first be placed in a register r corresponding to its type, if it is not

already there, and one of the following instructions executed:

LPR T,r for integer
LPER r,r for real
LPDR r,r for long real

For the types conpl ex and long conplex, a subroutine is called to
obtain the absolute value, which is a real or long real nunber. The
argument Of the operator nust be placed in the floating point register
pair FOl,F23. The result is returned in register FOl., Separate rou-

tines exist within the subroutine for conplex absolute value and |ong

conpl ex absolute value. The calling sequence for the routine is:

L 15, base of segnent 62
MVI . FLAG,X'01"

BALR 1,15

X000k *

15, base of current segnent

el

The algorithm for the conplex absolute value jigs

a s= | x + iy |
x = abs x; v = absy
a s=if X =0 then y else if_y = 0 then x el se
if x >y then x * sqgrt (I + (

elsey *sqrt (1 + (x/y) ** 2

107

_— e

13. Logi cal Expressions

The phil osophy of inplementation of logical expressions was guided
by two principles. First, only those parts of the expression needed to
determne the truth value of the whole expression need be eval uated,

For instance, in the expression Aor (Band), if Ais true the whole
expression is true. Therefore, neither B nor ¢ requires eval uation if
Ais true, Analogously, if A evaluates to be false, B nust be evalu-
ated. If B is false, C need not be evaluated since the whole expres-
sion is false. A B,and C are all evaluated only if Ais false and
Bis true,

The second principle followed in inplementation required that an
explicit logical result be created in a register only when necessary,
For exanple, the logical expression of the conditional statenent, |__f_

A or B then s, need not have a logical value created for the expression
A or B. Only a 'branch is required 'based on the condition code set by
the evaluated expression. As succeeding exanples will illustrate,

the principle involving explicit evaluation is carried to its ultimte

in logical conditional expressions and conditional ease expressions

with at nost one extraneous branch instruction being emitted after the

expresgsion.,

108

[

Logi cal 4,8,

C:=AorBandC

L :=
AN
c LOGOR
Y\
A /LOGAN.D
B/ \C

AoBj, cal
C:=Aor=-B

C LOGOR

A LOGNOT

CLI

CLI
BC

STORE STC

CLI

STORE STC

109

A,X'O1!
=,T
B,X'O1!
#,F
C,X'01"
#5F
2,1
STORE
2,0

2,c

A,X'01"
=,T
B,X'01'
£,T

2,0
STORE
2,1

2,c

|
L

3. 1A,B,al C
if Aor Bthen Selse S

—_—] e~ 2

IFST

b logical ~A.&,C

CLI
BC
CL1
BC

NEXT s

C:=1if Aor B then A and B else_ = B;

/ N

p IFEXP

UJIFEXP \;bGNOT

2

- B
eé;ﬁi\\ E&;OGAND
LOGOR
A B

110

CLI
BC
CLI
BC
T1 CLI
BC
CLI

F1 CLI

T2 LA

F2 LA
STORE sTC

A,X'01!
=,T
B,X'01!

#,F

NEXT

A, X101
=, Tl
B,X'01"
#,F1
A,X'01!
#,F2
B,X'01'
#,F2

T2

‘B,x'Ol’

=, F2
2,1
STORE
2,0
2,C

5. hoBi,Cal

C := = (case | of (AVB, =1 B))

L := L 2,1

C/ L\(\)\:NOT LA 1,2

| CR 2,1
yyCL\ BAL 1,ARRAYERR

LOGNOT LTR 2,2
'7UJ]!:, Bc <,MAINERR

CASE LOGOR SLA 2,2
| ¥ \ B LAST(2)
oA B Il CLI A,X'01'

) BC =T
a1 B,X'01’

BC #,F

B T
L2 CLI B,X*01!

B =F

LAST B T

B Ll

B L2

T B 0,F

LA 2,0

B STORE

F IA 2,1

STORE STC 2,c

111

——

e

RELATI ONAL OPERATORS

the same as | ogical
created unless necessary.

val ence of |ogical

pression nust be explicitly generated and the address of the resulting

Rel ational expressions give logical results and hence are treated

truth value placed in a register.

use the CLC instruction as efficiently as possible in analogy to the

In the case of string expressions, efforts have been nade to

use of MVC instructions in string assignments.

1.

Arithmetic relations
togicel A,B; I XY
A:=(X<Y)orB
L := LE
\ BC

Z\ al

X Y BC

STORE ATC

112

expressions in that an explicit value is not

In the case of the equival ence or nonequi-

expressions a truth value for one side of the ex-

2,X
2,Y
<,T
B,X'01'
#,F

2,0
STORE
2,1

2,A

Conpl ex relation

conpl ex C1,c2; | ogi cal A;
A:=0 =¢2

Logical relations

a. | ogi cal A,B,C

C:=A =8B

L =

C/ \\\-

/_
A/\B

113

LE
LE
LE
CER
BC
CER
BC

T LA
STORE STC

0,REAL(C1)
2,MAG(C1)
L ,REAL(C2)
6, IMAG(C2)
k,0

£y F

6,2

=,T

2,0

STORE

2,1

2,A

2,A
2,=F'1'
3,B
3,=F'1!
3,2

2,0
STORE
2,1
2,¢

—~

b. | ogi cal A,B,C

C:= (Aor B) = (CANDB)

L =
c/ \\—
V72N
LOGOR/LOGAND

A‘/ B//\
c B

4, String relation

string (5) s,T; logical A

114

Tl

Fl
NEXT

COMP

T2

T3
STORE

T

CLT
BC
CLT
BC
LA

LA
CLI
BC
CLT
BC
LA

LA
CR
BC
LA

LA
STC

STORE STC

¢,X'0L!
#, FL
B,X'01"
£,FL
2,1
NEXT
2,0
C,X'01!
=, T2
B,X'01!
=,T2
350
COMP

351

s(y),T

2,0
STORE
2,1
2,A

—_— T T

5. Reference relation

| ogi cal A
reference (R) Ri,R2;
A :=Rl = R2
L = \ L E;Rl
A/ \= C 2,R2
AN BC =,T
Rl
LA 2,0
B STORE
. T LA 2,1
STORE sTe 2,A

14. String Expressions

The substring operator forms a string valued expression of the
form v(|n) where V is a sinple variable, an array variable or record
field, Eis an integer expression and N is an integer nunber. The
result of the expression is an address of the string in a general
register. The restriction that 0 < E < (length of V) _\ s
checked. If E is an integer constant, the restriction may 'be checked

at conpile-time and the run-tinme code shortened.

115

r—

.

e

~—

Example 1

STRING 5) S

s(z|2)

Example 2

STRING(5) S
s(k|1)

S

; INTEGER T;

SUBSTRING

/

S

°
2

N
Y/

-

L

SUBSTRING

/

N
7

LIR r,r

| AN BAL 1,ARRAYERR
INUMBER2 A 0,3

BC <, MATNERR
LA r,s(r)

o

r,=F'4t
_ LA r,s(r)

INUMBER 1

116

e

[

Bit Expressions

Bit sequences may be ANDed, ORed or shifted, For the shift oper-

and BITSANDORARG2.

As an exanple, consider the follow ng:

ations, the absolute value of the shift expression is |oaded, No dis-
tinction is made between constant and nonconstant Shift expressions.

The conpile-tine procedures involved are SHIFTAMOUNT, BITSSHIFTARG2,

A:=B shr 35 and (A and B) shl (I-3) or - (B shr 12 or #FF) and - B;

0

/' \\
A/ EITOR
74

BITAND

7\
/ﬁﬂsk \\EHL
B 3

BITAND

/N I/_\;‘

BITAND

74

N\

BIT = BIT -

117

SR

LPR

ALL

LPR

SRL

LPR

SRL

XOR

4355 F

2925
3,1

3,2

3,3

2,B

2,A
2,0(3)
35=3
353

4,B
4,0(3)
2,4
3,12
5}3

4,B
4,0(k)

L ,=X"FF*
4 ,=X' FFFFFFFF"
3.B
3,=X'FFFFFFFF*
b,3

2,4

2,A

16. Resrdgnators

ALGOL Wpermts records to be created in tw ways, First, the

name of the record class may starid alone. gesond, the name of the

record class may be followed by a list of the "initial values of the

fields. Both record creations are reference expressions.

RECORD A(INTEGER I,J);

REFERENCE(A) R,
R :=A,
R 3= LA 3, address of A's free record
. A\ chai n (FrQ)
RCCLID A L 15, base of record creator
BAIR 1,15
L 15, current segnent base
ST 3R
R := A(5,8);
R := LA 3, address of A's FRC
R’ \‘R) L 15, base of record creator
// \ BAIR 1,15
R, 8
\ L 15, current segment base
/ 5 L)4_,=F'5:
ROCLI D A ST 4,0(;3)
L L,=F'8"
ST b,h(,3)
ST 3,R

118

e

17. Field Designators

Since a reference points to a record with fields of any of the nine

sinple types, field designators of the form
F(R)

where F is a field name and R a reference expression select the de-
sired field of the simple type declared far F. Thr oughoutthe conpil er,

the loading of the reference value into a register is analogous to the
address resulting froma subscript calculation This address is then
used as a base to index the proper elenent of the record while the dis-

-

pl acement is the relative displacenent of field F within the record,

recond At(referenge (@) Xi Y; |) ;

Jnt eger reference (A) R;
J = I(R);
A :=\\ L 2,R
J//REFX L 2,8(2)
ST 2,J
: 7\,
H(Y(R) :=J5
//A :=\ L 2,J
REFX J L 3.8
VAR L 3,4(3)
I REFX
ST 2,8
/ \\ (3)
Y R

119

18. Case Statenents and Case Expressions

The purpaseof the case construction is to select the statenent
or expression given by the value of the expression follow ng case,
Wen beginning case expressions all registers except the for-variable
register ae stored, This occurs inmediately before the uncondi-

tional branch selecting the appropriate expression.

1. case | of

begi n
5,5
S5
end;
/CL\ L 2,1
UJ NULLST LA 1,3
AN R 2,1
/w\ S2 BAL 1,ARRAYERR
w5y LTR 2,2
cASE(0) (3) BC <, MAINERR
SLA 2,2
| B 1AST(2)
Lls Sl
B NEXT
LE: 82
B NEXT
LAST 13 B NEXT
B Il
B L2
B 13
NEXT

120

2. C :=case I of (17.6, 12, 16 + OI)

/

e_,mm () (5)

T Ll

L2

L3

LAST

NEXT

121

=

W W

STE
STE

2,I

1,5

2,1
1,ARRAYERR@R
2,2
<,MAINERR
2,2
15,LAST(2)
0,=R'17.6"
2,2

NEXT
2,=F'12"
1,X'022!
15, INTREAL
0,15

15, current seg
base

2,2

NEXT
0,=R'16.0"
2,=R'0.,0"
NEXT

L1

L2

L3

0,C

2,0+

19. If Statenent, If Expression, Wile Statenent

The while statenent has the following interpretation,

VHILE C DO s, = Li IFC THEN
BEG N 8,3 GO TOL
END
Al'l registers except the control variable register nust be dunped
before entering the if expression. They are dunped before the eval ua-

tion of the conditional expression,

1. BPogi ca_I :
if Athen §;
| FST CLI A, X101
4\ BC #, NEXT
| FJ 8,
72N 51
IF A NEXT
2. [f A then Sl el se 32
5ST CLT A,X'01'
(72
U s, BC £,L
// \ Sl
IR 8y B NEXT
¥ \
I F A L S,
NEXT

1122

E

5. while AdoS

V4 LEST LOOP Ll a0l
p
\
W LEP 'S BC #,NEXT
// \ S
VM LE A ; Lo
NEXT

20. For Statenent

The two kinds of for statements will be designated here — the

step-until statement and the for-list statenent

A, The control identifier

Both the step-until and for-list statements have control identi-
fiers, The inplenentation treats this identifier essentially the same
in both cases. R2, designated synbolically as FORREG, i s generally
used to hold its value. Each control identifier is also assigned by
Pass Two a relative location in a data segment, into which the value
is stored when a transfer of control to a closed subroutine is to
occur or R2 is needed for sone other purpose, At conpile-tine GETADDRESS
will deliver the correct register or location for a reference to a con-
trol identifier, The occurrence of the control identifier immediately
after for causes the initial processing of this identifier; thisis
done by NUMERICALASSIGN.

At conpile-tine a 20-word stack CSTACK and a |ocation LASTFORLOC
are used to keep track of the locations of the various control identi-
fiers that may be active at a given time. At any time LASTFORLOC hol ds

t he address assigned by Pass Two to the innernost control identifier

123

for the text being conpiled. CSTACK is a stack of pointers to the
entries in LSTACK which are control identifier locations. The pointer
for CSTACK itself is a menory location cal | ed CPOINTER.

The routines DUWFORREG and RESTOREFORREG generate instructions
to nove the value of a control identifier to and from nenory as re-

qui red

B. Step-until statenent

In addition to the menory location for the control identifier,
three other locations are used for each statement of this type.
These are dgsigned by Pass Three and are called "incr", "mask", and
"l im" ; they hold the increment value, the mask used by anexecute
instruction in the test, and the linit value, respectively. The

exanpl e below illustrates their use.

124

A o e e S

F~“’

for |

FO?ST

FG?CL

/X

1

L 2,p

L 3,4

A 3,0ne
LTR 3,3

ST 3,incr
LA 3,const
BC >, %+
SLL %, one
ST 3,mask
L 3,r

A 3, 0ne
ST 3,1lim
B *+8

A 2yincr
C 2,1lim
L 3,mask
EX 3,M

L 345

AR 352

ST 3,8

B L

BC 0, ¥+

Pq/\l

/ STEPUNTIL / |
A

= p step g+l until r+l do s

(const cont ai ns

125

=\+
/' \
g

s= 8+l

1

(one contains 1)

(=0010 0000 or

0100 0000),

c. For-list statement
In the case of a for-list statement, the statement following the
for clause is compiled as a closed subroutine. R1 is used for branch-

and=1link instructions. The following example illustrates the compiled

code.
for i := 1, k+tl, t do s =1
FORST2 L 2,=F111
mz%ow\ﬂme /> - BAL L,L
2N, /N L ek
mowﬁme t s i A 2, F1
wothma BAL 1,L
S\ > L o
i BAL 1,L
B N
L ST 1,TEMP
ST 2,s
L 1,TEMP
BR 1
N

The addresses in the BAL instructions are fixed up by a simple

chaining.

126

[

21. Gotat ement

A branch table is built in the head of each program segment, and
each label in the procedure is represented by a branch instruction in
the branch table,

The Pass Two tree format for a |abeled statenent

Stat 1,

L Stat 2;
Stat 3

is as follows:

) /

/
CARD ¥

/ Stat 3

k4

/ 'stat 2
,/ LABELID(L)

/\Stat 1

where L is a pointer to the NAMETABLE. Since the |left sub-trees are
al ways processed first, the |abel declaration is encountered just be-
fore the compilation of Stat 2.

When the node LABELID(L) is encountered, as above, the NAMETABLE
entry for L enables Pass Three to cal cul ate the address of the branch
instruction corresponding to the label L in the branch table in the
head of the procedure. The current value of the instruction counter

is then placed in the displacement field of the branch instruction.

127

s
L

o

-

RN

r-0mr— r r— r— r—— r—— r— 1 B

-

The Pass Two tree format for the statement goto L is as follows:

/

2

s

LABELID(L)

where L is a pointer to the NAMETABLE. Wth the NAMVETABLE entry for
L, Pass Three | ooks up the address of the branch instruction in the
branch table corresponding to the label L. If this address (relative

to the base of the program segnent is a, then the code

B a(15)

is emtted,

By the end of conpilation of the procedure, all |abels have been
encountered and all branch instructions in the branch table have their
correct form

If the label occurs in a different program segnent, code is
emtted for procedure exit, for loading R15 with the base of the pro-
gram segnent being branched to, and for a branch to the appropriate
instruction in the branch table of the target program segment,

The following is the code generated for the statenent goto L
where n is the nunber of the register which gives the base of the data
segnent where the label L is defined, and « is the displacement of
the instruction in the branch table corresponding to the |abel L. The
label L is in a procedure different fromthe procedure where the _goto

statenent occurs.

128

L
]

r—

ST n,MP reset data stack pointer

X L 15, base of program
segment in which
| abel resides

B a(15)

Notice that precisely the sane code is emtted for a branchoout of

abl ock, e.g.

begi n i nteger A

»
3

begi n i nteger B;

a
[

Lyto

end;

0
°

R
end,

In this case, the load instruction at X above is superfluous and

i S not compiled.

QOT0 STATEMENTS AND LABELS INSIDE FOR-LOOPS
Because of the manner in which the control identifier is manipu-
lated inside a for-loop and the desire to keep the innernost contro
identifier in a register whenever possible, special code is emtted
for goto statements and | abels which are inside the scope of a for-Ioop
As expl ained nore fully in the section on for-loops (ef. IV.D.20),
Pass Two allocates one word in the data stack for each control identi-
fier. In the event that a control identifier nust be dunped, it is

dunped into its special location rather than into the local stack

129

r- r—— r— [

r_.'_‘l

e

Fre

e

Since only the innernobst control identifier is kept in a register, the
conpi l er always has a variable LASTFORLOC which contains the relative
address of the word in the data stack into which the control identi-
fier is dunped when necessary and from which it is rel oaded.
1) For a goto statement inside the scope of a for-loop,, the control
identifier is first dunped into LASTFORLOC.
ST 2,LASTFORLOC(n)
B «(15) branch to branch table
2) At the definition of a label L, a branch is made around the in-
struction to which transfer is controlled by the branch instruc-
tion in the branch table, At the label, the control identifier

is reloaded, i.e.:

BC NEXT
L L 2,LASTFORLOC(n)
NEXT

This allows transfers within a for-1oop and froman inner for-

| oop into an outer for-Ioop.

22, Assignnent Statenents

ARTTHMETIC ASSIGNMENTS

The tree produced by Pass Two for arithnetic assignnents is
A

2N
Y

X

Since the discussion concerning inplicit conversion between the

arithmetic types occurs el sewhere in this report (cf. Iv.D.11), this

130

r

section will deal only with arithmetic assignnents of identical type
Four situations may occur in processing an arithmetic assignment

since either the right or left subtree may be processed first, and for

each of these cases, the register(s) holding the result of the subtree

processed first may be dunped while processing the second subtree.

I. Process right subtree first
A. The register(s) holding Y is not dunped while processing

the |left subtree.

Long Long
| nt eger Real Real Conpl ex Conpl ex
Regi ster(s)
hol di ng X: R2 FO FOP FO,F2 FO1,F23
Code
gener at ed: ST 2, X STE 0,X SID 0,X STE O, X STD 0,X

STE 2,g++ STD 2, x+8

L]
B. The register(s) holding Y is dunped while processing the left
subtree.
This situation may occur when the |eft subtree contains

a procedure call. For exanple
X(P) =Y

where X is a 1l-dimensional array and P is an integer pro-
cedure with no argunents.

Assune the register(s) holliing the resultg of the right
subtree have been dunped at TEMP, and that general register.?2

hol ds the address of X(P).

131

Code generat ed:

Long Long
| nt eger Real Real Conpl ex Conpl ex
L 3, TEMP LE O,TEMP LD O,TEMP LE O,TEMP LD O,TEMP
ST 3,0(2) STE 0,0(2) STD 0,0(2) LE 2,TEMP+4 LD 2,TEMP+8
STE 0,0(2) STD 0,0(2)
STE 2,4(2) STD 2,8(2)

TI. Process left subtree first.
Assume the processing of the left subtree results in an ad-
dress in general register 2.

A. R2 is not dunped while processing the right subtree.

Long Long
integer Real Real Conpl ex Conpl ex
Regi ster
hol di ng ¥: R3 FO FO1 FO,F2 FO1,F23
Code

generated: ST 3,0(2) STE 0,0(2) STD 0,0(2) STE 0,0(2) STD 0,0(2)
STE 2,4(2) st 2,8(2)

B. R2is dunped at TEMP while processing the right subtree.
The code sequences are then identical to those given in

ir.A except that each code sequence is prefixed by

L 2,TEMP

LOGICAL ASSTGNMENTS

For |ogical assiguments, a truth value nust be generated, 1 re-
presents true and O represents false. This value is placed in an
integer register and stored by an STC instruction, Exanples of this
assignment, may be seen in the section concerning |ogical expressions,
(1v.0.13).,

132

STRING ASS| GNMVENTS

. The assignment of string variables is defined so that the assign-
ment takes place left to right, character by character. |f the assigned
[-
string is shorter than the destination string, the remaining characters
— are filled with blanks. The MVC instruction is used for the assign-
ment and some conbination of MV and MVC instructions used for the in-
N sertion of blanks. The length of the assignment appears in the con-
version bits of the S:= operator and the length of the string appears
in the node inmediately to the left of the S:= node.
Example 1
— STRING(5) S,T; S:=T
- 5:=(5) MC s(5),T
/NN
5(5) T
Example 2
— STRING(5) §; STRINGK) T; 8:=T
Se=(k) e s(k),T
- / \\ 1 1
MVI S+4,X'L0
s(5) T ’
Example %
- STRING(5) S; STRING(3) T; Ss:=T
S:=(3) MVC 5(3),T
(/) _T_ MVI S+3,X'L0"
5(5
MVI Sy, XL 0!

133

|

Example L4

STRING(5) S; STRING(l) T; S:=T

S =(1) MvVC s(1),T
s(g) \T WI S+1,X'40!
WC S+2(3),8+1

REFERENCE ASSIGNMENTS
Ref erence assignnments are handled just as integer assignments are
handled in the integer registers. Exanples of reference assignnents

may be seen in the section on field designators (cf. IV.D.16).

2%, Card Numbers

In order to give the user a neaningful nessage if an error occurs

during Pass Three or at run-tine, a unary card node having the form

| carp | | SOURCE CARD NUMBER |

is placed in various places in the tree, as described in the documen-
tation of Pass Two. Wth this information, Pass Three always has
avai lable the current (or alnost current) user card nunber If an
error occurs during Pass Three, the current card nunber is printed out
along with an appropriate nessage.

in addition, to prepare for possible errors at run-tine, Pass
Three builds one table for each user procedure (including the main
bl ock) associating a card number with a relative location in the user's
procedure.

I f ro errors are detected during Pass Three, the card tables are

134

written out onto the same device used to hold the user's compiled pro-
cedures prior to their loading and execution. The card tables are
written out only after all the user ' s procedures have been written out,
and associating each card table with a procedure, the card tables are
written out in order of ascending (procedure) number, beginning at 1.

If an error is detected at run-time, the absolute location of the
error is available to a run-time error routine. This routine deter-
mines the number of the user procedure in which the error occurred by
scanning the program reference table which contains the base addresses
of all user procedures . In addition, the relative location of the
error within thet procedure is determined. The appropriate card table
is then read in, and with the relative location available, the card

number is retrieved.

1%

E. Trace Facilities

An optional trace card of the form $TRACExy beginning in colum 1

of the card allows the user to trace certain features of the conpil a-

tion and execution of his job,

x and y are integers which nmay take on the follow ng val ues, with

the associated results:

X

2 or greater
b -
L or greater

0 or blank

Action

Conplete map of all conpiler passes is printed.

Al actions of garbage collector are printed.

In case of run error, dunp of absolute l|ocation
of error, contents of general registers, data
area, and record and run-time data area are
printed.

None of the above.

Different values of y will cause printing of different parts of

the output of Pass Two and Pass Three of the conpiler, The follow ng

abbreviations wll

NT
BL
TREE
1st

fina

reg

be used:

nanet abl e
bl ockl i st
tree

conpi l ed code before certain addresses are fixed
up -listed as procedure is being conpil ed.

final version of conpiled code which will be exe-
cuted — listed at end of procedure conpilation,

contents of general registers at end of conpiling
a procedure.

136

¥ Acti ons

1 reg, final

2 |'st, reg, final

3 NT, BL

L NT, BL, reg, final

5 NT, BL, Ist, reg, final

6 TREE, NT, BL

7 TREE, NT, BL, reg, final

8 TREE, NT, BL, Ist, reg, final
0 no action

The trace card $STACK has the sanme effect as $TRACEO3.

137

XALGOL

0001

0002
0003
C0C4
0005
cCo6
uGo7
0008
0009
0010
001}

001z
0013
G014

65002A70
€5650029
000 16A65
Go2C7€77
650€2983
FEOCODTS8
70FEOGOE

BEGIN

APPENDI X |

EXAMPLE OF ALGCOL W COWPI LER QUTPUT

REAL X ¢SUMX 4 MEANX;
INTEGER NyI§

1 := 03

SUMX 2= MEANX $= 0

READ(N) ;

WRITE(N);
L:READON(X s
| =1+ 13

SUYX : =SUMX+ X
MEANX := SUWX 7 |;

WRITE(T9yXySUMX,MEANX)
IF I = N THENWRITE("FINISHED"})ELSE GO TO

END

FEp00300
9A650024A
00284770
01000 0 0
65/002C 70
65002C90
4F920000

65002866
9A770100
FE000865

C170FEOQ0O
FEOOOC65

65002879
00000000

SQURCE LI STI NG

PASS ONE QUTPUT

65002C70
00000070
00209965
04650029
00016A65
65000164
00000000

FE000197
FE000463
FE000665
00186A65
| 9A650029
002C6965
8107C6C9
00000000

138

L

FE0D020D
Q02CATT7
00106A65
002 86770
76650028
002 86965
DSC9E2C8
00000000

65002866
01000000
00286770
FE000965
TOFE0008
00296965
C5C46TTA
00000000

65002966
0070FEOO
FE000765
002C9A65
65002A9A
00246770
94650020
00000007,

r

PASS TWD outpur TREE

PROGRAM SEGMENT
FLAG DPCODE

LOC
0600
0004
0008
000C
0010
0014
0018
001¢C
0020
0024
0028
002C
Oq30
0q34
0038
003¢
0040
0044
0048
GG4C
0G50
cc 54
0058
c0sC
006¢
0064
0068
006C
0070
co74
0078
oC7C
0080
0084
ocC8s
008C
009¢
0094
2G98
0C9C
00AC
OCA4
COAS8
00AC
oCae
0084
0088
008C
60Co
0GC4
Q0C8
oocc
0CDQ

00Ds
GOD8
200¢C
GOEO

FROICCC
CARD
BEGIN
CARD
NULLST
BB
NULCST
CARD
ID
NUMBER
A=

’
CARD
IO
1D
NUMBER
At=2
A:=

?

CARD
STPROCID
ID

AP)

?

CARD
STPROCID
1D
AP)

?
CARD
I D

’
STPROCID
ID

AP)

’
CARD
ID
ID
NUMBER
+
A:=
’
CARD
ID
ID
D

139

CONV POINTER
J158%
oros
a0l

1 0Con
0002
6ceo
0010
0Ccon
0C0¢4
0210
acoc
G024
0C20
0C05
O1EC
OlF8

2 300cC
0C3C
0C38
G034
3C06
00cCoO
0204
C054
0C50
0007
0C0C
0204
0068
3C64
o008
021C
0Co0
Q078
0120
O1ED
0c8s
3084
0C09
0212
0210
0CGo
OCAD
0e9cC
0C9R
CQOoA
01EC
0 1EC
01EQ
OCBC
ocsa
0084
coc8
01Fs8
O1EC

2 £210
uCDs8

NCE4 1 b:= 004
OCESR 3 30 09
COEC 3 CArRD™ D06C
GCFC) STPROCID 2C6C
OGF4 > ID c21n
QCF8) AP, ZCF0
COFC] ID J1EQ
0100 0 AP, GCF8
3104 3 ID C1EC
cl108 3 AP, 0100
013C 0 10 Q1F8
0110 3 AP) 3108
0114 3 OGEC
0118 3 CARD QC0D
01l1¢C Q9 ID 3210

0 ID 0204

1 = n11cC
3 120 3 IF 0C00
c12C 1 IR 0124
0130 0 STPROCID acoc
0134 0 STRING 0010
0138 Q0 AP) 0130
C13C 0 wuJ 01l12C
0140 0 LABELID 021C
0144 3 @GOro 0000
0148 0 | FsT 013C
014C 0 0118
0150 3 CARD 000E
0154 0 END 0c1s8
0158 0 PCL 0008

LITERAL ORIGIN - GOOC
LITERAL POINTER TABLE
LOC LENGTH TYPE POINTER

0000 1 0000
00C4 6 0000
0008 6 0003
GGOC 1 0004
0010 7 7 oooe

LITERAL TABLE
050108 00063001 0OB0000QD C6CID5C9 E2C8CS5C4

ELAPSEDTIME 1S 00:01:58 |

TOTAL TREE LENGTH ‘IS olsc
TOTAL OUTPUT LENGTH IS 018C

140

t

-

NAMETABLE

LocC

0C00
0c0oC
0018
oG24
0030
¢C3C
0448
QNS4
aced
0oneC
oc78
Q084
0090
J09C
J0A8
0uB4
0CCo
neece
CONR
COES
QGFG
GCFC
Q1CR
0114
Gl12¢C
0l2C
138
Ol4a4
Q150G
G 15€C
0168
G174
218C
218C

198
J1AG
C1Bo
130
C1CH
ClD4
DLEO
Nniec
ﬁ(FR
204
2L

G210

S HCKE ST
L CCKING

A

IoLocl [oLoCc2 SIMIYPE INFO
(HEX) HN SFG
0328 0D 1
0JC¢C OG0
0000 000C
0J00 OCOG
0000 0oco
(VT o]4] 00Co
0300 00CO
0J3C0O 0CCO 0
GI0C cCo0
00Co 0GoC
Q600 0000
0300 00cCo
0000 0 00
lelels 0a 0o
0002 0000
G306 ocee
0000 00CC
020G = GGeo
000G vCCco
0200 00CO
¢GoU Q000
acce 0G0
ouno neeo
29230 0060
85000 0CGOo
0300 0000
[VIARNIN 000
NJ0C ooco
Q00¢C Ucoo
DIy GGCOo
D0GU 00CG
¢oac noeo
GI0C 0000
25a0C 0000
200 ondo
ONITY] ¢000
onoe neeo
CUGE G280
UGOFE Q2AD
QCYE U2AE
[IIVID] Q014
BRI 0018
CGOGD cG1cC
ehIsh] 0020
VN Ir)) 0024
23301 0QCs8
LENGTH POINTER
J1N4 ccoc
CLu4as OIEQ

VR

1

141

TYPEINFO
RCCLNO
0

RO RO RO RO RO RO RO WO UTOT D D ROROR = —] CO b

e OB WLRWWLWW

i3

TYPE

(HEX)
03
GO
00

SIMTYPE

WLWWMN N — = —— — 00 O

N RO RO N PO PO PO

et NI PORO O O — pt =TT 01 D0 WO 0O W W o

I D

MAIN

WRI TE

ADUMP

0DD

Bl TSTRI NG
NUMBER
DECODE

CODE
TRUNCATE
ROUND
ENTIER
REALPART
IMAGPART
LONGREALPART
LUNG MAGPART
LONGSART
READ

SQRT

ExP

LN

LOG

SIN

cos

ARCTAN
READON
LONGEXP
LONGLN
LONGLOG
LONGSIN
LONGCOS
LONGARCTAN
IMAG
LONGIMAG
COMPLEXSQRT
LONGCOVPLEXSORT
MSGLEVEL

TI ME
INTFIELDSTZE
UNOERFLOW
OVERFLOW

X

SUMX

MEANX

N

I

L

2201
uJol
3901

0021
0001
030 1
0301
3001
0001
0301
0061
0301
0001
030 1
0004
0004
0005
0005
0005
0005
0005
0005
0005
0306
0006
0006
0006
0206
0006
0307
0007
0307
3007
0037
0007
0308
0008
0008
0108
0298
0209
0009
0009
0310
0010
0310
0311
0311
0311
0011

PASS THREE

SOCu
30C 4
ool 8
DG
OOOE
6o010
G014
o018
001cC
002C
G024
ui2s8
002C
€G30
0034
o038
C03C
0040
CO44
CC48
004A
CO4E
0052
0056
005A
00SE
0G50
064
0068
c06C
G079
0074
0078
0e7C
00TE
0082
G086
008A
008E
0090
0c92
0096
00914
009€
O0A2
00A4
00AS8
OOAC
co8sd
Cc0B4
0088
00BC
CoCo
ooc4
00C8
0oCC

1h2

ST I T
T PUT

RC

8C
ok K
e

Z>rr

BAL
LA
LA
STM
ST
LR

ST
LA
BALR
STE
STE
MVI
LA
LA
BALR

LA

BALR
*kdeok

LA
LA

BALR

ST
LE
AE
STE

LA

BALR

LIE R 20
0300
4 {FJIFC96
0033
GGQ0
00000301
00 30000¢C
C6C9D5C9
E2C8LS5C4
58272E17C
58602000
5A60E194
5460E198
41006028
4540E17A
41300000
41490000
90046000
5060EL170
1806
5820F014
50200024
5820F014
41100022
S8FQEQE4
C50F
58FQEQ04
7C00D01C
70030018
92FFELTS
41203100
41300020
58F0EODC
051F
58F0EO04
41200001
5830D020
S8FOEOCF4
051F
0001
58FOE0Q4
41200200
4130D014
58FNEQODC
051F
5 8FOQE 034
5820F010
5A20D024
50200024
78000014
7A000018
70000018
58200024
41100022
SBFOEQE4
050F

:

I

—

FINISHED

J711
J711
2J11
2711
2J12
0912
Nd12
2712
0212
0012
D12
0312
0512
0212
0912
0912
0312
0212
0J12
0012
Q0J12
0J12
0012
09012
0912
J013
0013
0013
0913
0713
0913
0013
0013
0213
0213
0J13
vJl3
0013
0014
Udle
0314
0014
0014

¢aC E
0gD2
uuD6
0008
ooDC
OOQOEO
00E4
DOES
COEA
OOEE
J0F2
COF6
GOFA
OOFC
0100
0104
0108
010C
010E
0112
0116
011A
Ol1E
0120
0122
0126
012A
012€
0132
0136
013A
013E
0142
0146
0148
0l14A
014E
0152
0156
015A
Cl15E
0160
0162

LE
DER
STE
LA

BALR

L A
LE

BALR

BALR

LA
LE

BALR
ook

BC
LA
SLA
LA
LA

BALR
Hokkok

BC

LM
ST

BCR
Kk

* kK

58FOE0N4
78200018
3020
7020001C
41200001
58300024
58FNEQES
051F
58F0E004
41200002
78000014
58FOEQES
G51F
58FCE004
41200002
7800D018
S8FOEOES
C51F
58FQE004
41200902
7800D01C
58FOEQF4
051F
0001
58F0E004
58200020
59200024
4T70F152
41200007
88200010
41202007
4130F018
58FOEOF4
051F
0001
58FOE004
4T7FOF 156
4TFOFN08
98120004
5020E170
07F1
0000
0000

OUTPUT FROM EXECUTICN OF COMPILED PROGRAM

W N — s

1.000000'+00
24 0CCO00*+00
3.000C00'+00

143

le00000D*+00
3.00CNCO* 400
60 00GC 0N +CO

1000000 +00
1.500000'+00
2+ 000000°* +00

—
D © O A UTH GO

-t
-

APPENDIX IT

SIMPLE PRECEDENCE GRAMMAR FOR ALGOL W

<TV A RID>{2:=<LID>
<LABEL ID> 13= <[D>
K<TARRAYID>its=CID>
<TF UN CID>i2:=<ID>
CRC CLiD> 32

<TFLD ID7 s3= <|D>
<CON | D> 2= <ID>
<ST FUNCID>2::=<ID>
<ST PHOC ID>3:=<|D>

<SIVAR DC> 33= <SIVARDC*>.
<SIV A RDC%x>3t= <SITYPE>

<I1D>

CSIVAR DC*79y <ID>

NPl e
DO W

N
-

<S1 TYPE> $3= <REF TYPE>)
<REF TYPE> 33= REFERENCE <I| D>
<REF TYPE> 449 KID>
<ARRAY DC7 $8=<CBNDL S THD> KT EXP> 33 (T EXP>)
<ARRAY HN> s3= CS|I TYPE> ARRAVKID>
CARRAY HD> 4y <| D>
<BND LST HD> 2:=<ARRAY HD> {
- <BND LST HD> KT EXP> :t <KT EXP>
<PROC DECL> ¢3=<T PR HEAD7 <STATEMENT*>
<T PR HEAD>

NN PO N
w »~ WNL

N NN
(oo N e,)

CT PR HEAD><TP RBADY>

<T PR BODY> s3:= <T EXP>

<BLOCKBODY> <TEXP>E N D

<T PR HEAD>s3t=<T PR

HEAD*>

<TPR HEAD+7 :: = <PROCEDURED>
<PROCEDURE> <FPARH E A D >}
<PROCEDURE> $:=PROCEDUREXKID>

<SI1 TYPE>

CFPARH E A D > t2= <FPAR HEAD*>
<FBND LIST7

<FPARHEAD*> $8¢= <Sl1

<s1

{
{ <SITYPE>
(
(

TYPE7

TYPE>

PROCEDURE <ID>

<ID>
VALUE <ID>
RESULT <1 D>

<SITYPE>V ALUE RESULT<I| D>
(<SITYPEDPROCEDURE CID>
{(PROCEDURE CID>
<FPAR HEAD-> <KSITYPE7 <ID>

<FPARHEAD-7<SITYPEDVALUE
<FPAR HEAD-> <SITYPE> RESULT
<SITYPE7PROCEDURE <ID>

<FPAR HEAN-=>

<FBARHEAD=> <SITYPE> VALUE RESULT< | D >
<FPAR HEAD-> PROCEDUREKID>

<FPAR HEAD%*>

CFPARHEAD->%t=<FPARHEA¥>

vy <ID>

)
’

<FBND LIST i
KFBNDL I ST >t2=<FBNDH E A D 7 %1}
<FBNDHEAD>2: =<FARRAYHO{

<FBND HEAD>
<F ARRAY HD> 2:= | <SITYPE>
<FPARHEAD-7
<F ARRAYHD>y» <ID>

<RC CL DC>
<RCHEAD>?

<RC HEAD>)
<RECORD>{
<RC HEAD7

<RC HEADx%*>
<RCHEAD*> $2=<RCHEAD>3

1k

Ty

<S1 TYPE> <ID>

ARRAY <IN>
<S1 TYPE>

<SI TYPE> <ID>

<| D>

<| D>
<ID7

ARR A Y ID>

<RECORD> =
<T VAR> 2=

<STRS ELHD> =:
CLENGTH> s
<SI T VAR> 3:

<T FLD HD> H
<T ARRAY HO>

<T FUNC DES> ==

<AkAR HEAD> ::=

CTEXP> HEES
<7 EXP%> $i=
<IfF CL9

<TRUE EXP> t:=
€CASE HEAD> 3:=

CCASEC LY sz
<S1 T EXP> S

€SI T EXP*%> 3::=

<SI T EXP*>

<T TERM> 2=
KT TERMx%> $s=
T FACT> 1=
<T SECON> 23=
CT PRIM> 2=

RECORD <ID9
<SI T VAR>
<T ARRAY ID9 .

<STR- SEL HO9 <KTEXP><LENGTHY)

<SI T VAR> (

| <T NUMBER>
<TVARID>
<T FLD HD> <T EXP>)
<T ARRAY HD> <T EXP>)
<T ARRAY HD> %)
CT FD D9 |
<T ARRAY D>
<T ARRAY HD> <T EXP>
<7 ARRAY HD> *,
KTFUNCID>
<APARH E A D >
<APARH E A D >
<CAPARHEAD >)
CT FUNC 10> (
CAPARH E A D > <TFYPAYr~,
CAPARH E A D 9 <STATEMENT> ,
<APARHEADO9,
<T EXP*>

<SI T EXP>

<IF CL9 <TRUE
<CASE HEADSY9KTEXP>)
IF <T EXP> THEN
KTEXP>E L S E
KCASEC L >t

< C A S EHEADY KT EXP>,
CASE <t EXxP3 OF
<SI T EXP*2>
<S1 T EXP*> <EQL 0OP> <St T
<ST T EXP#%> <REL OP> <SI1 T
<SI T EXP%> | S <RC CL 1D>
<ST T EXP*>
<T TERM>

+ <T TERMO
- <T TERW
ST T EXP*> + <Y TERM9Y
<SI T EXP*> . (T TERMO
<51 T EXP¥> O RKYVTTERMO
SRCCL 109
<RC DES HD> <T EXP>)
<STRING»
NULL ‘
<T TERM*>

<TEXP>)
<STATEMENT>)

<TFACT
<TTERME9 * KT FACT>

KT TERM%x> / (KT FACT>
<T TERM*> DIV<T FACT>
<T TERM*> REMLKTFACTO
<T TERM%> ANDKLT FACT>
C T SECON>

~<TFACTY

<TPRIMY

EXP> KT EXP*>

EXP x>
EXP*x*x>

<T SECON> <SHL O R *%> KT PRIM>

<TSECON>S Y RLTPRI M9
<T VAR>
<T FUNC DES>

145

119

<REL OP>

<EQL 0P>
CLERT PAR>

<RC PES HM>

<PROGRAMY9zs3:

TSTATEMENT>

<STATEMENT*®> ¢ ¢

<SI ST>

<BLOCK>

<BLOCKBODY> :

<BLOCKHEADD>

<LABEL DEF>
<T ASS ST>
'

KTRUE PART>

<CASE SEQ>

<FOR CL>

(/]

]

<ST FUNCID>
<LEFT PAR> <T EXP>)
TRUE

FALSE «

<CON ID>

LONG <TPRIM>
SHORT <T PRIM>
ABS <T PRIM>
<T NUMBER>
<BITSEQ>

<

< =

> =

-

{

<ST FUNC ID> ¢

<RCCL In>(

<RC DES HD> <T EXP>
<BLOCK> o

<STATEMENT*>

ST ST>

<FORC L 9DN

<FOR CL>DU<STATEMENT*>

<WHILE CL> DO

<WHI LE CL> D O <KSTATEMENTx%>
<IFCL>

CIFCL> <KSTATEMENT*>
<IFCL9 <TRUE PART>

KIFCL>KTRUYEPART> <STATEMENT*9

<CASESEQ> END

<CASESEQR> <STATEMENT> END
<ILNCKD>

<TASS ST9

<TFUNCDES>

GUTO <LABELI D >

<3T PROC HO> <T EXP>)
<BLOCKBADY> END

<B3LOCKBODY> < STATEMENT> END
<HBLOCKHEADD>

<3LOCKBNODY> 3

<3LUCKBAODY> <STATEMENT>

<BLOCKBNDY> < L A B E LDEF>
EGIN J‘ .
BLUCKHEAD> <SI VARD C >3
4BLOCKHEAND> <ARRAY DC >3
{BLOCKHEAD> <PROC DECL>
I(BLﬂCKHEl,>< KC CL DC >3
<ID> :

<T VAR> = <T EXP*>
<TVAR> t= <KTASS ST>
<SIST9 ELSE

T

ELSE |
<CASECL>BEGIN

<CASESEQ> <STATEMENT> 3
< CASESEQ>;

<FORHEAD> KSTEPUNTIL> <7
<FCR HEAD>

<FORLIST> <T EXP>

146

EXP>

o

e

T

174
183
181
132
183
134
135
136
187

<FIR HEAD>
<EFIR LIST>

<FAR>
KSTEPUNTILD>

<WHILE CL>
ST PRDOC HDD>

o

KLFNR> 1= (KT

<FOR HEAD>
<FOR LIST> <¥

FOR <ID>
STEP KT EXP>
UNTIL

WHILE <T EXP>
<ST PRDC ID>
<ST PROC HD>

147

CXPx>

EXP>

UNTIL

(
<T EXP>

?

