CS 120

MUTANT 0.5
AN EXPERIMENTAL PROGRAMMING -LANGUAGE

BY

E. SATTERTHWAITE

TECHNICAL REPORT NO. CS 120
FEBRUARY 17, 1969

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

—

~—

MUTANT 0,5, an Experinental Programing Language

E. Satterthwaite

Conput er Science Depart nent
Stanford University
February 1969

The research reported here was supported in part, by a National Science
Foundation Gaduate Fellowship and in part by the Atomc Energy Commis-

si on.

Preparation of this report was supported by NSF G ant GP-7615.

Abstract

A programming language Which continues the extension and sinplification
of ALGOL 60 in the direction suggested by EULER is defined and descri bed.
Techniques used in an experimental inplenentation of that |anguage, called
MUTANT 0.5, are briefly sunmarized. The final section of this report is an
attenpt to assess the potential value of the approach to procedural program
m ng | anguage design exenplified by MJTANT 0.5. | npl ementation and use of the
experinmental system have indicated a sufficient nunber of conceptual and
practical problenms to suggest that the general approach is of limted value
however, a number of specific features were found to be convenient, useful,,
and adaptable to other philosophies of |anguage design.

A. Introduction

In his thesis, McKeeman [McKee 66] describes MJTANT, a "kernel" |an-
guage which he proposes as a nucleus for the design of procedural progranmmng

~languages. Many features of that |anguage appeared useful for expressing

algorithms of both graph theory and graphical data processing. In addition,
MJUTANT suggests possible approaches to the problens of data structuring and
the specification of parallel processing. To gain sone experience with such
facilities, an experinental |anguage with semantics similar to those of
MJUTANT was designed. Certain semantic concepts were generalized, and others
restricted;, also the syntax was substantially altered. In addition, the cur-
rent version of the |language does not include all facilities of MUTANT (nost
notably, unordered sets and real nunber arithnetic); it is therefore called
MUTANT 0.5.

A processing system for MJTANT 0.5, consisting of a conpiler and an in-
terpreter, was inplenmented on the |BM System/360, and some experience with
that system has been obtained. The |anguage has been found to allow a concise
and natural expression of many algorithms, but a nunber of difficulties were
experienced in designing both the |anguage and the interpreter for the system
Al'though certain |anguage inprovements are obviously needed and efficiency
could be significantly increased by use of nore suitable hardware, | agree
with Wrth's conclusion [Wrth 67a] that difficult [ogical problens underlie
both the design and inplenentation of such a language. No further devel op-
ment or use of the current systemis planned. Thus in terms of providing a
useful |anguage and processor, the project was a failure. It was, however, a
val uabl e exercise in language design; this report is an attenpt to anal yze
for the benefit of future work, some of-the strengths and weaknesses of the
MJUTANT 0.5 design revealed by both the inplenmentation and the use of the Ian-
guage.

A1 Oganization of the Report

In section B, MUTANT 0.5 is defined in the style of the AIGOL 60 report
[Naur 63]. Syntax is described by productions in Backus-Naur form (BNF);
semantics, by English prose. Sone exanples of prograns in MUTANT 0.5 are then
presented and explained. Section Cis a brief summary of the techniques used
in inplenenting the experinental conpiler and interpreter. Use of these prog-
rams is described in section D. Finally, section Eis an attenpt to charac-

terize MJUTANT-|ike programming |anguages, to identify sonme inherent problens
in their definition and inplenentation, and to assess their practical utility.
That section is a mnor revision of a draft witten in Septenber 1967; some of
the positions stated there have since been substantially extended or refornu-
lated as a result of nore recent reading, discussion, and research.

Appendices 111, 1V, and Vv, although referenced in the text, are not
reproduced in this report. They are conpilation listings of the various programs
used in the experinental inplenmentation of MJTANT 0.5

A. 2 Comments on Notation

In this report, two different character and termnal synbol representa-.
tions are used in the description of the syntax of MJTANT 0.5 as well as for
the representation of progranms witten in the |anguage. One may be considered
the publication representation; the other, a hardware representation reflecting
the available character set. The former is introduced in the belief that it
Is somewhat nore agreeable and readable. Appendix | establishes the corres-
pondence between these two representations. In addition, a slight variant of
BNF has been adopted for compatability With the output of certain processing
programs: alternate right parts of a production are placed on consecutive |ines
without repetition of the corresponding left part. In the remainder of this
report, publication and hardware representations will be freely cross-refer-
enced, usually wthout explicit comment.

A 3 Acknow edgenents

The work reported below is based on a CS239 project directed by Professor
We Fo MIler during the fall and spring quarters of acadenmi ¢ 19664967. It
incl udes additional nodifications suggested by €S360 research done during the
summer quarter of 1967. Support was provided in part by a National Science
Foundation graduate fellowship and in part by the Atomic Energy Comm ssion.
Preparation of this report was supported by NSF Gant GP-7615

The definition and inplenentation of MJTANT 0.5 have drawn heavily from
i deas presented informally by various faculty nenbers and fellow graduate
students at Stanford; discussions with Professors W F. Mller and W. M McKeeman
and with M. W Hansen were especially helpful. In addition, all aspects of the
project owe much to the teaching and research of Professor N. Wrth, and his
syntax processing prograns and PL360 system were essential tools in the lan-
guage design and inplenentation work

B. The MJUTANT 0.5 Language

The syntax and semantics of MJTANT 0.5 are defined below. In general,
McKeeman's statenent of the principles of |anguage design [MKee 66,
pp. T1-73] has been accepted as valid. Conciseness of notation has been
carried somewhat further by adapting the notation of set theory whenever
possi bl e. The concepts and notation of the language were primarily inspired
by McKeeman's MUTANT [MKee 66]; they also draw directly and indirectly
fromideas found in ALGOL 60 [Naur 63], EULER [Wirth 65a], APL [lver 62],
and PL/I [|BM 661. |

B.| The MJTANT 0.5 G anmar

The grammar of MUTANT 0.5 is listed, in the hardware character set,
in Appendix Il. In addition, -relevant productions of the grammar will be
included at appropriate, points in the follow ng discussion of the semantics
of MJTANT 0.5. Such productions are related to Appendix Il by the use of
margi nal production nunbers. The sonewhat artificial appearance of sone
productions reflects two constraints placed on the grammar, nanely

(1) the production set nust lead to a sinple precedence grammar

[Wrth 65al;

(2) the productions nust be chosen to sinplify the translation of the

| anguage during the process ofsyntactic analysis.

For the reasons given by McKeeman [McKee 66, p. 93], it is convenient
to define the syntax of identifiers, strings, and integers external to
the formal grammar of MJTANT 0.5; informally, it may be described by the
following set of productions.

(identifier) ::= (letter)
(identifier) (letter)
(identifier) (digit)

(integer) 2= (digit)
(integer) (digit)
(string) ::= (string head) "

(string head) ::="
(string head) (non-quote character)
(string head) ""

B.2 Senmantic Description of MUTANT 0.5
MUTANT 0.5 prograns describe the creation and mani pul ati on of val ues.

In the language, values of three unstructured types (integer, process, and
name) and two structured types (string and list) are available to the
programmer. Values of type integer have the properties of nathematical
integral values. process values are designations of conputational processes
(procedures); nane values designate special conputational processes which
upon activation, conpute the nane of a storage cell. string values are
sequences of character values, which correspond to elements of a fixed set
of symbols. In MJTANT 0.5, |ist values are ordered sequences of structured
or unstructured values of arbitrary length, in which all elenents are not
required to be unique in value.

Conment

The' above types were chosen as a mnimal set adequate for experi-

mentation. In any 'serious progranmng |anguage, real nunber arith-

netic would be essential. McKeemen's type set also appears to be

a valuable addition to programming | anguages, omitted only because

of limted tinme and goal s.

Since MUTANT 0.5 is a highly involuted | anguage, description of
many constructs requires the use of terms before they are defined. The
reader unfamliar with MJTANT or a simlar |anguage is advised to consider
some of the sinpler exanples of section B. 3 before continuing.

B.2.a Constants

synt ax
(constant) . ::= (integer) (64)
(string) (65)
(vegin) } (66)
(begi n) si=. (70)
(decl are) | (71)
Semanti cs

A non-negative integer is denoted by a sequence of decimal digits, and
the value of that integer is the value of the digit sequence interpreted as
a decimal nunber. Negative integers are syntactically recognized as pri-
maries

A string is a sequence of characters and is denoted by a sequence,

—

5

delinmted by string quotation marks ("), of the graphic synbols corres-
ponding to the character values. |n the denotation of a string, two
contiguous string quotation marks signify a single string quotation character.
The construct " {} " (or " (declare) |} ") denotes the null list
i.e., a value of type list with no elenents
A constant alwayshas a val ue.

Exanpl es
0 3 100 32767
"This is a string." " "Hamlet " " "
{3
B.2.b Declarations
synt ax
(decl are) 1= (3 (72)
(declare) (identifier) (73)
(declare) (identifier) ((v-expression)) (74)
Semanti cs

MUTANT 0.5 provi des val ues of several types as well as storage cells
into which such values may be placed. Declarations serve to create cells
and also to provide names for either cells (and their contents) or for
val ues. At nost one declaration appears at the head of a list (B.2.c), and
the scope of the identifiers in that declaration is exactly the corresponding
list.

If the identifier is inmediately followed by an expression in
parentheses, that identifier is considered to nane the value of that ex-
pression. Al such expressions are conputed sequentially before com-
putation of-the values of any of-the list elenents, and these expressions
are evaluated as if they were witten in an imediately containing |ist.

No explicit assignment to an identifier namng a value is permtted.

If the identifier is not so followed, it names a cell. Values of
any type may be assigned to any cell, and such assignment dynamically
determnes the cell structure. Thus the structure of a cell may be undefined
or atomc, if the cell contains a value of unstructured type, or structured
If, in the last case, the cell contains a value of type list, that cel
has a conposite structure consisting of a sequence of (atomc or structured)
subcel I's, one for each list elenent. Simlarly, if the cell contains a value
of type string, that cell is structurally a sequence of atomic character cells.

An identifier names the cell or value associated with it by a declaration

e

r—

r—

r—-

Every non-reserved identifier not contained in a declaration either
must designate a controlled value (B.2.1) or procedure formal parameter
value (B.2.m or must occur within the scope of an identifier of the
same nane. If an identifier is associated with more than one scope, a
use of that identifier designates the cell or value associated with
it in the smallest possible containing scope. Subcells or subvalues are
designated by a uniform indexing schene (B.2.f).
Examples
{$ ab newdentifier
{ $ x y twotothel5th (32768)
{ $ sum (a+b) difference (a-b)-
Comment
Naned values nmay alternatively be viewed as the contents of cells
which may be initialized upon scope entry but are "read-only" within
the scope of the naming identifier. The rules of scope and -évaluation
of the initializing expression do not admt initialization to recursive
procedure values; a facility simlar to Iandin's rec [Land 64, 66] is absent.

B.2.c Lists
Svntax
(1ist) s:= (list head)) (67)
(list head) ::= (begin) (g-expression) (68)
(list head) , (g-expression) (69)
(begin) = (70)
(declare) | (T1)
Senmanti cs

A list is an ordered sequence of general-expressions. In the execution
of a MUTANT 0.5 program the expressions within the list are conputed success-
ively from left to right. A general-expression may conditionally fail to
designate any value. Lists have structured values of type list; the value
of w list is the (possibly enpty) sequence of values of thgg;_contained
general -expressions yielding values. A declaration does not have a value or

constitute a list elenent. In general, the nunber of elements in the list value
cannot be determined a priori. A list always has a val ue

Exanpl es
{1, 2, 3, "abc") {1, (2 (3}1))

{1-»x, y-2 >y, 10%a }
{$ab|x+a y+b athya-b}
{$al{$al2sra),2+a)
{ atb, a-b, a®b, b0 => &b }

B.2.d Sinple Primaries
synt ax

(s-primary) ci= (s-primary *)
(s-primary *) ::= (constant)

get

(list)

(primary *) (list)

d{ (v-expression))

(case head) (v-expression))

(for head) }

(while head)' }

(for/while head) }
(s-primry *) [(v-expression) 1
Semanti cs

Producti ons 57 (B.2.m), 59 (B.2.e), and 60-62 (B.2.1) are listed for

conpl eteness but are not discussed in this section.

Every sinple primary has a value, which may be of either structured

or unstructured type.

The value of the primary get is of type string and consists of the

(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)

next string (according to the MJTANT 0.5 conventions) found in the interpreting

mechani smis sequential input stream when the primary is evaluated

eval uation causes that string to be deleted fromthe input stream

Parent heses serve to control the association of operands, and hence the

application of operators, in the conventional way.

Square brackets are used to designate the subscripting of sinple pri-
maries. In the application of the subscript operator, the sinple primry
and then the subscripting val ue-expression are evaluated, and the value of
the result is determned by application of the follow ng algorithm

(1) If the value of the sinple primary is of unstructured type
result is not defined.
(2 If the value of the sinple primary is of type list, then

(a) if the value of the subscripting expression is of type integer

and that integer is positive and not greater than the nunber

of elements in the list, then the resulting value is the |ist
element with that integer as index, where elenent indices begin
with one and increnent by one

(b) if the value of the subscripting expression is of type list, then
the resulting value is the list of values obtained by successively
applying each element of the subscripting list to the sinple
primary;

(c) otherwise, the result is not defined.

(3) If the value of the sinple primary is of type string, then

(a) if the value of the subscripting expressiaﬁ_rg-of type integer
and that integer is positive and not greater than the nunber
of characters in the string, then that integer is used as an
index to select a string character, and the resulting value is
an encoding of that character of type integer;

(v) if the value of the subscripting expression is a list of integers
all satisfying the bounds conditions of (a), then the value of
the result is a string consisting of the sequence of characters
obtained by successively using each integer in the list as a

subscri pt
(e¢) otherwise, the result is not defined.
Exanpl es
3 "abc" get {L,(2 31,17} (ab)
In the following exanples, all those on the same line have identical val ues.
{31, 21}[1] 1 { 2,1}[2]
{1, {2,317} 2] {2, 3]} {12,312 31]
(1,2, 3}M{(1 (2 3}1}] {1, (2, 311
"ABC"[1] 193 "(A)"[(2 }][1)
"gbe"[2 3] . { 0e")[1][1]
Comment

In MUTANT 0.5, lists are considered |inear sequences. The operation of
subscripting of lists has been extended from selection to the construc-
tion of general sublists. Subscripting has similarly been extended to
provide a substring operation

I

9
B.2.e Case Expressions
synt ax
(s-primary) ::= (case head) (v-expression)) (59)
(case head) ::= (case index) ((v-expression) ; (75)
(case head) (v-expression) ; (76)
(case index) = [(v-expression)] (17
Semanti cs

A case expression consists of a case index followed by a sequence of
val ue-expressions. In the evaluation of a case expression, the value of the
expression in the case index is determned. If that value is of type integer
and is positive and not greater than the nunber of expressions in the sequence,
then that integer is used as an index to select an expression for eval u-
ation, and the value of that expression is the value of the case expression.
Qherwise, the result is not defined. A case expression glways has a
val ue.

Examples

[n] (3; 2; 1)

[opcode] (O »+ ace; accta + acc; ace-a » accy; a + pC)

[(x=0) + 11 ("x is non-zero"; "x is zero"

Comment

Case expressions are generalizations of ALGOL 60's conditional

expressions and cmditional Sstatenments, which have not been specially

di stinguished in MJTANT 0.5.

B.2.f Cell Designators

synt ax
(cell id) = x:=(cell id *) (46)
(cell id *) = (identifier) (L7)
(cell id *) [(v-expression)] (48)
(cell id *). (49)
Semanti ¢S

MJUTANT 0.5 provides named cells in which values may be stored and al so
named values which are not associated with storage cells. A cell designator
is used in the formation of either a primary (B.2.h), in which case it desig-
nates a value, or an assignnent (B.2.k), in which case it designates a cell
or subcell. As explained in section B.2.b, the structure of a cell is deternined

f 10

dynamcally by the structure of its contained value; thus the interpretation
of a (sub)ceU designator is dependent upon the concurrent contents of the
— cell.
: If the cell designator is used in the formation of an assignment,
o then the naned (sub)ecell is deternmined as follows:
(1) If the designator is not subscripted or dotted, then by the rules
governing the scope of identifiers (B.2.b), that identifier nust
nane a declared cell and it designates that cell; otherw se, the
result is not defined. '
(2) If the cell designator terninates with a subscript, then the contents
of the cell named by that sinpler cell designator obtained by deleting the

rightnost subscript is determned, and the subscripting expression
is evaluated. If the cell contents is not a value of type |ist or if
i - the subscripting expression is not of type integer, the result is not
defined. If the value of that integer is positive and not greater
‘ i~ than the nunber of elenents in the list, the designated cell is that
subcel | containing the list elenment selected by use of that integer
_ as an index.

(3) If the cell designator terminates with a dot, then the value naned
by the cell designator obtained by deleting the rightmost dot is
determned according to the algorithm of the next paragraph. If that
value is of type name, the computation designated by that value is
f - activated to deternine the designated cell (B.2.g). Otherwise, the
result is not defined.
| o If the cell designator is used in the formation of a prinmary, then the
naned (sub)value is determned as follows:
(1) If the cell designator is not subscripted or dotted, then
(a) if, by the rules governing the scope of identifiers, the iden-
tifier names a val ue (B.2.b), a controlled val ue (B.2.1), or
a procedure formal parameter value (B.2.m), then the val ue of
: the cell designator is the named val ue
- (b) if, by the rules of scope, the identifier names a cell, then the
value of the cell designator is the concurrent value of the con-

e tents of the named cell
(2) If the cell designator termnates with a subscript, then the value
: named by the cell designator obtained by deleting the rightnost

e

S

r— r— r— r— r— »r-

—

r— r— r— r——

r—

11

subscript is determned. The subscripting expression is eval uated
and used as an index operating on the previously obtained value to
produce a resulting new value as described in section B.2.d.
(3) If the cell designator termnates with a dot, then the val ue named
by the cell designator obtained by deleting the rightnost dot
is determned. If that value is of type name, the conputation desig-
nated by that value is activated to determine the designated cell
(B.2.g), and the resulting value is the value contained in that cell.
Qtherwise, the result is not defined.
Thus in the cases in which a cell designator is valid in the formation of
either a primary or an assignnent, the value in the first case corresponds
to the contents of the cell nanmed in the second case, but nore general
indexing is allowed in the formation of prinmaries.

Exanpl es
a b[1] a[2][x[3]]
poi nter. x[i]e x{2][1]

B.2.g References

synt ax
(reference) ::= (reference *) (50)
(reference *) ::=4 (identifier) (51)
(reference *) [(v-expression)] (52)
Semanti cs

Val ues of type name, which are conputational processes for deternining
cell nanes, are designated by references. Thus every reference has a val ue
of type name. Upon activation of such a process (B.2.f), the resulting cell
name is determned by analysis, as described in section B.2.f, of the cell
desi gnator obtained by deleting the " in the fornulation of the reference.

Examples

La Lo {a.[x%'y][l]

Comment

References provide an explicit method of processing cell nanes as
val ues. They are intended primarily for use as "pointers" to conplex
data structures and as procedure actual parameters. References are
defined as conputational processes rather than actual cell names for
techni cal reasons; EULER [Wrth 65a] demonstrates an alternative

12

approach using cell nanmes. Unlike MJTANT, MJTANT 0.5 requires the
programmer t o di stinguish between cell name and val ue

B.2.h primaries
synt ax
(primary) c= (primary *)

(

(prefix) (primary)
(infix) / (primary)
(primary *) s:= (cell)

(reference)
(s-primary)

(prefix)

#
type -
abs

- E§ |C,

(%2}
—_

u

d

Semanti cs

A primary always has a value. The value of a primary wthout prefix
or infix operators is the value of the corresponding cell designator,
reference, or sinple prinmary.

A prefix operator designates a partial function of one argunent; the

val ue of the corresponding primary is obtained by evaluation of the operand

folloned by the application of that function. If the followi ng rules do
not specify the resulting value, then the result is not defined.

(1) If the operator is "#" and the operand is of type list or string, the
result is of type integer and is the nunmber of top level elements in
the list or string.

(2) If the operator is "type", the result is of type integer and is an
encoding of the type of the operand.

(3) Otherwise the operator is applied recursively according to the
following algorithm

(a) If the type of the operand is not |ist, then the result is
defined if the operator and operand type correspond to one of
the following table entries:

(33)
(34)
(35)
(%3)
(44)
(45)
(36)
(L2)
(39)
(ko)
(37)
(38)
(k1)

@er at or

13

Operand Type

abs
neg

1

|ist

put

i nt eger
| nt eger
i nt eger
i nt eger
string

Result Type
I nt eger
i nt eger
I nt eger

list

string

The first three are nuneric operators which may be defined.
by the fol | owi ng A-expressions [Land 64]:

abs = M. if x 2 0 then x else -x
neg = MNXe =X
1 =M. if x =0 then 1 else 0 .
The operator "list" produces a list of elements with unspecified

value; the number of elenments is the maxi num of the operand val ue
and 0. The operator "put" is an identity function with the side

effect of witing a carriage return followed by the operand onto
the sequential system output stream

If the type of the operand is |ist, then the result is a value of
type list, the elenents of which are the values obtained by

applying the operator to each element (sequentially in the case

(b)

of "put") of the list, if all such elements are defined.

(¢) Qtherwise, the result is not defined.

An infix operator designates a partial function of two argunents as
described in section B.2.i. In the application of an infix operator to
a primary, the primary is first evaluated. If the value obtained is not of
type list, the result is not defined. COherwise, the value of the primary is

obtai ned as foll ows:

(1) An initial value is chosen according to the operator fram the follow ng
tabl e:
Qper at or Initial Value
+, =, V 0
®, +, nmod, A 1
=, #, <, S, > 2 not defined
base not defined
| "ror{) =

* The enpty string is chosen unless the first list elenent is a list.

L

(2) Beginning with that initial value as an internediate result, the
operator is applied to the internediate result and a Iist elenent
to produce a new internediate result

(3) The resulting value is the value of the intermediate result after
each list elenment, chosen in sequence, has been used as indicated
in (2).

Thus the value of the primary so obtained is an accumul ation, relative
to the operator, over the entire |ist.

Exampl es
a {a x} {$YI| xtz >y} z[2]
abs x puTl TLE" hist (1, (2,2})
In the followi ng exanples, all those on the same |ine have identical val ues.
#{1,2, 3} 3
#{lx{2)3}} 2
-~ {21 0,1} { o, 1, 0 }
neg {1, {2, 3}]} { neg 1, { neg 2, neg 3})
type 0 = type "o 0.
+/(1, 2,3} 6
| / ("a", "p", "e" } "abe"
|/ (01,2}, (3%} (1,2 3)
Comment

The extension of the definition of prefix operators in MUTANT 0.5 is

a slight generalization of Iverson's extension of such operators to
vectors and matrices. Accunulation over a list with respect to an infix
operator corresponds to lverson's reduction [lver 62].

B.2.i Simple Expressions
synt ax

(s-expression) ::= (s-expression ¥*)
(s-expression *)::= (prinary)

(s-expression *) (infix) (primary)
(i nfix) si= |

+

(15)
(16)
(a7
(32)
(18)
(19)
(20)
(21)

—

15

J>°’/\WV‘1KII§
2

o <

ase

Semanti cs

Every sinple expression has a value. The value of a sinple expression
without an infix operator is the value of the corresponding primary.

An infix operator designates a partial function of two argunents; the
val ue of the corresponding sinple expression i s obtained by evaluating the
left operand, then evaluating the right operand, and then applying that
function to the operand values. |f the rules bel ow do not specify the re-
sulting value, then the result is not defined.

(1) If the operator is "|" and
(a) if both operand values are of type list, then the resulting value
is of type list and is obtained by appending in sequence the |ist
el ements of the right operand to the list value of the left operand
(b) if both operand val ues are of type string, then the resulting
value is of type string and is obtained by concatenation of the two
operand val ues, taken in order.
(2) Oherwise the operator is applied recursively according to the follow ng
al gorithm
(a) If the type of neither operand is list, then the result is defined

(22)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

if the operator and operand types correspond to one of the follow ng

table entries:

Qper at or Type of Operands Result Type
+, -, ® i nt eger i nt eger
+, mod i nt eger i nt eger
= # >, 2, <, = i nt eger i nt eger
Ay V i nt eger i nt eger

base i nt eger string

16

The operators "+", "-", and "®" designate the mathematical func-
tions of integral addition, subtraction, and multiplication res-
pectively. The operators "s+" and "nmod" are not defined if the value
of the right operand is 0. Otherwise, they are defined for integra
- operands by the follow ng h-expressions, using real division and

lverson's floor and ceiling operators [lver 62]:
— + = MNx,y). if x® 20 then | x/y Jelse [x/y 1

md = A(x,y). x - y&(x+y) ‘

The relational operators have integral value 1 if the mathematica

relation on the integers is satisfied and value 0 otherw se.

The operators "A" and "v" may be defined for integral operands by

= the follow ng h-expressions

| A = Nx,y). if x=0then 0 else if y=0 then 0 else 1
- v = Mx,y). if x £0 then 1 else if y # 0 then 1 else 0
f The operator "base" produces a string, the characters of which
o are a sequence of digits constituting a representation of the left

operand to the base specified by the right operand.

(b) If the type of exactly one operand is list, the result is a value
of type list, the elenents of which are the values obtained by
sequential application of the operator to the non-list operand
and each element of the list operand (taken in the original order),
if all such elenents are defined.-

= (e) If the type of both operands is_list, the result is a value of

type list. The nunmber of elements in that list is the m ni mum of

- the nunbers of elements in the operand lists; the resulting |ist

elements are obtained by sequential application of the operator
to corresponding elenments of the operand lists (taken in the

original order), if all such elenments are defined.
Al infix operators have equal precedence, and the association of operands
is fromthe left.

Examples
- 3 a+ D c ® abs x a+b-c aA(bVve)
In the followi ng exanples, all those on the same |ine have identical val ues
- 3+4 -1 3I® 2 13 + 2 13 mod 7 6
3>4h l-2+1 (3=3) -1 0
"abe" | "def" "abedef"

17

(1L, 23("", (2))} (1,2 """, (2})

28 (0,1, 2]} {0, 2 4} (4, 6,8} -4

(1,2, 318{3 2,1} {3 4 3}

i5{bdse2(}2, (8}, ¥ 1165 } + (0, 1,2, 3 } ({1,213, (k4 513, 7)
10, 3} ("iaav, "i7", "15", "F")

Conment

The extension of infix operators follows Iverson [Iver 62]. It corres-
/ponds to both scalar and vector operation in ordinary vector arithnetic.

B.2.j Segnents

synt ax
(v-expression *) ::= (segnent) (6)
(segnment) .= (s-expression) (12)
(s-expression) _ (s-expression) (13)
(s-expression) _ (s-expression) _ (s-expression)(1k)
Semanti cs

A segnment always has a val ue. The.value Of a segment without the » »
operator is the value of the corresponding sinple expression.

"Qtherwi se, the value of the first (leftmost) sinple expression is called
the initial value; of the second, the limt value; and of the third (if present),
the step value. The value of the segment is obtained by the follow ng pro-
cess

(1) Al of the sinple expressions are evaluated in the order of appearance
if the step value is not explicitly provided, it is taken to be the

i nteger 1.

(2) If the values so obtained are all of type integer, then the result is

a value of type list. Qherwise, the result is not defined.

(a) If the step value is positive, the elenents of the list are all
those integers, ordered in algebraically increasing value,' which
are obtained by adding non-negative integral nultiples of the step
value to the initial value and which are not greater than the lint
val ue

(b) If the step value is negative, the elenents of the list are all
those integers, ordered in algebraically decreasing value, which
are obtained by adding non-negative integral nultiples of the step
val ue and which are not less than the limt value

[

18

(c) Oherwise, the result is not defined.

Exanpl es
1 n 2" #S1 {1, 2,3} 0
In the follow ng examples, all those on the sane |ine have identical values.
1_3 1 _3_1 {1, 2,3}
2 10 4 2 13 _k {2, 6,10}
3 _1_negl {3,2,1}
1 0 2 _4 _heg {3

B.2.k Assignnents
Syntax
(v-expression *) ::= (v-expression *) - (cell)

Semantics

Assignnents serve to assign values to cells. In the evaluation of an
assignnent, the value of the expression to the left of the "»" is obtained,
and then the (sub)cell naned by the cell designator is determned as des=
cribed in section B.2.f. If both these' processes produce results which are
defined, the conputed value is assigned to the designated (sub)cell. Such
assignment may dynamcally change the structure of the cell.

Every assignment has a value, which is the value of the expression
to the left of the arrow

Exanpl es
0~+>a [index]{ a+b; a-b) -+ p[2][1]
d-{1n1 »c[3] O+X>y+2z

B.2.1 lterative Statenents

Synt ax

(s-primary %) ;.= (for head) }

(while head) }

(for/while head) }
-(for head) 1= (begin) (for set) (g-expression)
(for set) c= (for set) :
(for set *) ::= (identifier) e (v-expression)
(whil e head) ::= (begin) (while cdn) (g-expression)
(while cdn) c:= (while ') :

(8)

(60)
(61)
(62)
(78)
(81)
(82)
(79)
(85)

19
(while ") ::= (while) (g-clause) (84)
(whi | e) = ¥ (83)
(g-cl ause) .= (v-expression) => (+)

(for/while head)::= (begin) (for set) (while cdn) (g-expression) (80)

Semanti cs
Iterative expressions provide for 'controlled repetitive evaluation of

a general expression, which in each of the various forns of the iterative
expression is called the controlled expression. Such an expression may con-
ditionally fail to have a value. The value of every iterative expression, if
defined, is of type list; the elements of that list are, in order, the suc-
cessive values obtained from those evaluations of the controlled expression
producing values. A declaration may be included in the heading of any iter-
ative expression; the scope of the identifiers in such a declaration is the
iterative expression.

For-iterative expressions specify iteration over a list. The eval uation
of such an expression proceeds as follows:

(1) Any declarations in the heading are processed as described in section
B.2.b.

(2) The value-expression of the for-set is evaluated. If the resulting val ue
is not of type |ist, the result is not defined.

(B3)Wth the identifier of the for-set namng a value of an element of the
list thus obtained, the controlled expression i s eval uated. That
identifier is said to designate a controlled value;, it is inplicitly
declared by its appearance in the for-set and its scope is the controlled
expression. The list element values named are successively taken in order
over the entire list value.

(4) The final value of the iterative expression is a list as specified in the
preceding paragraph.

Wi le-iterative expressions specify repeated evaluation of the controlled
expression as long as a specified condition holds. The evaluation of such an
expression proceeds as follows:

(1) Any declarations in the heading are processed as described in section
B.2.b.

(2) The value-expression of the qualifying clause contained in the while-
condition is evaluated. If the resulting value is not of type integer,

? - the result is not defined. If that value is 0, evaluation of the

E iterative expression is termnated, and its final value is a list

— as specified above. Qtherwise, the controlled expression i s eval uated,
and the step is repeated.

- For/while-iterative expressions specify iteration over a list as

long as a specified condition holds. They are processed as described for

for-iterative expressions with the follow ng exceptions:

- (1) The scope of the identifier designating the controlled value is
extended to include the while-condition.
= (2) Before each evaluation of the controlled expression, the val ue-expres-
sion of the qualifying clause contained in the while-condition is
; — evaluated. If the resulting value is not of type integer, the result is
; not defined. If that value is 0, evaluation of the iterative expression
— is termnated, and its value is the list of values obtained to that point.
QG herwi se, processing continues with evaluation of the controlled ex-
; pression.
Exanpl es

{ieln : S+ (i®) > 8}

{ * abs(xl - x2) > delta =>: { x2 » xlI, £{x1,x2} » x2 }}

{x etable :* looking =>: x[1] = arg => { 0 + |l ooking, x[2]})
— AU the follow ng exanpl es have identical values.

{xe210 : (xmd?2) =0=>x)
- {$x| 0+x, { *x10 =>: x4-2 > x) }[2]
{ X €2 100 2 ¢ * x210 =>: x }
{2, 4 6,8,10}
Comment
The for-iterative expression provides the effect of a generalized |ist
mappi ng function. Since the controlled expression may conditionally
fail to have a value, that function can include selection.

B. 2. m Procedures

_ synt ax
(v-expression *) ::= (procedure head) (v-expression) ' (7
(procedure head) ::= {(proc head +) | (11)
o (proc head +) te= ! (9)

(proc head +) (identifier) (10)

4

21

(s-primry) o= (primary *) (list) (56)
Senmanti cs
— A procedure definition is delimted by apostrophes (') and desi gnates

a value of type process.
- The conputational process designated by a value of type process is
activated by the evaluation of a sinple primary consisting of a prinary
followed by a list. If the value of such a primary is not of type process
the result is not defined. Qtherwise, the expression in the definition of
the procedure corresponding to the process value is evaluated, subject to
the rules below, and the resulting value is also the value of the sinple
primary. The rules governing such evaluation are the follow ng:

he (1) The identifiers appearing in the procedure head are associated, in
order, with.the values of the elenents of the argument list. If the
— nunber of identifiers exceeds the number of list elements, the val ues

naned by the extra identifiers are not defined.. If the number of I|ist
el enents exceeds the number of identifiers, the extra |ist elements
are disregarded. Such identifiers& said to designate procedure
formal paraneter val ues.

(2) In the application of rules of scope in the evaluation of the expres-
sion, the applicable scopes are those at the place of procedure defini-
tion, not procedure activation*

Examples

— The followi ng exanples define and assign process val ues:
'"| a+1-+a''>increnmentl

"alas+ 1+ a'>increnent?2

"Xy | { xy > sum sum+ 2}[2]' + average
The folloﬁing examples i ndicate the activation of the above process val ues.
increnment 11 }
increnent 21 4x)
average{ atb-c, sum }
Comment
— In MUTANT 0.5,a paranmeter list, which can be enpty, nust be associated
with every procedure activation

B. 2. n Expressions W th Val ue

Syntax

22

(v-expression) ::= (V-expression ¥ (5)
(v-expression *) ::= (segnent) (6)
(procedure head) (v-expression) ! (7)
(v-expression *) » (cell) (8)

Senmanti cs

A val ue-expression, if defined, always has a value. It is the |east
restricted type of expression Wi th such a property provided in MUTANT O.5.

B.2.0 Ceneral Expressions

synt ax
(g-expression) ::= (v-expression) (2)
(g-clause) (g-expression) (3)
(g-cl ause) ::= (v-expression) => (%)
Senmanti cs

A general expression may conditionally fail to designate a value
If it does not contain a qualifying clause, then it has a value, and that
value is identical to that of the corresponding val ue-expression. QO herw se
the value, if any, of the general expression is determned by first evalu-
ating the expression in the leftmst qualifying clause. If that value is
not of type integer, the result is not defined. If the value is 0, the
general expression has no value. Qtherwise, the value, if any, is that of
the general expression obtained by deletion of the leftmst qualifying clause
Exanpl es
y # 0 => xsy predi cat e{x} => function{x]
X <max =>Y > Mmn => xsy
Conment
| n MUTANT 0.5, an unsatisfied qualifying clause gives rise to no val ue,
not an undefined value. Thus general expressions can be used in contexts
only in which such a property is meaningful, i.e., in the formation of
l'ist val ues.

B.2.p Programs

synt ax
(program 1= eof (v-expression) eof (1)
Semant i cs

A programis a value-expression delimted by end-of-file nmarks. The
value of a programis that of the val ue-expression.

23

Exanpl es
See section B.3.

Conment
In MJTANT 0.5, the end-of-file marks are assumed to be supplied by
the interpreting nechani smand are not normally witten.

_ B.3 Exanples
Li stings produced during the conpilation and execution of some sanple
MJUTANT 0.5 programs are included as Appendix IIl. In these exanples, conments

are delimted by question marks. Selected examples are repeated below, with
comentary, in the (nore readable) publication character set.

B.3.1 Factorial Calculation
Program
{ $ factorial |
'n|[2-(n=0] (1; n® factorial{n-1}) ' - factorial,

{nel6:
put ((n_base 10) | " factorial =" | (factorial{n} base 10))
— }
3
Qut put
1 factorial =

2 factorial =2
3 factorial =6,
4 factorial = 24
5 factorial = 120

6 factorial = 720
= Comment
Thi s exanpl e corresponds closely to McKeeman's Exanple 1 [McKee 66, p. 751.
— The following is a simlar ALGOL 60 program which assunes a suitable wite
statenent.

begi n integer n;
integer procedure factorial(n); value n; integer n;
factorial := if n=0 then 1 else n® factorial(n-1);
for n:=1 step 1 until 6 do
write(n, " factorial =", factorial(n))

end

r—

—

r— r—

r— r— r— r— r

r r—

2k

In the MUTANT 0.5 program the Broc"e'ss value (delimted by apostrophes)
assigned to the cell "factorial" gives the usual recursive definition of

the factorial function. The parameter "n" js ysed to compute a case index
for selection of one of two expressions to be evaluated. Thus case expres-
sions are generalizations of ALGOL 60's conditional expressions and state-
nents. Note that in MUTANT 0.5, the expression "n=0" has integral value
1if the value of nis zero and value O otherwi se. The expression "L6" is
equivalent to the expression "{ 1, 2, 3,4, 5, 6 }", and iteration over
each elenent of that list is specified.

B.3.2 Extended Factorial Calculation
Program
{$ factorial prod |
(" n|[2-(n=0)1(1, n ® factorial{l]{n-1}) ',
'n|®/ (1n) ',
*n|prod{ 1n}"
} » factorial,
'L |[2 - (#1-1)] (I[1);
prod{ L{1 #I+2] } ® prod{ L{#I+2+1 _ #L])'=+ prod,
{iel3:
{ put " ", put_("method "| (i base 10)),
{nel8:
put ((n base 10)|" factorial = "|(factorial[i]l{n} base 10))

met hod 1
1 factorial
2 factorial

8 factorial = 40320

met hod 2
1 factorial =1

25

Conment

In this exanple, the value assigned to the cell "factorial" is a |ist
of three process values giving possible definitions of the factorial function.
The first is the recursive conputation of the previous exanple. The second
is an exanple of lverson's reduction, in which the multiplication operator
Is used to reduce a vector (list) of the first n positive integers. The
third process applies the auxiliary function "prod" to the same vector.
"prod" designates a process intended to illustrate one possible hardware
i mpl enentation of multiplicative reduction in which, recursively, the'vector
I's bisected and reduction applied to each part. Note the use of a |ist-valued
subscript to select a sublist, which in turn is used as a procedure paraneter.

B.3.3 Further Exanples from MUTANT
Program
put((+ / ({1,2,3} ®(3,2,1})) base 10)

Qut put
10

Program ‘.
{ $ perm |
' x | [2 - (#x=1)]
({x}; .
[/{iel _#x:
{ t eperm{ 1 _ i-1]|x{i+1 _#x] } : x[i_i][t)
J
) ' > perm,
{test e { "a", "ab", "abe", "abed" } : hut perm{test}

out put

ab

ba

abc
ach
bac
bca
cab
cha

— Conment
‘ These programs for conputation of inner product and pernutations of
string characters or list elements are MJTANT 0.5 versions of McKeeman's
Exanples 2 and 4 [MKee 66, pp. T7-78]; they are presented nmainly for
conpari son.
B.3.k A prine Sieve
S Program
_, { $ prinesieve
L (*nl{$1t]|2n-1,
{ * #140 => :
: {11 +t,{i eL: imodt #0 =1} 3 L}1]
-) 32l
’) |
= {ne(25, 2501} :
, { put ("primes in 2 to "|(n_base 10)|":"),
- put (primesieve{n} base 10)
}
— }
}
o Output
primes in 2to25:
u 2
- 3
5
= 7
11
— 13
17
- 19
23 .
= primes in 2to 250:°
2

27

Conment

This programis an adaption of the sieve of Eratosthenes to the com
putation of all prime integers not exceeding a given integer. "prinesieve"
names a process value. In that process, a list of the integers from2 to
the given value is assigned to the cell naned "L". While the length of that
list is non-zero, the first element of the list is saved and then the |ist
is replaced by a new list consisting of all the former list elenments not
mul tiples of the first element. Note that the saved value is selected as
the value of the controlled expression in the while-iterative expressgion
by the second subscript "[1]"; thus the value of the entire iterative
expression is a list of the prines so saved. The subscript "[2]" selects
that list as the value of, the procedure. Also note the use of the extended
"put" and "base" operators.

B.3.5 Gt her Exanpl es
Al'so included in Appendix Il are prograns illustrating the follow ng:

(1) a slightly different pernutation generator;

(2) a set of algorithms adapted from Pohl's graph package [Pohl 67] for
conputing the reachability matrix and maximal strongly connected sub-
graphs of a graph fromits connectivity matrix;

(3) an integer square root routine based on Newton's method.

28

C. Inplenentation Techniques

An experimental processing systemfor the |anguage MJTANT 0.5 was
devel oped. It consists of a compiler, which translates MJTANT 0.5 prograns
to a conpact internal string code based upon Polish suffix notation, and
an interpreter, which perforns processing as directed by such strings. The
processing system was inplenented on the IBM Systenf 360 hardware; it functions
in the environnent provided by the PL360 system [Wrth 67d]. In addition, an
existing syntactic analysis program witten in Burroughs B5500 Extended
Atgon, was nodified for use as an aid in devel oping the conpiler

C.| The Syntax Processor (see Appendix IV for listing)

The syntax processor is an extension of a B5500 Extended ALGOL program
originally devel oped-by Professor N klaus Wrth at Stanford. Blocks Bl and
B2 were taken fromthat program without significant nodification. Block Bl
establ i shes the precedence matrix as described by Wrth and Wber [Wrth 65a],
using partial word operations for storage efficiency. Block B2 establishes
the precedence functions using Wirth's algorithm [Wrth 6é5b].

Addi tional pre- and post-processing was added to produce punched tables
in the PL360 syntax suitable for direct insertion into the conpiler source
deck. This processing includes

(1) classification and sorting (according to the I1BM EBCDI C collating
sequence) of the termnal synbols of the syntax
(2) assigning internal codes to the synbols,
(3) encoding and sorting the productions of the grammar,
(4) formatting the required tables.
A BS500 ALGOL program was chosen for nodification because of the relatively
powerful format capabilities provided. -

Those cards at the beginning of the conpiler (Appendix V) |acking "CMP"
in the sequence field were produced by the syntax processing program
(Strictly, they are translations from such cards produced for a previous
version of PL360, translated by a conversion program). The availability of
this syntax processing program greatly facilitated modification of the syntax
of MJUTANT 0.5 as the system devel oped.

C.l.1 Synbol Recognition Tables
The follow ng tables produced by the syntax processor are used by the

29

conpi | er procedure INSYMBOL in recognizing the terminal synbols of the

| anguage:
CCODES

PATRTAB

RSVD
RSVWD

a translation table which maps' characters occurring in the
input streaminto either their internal synbol codes or
entries into other tables.
a table of partitioning indices classifying characters, by
their translation codes, as
(1) single character termnal synbols,
(2) characters possibly formng character pair termnal
synbol s, or
(3)characters initiating identifiers, numbers, strings,
Or comments.
a sorted table of special character pairs formng term nal
synbol s.
a-table of entry indices into the reserved word table.
a table of reserved words, ordered by length and, within
each length group, alphabetically.

C.1.2 Parsing Tables

The follow ng tables produced by the syntax processor are used by the
conpi l er% syntactic analysis routine in parsing input strings:

F, G
PLIM
Rl G DPART

LEFTPART
RULE

tabl es of precedence functions for the symbols of the vocab-
ulary.

a table of entry indices into the table RIGHTPART according
to the leftmst synmbol of the production right part.

a table of production right parts, exclusive of |eftnost
symbol, ordered by the (omitted) |eftnost synbol.

a table of corresponding production left parts.

a pernutation vector giving the original interpretation rule
number for each of the (reordered) productions.

C.2 The Compiler (see Appendix ¥ for listing)

The compiler is a syntax directed, one-pass translator using the prin-
ciples of semantic analysis controlled by asinple 'precedence syntactic
anal ysis. The general organization of such translators described by Wrth
[Wrth 65a,67c, Shaw 66] has been adopted. In addition to the "val ue

stack", information about previously scanned synmbols is collected in an

30

_ identifier table and a separate (nested) table used in the processing of

E' case expressions.

é ‘The conpiler is witten in PL360 [Wrth 67c]. Since analysis is table

y driven, the syntax processor was designed to produce tables which could be
efficiently scanned (see section C.1). In particular, binary search 'is used
for the table of special character pairs, while entries into the tables

of reserved words and production right parts are controlled by key trans-
formations on the identifier length and |eftmst symbol of the right part
respectively [lver 62]. The table of declared identifiers is organized to
reflect the block structure of the |anguage [Shaw 66].

C.3 The Interpreter (see Appendix VI for listing)

The interpreter is a program sinulating a machine for processing the
Pol i sh suffix string-code produced by the conpiler from MJTANT 0.5 source
prograns. It is basically simlar to well-described proposals for EULER
machines [Wrth 65a, Weber 67]. In particular, it incorporates:

(1) the traditional ALGOL 60 stack organization and addressing structure

[Rand 6k4],

(2) organization of conposite data structures based on descriptor |ogic

simlar to that of the Burroughs B5500, and

(3) data-directed interpretation of operators.
Data storage for the interpreter is organized into a push-down stack and a
free storage area. Conposite data structures are inplemented as collections
of cells, defined by a descriptor scheme, in the free storage area. In the
interpretation of a 'Polish suffix string, syllables of that string are sequen-
tially scanned. Action specified by most such syllables falls into one of the

fol | ow ng-cl asses:

(1) branching within the program string, possibly with analysis and
modi fication of the top stack elements

(2) fetching of values to the top of the stack, either from the program
string or, under the direction of existing stack entries, from free
st orage;

(3) replacing a number of the top stack elements by a function of those
el ements, including constructing fromthem a camposite data structure
in free storage and placing a new descriptor in the stack;

(4) storing a stack value into a conposite data structure as directed by

other stack entries.

r

31

The interpreter is witten in PL360 [Wrth 67e]. Its general organ-
i zation resenbles the EULER interpreter witten for the Burroughs B5500
by Wrth and McKeeman [Wrth 65a]. A machine cell (Systenm 360 double word)
containing a list or string value actually contains a descriptor, which
includes a type code and the base address and length of a contiguous block
of machine cells that contain the values of the list elements or string
characters. A conpacting garbage collection scheme originally proposed by
VWeber [Wrth 65a] is used, so that available free storage always consists
of a single contiguous area. Data-directed recursive application of 'certain
operators is controlled by the interpreter procedures MAP, MAPLEFT, MAPRIGHT,
and MAPBOTH.

—
o7

32

D. Use of the MUTANT 0.5 Processor,

D.I Language Restrictions
The following restrictions are inposed upon programs to be processed by

the experinmental system

(1) The hardware character set (Appendix |) is used; thus the reserved
words of that character set cannot be used as identifiers, and spaces
are significant in delimting adjacent reserved words or identifiers.

(2) No limt is inposed on the length of identifiers, but only the first
ei ght characters are used in distinguishing them

(3) No single string constant can consist of nore than 256 characters.

(4) Arithnetic operations are defined by the IBM System/360 hardware. In
particular, addition, subtraction, and nultiplication are actually the
corresponding operations in the ring of integers nodulo 232 (with approp-
riate interpretation of negative nunbers).

In addition, certain valid MJTANT 0.5 progranms can cause overflow of conpiler
tabl es or object code instruction fields (see D.3).

D.2 Qperating Instructions

The MUTANT 0.5 conpiler and interpreter nust be conpiled and the object
prograns placed in the PL360 systemlibrary by the use of SYSTUP [Wrth 67d].
1 systaus to date, these progranms have been named MUTANT 1 and MJUTANT 2
respectively. The conpiled MJTANT 0.5 programis witten by the conpiler onto
| ogi cal device 8, which nust be appropriately defined, and is read by the
interpreter initialization process. The follow ng deck set-up (within a PL360
baten)is then required:

%$MUTANT 1

(MJTANT 0.5 source progran)
$MUTANT 2

(data, if any)
HEE

D.3 Conpilation Listing

The source programis listed as it is conpiled. The hexadecimal num
bers printed to the left of each line indicate the number of bytes of object
program produced prior to analysis of that line. Under the RASP spooling
system the printed time is primarily a neasure of the tine required to |oad

g

33

the conpiler or interpreter
The fol lowing messages correspond to errors detected by the conpiler
A vertical bar is printed beneath the character being scanned at the point

of error recognition,

and conpilation is termnated. A possible error

recovery technique has been described by Wrth [Wrth 67c].

SYNTAX

PROG OVFL
BRANCHADDR OVFL

CASE TABLE OVFL

UNDCL | D
| MPROPER I D

A syntax error (according to the grammar of

Appendi x |1) was detected

A program assenbly area in the conpiler overflowed.
The relative address generated for an inplicit
branch overflowed the allocated instruction field

An internal table used in processing case expressions

"~ overfl owed.

An undeclared identifier was used.

An identifier associated only with a value (naned

val ue, procedure parameter value, or controlled
value) was used in a context (assignnerit or reference
formation) in which an identifier associated wth

a cell is required.

r

e

e

—-

34

E. Reflections on Language Design

The present MJTANT 0.5 system woul d benefit 'substantially from further
devel opment. There are a nunber of rough edges in the |anguage definition
and several known errors in the design of the interpreter. Some of the nore
unpl easant features of the |anguage reflect oversights or poor decisions in
the system design, and no conceptual problenms arise in their elimnation.
Sone exanples are cited in section E.3.e. Qther rough edges are related to
fundanental questions about the design and use of MJTANT-1ike |anguages;
sonme progress in resolving these questions should be made before further
detailed inmplementation work is justifiable. The remainder of this section
is an attenpt to characterize such |anguages, to consider their potential
as practical programmng tools, and to discuss some specific issues raised
by the definition and inplenmentation of MJUTANT 0.5

E.l MJTANT-1ike Programm ng Languages

In the past few years, several |anguages which attenpt to extend and
sinplify ALGOL 60 [Naur63] have been designed and experinentally inplenented
at Stanford. The two nost directly of interest, in addition to MJTANT 0.5,
are Wrth and Weber's EULER [Wirth 65a] and McKeeman's MUTANT [McKee 66];
the follow ng remarks should also be applicable in part to simlar |an-
guages, such as LISP 2 [Abra66] and the AED fanily [Ross 661, being
devel oped el sewhere. To a first approximation, theselanguages may be

consi dered ALGOL 60 extended to allow various types of |ist (ordered set)
mani pul ation. In particular, such languages include the following features

(1) Prograns consist of conditionally selected sequences of inperatives

(2) Naned variables are provided in the context of a block and declaration
structure.

(3) An assignnent operator is provided.

(4) Structured values may be created and manipul ated dynamically, and the
format of these structures need not be defined prior to program execu-
tion,

(5) Definitions of certain operators are extended to be dependent upon
dynam ¢ analysis of the operands

E.2 Practical Applications
For purposes of this analysis, problems currently anenable to computer

DY

e

e

35

attack fall into the following three broad catagories:
(1) Problens in which the natural data structures are sinple, fixed, and
reasonably well reflected in the storage' organization and operation
set of existing nachines. Many problens of classical numerical analysis
fall in this catagory. In many cases, efficient use of the machine
hardware is essential.
(2) Problens in which the natural data structures are conplex but pre-
determned and well-defined. Processing requirements may or may not
be easily satisfied by machine facilities. Mich of systems programming
and business data processing belongs in this catagory. Again a premum
I's often placed on efficiency.
(3) Problens in which the natural data structures are complex and cannot
be predefined.- Examples are found in such areas as artificial intel-
| igence, general synbol manipulation, and graphical data processing
In nost cases, a noderate anmount of avoidable system overhead is
acceptable if it significantly increases flexibility and ease of
programmng in the system
Experience with MJTANT 0.5 indicates that algorithms for solving
problens in the first and third catagories can be naturally expressed in
a MJTANT-1ike |anguage. Since the structure of values is arbitrary in such
a language, a uniform scheme (e.g., indexing) nust be used to name sub-
structures. Algorithms in the second class, however, can usually be ex-
pressed nore clearly in the notation advocated by Wrth [Wirth66a,67a]
in connection with record classes, a notation which demands static spec-
ification of possible data structures

Experience also suggests that a sinple translator-interpreter nech-
anism for a MJTANT-1ike |anguage is unable to achieve the high efficiency
required in applications in the first two areas. Translator recognition of,
and optimzation for, sinple cases is, in fact, precluded by the |ack of
a descriptive declaration facility in EULER and MJTANT. Such a declaration
structure, possibly including the record concept, could be used to advan-
tage only by a considerably nore sophisticated translator; even then, it is
not clear that a great deal of efficiency can be gained without sacrifice
of all dynamc features. Thus it appears that, with current machine designs
MJUTANT-| i ke |anguages are of potential practical value in the third problem
area above and that they may be fairly evaluated in the context of such

§
!
—

. r— r— r— r— r— r— r-

SN

-

o

probl ens.

E.3 Language Design .

Presented below are some of the issues which were found to be critica
in the design and use of the MJTANT 0.5system Some of these becane clear
only after nuch of the system had been inplenented, and no claimis made
that many optimal, or even good, solutions were found

E.3.a Assignnent of Structured Val ues
| n MUTANT-1like | anguages, declarations serve to nane cells but'not
to define their structure. -Instead, structured values may be created in

an arbitrary way by computation, and such values may be assigned to any
naned (sub)cell; at the tine of assignment, that cell assumes the structure
of the assigned value. Thus the structures of cells nust be dynamc. The
principal objections to such a scheme have been discussed by Wrth [Wrth
67a, 6To]. Briefly, they are the followi ng:

(1) Restructuring of cells is highly inplicit, generally expensive in
interpretation, and deceptively sinple in appearance to the programer.
Known storage allocation and referencing methods for inplenentation
are not efficient enough, especially in the first two of the problem
areas above.

(2) Subcells (subvalues) must be referenced by a fixed and uniform
nam ng scheme (such as indexing) with little mmenonic val ue.

(3) The conpiler has very linited information for selecting code, type-
checking, ete.

Wrth [Wrth 67a,670] proposes to avoid these problens by assigning
to each named cell a structure, possibly complex, fixed at the point of
declaration. He claims that "for practical purposes this turns out to be
hardly a restriction at all" [Wrth 67a, p. 3]. The claimis reasonable
for progranms arising in the first two problem areas above, but it is
questionable as a general assertion. Amng evidence to the contrary are the
following points:

(1) Prograns fromthe third problem area inherently deal with dynamc,
conplex, and interacting data structures. The i nformation content
of such structures can indeed be represented within a set of static
data structures, but often this requires considerable bookkeeping

effort on the part of the problem progranmer and makes the resulting
\

37

program difficult to wite, to docunent, and to nodify or extend
Wi t hout drastic revi si on.
(2) Experience with MJTANT 0.5 indicates that some of the nost useful
and convenient features of the |anguage generate or depend on
dynamcal |y structured values. Notable exanples are the iterative
expression and the lverson interpretation of certain operators.
It is tenpting to conclude that a desirable solution is to allow the
programrer to specify that a cell nust have structures from some subset
of the set of structures of all values conputable within the system In
particular, if the specified subset contains exactly one elenment, the
translator is expected to check and optimze appropriately. There is some
merit in such a scheme; however, experience suggests that the effort required
to produce and adequately test such a translator using currently known tech-
niques is usually very great, even for |anguages nuch "sinpler" than MJTANT
0.5. In addition, the optimzation gained has often been rather disappointing.

E.3.b The Nane-Val ue Problem

A famliar problemin the design of programmng |anguages is dis-
tingui shing the denotation of the name of a cell and the name of the con-
tents of that cell (or nore generally, the name of an expression and its
val ue). EULER and MUTANT 0.5 (but not MJTANT) resolve this problem by
allowing (and normally requiring) the programmer to nake the distinction.
Thus in MUTANT 0.5, "a" denotes the value contained in the cell a, while
"Ya" i s the name of (address of, pointer to, etc.) the cell itself. A
concession to tradition is made in assignment; Although this is an opera-
tion between a value and a cell, MJTANT 0.5 allows, e.g.,

b+ 3 +a

in place of
assign (b3, La) or b + 3+ 4a
Allowing the programrer to explicitly manipulate cell nanes creates
sone subtle but fundamental problens in MJTANT-|ike |anguages:
(1) The role of block structure and the interpretation of declarations
Is unclear, as illustrated by the follow ng exanple:
($a]($p|[tb>a), 0+a)
If the second assignnent is considered valid, then the cell b nust
remain accessible after it can no longer be directly named; in

38

particular, the machine storage assigned to b cannot be reallocated
after exit fromthe block (list) to which b is local. on the other
hand, if the second assignment is considered invalid, detection of
such assignments within the block and procedure structure of MUTANT-
|i ke |anguages becones a°surprisingly subtle problem and no satis-
factory solution was discovered.' The difficulty of the problemis
indicated by the follow ng exanple:
{$xyp |
'a| {$b |2 sa, x>y, 0+x)" >,
p{dx}, ($clo+y)
) ‘
A quite simlar problem arises in the assignnent of values of
type process, as indicated in the follow ng:

{($pl
{$a[10+a,'x|x+a'+p],
PC 31}

) :
(2) Names which are neaningful at the point of creation may becone

meani ngl ess at the point of use due to the dynamc structuring of
cell's, as shown in the exanple bel ow

{$abl{1 2,3}+a, 2af1l1+Db,0+a, 1 +»1b")
Such situations cannot be detected easily by an interpretation mech-
ani sm using machine addresses or equivalents as the representation
of values of type MellANT O.5effectively treats such val ues as
paranet er| ess procedures which return a machi ne address upon activa-
tion. This solution also defers eval uation of subscripts, sonetines
with undesirable results. A better schene is to construct a simlar
procedure after evaluation of all subscripts, but such a solution
can be quite expensive.

E.3.c The Copy problem

In MUTANT 0.5, the traditional notion of assignnent of values to
cell's has been retained. This decision has fundanental inplications for
the design of an interpreting mechani sm inplenmented using a conventional
digital conputer. In such machines, cells have sinple fixed structures,

39

and values are generally not accessible except as contents of such
cells. As a result, the structured cells (values) of MJTANT-Iike |an-
guages nust be inplenented as collections of maehine cells (val ues).
Furthermore, since structure is dynamc in such |anguages, these col-

— | ections nust include descriptive information sufficient to identify the
structure.

In interpreting the assignment of such structured values (possibly
contained in named cells) to naned cells, the question arises of' how nuch
of this collection nust of |ogical necessity be copied upon assignment. '
For exanple, the interpretation mechani sm nust conpute 3, not 0, as the
value of the follow ng expression:

($adb| (1,(2 3})>a, a[2] > b, 0 » b[2], a[2][2] }[4]

The answer is that, if by any nane and process, the contents of a machine

— cell can be changed, there nust be at nost one name (which may, however,
be the value of the contents of any nunber of cells) through which that

— machine cell or its contents can be referenced. Such names are'created by
explicit or inplicit assignment to a structured cell. Inplicit assign-

ments in MUTANT-like | anguages include use of a value as a procedure
actual paranmeter as well as the inplicit assignments within an iterative
expression. ‘

In the inplenentation of interpreters of MJTANT-Iike |anguages,
assuring such uniqueness proves to be very expensive in terms of efficiency.
— Such inplenentations to date have used an interpreter based upon a push-

down stack,manipulated by program operators,and a free storage area of
— machi ne cells, from whi ch structured cells are created. Uniqueness of refer-
ence to machine cells can be guaranteed by unconditional ly copying com
pletely every structured value as it (or a descriptor of it) is fetched to
and stored from the stack. Copying is itself expensive; noreover, each
copyi ng reduces the (finite) nunmber of machine cells in free storage available.
Eventual |y, free storage nust be restructured ("garbage collected"), and a
second substantial expense is incurred. Inplenentations to date have, in
e — fact, attenpted to avoid sonme of this copying. In Wrth and McKeeman's B5500
i mpl ement ation of EULER [Wirth 65a], for exanple, values are copied only
- upon fetch-into the stack; as a result, in that EULER i npl enentati on,

=

r—

-

r——

40

expressions such as

& b ec
and p(aec)
are senmantically disallowed if (and only if) ¢ is found to contain a
structured value at the time of interpretation. An alternate approach is
to adopt a schene of including marking information Wi th (sub)structures

and deferring copying until it is logically demanded. In this investiga-
tion, no such scheme was discovered which seemed sufficiently attractive
(see bel ow).

In view of the expense of copying, it is inportant to note that in
most cases such action is neither anticipated nor desired by the programer.
Furthernore, in many cases, difficult or inpossible to detect during the
translation process, onission of such copying will not change any of the
final values produced (or, even nore frequently, any of the output strings
witten). Gven the high cost of copying and associated storage nmnagenent
in available machines, this observation is probably the basis of the nost
fundamental objection to the practical use of MJTANT-like |anguages. A num
ber of partial solutions to the copy problem are considered bel ow

(1) In EULER and MUTANT O.5prograns, it is possible to create a value of
type name. This facility creates certain |ogical problens (see above),
but it is valuable in allowing the progranmmer to create references to

a naned cell (and hence the contained value). In certain situations

(not necessarily obvious to the programmer), it will be nore efficient

to access a value with conplex structure indirectly via a reference than

it will be to copy the value. Such indirect reference is particularly
natural and appropriate in connection with procedure paraneters. It has
several drawbacks:

(a) Each value to be indirectly referenced nust first be assigned to
to some naned cell.

(b) Efficiency is critically dependent upon the programer% caref ul
(i npl ementation dependent) choice of reference or value in each
Situation

(c) The progranmer nust be exactly aware at all times of the level of
i ndirectness being used.

(2 In SLIP [Weiz63], a |ist-processing language of quite different design

a superficially simlar problem was encountered and solved by the use
of a reference counting scheme. A count of the nunber of valid nanes
referencing each relevant collection of' machine cells is encoded in
that collection and dynamcally adjusted. A brief exam nation failed
— to discover a reasonably efficient adaptation suitable for MJTANT-Iike

| anguages, but further investigation mght be profitable., Briefly the
_ difficulty seems to be that the encodings of such counts which can

be efficiently maintained are not the encodings efficiently usable in

avoi di ng copyi ng. '

(3) It is possible to interpret the notion of value in a nanner consi stent

with any particular schene of internal representation and strategy of

copying that is convenient for inplementation. In particular, if a

cell contains a structured value in the MJUTANT 0.5sense, it is attractive

- to instead consider the value of the cell to be a description of that
structured cell and its subcells. In certain situations (such as array
— procedure parameters called by name in AIGOL 60) such an interpretation

Is consistent with the spirit of the |anguage and represents an efficient
i mpl ementation trick. In general, however, there are several valid ob-
jections to such an interpretation:
(a) It is an ad hoc expedient and tends to make the semantics of a
| anguage dependent upon the inplementation facilities which happen
to be available.

(b) I't further confuses the distinction between the name of a cell and

of its value.

— (c) As nost naturally inplenented, an embarassing | ack of consistency
arises in the meaning of the |anguage. In particular, it is nore
convenient and efficient to reference unstructured values directly
but structured values indirectly.

(4) Analysis of programs in various |anguages wth an assignment operator
suggests that a significant fraction of all cells are declared and used
to preserve internmediate results and avoid repeated calculation of the

" same value. Such cells are created for the purpose of naming values; the

fact that these cells (as opposed to the contained val ues) are structured
. is of no interest or use to the programer, for he never assigns to a
subcel I. This suggests that the language should provide a facility for
nam ng conputed values W thout requiring assignnent to a logically

{’ FENCI

-

r— rr— 1

—

L2

. distinguished cell. Such a facility exists for sinple constant val ues
in present |anguages. '
MJUTANT 0.5 recogni zes that previously conputed val ues may be
used as such intermediate values and thus may effectively be 'constants
throughout the scope of a declared name. A construct is provided to
initialize at the point of declaration the value denoted by a neme to
a constant (which may be conputed from the val ues denoted by names
non-local to the corresponding block). Such values will be called locally
constant, Since all procedure parameters in MJTANT 0.5 are effectively
called by value, it is easy for the translator to check that such nanes
are never used in the (inplicit or explicit) formation of cell names.
The inportant fact is that such namng does not create a name by
which the contents of a machine cell can be changed. Thus in the com
position of the designated value, any subvalue which is a constant,
either by denotation or by being locally constant in a containing block,
need not be copied. The idea can be extended somewhat further than is
done in MJTANT o0.5.-If a value contained in a named cell is used in the
computation of a |ocally constant value, then there are various sets
of sufficient conditions, verifiable by the translator, that insure that
the contained value cannot be changed within the scope of the nanme of
the local constant. If these conditions are satisfied, it is again not
necessary to copy the contained value in formation of the |ocal constant.
The effectiveness of this solution is critically dependent upon the
programmer's style. Programmers experienced with LI SP 1.5 [Mccar 62] find
it relatively easy to make effective use of local constants; in fact, such
use i s very similar to one use of LISP h-expressions. There is also a
trade-of f of run-time efficiency versus compiler speed; in particular,
code ‘generation hased on a very sophisticated set of sufficient conditions
for local constancy is probably inconmpatible with one-pass translation.
Experience with the MJTANT 05interpreter suggests that the most promising
approach to the copy problemis a finer distinction ammg the various uses of
the traditional assignment operator and a syntactic structure which dis-
tingui shes anong such uses. The provision of ":=", "=", and "~" for assign-
ment, "initialization by value", and "initialization by reference", respec-
tively, i N CPL [Buxt 66] reflects exactly such a distinction. Landin's | et

e

r—-r— r— r— r— r

—

r—

L3

and where constructs [Land 66] are al so used in CPL and are attractive
syntactic devi ces for designating |ocal constants.

E 3.d Extended Operator Definitions

In MJTANT and MUTANT 0.5, definitions of operators have been extended

in the sense of Iverson [lver 62] whenever possible. Such extension |eads

to at least three difficulties:

(1) For the results of a given computation t0o be well defined, the exact
order of the evaluation of operands aswell asthe application of
operators nust be specified. This is due to the involution of assign-
nment as well asthe possibility of procedures with side effects. Dif-
ficulties are not limted to pathological cases; using the extended
assi gnment operator of MUTANT, McKeeman [McKee 66] illustrates a useful
application of

{a,b} (0D, a} .

Specification of either complete eval uation of both operands in a

specified order followed by operator application (as in MUTANT 0.5)

or any of various |evels of conceptual parallelismis likely to |ead

to gross inefficiencies in some inplenentations. McKeeman [McKee 67]
has suggested a partial solution based upon the distinction between
types set (unordered) and |ist (ordered).

(2) The meanings of operatorsintended to act upon structured val ues
general |y cannot be extended without the [oss of such ® me'ani.ng. For
exanpl e, the value of

(1,2, 4} =1(1, 3,43
will be 0 or {1, 0, 1} depending upon the interpretation of the ex-
tended equality operator: In the first case the extended meanings of
equal ity operators will be very different frem those of the other rela-
tional operators; in the second case, conparisons of structured val ues
must be explieitly programmed (as in MJUTANT 0.5) or require another
equal ity operator. Extension of the subscripting and assignment operators
present special difficulties:

(a) There are two common interpretations of subscript notation. In one,
such notation is considered sinply anamng device. In the other,
the subscript brackets are considered to denote an operator whi ch
maps avalue (or cell name) and anumerical value into asubvalue

44

(or subcell nane). Fromthis viewpoint, there is a natural gen-
eralization of the subscript operator: a value subscripted by an
ordered set (list) yields an ordered set of values obtained by
appl ying each 'element of the set as a subscript, e.g.,

al (2,{3,4]) 1 = a s (2,(3,4)) = (ef2],(a[3],a[4]})
Such an interpretation allows a very powerful and el egant nethod
of constructing new ordered sets froma collection of elenents and
has been adopted by MJUTANT and MUTANT 05.Note, however, that the
extension is not quite lverson's; the subscripted value 'nust be
structured but nust be treated formally as unstructured. Further-
nore, if cell nemes are allowed to be subscripted by sets (as in
MUTANT), the result must be a collection of (sub)eell names, and
one is led to an extended interpretation of assignment. If such
subscripting is not allowed (as in MJTANT 0.5), string manipul ation
is quite awkward and an asymmetry is introduced in the |anguage.

(v) There is a fairly obvious sinilar extension of the assignment

operator. It is again, however, not quite the lverson extension
used el sewhere in MJTANT 05 for one would prefer

{1, (2,3}}+{a b} ={1+a{2,3}+D])
tnstead of |

{1, {2,3}))Y+({a,d} ={1+>a, {2+Db,3+Db}}
In addition, sequencing is critically inportant in assignnent;
by one possible definition,

{a, b} +>{b,a} = {a+b,b+a} P)
which is usually not the desired interpretation.

(3) some data types are not either clearly structured or clearly unstructured.
The primary exanples in MITANT 65are strings. It is desirable, for
exanple, to be able to access substrings by the subscript notation for
structured val ues; on the other hand, when used as operands to, e.g., the
put_operator, it is convenient to consider themunstructured. A heir-
archy of structure can be introduced, but probably at the cost of some
|l oss of uniformty, and hence sinplicity, in the interpretation mech-
ani sm

E 3.e Mscellaneous Problens
A nunber of decisions made in the design and inplementation of MJTANT 0.5

F”f

.

=

-

S

——

45

were later found to be mstakes, but these mstakes do not reflect fun-
danental problems in the design of MuTANI-like | anguages. Some of these
are |isted bel ow
(1) Choice of Character Set
In the design of Muanr0J5,it was decided to choose as concise a
notation as possible and to reflect the usage of set theory as well
as conventional algebra. When desired special synbols were not
available in the IBM EBCDIC character set, they were usually represented
by pairs of special characters rather than by word delimters' or
reserved words. The el egance of this approach is debatable; however,
‘it is clear that readability suffers severely, especially in the
hardware representation.
(2) Deletion oOperator
The value of a MUTANT 0.5 program at any point is generally a very
‘large list structure, the structure of which reflects the history of
interpretation up to that point in considerable detail. Such lists
consume a large amount of storage and often are of no practical use.
A sequencing operator, simlar to the coma but deleting the |ast
val ue canputed for an elenent of the list being constructed, would
be very useful, particularly when an expression is evaluated for its
effect rather than its val ue.
(3) Ext ended Case Expressions
McKeeman [McKee 66] has denonstrated an el egant application of a
list-valued case index in his MUTART conpiler. Such indices are
prohibited in MJTANT 0.50nly because of an oversight in the design
of the interpreter.

E. 4 Met hodol ogy
| npl ement ation of MurANT 0.5hasfol | owed the exanple of EviER and

MJTANT; it is based upon a straight-forward conpiler producing Polish
postfix operator strings and a stack-oriented interpreter of such strings.
For experimental purposes, such a system seens entirely adequate. \\éber

[Weber 67] has denonstrated the suitability of presently available hard-
ware for inplenenting proven compilation and interpretation algorithns in
m crocode, and presumably results with specially designed hardware would be

—

—

—

46

even better than what he'reports,. In addition, it should be noted that
with sufficiently powerful operators the additional overhead of inter-
pretation is relatively smell; for exanple, the MUTANT 05interpreter
makes quite efficient use of the system/30 general registers in vector
mani pul ation when such manipul ation i s expressed i N Iverson's notation,
and this efficiency is possible wthout an optimzing conpiler,

The grammar of MJTANT 0.5 was chosen to be a sinple precedence granmmar
because of familiarity with the techniques involved and availability of
suitable syntax processing prograns. Cther well understood formalisns,
summarized by Feldman and Gies [Feld67], coul d have been used equally
well, with sone trade-offs anong speed, space, and generality. In general,
it was found that, with the available nmachinery, nodifications to the
MJTANT 0.5 grammar or conpiler were fairly trivial to make. m the other
hand, many unfortunate features of the interpreter could not be changed
wi thout substantial rewiting; further investigation of the related prob-
lens of formal semantics and machine description seens nmore appropriate
than continued work oriented entirely toward syntactic questions.

u7

F. References

Abra 66

Buxt 66

Fel d 67

| BM 66

[ver 62

Land 6k

Land 66

McCar 62

MKee 66

MKee 6T

Naur 63

Pohl 67

Abrahams, P., et al., The LIsP 2 pr'cigramming'la.nguage and
system, AFIPS Conf. Proc. 29_(Fal | 1966), pp. 661-676.

Buxton, J.W., Gay, J.C., and Park, D., CPL el enentary
programming manual, The University Mathenatical Laboratory,
Canbridge (January 1966).

Feldman, J. A., and Gries, D., Translator witing systens,

Techni cal Report ¢s69, Conputer Science Department,
Stanford (June 1967).

| BM Systens Reference Library, PL/I: Language Specificati ons,
| BM For m €28-6571.

Iversan, K., A programming language, W|ey (1962).

Landin, P. J., The nechani cal evaluation Of expressions,
Comput. J. 6 (January 1964), pp. 308-320.

> Lendin, P. J., The next 700 progremming | anguages, Comm. ACM 9

(March 1966), PP. 157-166.

McCarthy, J., et al., LI SP 1.5 programmer's manual , Computation
Laboratory, MT (1962).

McKeeman, W.- M, An approach to conputer |anguage design, Tech-
nical Report csi8, Conputer Science Departnent, Stanford

(August 1966)..
McKeeman, W. M, private discussion (Spring 1967).

Naur, P., et al., Revised report on the algorithmc |anguage
AIGQL 60, Comm. ACM,6 (January 1963), pp. |-17.

Pohl, I., Gaph package, GSG Meno 43, Graphics Study G oup,
sIAc, Stanford (June 1967).

r

r—

—

— T o

—

rwv—-»ﬁ

Rand 64

Ross 66

Shaw 66

\Weber 67

Weiz 63

Wrth 65a

Wrth 6é5b

Wrth 66a

Wrth 67a

Wrth 67

Wrth 67c

Wrth 67d

Randell, B., and Russell, L. J., ALGoL 60_inpl enentation,
Acadenic Press, 196k.

Ross, D. T., ‘AED bi bliography, Mem Mac-M-278-2, Proj ect
MAC, M T (Septenber 1966).

Shaw, A C., Lecture notes on a course in systems progranmm ng,

Techni cal Report css2, Conputer Science Departnent; Stanford
(Decenber 1966).

Weber, H., A mcroprogranmed inplementation of EULER on |BM
Systent 360 model 30, Comn. ACM 10 (September 1967), pp. 549-558.

i zenbaum J., Symmetric list processor, Comm. ACM 6
(Sept enber 1963), pp. 52k-5uk, - -

Wrth; N, and Weber, H, EULER A generalization of AL, and
its formal definition, Technical Report cseo, Conputer Science
Department, Stanford (April 1965) (also, in part, Com. ACM9
(January and February 1966), pp. 13-25, 89-99).

wirth, N., Find precedence functions, Al gorithm 265, Comm. ACM 8
(Cct ober 1965), pp. 604-605.

Wrth, N, and Hoare, C. A R, A contribution to the devel opnent
of ALGOL, Comm. ACM 9 (June 1966), pp. L413-432.

Wrth, N., o certain basic concepts of programming | anguages,
Techni cal Report csé5, Conputer Science Department, Stanford
(May 1967).

Wrth, N., AIGoL project meno 55 (internal meno), Conmputer Science
Departnent, Stanford (1967). '

Wrth, N, A programmng |anguage for the 360 computers, Techni cal
Report ¢s53 (revised), Conputer Science Department, Stanford
(June 1967).

Wrth, N (editor), The PL360 system Technical Report CS68,
Computer SCi ence Department, Stanford (June 1967).

Awoen

k9

Appendi x |
Publication / Machine Character Set Mapping

1]

Publ i cation Machi ne Character Publ i cation Machi ne Charact er
Character Set Set (EBCDIC) ' Character Set Set (EBCDIC)
a (no equival ent) ® *
. + DIV
z (no equival ent) mod MOD

A A base BASE

Z Z # _=

0 0 > GT
ces o 2 GTE
9 9 < LT

" " s LTE

{ < A AND

} > v R

((/ /

) -) £ ®

[(_ . 4

] _) > -

$ $

| | ' :

P)) = =
get GET

C# ; ;

1 1 € &
list LI ST * ‘
abs ABS eof '
ne NEG - (comrent bracket) ?
put PUT
type TYFPE

+ +

50
$SYNPRGC

<PROG> $:= ! KV=EXPR>
<G-EXPR> 3 3= KV=-EXPR>
<Q-CLAUSE> <G-EXPR>

<Q-CLAUSE> 3= KV=EXPR> =>
<V=-EXPR> 23= KV-EXPR*>
<V=EXPR*> 33= <SEGMENT>

<PROC HD> <KV-EXPR> !

<V-EXPR*> -> <CELL>
<PROC HO+> $3= 0

<PROC HO+> (IDENT)

Nt D == D
CWENOWNDSA WNRFROOLuIOWDDWN —

<PROC HO> .o =<PROC HO+> |
<SEGMENT> «3 =<S—=EXPR>
<S—-EXPR> _ <S—-EXPR>
<S—EXPR> _ <KS—EXPR> _ <KS—-EXPR>
<S-E XPR> 3= <S—EXPR*>
<S—EXPR*> 13= <PRIM> o
<S—-EXPR%*> <INFIX> <PR M
<INFIX> HEEE I
*
21 DIV
22 MOO
23 BASE
24 =
25 ~
26 GT
27 GTE
28 LT
29 LTE
30 AND
31 OR
32 . |
33 <PRIM> :3= <PRIM*>
34 <PREFIX> <PRIM>
35 <INFIX>/<KPRIM>
36 <PREFIX> 3= #
37 -
38 LIST
39 ABS
4¢ NEG
41 PUT
42 ' TYPE
43 <PRIM*> 2= <CELL>
44 <REF>
45 <S-PRIM>
46 <CELL> 33= <CELL®™
47 <CELL*> ::= (IDENT)
48 <CELL*>{_ <V-EXPR> _}
49 <CELL*> 4 ’
50 <REF> 13= <REF*>
51 <REF*> ss= @ (IDENT)
52 <REF®*> (_ <V-EXPR> _)
53 <S-PRIM> 1:=2 <S-PRIM*>
54 <S- PRI M > 22= <CONSTANT>
55 GET
56 <L | ST>
57 <PRIM*> <(KLIST>

58 { <V=-EXPR>)

(S

—

e

o

-

<CONSTANT>

<LIST>
<LIST HO>

<BEGIN>
<BEGIN>
<BECLARE>

<CASE HO>

<CASEl OX>
<FOR HD>
<WHILE HD>
<F/w HD>
<FOR SET>
<FOR SE T*>
<WHILE>
<wWHILE?®*>
<WHILE CON>

s g0 8¢ op o0

s 80 B8 0

e

(13

LI O T T IO

51

<CASE HD> <V-EXPR>)
<FCRH O >>
<WHILEH O >>
< F /[WHD>>
<S-PRIM*>{_<V-EXPR> _)
(INTEGER)
(STRING)
<BEGIN> >
<LIST HO> >
<BEGIN> <G=EXPR>.
L I S THD>, <G—-EXPR>
<
= <DECLARE> |
< $
<DECLARE> {tIDENT)
<DECLARE>{IDENT) { <V-EXPR>)
<CASEIDX> (<V-EXPR>
< C A S E HD> <V=EXPR>;
A <V-EXPR> _)
<BEGIN>.<FORSET><G-EXPR>
<BEGIN> <WHI LE CDN><G-EXPR>
<BEGIN> KFOR SET> <WHILE CON> <G-EXPR>
.{FGR SET*> 2

ICENT) & <V-EXPR>

(.
<WHILE> <Q-CLAUSE>
<WHILE >3

)

[

PRECEDENCEFUNCT IONS

1 <PROG> 1
2 <G=EXPR> 3
3 <Q—-CLAUSED> 2
4 <V-EXPR> 5
5 <V-EXPR%D> 4
6 <PROC HO+> 9
7 <PROC HD> 4
a <SEGMENT> 7
9 <KS—EXPR> 7
1C <S—-EXPR*)> a
11 <INF IX> 6
12 <PR| ™ 10
13 <PREFIX> 6
14 <PRIM%x> 10
15 <CELL> 12
16 <CeLL*> 12
17 <REF> 12
18 <REF*> 12
19 - <S-PRIM> 12
20 <S-PRIM*> 12
21 <CONSTANT> 13
22 <LIST> 13
23 <LIST HO> 2
24 <BEG IN> 2
25 <DECLARE> 9
26 <CASE HD> 4
27 <CASE IDX> 13
28 <FOR HD> 2
29 <WHILEHO> 2
30 <F/W HD> 2
31 <FOR SET> 2
32 <FOR SET*%> " 1
33 <WHILE> 3
34 <WHILE®*> 1
35 <KWHILE CDN> 2
36 | 4
37 => 14
38 10
39 -> 7
40 (IDENT) 13
41 14
42 _ 5
43 + 14
44 - 14
45 8 14
46 Clv 14
47 0D 14
48 EASE 14
49 = 14
50 == 14
51 €7 14
52 GTE 14
53 LT 14
54 LTE 14
55 AND 14
56 (R A4
57 6
58 & 14

e
TN OO OVOWOWOOWOWOWOWWOWOOWOUTOCOERJIICITUINWSLWN g~ FRPPPFPO-J-—J—~d~J—-J00 ~J—J—-JO D DOCITCT IV O WN —

52

ELAPSEL J

IME

LI ST
ABS
NEG

TYPE

{INTEGER)
(STRING)

o N s we n A e

IS 06:06:00

-

——

= —
LW VPR NI IR GTW N U RO~~~ ~J — —g

S

53

TMUTANT 1
?
0000 $ FACTORIAL CALCULATION = SECTION Be3sl 2
0000 < FACTORIAL |
000 1 " N | {_ 2-(N=0)_){1;N*FACTORIALK N-| >)* =>FACTORIAL
0032 <NEI1G6:
003 D PUT((N BASE 10)|"™ FACTORIAL = " | (FACTORIALS N > BASE 10:)
0060 >
0061 >
END GF COMPILATION . -

ECAPSEC TIME IS G0:00:49

IMUTANT 2)

1 FACTORIAL = 1! .
2 FACTORIAL = 2

3 FACTORIAL = 6

4 FACTORIAL = 24

5 FACTORIAL = 120

6 FACTORIAL = 720

ELAPSED TIME IS 0G:00:3¢

54
TMUTANT 1
0000 ? EXTENDED FACTORIAL CALCULATION = SECTION 8.3.2 ?
0o00cC <$ FACTORIAL PROD |
0002 < N l(_ 2=¢N=0) _) (1 3 N®FACTORIAL(_1_)1< NI >),
0033 NI =/¢ 1N} ¢,
0043 * N| PROD< I_N >
0053 >=>FACTORIAL, .
0059 * Ll (L 2-l#L=1) _)
0067 { L(_1_) 5 PRODK L{_ L_#L DIV 2 _)>*PRODS L(_ #LD | V2+¢1_#L _)>)
COA4 => PROD,. '
O0A9
O0A9 <1 &1.3 ¢
0004 C PUT "®,PUT("METHOD "“|(IBASE10)),
OOCA <N &1_.8 3
00D5 PUTU((NBASE 10)|®FACTORIAL ="|(FACTORIAL(_I_)< N>BASE10))
OOFC >
00FOD >
0100 >
0101 >

ENDCF COWVPI LATI ON

ELAPSED TIME |IS 00:00:4C

IMUTANT 2
METHOR R AL = 1
2 FACTORI AL = 2
3 FACTORIAL = 6

4 FACTORIAL = 24
5 FACTORIAL = 120
6 FACTORIAL = 720

7 FACTORIAL =504C
8 FACTORIAL = 40320

METHOC 2

1 FACTORIAL = 1
2 FACTORIAL = 2
3 FACTORIAL = 6

4 FACTORIAL = 24
5 FACTORIAL = 120
6 FACTORIAL = 720
7 FACTORI AL = 504G
a FACTORIAL = 40320
METHOC 3

1 FACTORIAL = 1

2 FACTORIAL = 2

3 FACTORIAL = 6

4 FACTURIAL = 24
5 FACTORIAL = 120
6 FACTORIAL = 72C

7FAC JOR IAL= 5040
8 FACTORI AL = 40320

ELAPSED TIME IS 00:00:43

r

55
SMUTANT 1
0000 ? INNER PROOUCT = SECTION Be343(A) ?
0000 PUT ((/0 < 19293 >%< 39241 >)) BASE LO)

END Q F COMPILATION

ELAPSED TIME | S 00:00:35

SMUTANT 2
10
ELAPSEC TIME IS 00:00:37

r—

—

56

LSMUTANT 1
0000 ? PERMUTATION GENERATOR =-SECTIONBe3.3(B) ?
ooocC < $ PERM |
000 1 Cox bl 2-tax=1))
0013 t < X > 3 .
001A /< 1 & 1_#X :
0029 < J GPERMSX{_ 1_J-1 _)IX(_ I¢1_#X _) > = X{_ I_
006 1 >
0064) * => PERM,
0076 CTESTEC“A” WAB®, %ABRCw,PABCD">:P U TPERMCTEST>»>
009A >

ENDC CFCUMPILATION

ELAPSEC TIME 1S C0:00:36 .

IMUTANT 2

A

A8
BA
ABC
ACB
BAC
BCA
CAB
CBA
ABCD
ABOC
ACBD
ACDB
ACBC
ADCB
BACD
BADC
BCAD
B8CDA
BCAC
BOCA
CABD
CADS8
CHAC)
CB8DA
CCAB
CCBA
DABC
CACB
DBAC
ceca
DCAB
DCBA

ELAPSED TIME | S 0C:00:43

| I B b

r—

—

57
IMUTANT 1
0000 ? PRIME S|EVE SAMPLE PROGRAM ~ SECTION Be3e4 ?
0000 C $ PRIMESIEVE
0000 (° N 1<$LT] 2.N=>1L,
0014 <o #L = - 3>
001E < LI_1_) =D>DTe<IE&L:I MQD Tw=0 =
004 @ >
004C >_2_) ¢
0053) |
0054 <N&K285 250 >:
0C64 < PUT (“PRIMES IN 2 TO ®|{N BASE 10)I%:%),
0082 P U TIPRIMESIEVEC N > BASE 10)
008E >
008F >
0090 >

ENDCFCOMPILATION

ELAPSED TIME IS 00200:40

TMUTANT 2

PRIMESIN2T O 25:
2

3

5

1

11

13

17

19

23

PRIMESIN ‘2 TO 25€Cs -

97
101
103 '
107
109
113
127
131
137
139
149
151
157
163
167
173 -
179
181
191
193
197
199
211
223
227
229
233
239
241

ELAPSED TIME 1S 00201209

>

=-> L >_1_)

58

EMUTANT 1
0000 ? PERMUTATION GENERATOR ?
ooocC < $ PERM |
000 1 ¢ X | o 2=(#x=1) _)
0013 { <X D> 3
001lA 17 | & 1_#X 3
0029 < T & PERMC X{_ 1-1-1 _» | X{_ I+1_#X _) >:
0052 <CX{_ 1l > |71
ocss >
00SF >)" => PERM,
0074 C TEST &< 1_1y 1_2y 1_34 1_4 > :
c09C < P &PERMC TEST > sPUT{|/(P BASE 10)) >
00AH > >

ENDGFCOMPILATION

ELAPSEC J IMEISC0:00:39

LMUTANT 2

|
12
21
123
132

ELAPSECTIME 1S0C2:00:44

59

TMUTANT 1
0000 ? GRAPH MANIPULATION ROUTINES ?
0000 C $ REACHVEC
0000 (*c 1|
0004 <$ PR R BB N {(#C)]|
0008 { 1L_N}~=1 => BBy C(_I_) ->Ry LIST N =>PR,
0030 < o +/{PR=(R=DPR))~=N => :
0047 , JE& L1_N :BBI_J_)A N DPR{_J_)=>
0062 "< 0 =->BB{_J_)ey R OR C{_J_)=D>R>>
007F 29 R >(_5_) ')
0080 DISPLAYMATRIX
0080 (* C TITLE|<KPUT "%, p U TTITLE,
009A < | & 1_#C 2P U THIZ(CI_I_¥B A S E2))>>)
ooBL REACHMATR | X MAXSC SUBGRAPHT
OOBE C (€ €14190909090>y <03190914050>¢ <09lele0,0,0>,
OOEA 090909l ely0>y <091904045190>y <140,0,0,041> > } |
0115 ' c | €1 & 1_#C : REACHVECK'Cy | >3 ’'=> REACHMATRIX,
013E *RIK 1 EL1_#R2C J & 1_#R RI_I_DVUI_J_IVANDRA_JI_INL_I_) > > ¢
0179 => MAXSCSUBGRAPH,
017E DISPLAYMATRIXCCy"C MATRIX” >y
0l91l OISPLAYMATRIXC REACHMATRIXK C>¢"R MATRIX” >y
01AA DISPLAYMATRIX< MAXSCSUBGRAPHC REACHMATRIXC C >>¢"MSCMATRIX"”>

END CF CUMPILATION

ELAPSECTIME 1S 0QC300:42

XMUTANT 2

C MATRIX
1 100¢0
010100
011000
000110
010010
10000 1

R MATRI X
1101. 10

010110 ’
011110

010110 .

010110

110111

MSC MATRIX
10000¢C
010110
00100¢C
010110
010110
¢oooc 1

ELAPSEC TIME IS 0C:00:48

60

TMUTANT 1
0000 <$ SQRT
000cC (* NI<s$s X ERR |
0006 t NDV 2 -> X)#N*2-> ERR,
001F C . ERR GT(ABSL XX - N1=> ERR) =>: (X +(NDIVX))DV 2 -
0048 X >(_.3.))
0053 PRIMESIEVE
0053 (* N] <sL T 1 2.N=->1Ly
0067 e ¥L-=0 => : A
0071 CLI_1I) => Ty <l €L MOD T =0 =1 >-=>0L>(_1_)>
009F >r_2_)) |
00A7 PUT* PRI MES AND INTEGERIZED SQUARE ROOTS™,
0002 < | & PRIMESIEVE< 250 >3
00EQ PUT «(1.8ASE 10)= "]{ SQRTC I > BASE 10)) > >

END GF COVPI LATI ON
ELAPSEO TIME |'S 00:00:39

TMUTANT 2

PRIMES ANG INTEGERIZEDSQUARE ROOTS
2 1
3 1
5 2
7 2
11 3 149 12 7
13 3 151 12
17 4 157 12
19 4 163 12
23 4 167 12
29 5 173 13
31 5 179 13
37 6 181 13
41 6 191 13
43 6 193 13
47 6 197 14
53 7 199, 14
59 7 211 14
61 7 223 14
67 8 227 15
71 8 229 15
73 8 233- 15
79 8 239 15
83 9 241 15
89 9
97 9 ELAPSED TIME |S 0Cz201:17
101 10
103 10
107 10
1C9 10
113 1C
127 11
131 11
137 11

