
cs 120

8

MUTANT 0.5

AN EXPERIMENTAL PROGRAMMING4ANGUAGE

BY

E. SATTERTHWAITE

TECHNICAL REPORT NO. CS 120
FEBRUARY 17, 1969 '

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

MU!MNT 0.5, an Experimental Programming Language

E. Satterthwaite

Computer Science Department

Stanford University

February 1969

The research reported here was supported in part, by a National Science
Foundation Graduate Fellowship and in part by the Atomic Energy Commis-
sion. Preparation of this report was supported by NSF Grant GP-'7615.

i
L

i

Abstract

A prograrmning language which continues the extension and simplification

of AIGOL 60 in the dire&ion suggested by EULER is defined and described.

Techniques used in an experimental implementation of that language, called

MUTANT '0.3, are briefly summarized. The final section of this report is an

attempt to assess the potential value of the approach to procedural program-

ming language design exemplified by MUTANT 0.5. Implementation and use of the

experimental system have indicated a sufficient number of conceptual and

practical problems to suggest that the general approach is of limited value;

however, a number of specific features were found to be convenient, useful,,

and adaptable to other philosophies of language design.

1

4- In his thesis, McKeeman [McKee 661 describes MUTANT, a "kernel" lan-

guage which he proposes as a nucleus for the design of procedural programming

- _ languages. Many features of that language appeared useful for expressing

algorithms of both graph theory and graphical data processing. In addition,

MUTANT suggests possible approaches to the problems of data structuring and

the specification of parallel processing. To gain some experience with such

facilities, an experimental language with semantics similar to those of

MUTANT was designed. Certain semantic concepts were generalized, and others~ -

A. Introduction

L

L

L

L

L.-

L

restricted; also the syntax was substantially altered. In addition, the cur-

rent version of the language does not include all facilities of MUTANT (most

notably, unordered sets and real number arithmetic); it is therefore called

MUTANT 0.5.

A processing system for MUTANT 0.5, consisting of a compiler and an in-

terpreter, was implemented on the IBM System/360; and some experience with

that system has been obtained. The language has been found to allow a concise

and natural expression of many algorithms, but a number of difficulties were

experienced in designing both the language and the interpreter for the system.

Although certain language improvements are obviously needed and efficiency

could be significantly increased by use of more suitable hardware, I agree

with Wirth's conclusion [Wirth 67a] that difficult logical problems underlie

both the design and implementation of such a language. No further develop-

ment or use of the current system is planned. Thus in terms of providing a

i

i

useful language and processor, the project was a failure. It was, however, a

valuable exercise in language design; this report is an attempt to analyze,

for the benefit of future work,‘some of-the strengths and weaknesses of the

MUTANT 0.5 design revealed by both the implementation and the use of the lan-

guage.

-

t

A.1 Organization of the Report

In section B, MUTANT 0.5 is defined in the style of the AIGOL 60 report

[Naur 631. Syntax is described by productions in Backus-Naur form (BNF);

semantics, by English prose. Some examples of programs in MUTANT 0.5 axe then

presented and explained. Section C is a brief summary of the techniques used

in implementing the experimental compiler and interpreter. Use of these prog-

rams is described in section D. Finally, section E is an attempt to charac-
.

2

terize MUTANT-like progrming languages, to identify some inherent problems

in their definition and implementation, and to assess their practical utility.

That section is a minor revision of a draft written in September 1967; some of

the positions stated there have since been substantially extended or reformu-

lated as a result of more recent reading, discussion, and research.

Appendices III, IV, and V; although referenced in the text, are not .

reproduced in this report. They are compilation listings of the various programs

used in the experimental implementation of MUTANT 0.5.

A.2 Cments on Notation

In this report, two different character and terminal symbol representa-.

tions are used in the description of the syntax of MUTANT 0.5 as well as for

the representation of programs written in the language. One may be considered

the publication representation; the other, a hardware representation reflecting

the available character set. The former is introduced in the belief that it

is somewhat more agreeable and readable. Appendix I establishes the corres-

pondence between these two representations. In addition, a slight variant of

BNF has been adopted for compatability with the output of certain processing

programs: alternate right parts of a production are placed on consecutive lines

without repetition of the corresponding left part. In the remainder of this

report, publication and hardware representations will be freely cross-refer-

enced, usually without explicit client.

A.3 Acknowledgements

The work reported below is based on a CS239 project directed by Professor

W. F. Miller during the fall and spring quarters of academic 19664967. It

includes additional modifications suggested by CS360 research done during the

summer quarter of 1967. Support was provided in part by a National Science

Foundation graduate fellowship and in part by the Atomic Energy Commission.

Preparation of this report was supported by NSF Grant GP-7615.

The definition and implementation of MUTANT 0.5 have drawn heavily from

ideas presented informally by various faculty members and fellow graduate

students at Stanford; discussions with Professors W. F. Miller and W. M. McKeeman

and with Mr. W. Hansen were especially helpful. In addition, all aspects of the

project owe much to the teaching and research of Professor N. Wirth, and his

syntax processing programs and PL360 system were essential tools in the lan-

guage design and implementation work.

B. The MUTANT 0.5 Language

The syntax and semantics of MUTANT 0.5 are defined below. In general,
McKeeman's statement of the principles of language design [McKee 66,

pp. 71-733 has been accepted as valid. Conciseness of notation has been
carried somewhat further by adapting the notation of set theory whenever

possible. The concepts and notation of the language were primarily inspired '

by McKeeman's MUTANT [McKee 663; they also draw directly and indirectly
from ideas found in ALG(xL 60 [Naur 63], EULER [Wirth 65a], APL [Iver 621,

and PL/I [IBM 663.
,

B.l The MUTANT 0.5 Grammar

The gr-ar of MUTANT 0.5 is listed, in the hardware character set,

in Appendix II. In addition, -relevant productions of the grammar will be

included at appropriate, points in the following discussion of the semantics

of MUTANT 0.5. Such productions are related to Appendix II by the use of

marginal production numbers. The somewhat artificial appearance of some

productions reflects two constraints placed on the grammar, namely

(1) the production set must lead to a simple precedence grsmmar

[Wirth 65a];

(2) the productions

language during

For the reasons

to define the syntax

must be chosen to simplify the translation of the

the process ofsyntactic analysis.

given by McKeeman [McKee 66, pa 933, it is convenient
of identifiers, strings, and integers external to

the formal grammar of MUTANT 0.5; informally, it may be described by the

following set of productions.

(identifier) .::= (letter)

(identifier) (letter)

(identifier) (digit)

(integer) ::= (digit)

(integer) (digit)

(string) ::= (string head) '

(string head) ::= '

(string head) (non-quote character)

(string head) ' '

B.2 Semantic Description of MUTANT 0.5

4

MUTAI'Q 0.5 programs describe the creation and manipulation of values.

In the language, values of three unstructured types (integer, process, and

name) and two structured types (string and list) are available to the

programmer. Values of type integer have the;perties of mathematical

integral values. process values are designations of computational processes

(procedures); name values designate special computational processes which,

upon activation, compute the name of a storage cell. &r-in@; values are

sequences of character values, which correspond to elements of a fixed set

of symbols. In MUTANT 0.5, list values are ordered sequences of structured

or unstructured values of arbitrary length, in which all elements are not

required to be unique in value.

Comment

The'above types were chosen as a minimal set adequate for experi-

mentation. In any 'serious programming language, real number arith-

metic would be essential. McKeeman's type set also appears to be

a valuable addition to progrdng languages, emitted only because

of limited time and goals.

Since MUTANT 0.5 is a highly involuted language, description of

many constructs requires the use of terms before they are defined. The

reader unfamiliar with MUTANT or a similar language is advised to consider

some of the simpler examples of section B. 3 before continuing.

.B.2.a Constants

'syntax

(constant) . ::= (integer)

(string)

Qw3w 1

(begin) ::=. {

(declare) 1

Semantics

(64)

(65)

(66)

(70)

(71)

A non-negative integer is denoted by a sequence of decimal digits, and

the value of that integer is the value of the digit sequence interpreted as

a decimal number. Negative integers are syntactically recognized as pri-

maries.

A string is a sequence of characters and is denoted by a sequence,

5

delimited by string quotation marks ("), of the graphic symbols corres-

ponding to the character values. In the denotation of a string, two

contiguous string quotation marks signify a single string quotation character.

The construct " {) " (or " (declare) 1] ") denotes the null list 9
i.e., a value of type list with no elements.

A constant alwayshas a value.

I
L Examples

L

0 3 100 32767
"This is a string." 'f 't "Haet 't tt ff

{ I

I
L B.2.b Declarations

syntax

L (declare) ::= t $ (72)

:
i
i

Semantics

(declare) (identifier)

(declare) (identifier) ((v-expression))
(73)

(74)

/ MUTAJ4T 0.5 provides values of several types as well as storage cells
L

Ii
L

into which such values may be placed. Declarations serve to create cells

and also to provide names for either cells (and their contents) or for

values. At most one declaration appears at the head of a list (B&c), and
,

the scope of the identifiers in that declaration is exactly the corresponding
/
L list.

If the identifier is immediately followed by an expression in
! parentheses, that identifier is considered to name the value of that ex-
L

pression. All such expressions are computed sequentially before com-
<
! putation of-the values of any of-the list elements, and these expressions

are evaluated as if they were written in an immediately containing list.

No explicit assignment to an identifier naming a value is permitted.

i If the identifier is not so followed, it names a cell. Values of

any type may be assigned to any cell, and such assignment dynamically

.i
determines the cell structure. Thus the structure of a cell may be undefined,

or atomic, if the cell contains a value of unstructured type, or structured.

c.

/
i

\
L

If, in the last case, the cell contains a value of type list, that cell

has a composite structure consisting of a sequence of (atomic or structured)

subcells, one for each list element. Similarly, if the cell contains a value

of type string, that cell is structurally a sequence of atomic character cells.

An identifier names the cell or value associated with it by a declaration.

6

1

i

L
*

L

L

Every non-reserved identifier not contained in a declaration either

must designate a controlled value (B.2.1) or procedure formal parameter

value (B.2.m) or must occur within the scope of an identifier of the

same name. If an identifier is associated with more than one scope, a

use of that identifier designates the cell or value associated with

it in the smallest possible containing scope. Subcells or subvalues are

designated by a uniform indexing scheme (B.2.f).

Examnles
L

i

i
L

i
i
L

($ a b newidentifier

{ $ x y twotothelfjth (32768)

I

[$ sum (a+b) difference (a-b)-

Comment

Named values may alternatively be viewed as the contents of cells

which may be initialized upon scope entry but are "read-only" within

the scope of the naming identifier. The rules of scope andkraluation

of the initializing expression do not admit initialization to recursive

L

i
i

t
L

L

!
L

I
i
I

L

procedure values; a facility similar to Landin's ret [Land 64, 66] is absent.

B.20~ Lists

Svntax

(list) ::= (list head))

(list head) ::= (begin) (g-expression)

(list head) , (g-expression)

(begin) ::= {

(declare) 1

Semantics

(67)

(68)

(69)

(70)

(71)

A list is an ordered sequence of general-expressions. In the execution

of a MUTANT 0.5 program, the expressions within the list are computed success-

ively fram left to right. A general-expression may conditionally fail to

designate any value. Lists have structured values of type list; the value

of a list is the (possibly empty) sequence of values of those contained

general-expressions yielding values. A declaration does not have a value or
constitute a list element. In general, the number of elements in the list value

cannot be determined a priori. A list always has a value.

Examples

[1, 2, 3, "abc" } c 1, E 2, E 3 I ? 1

i

7

E 1 + x, Y-2 +y,108a)

($ a b 1 x + a, y + b, a+b, a-b)

IalCal2+al,2--1

{ a+b, a-b, @b, b#O => a+b]

B.2.d Simple Primaries

syntax

(s-primaxy) ::= (s-primary *)

(s-primary *) ::= (constant)

get

Semantics

(list)

(primary *) (list)

((v-expression))

(case head) (v-expression))

(for head) }

(while head)']

(for/while head) }

(s-primary *) [(v-expression) 1

Productions 57 (B.2.m), 59 (B.2.e), and 60-62 (B.2.1) are listed for

completeness but are not discussed in this section.

Every simple primary has a value, which may be of either structured

or unstructured type.

The value of the primary get is of type string and consists of the

next string (according to the MUTANT 0.5 conventions) found in the interpreting

mechanism's sequential input stream when the primary is evaluated, and such

evaluation causes that string to be deleted from the input stream.

Parentheses serve to control the association of operands, and hence the

application of operators, in the conventional way.

Square brackets are used to designate the subscripting of simple pri-

maries. In the application of the subscript operator, the simple primary

and then the subscripting value-expression are evaluated, and the value of

the result is determined by application of the following algorithm:

(1) If the value of the simple primary is of unstructured type, then the

result is not defined.

(53)

(54)

(55 1
(56)

(57)

(58)

(59)

(60)
W)
(62)
(63)

(2) If the value of the simple primary is of type list, then

(a) if the value of the subscripting expressizs of type integer

b) if the value of the subscripting eqression is of type list, then

the resulting value is the list of values obtained by successively

applying each element of the subscripting list to the simple

primary;

(>C otherwise, the result is not defined.

8

and that integer is positive and not greater than the number

of elements in the list, then the resulting value is the list

element with that integer as index, where element indices begin

with one and increment by one;

I

(3) If the value of the simple primary is of type string, then

(>a if the value of the subscripting expression is of type integer

and that integer is positive and not greater than the number

of characters in the string, then that integer is used as an

index to select a string character, and the resulting value is

an encoding of that character of type integer;

if the value of the subscripting expression is a list of integers,

all satisfying the bounds conditions of (a), then the value of

the result is a string consisting of the sequence of characters

obtained by successively using each integer in the list as a

subscript;

b)

(>C

Examples

3

otherwise, the result is not defined.

"abc" get E 1, (2, 3 3, 17 ?
In the following examples, all those on the same line have identical values.

t 1, 2 IDI 1 1 2, IPI1
E 1, 1 2, 3 3 ml (: 2, 3 ? { 1, 2, 3 ICE 2, 3 II
c 1, 2, 3 IlIt i, I-2, 3 I 31 Eb~2,311

"AJ3c"[1] 193 “w’~I 2 I ml
"abc"[2 33 ‘?j.,c” t { 1 1“bc” hl[ll
Comment

In MUTANT 0.5, lists are considered linear sequences. The operation of

subscripting of lists has been extended from selection to the construc-

tion of general sublists. Subscripting has similarly been extended to

provide a substring operation.

9

B.2.e Case Expressions

syntax

(s-primary) -: :- (case head) (v-expression))

(case head) : :" (case index) ((v-expression) ;

(case head) (v-expression) ;

(case index) ::= [(v-expression)]

Semantics

(59)

(75)

(76)

(77)

A case expressian consists of a case index followed by a sequence of

value-expressions. In the evaluation of a case expression, the value of the

expression in the case index is determined. If that value is of type integer

and is positive and not greater than the number of expressions in the sequence,

then that integer is used as an index to select an expression for evalu-

ation, and the value of that expression is the value of

Otherwise, the result is not defined. A case expression

value.

Examnles

the case expression.

aLways has a

b-4 (3; 2; 1)
[opcode] (0 + act; acc+a + act; ace-a + act; a + pc)

[(x=0) + 1] ("x is non-zero"; "x is zero")

Comment

Case expressions are generalizations of AU+oL 60's conditional

elrpressions and ccnditional statements, which have not been specially

distinguished in MUTANT 0.5.

B.2.f Cell Designators

syntax

(cell id) I ::= (cell id *) (46)
(cell id *) ::= (identifier) (47)

(cell id *) [(v-expression)] (48)
(cell id *) l

(49)

Semantics

MUTANT 0.5 provides named cells in which values may be stored and also

named w&es which are not associated with storage cells. A cell designator

is used in the formation of either a primary (B.2.h), in which case it desig-

nates a value, or an assignment (B.&k), in which case it designates a cell

or subcell. As explained in section B.2.b, the structure of a cell is determined

10

dynamically by the structure of its contained value; thus the interpretation

of a (sub)ceU designator is dependent upon the concurrent contents of the

cell.

then

(1)

(2)

(3)

If the cell designator is used in the formation of an assignment,

the named (sub)ceU is determined as follows:

If the designator is not subscripted or dotted, then by the rules

governing the scope of identifiers (B.&b), that identifier must

name a declared cell and it designates that cell; otherwise, the

result is not defined.
t

If the cell designator terminates with a subscript, then the contents

of the cell named by that simpler cell designator obtained by deleting the

rightmost subscript is determined, and the subscripting expression

is evaluated. If the cell contents is not a value of type list or if

the subscripting expression is not of type integer, the rez is not

defined. If the value of that integer is positive and not greater

than the number of elements in the list, the designated cell is that

subcell containing the list element selected by use of that integer

as an index.

If the cell designator terminates with a dot, then the value named

by the cell designator obtained by deleting the rightmost dot is

determined according to the algorithm of the next paragraph. If that

value is of type name, the computation designated by that value is

activated to determine the designated cell (B.2.g).'Otherwise, the

result is not defined.

If the cell designator is used in the formation of a primary, then the

named (sub)value is determined as follows:

(1) If the cell designator is not subscripted or dotted, then

(a) if, by the rules governing the scope of identifiers, the iden-

tifier names a value (B.2.b), a controlled value (B.2.1), or

a procedure formal parameter value (B.2.m), then the value of

the cell designator is the named value;

(b) if, by the rules of scope, the identifier names a cell, then the

value of the cell designator is the concurrent value of the con-

tents of the named cell.

(2) If the cell designator terminates with a subscript, then the value

named by the cell designator obtained by deleting the rightmost

11

I

I

i

L

i
L

!

i

IL
I
L

!
Ii
i
L

L

(

i

I
L

subscript is determined. The subscripting expression is evaluated

and used as an index operating on the previously obtained value to

produce a resulting new value as described in section B.&d.

(3) If the cell designator terminates with a dot, then the value named
by the cell designator obtained by deleting the rightmost .dot

is determined. If that value is of type name, the computation desig-

nated by that value is activated to deteze the designated cell

(B.&g), and the resulting value is the value contained in that cell.

Otherwise, the result is not defined. I

Thus in the cases in which a cell designator is valid in the formation of

either a primary or an assignment, the value in the first case corresponds

to the contents of the cell named in the second case, but more general

indexing is allowed in the formation of primaries.

Examples

a b[ll aW[x[311
pointer. x[i]* x121°[~l

B.&g References

syntax

(reference) ::= (reference *) (50)
(reference *) ::= 4 (identifier) (51)

(reference *) [(v-expression)] (52)
Semantics

Values of type name, which are computational processes for determining

cell names, are designated by references. Thus every reference has a value

of type name. Upon activation of such a process (BALf), the resulting cell

name is determined by analysis, as described in section B&f, of the cell

designator obtained by deleting the I%" in the formulation of the reference.

Examnles

&a &b J4 x-i-d [11
Comment

References provide an explicit method of processing cell names as

values. They sre intended primarily for use as "pointers" to complex

data structures and as procedure actual parameters. References are

defined as computational processes rather than actual cell names for

technical reasons; EULER [Wirth 65aJ demonstrates an alternative

I.2

approach using cell names. Unlike MUTANT, MUTANT 0.5 requires the
prograzmner to distinguish between cell name and value.

B.2.h primaries

syntax

(primary) . .=. . (primary *)

(prefix) (primary)

(infix) / (primary)

(primary *) ::= (cell)

(reference)

(s-primary)

(prefix) ::= #

type -

abs

neQ
1

list

put
Semantics

A primary always has a value. The value of a primary without prefix

or infix operators is the value of the corresponding cell designator,

reference, or simple primary.

A prefix operator designates a partial function of one argument; the

value of the corresponding primary is obtained by evaluation of the operand

followed by the application of that function. If the following rules do

not specify the resulting value, then the result is not defined.

(1) If the operator is "#" and the operand is of type list or string, the

result is of type integer and is the number of top level elements in

the list or string.

(2) If the operator is "type", the result is of type integer and is an

encoding of the type of the operand.

(3) Otherwise the operator is applied recursively according to the
following algorithm:

(a) If the type of the operand is not list, then the result is

defined if the operator and operanTme correspond to one of

the following table entries:

(33)
(34)
(35)
(43)
(44)
(45)
(36)
(42)
(39)
(40)
(37)
(38)
(41)

09

(>C

13

Operator Operand Type

abs integer

neg integer

1 integer

list integer

Result Type

integer

integer

integer

list

put string string

The first three are numeric operators which may be defined.

by the following A-eqressions [Land 641:
abs = 3ix, if x 2 0 then x else -x

neg = Ax. -x

1 =hx.ifx = 0 then 1 else 0 0

The operator "list" produces a list of elements with unspecified

value;the kmiber of elements is the maximum of the operand value

and 0. The operator "put" is an identity function with the side

effect of writing a carriage return followed by the operand onto

the sequential system output stream. .

If the type of the operand is list, then the result is a value of

type list, the elements of which are the values obtained by

applying the operator to each element (sequentially in the case

of "put") of the list, if all such elements are defined.

Otherwise, the result is not defined.

An infix operator designates a partial function of two arguments as

described in section B.&i. In the application of an infix operator to

a primary, the primary is first evaluated. If the value obtained is not of

type list, the result is not defined. Otherwise, the value of the primary is

obtained as follows:

(1) An initial value is chosen according to the operator from the following

table:

Operator Initial Value

+# '3 " 0

8, +, mod, A 1

=I #, <,L, >, s not defined

base not defined

I ""or{) *

* The empty string is chosen unless the first list element is a list,

14

(2) Beginning with that initial value as an intermediate result, the

operator is applied to the intermediate result snd a list element

to produce a new intermediate result.

(3) The resulting value is the value of the intermediate result after
each list element, chosen in sequence, has been used as indicated
in (2).

Thus the value of the primary so obtained is an accumulation, relative

to the operator, over the entire list.
,

E x a m p l e s

a 1 a, x I E $ Y I x-f-z + Y> 421
abs xb put" T I T L E " lblist (1, { 2, 2) }

In the following examples, all those on the same line have Identical values.

#El,2,3>1 . 3
#E l,C2,311 2

1 1 1, 0, 1 I 1 0, 1, 0 1
ne@; t 1, E 2; 3 I 3 E neg 1, C w3 2, neg 3 I 1
type 0 = type "0" 0 .

+/E 1,2,31 6
1 / { 'la", l'q llc't } "abc"

I Ii: E 1,21,c 3,411 E 1, 2, 3, 4 I
Cmment

The extension of the definition of prefix operators in MUTANT 0.5 is

a slight generalization of Iverson's extension of such operators to

vectors and matrices. Accumulation Over a list with respect to sn infix

operator corresponds to Iverson's reduction [Iver 621.

B.2.i Simple Expressions ' .

syntax

(s-expression) ::= (s-expression *)

(s-elcpression *)::= (primary)

(s-expression *) (infix) (primary)

(infix) ::= 1

+

(15)
06)
(17)
(32)
(18)
09)
(20)
(21)

15

mod

Semantics

=

f

>

B

<

6

A

V

'base

(22)
(24)
(25)

(26)
(27)
(28)

(29)
(30)
(31)

(32)

Every simple expression has a value. The value of a simple expression

without an infix operator is the value of the corresponding primary.

An infix operator designates a partial function of two arguments; the

value of the corresponding simple elrpression is obtained by evaluating the

left operand, then evaluating the right operand, and then applying that

function to the operand values. If therules below do not specify the re-
.

sulting value, then the result is not defined.

(1) If the operator is "I" and

(a) if both operand values are of type list, then the resulting value

is of type list and is obtained by appending in sequence the list

elements of the right operand to the list value of the left operand;

(b) if both operand values ere of type string, then the resulting

value is of type string and is obtained by concatenation of the two

operand values, taken in order.

(2) Otherwise the operator is applied recursively according to the following

algorithm.

(a) If the type of neither operand is list, then the result is defined

if the operator and operand types correspond to one of the following

table entries:

Operator Type of Operands Result Type

+r -> @ integer integer

+, mod integer integer

=:I #, >, 2, <, s integer integer

A, " integer integer

base integer string

16

The operators "+", "-", and '$3" designate the mathematical func-

tions of integral addition, subtraction, and multiplication res-

pectively. The operators "+" and "mod" are not defined if the value

of the right operand is 0, Otherwise, they are defined for integral

operends by the following h-expressions, using real division and

Iverson's floor and ceiling operators [Iver 623:
-E- = WX,Y)* if m 2 0 then 1 x/y J else [x/y 1

mod = MX,Y)* x - Y@b=Y) .

The relational operators have integral value 1 if the mathematical

relation on the integers is satisfied and value 0 otherwise.

The operators "A" and “V” may be defined for integral operands by

the following h-expressions: -

A .= h;(x,y). if x = 0 then 0 else if- - y = 0 then 0 else 1

v = A(x,y). c x f 0 then 1 else if y 0 then 1 else 0 .- - # - -
The operator "base" produces a string, the characters of which

are a sequence of digits constituting a representation of the left ,

operand to the base specified by the right operand.

(b) If the type of exactly one operand is list, the result is a value

(>C

of type list, the elements of which are the values obtained by

sequential application of the operator to the non-list operand

and each element of the list operand (taken in the original order),

if all such elements are defined.-

If the type of both operands is list, the result is a value of

type list/The number of element= that list is the minimum of

the numbers of elements in the operand lists; the resulting list

elements are obtained by sequential application of the operator

to corresponding elements of the operand lists (taken in the

original order), if all such elements sre defined.

All infix operators have equal precedence, and the association of operands

is from the left.

EXamDleS

3 a+b c @ abs x a+b-c aA(bVc)

In the following examples, all those on the same line have identical values:

3+4-l 382 13 i 2 13md 7 6
3>4 l-2+1 (3=3)-l 0

"abc" 1 "deft' "abcdef"

I -

17

c 1, 2 I I c “2”, I: 3 I2 I 1, 2, “2”, 2E > ?
2 Q9 I: 0, 1, 2 3 c: 0, 2, 4 I t 4368 1 - 4
c 1, 2, 3 I @ t 3, 2, 1 I c 39 4, 3 I
c (1, 2 3, (3, 4 I., 5 1 + c 0, 1, 2, 3 I c f 1, 215 3, E(2, 8, 4, 5base 3, 7 3

10,)
16

Comment

("1111", "17", "15", "F"]

The extension of infix operators follows Iverson [Iver 621. It corres-
/ponds to both scalar and vector operation in ordinary vector arithmetic.

B.&j Segments

syntax

(v-expression *) .::= (segment)

(segment) ::= (s-expression)

Semantics

(s-expression)
w

- (s-expression)

(s-expression)
(13)

- (s-expression) _ (s-expression)(llc)

A segment always has a value. The.value of a segment without the '1 'I .

operator is the value of the corresponding simple expression.

'Otherwise, the value of the first (leftmost) simple expression is called

the initial value; of the second, the limit value; and of the third (if present),

the step value. The value of the segment is obtained by the following pro-

cess:

(1) All of the simple expressions are evaluated in the order of appearance;

if the step value is not explicitly provided, it is taken to be the

integer 1,

(2) If the values so obtained are all of type integer, then the result is

a value of type list. Otherwise, the result is not defined.

(a) If the step value is positive, the elements of the list are all

those integers, ordered in algebraically increasing value,' which

are obtained by adding non-negative integral multiples of the step

value to the initial value and which are not greater than the limit

value.

(b) If the step value is negative, the elements of the list are all

those integers, ordered in algebraically decreasing value, which

are obtained by adding non-negative integral multiples of the step

value and which are not less than the limit value.

i
L

L

i

i

L

t

18

(c) Otherwise, the result is not defined.

Examples

ln 2' #S-l

In the following examples

1 1, 2, 3 I 0
, all those on the same line have identical values.

1 -3 1 -3-l E 1, 2, 3 I
2 10 4 2 J-3 -4 1 2, 6, 10 I

3 _ 1 _ neg 1 E 3, 2, 1 I
1 0 2 4- - 1neg E I

I

B.2.k Assignments

synt=,

(v-FPression *) ::= (v-expression *) + (cell) (8)
Semantics

Assignments serve to assign values to cells. In the evaluation of an

assignment, the value of the expression to the left of the "+" is obtained,

and then the (sub.)cell named by the cell designator is determined as des- .
cribed in section B.2,f. If both these'processes produce results which are

defined, the computed value is assigned to the designated (sub)cell. Such

assignment may dynamically change the structure of the cell.

Every assignment has a value, which is the value of the expression

to the left of the arrow.

Examples

O+a [index](a+b; a-b) + p[2][1]

d°C 1-n 1 + c*C31 o+x+y+z

B.2.1 Iterative Statements

Syntax -

(s-primary *) ::= (for head) }

(while head)]

(for/while head) }

-(for head) ::= (begin) (for set) (g-expression)

(for set) . .=. . (for set *) :

(for set *) '::= (identifier) e (v-expression)

(while head) ::= (begin) (while cdn) (g-expression)

(while cdn) ::= (while ') :

(60)
(a
(62)
(78)

(81)
(82)
(79)

(851

i
1 19

\-

LW

L-

b

k-

1

(while ') ::= (while) (q-clause) (84)
(while) ::= * (83)
(q-clause) ::= (v-expression) => 0
(for/while head)::= (begin) (for set) (while cdn) (g-expression) (80)

Semantics

Iterative expressions provide for 'controlled repetitive evaluation of

a general ewression, which in each of the various forms of the iterative

eqression is called the controlled expression. Such an expression may con-

ditionally fail to have a value. The value of every iterative expression, if

defined, is of type list; the elements of that list are, in order, the suc-

cessive values obtained from those evaluations of the controlled expression

producing values. A declaration may be included in the heading of any iter-

ative expression; thescope of the identifiers in such a declaration is the

iterative expression.

For-iterative eqressions specify iteration over a list. The evaluation

of such an expression proceeds as follows:

(1) Any declarations in the heading are processed as described in section

B.2.b.

(2) The value-elrrpression of the for-set is evaluated. If the resulting value

is not of type list, the result is not defined.

(3) With the identiz of the for-set naming a value of an element of the

list thus obtained, the controlled eqression is evaluated. That

identifier is said to designate a controlled value; it is implicitly

declared by its ,appearance in the for-set , and its scope is the controlled

expression. The list element values named are successively taken in order

over the entire list value.

(4) The final value of the iterative expression is a list as specified in the

p receding paragraph.

i

While-iterative expressions specify repeated evaluation of the controlled

expression as long as a specified condition holds. The evaluation of such an

expression proceeds as follows:

(1) Any declarations in the heading are processed as described in section

B.2.b.

(2) The value-expression of the qualifying clause contained in the while-

condition is evaluated. If the resulting value is not of type integer,

20

the result is not defined. If that value is 0, evaluation of the

iterative expression is terminated, and its final value is a list

as specified above. Otherwise, the controlled eqression is evaluated,

and the step is repeated.

For/while-iterative expressions specify iteration over a list as

long as a specified condition holds. They are processed as described for

for-iterative eqressions with the following exceptions:

(1) The scope of the identifier designating the controlled value is
I

extended to include the while-condition.

(2) Before each evaluation of the controlled eqression, the value-expres-

sion of the qualifying clause contained in the while-condition is

evaluated. If the resulting value is not of type integer, the result is

not defined. If that value is 0, evaluation of the iterative expression

is terminated, and its value is the list of values obtained to that point.

Otherwise, processing continues with evaluation of the controlled ex-

pression.

Examples

(ieln : S+(i@i)+S]

{ * abs(x1 - x2) > delta => : (x2 + xl, f(xl,x2) + x2 3 ')

{ x E table : * looking => : xl11 = arg => (0 + looking, x[2]]]

AU the following examples have identical values.

(XC210 : (x mod 2) = 0 => x ')

{$x1-0+x, -{ * xuo => : x4-2 + x) ')[23

{ x E 2 100 2 i*x510=>: x>

(2, 4,-6, 8, 10)

Comment

The for-iterative expression provides the effect of a generalized list

mapping function. Since the controlled expression may conditionally

fail to have a value, that function can include selection.

.

B.2.m Procedures

syntax

b-Qression *) ::= (procedure head) (v-expression) '

(procedure head) ::= (proc head +) I

(proc head +) ::= t

(proc head +) (identifier)

(7)

01)
(9)
00)

21

‘-

(s-primary)

Semantics

::= (primary *) (list)

- The computational process designated by a value of type process is

b

L

L

‘-

L

-

L

-

L-

i

A procedure definition is delimited by apostrophes (') and designates

a value of type process.

activated by the evaluation of a simple primary consisting of a primary

followed by a list. If the value of such a primary is not of type process,

the result is not defined. Otherwise, the expression in the definition of

the procedure corresponding to the process value is evaluated, subject to

the rules below, and the resulting value is also the value of the simple

primary. The rules governing such evaluation are the following:

(1) The identifiers appearing in the procedure head are associated, in

order, with.the values of the elements of the argument list. If the

number of identifiers exceeds the number of list elements, the values

named by the extra identifiers are not defined.. If the number of list

elements exceeds the number of identifiers, the extra list elements

are disregarded. Such identifiers&e said to designate procedure

formal parameter values.

(56)

.

(2) In the application of rules of scope in the evaluation of the expres-

sion, the applicable scopes are those at the place of procedure defini-

tion, not procedure activation*

Exsmples

The following examples define and assign process values:
I I a+l+a' '+ increment1

' a 1 a* + 1 + 8. ' + increment2

' x y 1 { x3-y + sum, sum+ 2}[2]’ + average

The follokng examples indicate the activation of the above process values.

increment11 }

increment21 4.x)

average{ a+b-c, sum]

Comment

In MUTANT 0.5, a parameter list, which can be empty, must be associated

with every procedure activation.

L-

B.2.n Fxpressions with Value

smtax

22

(v-eqression) ::= (v-expression *) (51
(v--Cl?ression *) ::= (segment) (6)

(procedure head) (v-expression) ' (7)
(v-expression *) + (cell) (8)

Semantics

A value-expression, if defined, always has a value. It is the least

restricted type of eqression with such a property provided in MUTAlQ 0.5.

B.2.0 General Eqressions

syntax

(g-expression) ::= (v-expression)

(q-clause) (g-expression)

(q-clause) ::= (v-expression) =>

Semantics .

,

(2)
(3)

(4)

A general expression may conditionally fail to designate a value.

If it does not contain a qualifying clause, thenit has a value, and that

value is identical to that of the corresponding value-expression. Otherwise, -

the value, if any, of the general expression is determined by first evalu-

ating the expression in the leftmost qualifying clause. If that value is

not of type integer, the result is not defined. If the value is 0, the

general expression has no value. Otherwise, the value, if any, is that of

the general expression obtained by deletion of the leftmost qualifying clause.

Examples

y + 0 => xiy predicate{x} => function{x)

x < max => y > min => x+y

Comment

In MKUWJJ 0.5, an unsatisfied qualifying clause gives rise to no value,

not en undefined value. Thus general eqressions can be used in contexts

only in which such a property is meaningful, i.e., in the formation of

list values.

B.2.p ,Progr&ns

syntax

(program) ::= eof (v-expressia) eof (1)
Semantics

A program is a value-eqression delimited by end-of-file marks. The

value of a program is that of the value-expression.

- -

-

-

L

L

-

‘-

L

L

c

\c

i

-

23

Examples

See section B.3.

Comment

In MUTANT 0.5, the end-of-file marks are assumed to be supplied by

the interpreting mechanism and &e not normally written.

B.3 Examples

Listings produced during the compilation and execution of some sample

MUTANT 0.5 programs are included as Appendix III. In these examples, comments

ere delimited by question marks. Selected exsmples are repeated below, with

commentary, in the (more readable) publication character set.

B.3.1 Factorial Calculation

PrOgEUIl

[$ factorial I I
' n I [2 - (n=O)] (1; n@ factorial(n-1)') ' + factorial+

.
(nel6:

put ((n base 10) I " factorial = " I (factorial{nj base 10))

?

3

Output

1 factorial = 1

2 factorial = 2.

3 factorial = 6 ,

4 factorial = 24

5 factorial = 120

6 factorial = 720 -

Comment

-

This example corresponds closely to McKeemarPs Example 1 [McKee'66, p* 751.

The following is a similar AIGOL 60 program, which assumes a suitable write

statement.

begin integer n;

integer procedure factorial(n); value n; integer n;

factorial := if n=C then 1 elE@ factorial(n-1);

for n := 1 step 1 until 6 do- -
write(n, " factorial = ", factorial(n))

end

24 I

I-L

IL

i
i

!
I
L

5
L

L
t

Ic

f
L

L
1
I

L
f
L

L
L
i

i

L

In the MLJTAJE 0.5 program, the process value (delimited by apostrophes)

assigned to the cell "factorial" gives the usual r,ecursive definition of ,

the factorial function. The parameter "n" is used to compute a case index
for selection of one of two expressions to be evaluated. Thus case expres-

sions are generalizations of AI%CL 60's conditional expressions and state-

ments. Note that in MUTANT 0.5, the elrpression "n=O" has integral value
1 if the value of n is zero and value 0 otherwise. The expression "1-6" is

equivalent to the expression "E 1, 2, 3, 4, 5, 6 }", and iteration over

each element of that list is specified. ,

B.3.2 Extended Factorial Calculation

PrOgt-~

($ factorial prod I

(' n I [2-(nG)](1 ; n @ factorial[l]{n-1)) l,

'nl@/(ln)',

* n I prod{ 1-n) '

1 + factorial,

_

.

' L 1 P - (#=)I (LCll;
.prod{ L[l #I&I 1 @prod{ L[#W+l- #Ll > ’ + prod,

{ i E l-3 :

E put " ", put ("method "I (i base lo)),

(nel8:
put ((n base 1O)l" factorial = "I(factorial[i]{n) base 10))

I

1
Qxtput

method 1

1 factorial = 1

2 factorial = 2

. . .

8 factorial = 40320

method 2

1 factorial = 1

. . l

25

Comment

In this example, the value assigned to the cell "factorial" is a list

of three process values giving possible definitions of the factorial function.

The first is the recursive computation of the previous example. The second

is an example of Iverson's reduction, in which the multiplication operator

is used to reduce a vector (list) of the first n positive integers. The

third process applies the auxiliary function "prod" to the ssme vector.

"prod" designates a process intended to illustrate one possible hardware

implementation of multiplicative reduction in which, recursively, the'vector

is bisected and reduction applied to each part. Note the use of a list-valued

subscript to select a sublist, which in turn is used as a procedure parameter.

B&3 Further Examples from MUTANT

PrOQaJIl

pUt((+ / (%%3) @ 13,241 > > base 10)

Output

10

Program

c sperm I

' x 1 [2 - (#x=1)1

({xl; .

l/E iel #x:

{ t e-perm{ x[l-i-l]]@i+l-#x]) : W-i] It ?

J

> f +perm,

{ test E ("a", "ab", "abc", "abed") :

3 -

put perm[test]]

output

a

ab

ba

abc

acb

bat

bca

cab

cba

. . .

26
i

L

i Comment

These programs for computation of inner product snd permutations of

string characters or list elements are MUTANT 0,5 versions of McKeeman's
Examples 2 and 4 [McKee 66, pp. 77-781; they are presented'mainly for
comparison.

B.3.4 A prime Sieve

Progran

I$Primesieve I

('nl{$LtJ2_n+L,

(*#L#o=>:

{ L[l] +t, { i e L : imodt f 0 =>i 3 3 L)[l]

? WI ’

1 n c { 25, 250 ? :

[put ("primes in 2 to "I(n base lO)l":"),

put (primesieve{n} base 10)

I
I

I
Q&put

primes in 2 to 25:

2

3
5
7
11 -

13
17
19
23 _

primes in 2 to 250:'

2

. . .

27

Comment

This program is an adaption of the sieve of .Eratosthenes to the com-

putation of all prime integers not exceeding a given integer. "primesieve"

names a process value. In that process, a list of the integers from 2 to

the given value is assigned to the cell named "L". While the length of that

list is non-zero, the first element of the list is saved and then the list

is replaced by a new list consisting of all the former list elements not

multiples of the first element. Note that the saved value is selected as

the value of the controlled expression in the while-iterative expresqion

by the second subscript "111"; thus the value of the entire iterative

elrpression is a list of the primes so saved. The subscript "[2]" selects

that list as the value of, the procedure. Also note the use of the extended

"put" and "base" operators.

B.3.5 Other Examples

Also included in Appendix III are programs illustrating the following:

(1) a slightly different permutation generator; .

(2) a set of algorithms adapted from @ohI graph package [P&h1 671 for
computing the reachability matrix and maximal strongly connected sub-

graphs of a graph from its connectivity matrix;

(3) an integer square root routine based on Newton's method.

28

-
C. Implementation Techniques

L

L

i

L

An experimental processing system for the language MUTANT 0.5 was

developed. It consists of a compiler, which translates MUTANT 0.5 programs
to a compact internal string code based upon Polish suffix notation, and

an interpreter, which performs processing as directed by such strings. The

processing system was implemented on the IBM System/360 hardware; it functions

in the environment provided by the PL$O system [Wirth 67d]. In addition, an

existing syntactic analysis program, written in Burroughs B5500 Extended

AIGOL, was modified for use as an aid in developing the compiler.

L
C.l The Syntax Processor (see Appendix IV for listing)

I

L

The syntax processor is an extension of a B5500 Extended AUOL program

originally developed-by Professor Niklaus Wirth at Stanford. Blocks Bl and

B2 were taken from that progrti without significant modification. Block Bl

establishes the precedence matrix as described by Wirth and Weber [Wirth 65a],

using partial word operations for storage efficiency. Block B2 establishes .

i

i

the precedence functions using Wirth's algorithm [Wirth 65b].

Additional pre- and post-processing was added to produce punched tables

in the ~~360 syntax suitable for direct insertion into the compiler source

deck. This processing includes:

(1) classification and sorting (according to the IBM EBCDIC collating
I

L
sequence) of the terminal symbols of the syntax,

(2) assigning internal codes to the symbols,

(3) encoding and sorting the productions of the grammar,

(4) formatting the required tables.

A B>500 WOL program was chosen for modification because of the relatively

powerful format capabilities provided. -

Those cards at the beginning of the compiler (Appendix V) lacking "CMP"
,/ in the sequence field were produced by the syntax processing program.

(Strictly, they are translations from such cards produced for a previous
t
L

version of ~~360, translated by a conversion program). The availability of

this syntax processing program greatly facilitated modification of the syntax

1
/ of MUTANT 0.5 as the system developed.
i

I
C.l.l Symbol Recognition Tables

t
The following tables produced by the syntax processor are used by the

29

compiler procedure INSYMBCG in re'cognizing the terminal symbols of the

language: ,
&DES a translation table which maps' characters occurring in the

input stream into either their internal symbol codes or

entries into other tables.

a table of partitioning indices classifying characters, by

their translation codes, as

(1) single character terminal symbols,

(2) characters possibly forming character pair terminal

symbols, or

(3) characters initiating identifiers, numbers, strings,

or cnmnents.

PAIRTAB , a sorted table of special character pairs forming terminal

symbols.

RSVD

RSVWD

atable of entry indices into the reserved word table.

a table of reserved words, ordered by length and, within

each length group, alphabetically.

CA.2 Parsing Tables

The following tables produced by the syntax processor are used by the

compiler% syntactic analysis routine in parsing input strings:

F, G tables of precedence functions for the symbols,of the vocab-

ulary.

PIIM a t,able of entry indices into the table RIGRTPART according

to the leftmost symbol of the production right part.

RIGIDPART a table of production right parts, exclusive of leftmost

symbol, ordered by the -(amltted) leftmost symbol.

LEFTPART a table of corresponding production left parts.

RUIE a permutation vector giving the original interpretation rule

number for each of the (reordered) productions.

C.2 The Cqiler (see Appendix $ for listing)

The compiler is a syntax directed, one-pass translator using the prin-

ciples of semantic analysis controlled by a simple 'precedence syntactic

analysis. The general organization of such tranelatars described by Wirth

[Wirth 65a, 675 Shaw 661 has been adopted. In addition to the "value

stack", information about previously scanned symbols is collected in an

30

identifier table and a separate (nested) table used in the processing of

case expressions.

'The compiler is written in ~~360 [Wirth 67~ 1': Since analysis is table

driven, the syntax processor was designed to produce tables which could be

efficiently scanned (see section C.1). In particular, binary search ‘is used

for the table of special character pairs, while entries into the tables

of reserved words and production right parts are controlled by key trans-

formations on the identifier length and leftmost symbol of the right part

respectively [Iver 621. The table of declsred identifiers is organized to
reflect the block structure .of the language [Shaw 663.

C.3 The Interpreter (see Appendix VI for listing)

The interpreter is a program simulating a machine for processing the

Polish suffix string-code produced by the compiler from MUTANT 0.5 source

programs. It is basically similar to well-described proposals for EXJLER

machines [Wirth 65a, Weber 671. In particular, it incorporates:

(1) the traditional AINL 60 stack organization and addressing structure .

[Rand 641,
(2) organization of composite data structures based on descriptor logic

similar to that of the Burroughs B5500, and

(3) data-directed interpretation of operators.

Data storage for the interpreter is organized into a push-down stack and a

free storage area. Composite data structures are implemented as collections

of cells, defined by a descriptor scheme, in the free storage area. In the

interpretation of a 'Polish suffix string, syllables of that string are sequen-

tially scanned. Action specified by most such syllables falls into one of the

following-classes:

(1) branching within the program string, possibly with analysis and

modification of the top stack elements;

(2) fetching of values to the top of the stack, either frcm the program

string or, under the direction of existing stack entries, frm free

storage;

(3) replacing a numberof the top stack elements by a function of those
elements, including constructing from them a ccmposite data structure

in free storage and placing a new descriptor in the stack;

(4) storing a stack value into a composite data structure as directed by

other stack entries.

31

L

i

The interpreter is written in ~1,360 [Wirth 67~1. Its general organ-
ization resembles the EULER interpreter written for the Burroughs B5300

by Wirth and McKeeman [Wirth 65aJ. A machine cell (System/360 double word)
containing a list or string value actually contains a descriptor, which

includes a type code and the base address and length of a contiguous block

I :.
L-

L

of machine cells that contain the values of the list elements or string

characters. A compacting garbage collection scheme originally proposed by

Weber [Wirth 65a] is used, so that available free storage always consists
of a single contiguous area. Data-directed recursive application of 'certain

operators is controlled by the interpreter procedures MAP, MAPWT, MAPRIGHT,

L

32

D. Use of the MUTANT 0.5 Processor,

D.l Language Restrictions

The following restrictions are imposed upon programs to be processed by

the experimental system:

(1) The hardware character set (Appendix I) is used; thus the reserved

words of that character set cannot be used as identifiers, and spaces

are significant in delimiting adjacent reserved words or identifiers.

(2) No limit is imposed on the length of identifiers, but only the,first

eight characters are used in distinguishing them.

(3) No single string constant can consist of more than 256 characters.
(4) Arithmetic operations are defined by the IBM System/$0 hardware. In

particular, addition, subtraction, and multiplication are actually the

corresponding operations in the ring of integers modulo 232 (with approp-

riate interpretation of negative numbers).

In addition, certain valid MUTANT 0.5 programs can cause overflow of compiler

tables or object code instructiion fields (see D.3). .

D.2 Operating Instructions

The MUT,ANT 0.3 compiler and interpreter must be compiled and the object

programs placed in the PI&O system library by the use of SYSTUP [Wirth 67d].
Iii- ;JX$:X to date, these programs have been named MUTANT 1 and MUTANT 2

respectively. The compiled MUTANT 0.3 program is written by the compiler onto

logical device 8, which must be appropriately defined, and is read by the
interpreter initialization process. The following deck set-up (within a ~~360

batci-$is then required:

$MuTm 1

(MUTANT 0.5 source program)

$MsJTANT 2

(data, if any)

OF@

D.3 Compilation Listing

The source program is listed as it is compiled. The hexadecimal num-

bers printed to the left of each line indicate the number of bytes of object

program produced prior to analysis of that line. Under the RASP spooling

system, the printed time is primarily a measure of the time required to load

the compiler or interpreter.

The following messages correspond to errors,detected by the compiler.

A vertical bar is printed beneath the character being scanned at the point

of error recognition, and compilation is terminated. A possible error

recovery technique has been described by Wirth [Wirth 67~3.

SYNTAX A syntax error (according to the grammar of

Appendix II) was detected.

PRCGOVFL A program assembly area in the compiler overflowed.

BRANCHADDR OVFL The relative address generated for an implicit

branch overflowed the allocated instruction field.

CASETABIS NFL An internal table used in processing case expressions

' overflowed.

uI%oCL ID An undeclared identifier was used.

IMPROPER ID An itlentlfier associated only with a value (named

value, procedure parameter value, or controlled

value) was used in a context (assignmerit or reference

formation) in which an identifier associated with

b
a cell is required.

34

E. Reflections on Language Design

The present MUTANT 0.5 system would benefit 'substantially from further

development. There are a number of rough edges in the language definition

and several known errors in the design of the interpreter. Some of the more

unpleasant features of the language re.flect oversights or poor decisions in

the system design, and no conceptual problems arise in their elimination.

Some examples are cited in section E&e. Other rough edges are related to

fundamental questions about the design and use of MUTANT-like languages;

some progress in resolving these questions should be made before further

detailed implementation work is justifiable. The remainder of this section

is an attempt to characterize such languages, to consider their potential

as practical programming tools, and to discuss scrme specific issues raised

by the definition and implementation of MUTANT 0.5.

E.l MUTANT-like Programming Languages

In the past few years, several languages which attempt to extend and 4

simplify ALGOL 60 [Naur 631 have been designed and experimentally implemented

at Stanford. The two most directly of interest, in addition to MUTANT 0.5,

are Wirth and,Weber's EULER [Wirth 65a] and McKeeman's MUTANT [McKee 661;

the following remarks should also be applicable in part to similar lan-

guages, such as LISP 2 [Abra 661 and the AED family [Ross 661, being

developed elsewhere. To a first approximation, theselanguages may be

considered ALGOL 60 extended to allow various types of list (ordered set)

manipulation. In particular, such languages include the following features:

(1)
(2)

(3)

(4)

(5)

Programs consist of conditionally selected sequences of imperatives.

Named variables are provided in the context of a block and declaration

structure.

An assignment operator is provided.

Structured values may be created and manipulated dynamically, and the

format of these structures need not be defined prior to program execu-

tion.

Definitions of certain operators are extended to be dependent upon

dynamic analysis of the operands.

E.2 Practical Applications

For purposes of this analysis, problems currently amenable to cmputer

35

attack fall into the following three broad catagories:

(1) Problems in which the natural data structures are simple, fixed, and

reasonably well reflected in the storage'organization and operation

set of existing machines. Many problems of classical numerical analysis

fall in this catagory. In many cases, efficient use of the machine

hardware is essential.

(2) Problems in which the natural data structures are complex but pre-

determined and well-defined. Processing requirements may or may not

be easily satisfied by machine facilities. Much of systems programming

and business data processing belongs in this catagory. Again a premium

Is often placed on efficiency.

(3) Problems in which the natural data structures are complex and cannot

be predef?ned.-Ejramples are found in such areas as artificial intel-

ligence, general symbol manipulation, and graphical data processing.

In most c*ses, a moderate amount of avoidable system overhead is

acceptable if it significantly increases flexibility and ease of .

.programming in the system.

Experience with MUTANT 0.5 indicates that algorithms for solving

problems in the first and third catagories can be naturally expressed in

a MUTANT-like language. Since the structure of values is arbitrary in such

a language, a uniform scheme (e*g., indexing) must be used to name sub-

structures. Algorithms in the second class, however, can usually be ex-

presse.d more clearly in the notation advocated by Wirth [Wirth 66a, 67al

in connection with ,record classes, a notation which demands static spec-

ification of possible data structures.

Experience also suggests that a simple translator-interpreter mech-

anism for a MUTANT-like language is unable to achieve the high efficiency

required in applications in the f%rst two areas. Translator recognition of,

and optimization for, simple cases is, in fact, precluded by the lack of

a descriptive declaration facility in EULER and MUTANT. Such a declaration

structure,- possibly including the record concept, could be used to advan-

tage only by a considerably more sophisticated translator; even then, it is

not clear that a great deal of efficiency can be gained without sacrifice

of all dynamic features. Thus it appears that, with current machine designs,

MUTANT-like languages are of potential practical value in the third problem

area above and that they may be fairly evaluated in the context of such

problems.

E.3 Language Design I

Presented below are some of the issues which were found to be critical

in the design and use of the MUTANT 0.5 system. Some of these became clear

only after much of the system had been implemented, and no claim is made

that many optimal, or even good, solutions were found.

E.3.a Assignment of Structured Values

In MUTMIT-like languages, declarations serve to name cells but/not

to define their structure . Jnstead, structured values may be created in

an arbitrary way by computation, and such values may be assigned to any

named (sub)cell; at the time of assignment, that cell assumes the structure

of the assigned value. Thus the structures of cells must be dynamic. The

principal objections to such a scheme have been discussed by Wirth [Wirth

67a, 671~1. Briefly, they are the following:

(1) Restructuring of cells is highly implicit, generally expensive in
.

interpretation, and deceptively'simple in appearance to the programmer.

Known storage allocation and referencing methods for implementation

are not efficient enough, espec%ally in the first two of the problem

are85 above.

(2) Subcells (subvalues) must be referenced by a fixed and uniform

naming scheme (such as indexing) with little mnemonic value.'

(3) The compiler has very limited information for selecting code, type-

checking, etcd

Wirth [Wirth 67a, 67111 proposes to avoid these problems by assigning

to each named cell a structure, possibly complex, fixed at the point of

declaration. He claims that 'for practical purposes this turns out to be

hardly a restriction at all" [Wirth 67a, p. 31. The claim is reasonable

for programs arising in the first two problem areas above, but it is

questionable as a general assertion. Among evidence to the contrary are the

following points:

(1) Programs from the third problem area inherently deal with dynamic,

complex, and interacting data structures. The information content

of such structures can indeed be represented within a set of static

data structures, but often this requires considerable bookkeeping

effort on the part of the problem programmer and makes the resulting

37

program difficult to write, to document, and to modify or extend

without drastic revision.

(2) Experience with MUTANT 0.5 indicates that &ome of the most useful

and convenient features of the language generate or depend on

dynamically structured values. Notable examples are the iterative

ewression and the Iverson interpretation of certain operators.

It is tempting to conclude that a desirable solution is to allow the

programmer to specify that a cell must have structures from some subset

of the set of structures of all values computable within the system. In

particular, if the specified subset contains exactly one element, the

translator is expected to check and optimize appropriately. There is some

merit in such a scheme; however, elrperience suggests that the effort required

to produce and adequately test such a translator using currently known tech-

niques is usually very great, even for languages much "simpler" than MUTANT

0.5. In addition, the optimization gained has often been rather disappointing.

E.3.b The Name-Value Problem .

A familiar problem in the design of programming languages is dis-

tinguishing the denotation of the name of a cell and the name of the con-

tents of that cell (or more generally, the name of an expression and its

value). EULER and MUTANT 0.5 (but not MUTANT) resolve this problem by

allowing (and normally requiring) the programmer to make the distinction.

Thus in MUTANT 0.5, "a" denotes the value contained in the cell a, while

'%a" is the name of (address of, pointer to, etc.) the cell itself. A

concession to tradition is made in assignment; Although this is an opera-

tion between a value and a cell, MUTANT 0.5 allows, e.g.,

b +. 3 +-a

in place of

assign (b+3, &a.) or b + 3 +&a.

Allowing the programmer to explicitly manipulate cell names creates

some subtle but fundamental problems in MUTANT-like languages:

(1) The role of block structure and the interpretation of declarations -

is unclear, as illustrated by the following example:

{$aI{$bI~b+a],O+a*} .

If the second assignment is considered valid, then the cellb must

remain accessible after it can no longer be directly named; in

particular, the machine storage assigned to b cannot be reallocated

after exit from the block (list) to which b,is local. Qn the other

hand, if the second assignment is considered invalid, detection of

such assignments within the block and procedure structure of WAXL

like languages becomes a;urprisingly subtle problem, and no satis-

factory solution was discovered.'The difficulty of the problem is

indicated by the following example:

E$XYPl

'.a({$b I&b+a*,x+y,O+x)'+p,
6

PU+X,, { $ c E O+y" 1

I .

A quite similar problem arises in the assignment of values of

type process, as indicated in the following:

. E$Pl
[$a11O+a,'xIx+a'+p),

PC 3 I
1 .

(2) Names which are meaningful at the point of creation may become

meaningless at the point of use due to the dynamic structuring of

cells, as shown in the example below:

{ $ a b I { 1, 2, 3) + a, &a[11 +b, 0 -t a, 1 + b*) .

Such situations cannot be detected easily by an interpretation mech-

anism using machine addresses or equivalents as the representation

of values of type name.MUTANT 0.5 effectively treats such values as
parameterless procedures which return a machine address upon activa-

tion. This solution also'defers evaluation of subscripts, sometimes

with undesirable results. A better scheme is to construct a similar

procedure after evaluation of all subscripts, but such a solution

can be quite expensive.

E.3.c The Copy problem

In MUT&NT 0.5, the traditional notion of assignment of values to
cells has been retained. This decision has fundamental implications for

the design of an interpreting mechanism implemented using a conventional

digital computer. In such machines, cells have simple fixed structures,

--

L

b

L

4

-

L

L

L

L

,
$? L

L

39

and values are generally not accessible except as contents of such

cells. As a result, the structured cells (value,s) of MUTANT-like lan-

guages must be implemented as collections of .maehine cells (values).

Furthermore, since structure is dynamic in such languages, these col-

lections must include descriptive information sufficient to identify the

structure.

In interpreting the assignment of such structured values (possibly

contained in named cells)to named cells, the question srises of'how much

'of this collection must of logical necessity be copied upon assigr&ent.

For example, the interpretation mechanism must compute 3, not 0, as the

value of the following expression:

1 $ab I { 1, { 2, 3 I) .+a, a[21-+ b, 0 + b[2], a[2][2] }[4] .

The answer is that, if by any name and process, the contents of a machine

cell can be changed, there must be at most one name (which may, however,

be the value of the contents of any number of cells) through which that

machine cell or its contents can be referenced. Such names are'created by

explicit or implicit assignment to a structured cell. Implicit assign-

ments in MUTAN'-like languages include use of a value as a procedure

actual parameter as well as the implicit assignments within an iterative

expressi0r-L
.

In the implementation of interpreters of MUTANT-like languages,

assuring such uniqueness proves to be very expensive in terms of efficiency.

Such implementations to date have used an interpreter based upon a push-

down stack,manipulated by program operators+d a free storage area of

machine cells,from which structured cells are created. Uniqueness of refer-

ence to machine cells can begueranteed by unconditionally copying com-

pletely every structured value as it (or a descriptor of it) is fetched to

and stored from the stack. Copying is itself expensive; moreover, each

copying reduces the (finite) number of machine cells in free storage available

Eventually, free storage must be restructured ("garbage collected"), and a

second substantial expense is incurred. Implementations to date have, in

fact, attempted to avoid some of this copying. In Wirth and McKeemaxPs B5500

implementation of m [Wirth 65a], for example, values are copied only

upon fetch-into the stack; as a result, in that EUIEB implementation,

(’ _’

i
40

eqressions such as

L

/

atbtc
.

and p(a+-c)

are semantically disallowed if (and only if) c is found to contain a

L

L

structured value at the time of interpretation. An alternate approach is

to adopt a scheme of including marking information with (sub)structures

and deferring copying until it is logically demanded. In this investiga-

tion, no such scheme was discovered which seemed sufficiently attractive

i

L

!
',
i

!
i

,(see below).

In view of the expense of copying, it is important to note that in

mostcases such action is neither anticipated nor desired by the programmer.

Furthermore, in many cases, difficult or impossible to detect during the

translation process, omission of such copying will not change any of the

final values produced (or, even more frequently, any of the output strings

written). Given the high cost of copying and associated storage management

in available machines, this observation is probably the basis of the most

fundamental objection to the practical use of MUTANT-like languages. A num-

L

I

L

ber of partial solutions to the copy problem are considered below.

(1) In'EULED and MUTANT 0.5 programs, it is possible to create a value of

type &me. This facility creates certain logical problems (see above),

but it is valuable in allowing the programmer to create references to

a named cell (and hence the contained value). In certain situations

(not necessarily obvious to the programmer), it will be more efficient

,
i
L

I
I
i

to access a value with complex structure indirectly via a reference thsn

it will be to copy the value. Such indirect reference is particularly

natural and appropriate in connection with procedure parameters. It has

several drawbacks:

(a) Each value to be indirectly referenced must first be assigned to
I
iL

to some named cell.

(b) Efficiency is critically dependent upon the programmer% careful

(implementation dependent) choice of reference or value in each

situation.

(c) The programmer must be exactly aware at all times of the level of

indirectness being used.

(2) In SLIP [Weiz 631, a list-processing laguage of quite different design,

L

L

L

41

a superficially similar problem was encountered and solved by the use

of a reference counting scheme. A count of the number of valid names

referencing each relevant collection of'machine cells is encoded in

that collection and dynamically adjusted. A brief examination failed

to discover a reasonably efficient adaptation suitable for MUTANT-like

languages, but further investigation might be profitable., Briefly the

difficulty seems to be that the encodings of such counts which can

be efficiently maintained are not the encodings efficiently usable in

avoiding copying.

(3) It is possible to interpret the notion of value in a manner consistent

. with any particular scheme of internal representation and strategy of

copying that is convenient for implementation. In particular, if a

cell contains a structured value in the MUTANT 0.5 sense, it is attractive

to instead consider the value of the cell to be a description of that

structured cell and its subcells. In certain situations (such as array

procedure parameters called by na,me in AIGCXL 60) such an interpretation
is consistent with the spirit of the language and represents an efficient

implementation trick. In general, however, there are several valid ob-

jections to such an interpretation:

(a) It is an ad hoc expedient and tends to make the semantics of a- -
language dependent upon the implementation facilities which happen

to be available.

L

L (b) It further confuses the distinction between the name of a cell and

of its value.

L (c) As most naturally implemented, an embarasaing lack of consistency

azises in the meaning of the language. In particular, it is more

L

L

convenient and efficient to reference unstructured values directly

but structured values indirectly.

(4) Analysis of programs in various languages with an assignment operator

i. (
:’

i L
I$
,

suggests that a significant fraction of all cells are declared and used

to preserve intermediate results and avoid repeated calculation of the

ssme value. Such cells are created for the purpose of naming values; the

fact that these cells (as opposed to the ccmtained values) are structured

t-. is of no interest or use to the programmer, for he never assigns to a
/

L

subcell. This suggests that the language should provide a facility for

naming computed values without requiring assignment to a logically

,

42

i

\
i

_ distinguished cell. Such a facility exists for simple constant values

in present languages. ,

MUTANT 0.3 recognizes that previously computed values may be

used as such intermediate values and thus may effectively be 'constants

throughout the scope of a declared name. A construct is provided to
!

i-

L

t
i

initialize at the point of declaration the value denoted by a name to

a constant (which may be computed fran the values denoted by names

non-local to the corresponding block). Such values will be called locally

constazit. Since all procedure parameters in MUTANT 0.5 are effectively

called by value, it is easy for the translator to check that such names

are never used in the (implicit or eg1ici.t) formation of cell names.

I The important fact is that such naming does not create a name by

i

L

!

which the contents of a machine cell can be changed. Thus in the com-

position of the designated value, any subvalue which is a constsnt,,
either by denotation or by being locally constant in a containing block,

need not be copied. The idea can be extended sanewhat further than is

done in MUTANT O&-If a value contained in a named cell is used in the

computation of a locally constant value, then there are various sets

of sufficient conditions, verifiable by the translator, that insure that

the contained value cannot be changed within the scope of the name of

the local constant. If these conditions are satisfied, it is again not

necessary to copy the contained value in formation of the local constant.

The effectiveness of this solution is critically dependent upon the

programmer's style. Programmers experienced with LISP 1.5 [McCar 621 find
it relatively easy to make effective use of local constants; in fact, such

use is verysimilarto one use of LISP h-expressions. There is also a

trade-off of run-time efficiency versus cmiler speed; in particular,

code.generation based on a very sophisticated set of sufficient conditions

for local constancy is probably incompatible with one-pass translation.

Experience with the MUTANT 0.5 interpreter suggests that the most pramising

i

b.

approach to the copy problem is a finer distinction among the various uses of

the traditional assignment operator and a syntactic structure which dis-

tinguishes among such uses. The provision of ":=", "=", and "=" for assign-

ment, "initialization by value", and "initialization by reference", respec-

tively, in CPL [Buxt 661 reflects exactly such a distinction. Landin's let
--

43

and where constructs [L&d 661 =e also used in CPL and are attractive
syntactic devices for designating local constants.

J

E.3.d Extended Operator Definitions

In MUTANT and MU!!!AKT 0.5, definitions of operators have been'extended
in the sense of Iverson [Iver 621 whenever possible. Such extension leads
to at least three difficulties:

(1)

(2)

For the results of a given c~utatiooa to be well defined, the exact

order of the evaluation of operands as well as the application of

operators must be specified. This is due to the involution of assign-

ment as well as the possibility of procedures with side effects. Dif-

ficulties are not limited to pathological cases; using the extended

assignment operator of MUTjWC, McKeeman [McKee 663 illustrates a useful
application of

hb34'b,a? l

Specification of either ccmplete evaluation of both operands in a

specified order followed by operator application (as in MEANT 0.5)

or any of various levels of conceptual parallelism is likely to lead

togross inefficiencies in scme implementations. McKeeman [McKee 671

has suggested a partial solution based upon the distinction between

types set (unordered) and list (ordered).

The mezngs of operators intended to act upon structured values

generally cannot be extended without the loss of such l me'ani.ng. For

example, the value of

E 1, 2, 4 1 = t 1, 3, 4 3
will be 0 or { 1, 0, 1) depending upon the interpretation of the ex-

tended equality operator: In the first case, the extended meanings of

equality operators will be very different fran those of the other rela-

tional operators; in the second case, comparisons of structured values

must be elrplicitly progranaPed (as in MUTANT 0.5) or require another

equality operator. Extension of the subscripting and assignment operators

present special difficulties:

(a) There are two common interpretations of subscript notation. In one,

such notation is considered simply a naming device. In the other,

the subscript brackets are considered to denote an operator which

maps a value (or cell name) and a numerical value into a subvalue

w

(3) SOme

44

(or subcell name). From this viewpoint, there is a natural gen-

eralization of the subscript operator: a value subscripted by an

ordered set (list) yields an ordered'set of values obtained by

applying each 'element of the set as a subscript, e.g.,

a[{%~3,411 1 3 a'sa W3,411 E 1 a~2~,bC3~,a~4~1 I .
Such an interpretation alzs a very powerful and elegant method

of constructing new ordered sets from a collection of elements and

has been adopted by MUTANT and MUTANT 0.5. Note, however, that the
extension is not quite Iverson's; the subscripted value 'must be

structured but must be treated formally as unstructured. Further-

more, if cell names sre allowed to be subscripted by sets (as in

MUTARl?), the result must be a collection of (sub)cell names, and

one is led to an extended interpretation of assignment. If such

subscripting is not allowed (as in MUTANT 0.5), string manipulation
is quite awkward and an asymmetry is introduced in the language.

There is a fairly obvious similar extension of the assignment

operator. It is again, however, not quite the Iverson etiension

used elsewhere in MUTANT 0.5, for one would prefer

{1,f%3lbCa,bl = (l+a,12,3l+bl
.

itnstead of

{1,{2,3ll+{a,b) = El+a,W+b,3+bl3 .
In addition, sequencing is critically important in assignment;

by one possible definition,

E a, b I + E b, a I = [a+b,b+a} t
which is usually not the desired interpretation.

data types sre noteither clearly structured or clearly unstructured.

The primary examples in MUTANT 6.5 are strings. It is desirable, for

example, to be able to access substrings by the subscript notation for

structured values; on the other hand, when used as operands to, e.g., the

put operator, it is convenient to consider them unstructured. A heir-

kchy of structure can be introduced, but probably at the cost of some

loss of uniformity, snd hence simplicity, in the interpretation mech-

anism.

E.3.e Miscellaneous Problems

A number of decisions made in the design and implementation of MUTANT 0.5

45

were later found to be mistakes, but these mistakes do not reflect fun-

damental problems in the design of MUTAKT-like languages. Some of theseI
are listed below:

(1) Choice of CharacterSet

In the design of MUTAK!T 0.5, it was decided to choose as concise a
notation as possible and to reflect the usage of set theory as well

as conventional algebra. When desired special symbols were not

available in the IBM EBCDIC character set, they were usually represented

by pairs of special characters rather than by word delimiters'or

reserved words. The elegance of this approach is debatable; however,

*it is clear that readability suffers severely, especially in the

hardware representation.

(2) Deletion Operatar

The value of a MUTANT! 0.5 program at any point is generally a very

‘large list structure, the structure of which reflects the history of

interpretation up to that point in considerable detail. Such lists

consume a large amount of storage and often sre of no practical use.

A sequencing operator, similar to the cm but deleting the last

value canputed for an element of the list being constructed, would

be very useful, particulsrly when an expression is evaluated for its

effect rather than its value.

(3) Extended Case Expressions

.McKeeman [McKee 661 has demonstrated an elegant application of a

list-valued case index in his MU!UNT compiler. Such indices are

prohibited in MUTANT 0.5 only because of sn oversight in the design
of the interpreter.

E.4 Methodology

Implementation of MUTAXI! 0.5 has followed the example of EXJIER and

MUTANT; it is based upon a straight-forward compiler producing Polish

postfix operator strings and a stack-oriented interpreter of such strings.

For experimental purposes, such a system seems entirely adequate. Weber

[Weber 673 has demonstrated the suitability of presently available hard-

ware for implementing proven c~ilation and interpretation algorithms in

microcode, and presumably results with specially designed hardware would be

46

,
i
L

i

even better than what he'reports,. In addition, it should be noted that

with sufficiently powerful operators the additional overhead of inter-

pretation is relativelysmall; for example, .th& MUTANT 0.5 interpreter
makes quite efficient use of the System/$0 general registers in vector

manipulation when such manipulation is eqressed in Iverson's notation,

and this efficiency is possible without an optimizing compiler.

i

L

:
i
L

1
i

;

The grammar of MUTANT 0.5 was chosen to be a simple precedence grammar

because of fsmilisrity with the techniques involved and availability of

suitable syntax processing programs. Other well understood formalisms,

summarized by Feldman and Gries [Feld 671, could have been used equally

well, with some trade-offs among speed, space, snd generality. In general,

it was found that, with the available machinery, modifications to the

MUTANT 0.5 grm or compiler were fairly trivial to make. Q1 the other

had, many unfortunate features of the interpreter could not be changed

without substantial rewriting; further investigation of the related prob-.

i

I

L

lems of formal semantics and

than continued work oriented

machine description seems more appropriate

entirely toward syntactic questions.

i J
i

,

L

I
t

47

F. References

Abra 66

Buxt 66

Feld 67

IBM 66

Iver 62

Land 64

Land 66

McCar 62

McKee 66

McKee 67

Naur -63

Pohl 67

,

Abrahems, P., et a.&, The LISP2pr&ranrminglanguage and

system,SAFIPS Conf. P&c. 29 (Fall lg66), pp. 661-676.- -

Buxton, J. Wa9 Gray, J. C., and Park, D., CPL elementary

programming manual, The University Mathematical Laboratory,

Cambridge (January 1966).

,Feldman, J. A., and Gries, D., Translator writing systems,

Technical Report CS69, Computer Science Department,

Stanford (June 1967).

IBM Systems Reference Librsry, PL/I: Unguage specifications,

IBM Form C28-6571,

Iversan, K., I)A progremmine; language, Wiley (1962).

Landin, P. J., The mechanical evaluation of eqressions,

Comput. 2. f! (January lw), pp. 308-320.

Landin, P. J., Thenext 7OOprogramming languages, Comm. ACM2

0-b 1966), PP. G7-J.66.

McCarthy, J., & a&, LISP l.5 programmer's manual, Cqutation

Laboratory, MIT (1%x

McKeeman, W: M., An approach to computer language design, Tech-

nical Report ~~48, Computer Science Department, Stanford
(August 1966)..

McKeeman, W. M., private discussion (Spring 1967). '

Naur, P., et al., Revised report on the algorithmic language

Mmx 60, cam. Am,g (Janwy 1963), pp. l-17.

Pohl, I., Graph package, GSG Memo 43, Graphics Study Group,
SIX, Stanford (June 1967).

Rand64

Ross 66

Shaw 66

Weber 67

Weiz 63

Wirth 65a

Wirth 65b

Wirth 66a

Wirth 67a

Wirth 6711

Wirth 67~

Wirth 67d

48

Randell, B., and Russell, I,. J., AIGCL 60 implementation,- -
Academic Press, 1964. ,

Ross, D. T., 'AED bibliography, Mem. ~~~~-278-2, Project
MAC, MIT (September ig66).

Shaw, A. C., Lecture notes on a course in systems programming,

Technical Report Cs52, Computer Science Department; Stanford

(December 1966). 8

Weber, H., A microprogrammed implementation of EULER on IBM

System/360 model 30, Comm.-ACM 10 (September 1%7), pp. 549-558.

Weizenbaum, J., Symmetric list processor, Comm. ACM 6
- - -(September 1963), pp. 524-544.

Wirth; N., and Weber, H., EULER: A generalization of AIGOL, and

its formal definition, Technical Report CS20, Computer Science

Department, Stanford (April 1965) (also, in part, Connn. ACM 9- -
(January and February 1966), pp. 13-25, 89-99). .

-Wirth, N., Find precedence functions, Algorithm 265, COIIRIL ACM 8-I
(October 1965), pp* 604-605,

Wirth, N., and Hoare, C. A. R., A contribution to the development

of AIGOL, Comm. s 2 (June 1%6), pp. 413-432.

Wirth, N., & certain basic concepts of progrwning languages,

Technical Report cs65, Computer Science Department, Stanford

(MaYl967).

Wirth, N., AIGCL project memo 55 (internal memo), Computer Science
,

Department, Stanford (1967).

Wirth, N., A programming language for the $0 ccmputers, Technical

Report CS53 (revised), Computer Science Department, Stanford

(J- l%?).

Wirth, N. (editor), The PL$O system, Technical Report CS68,

Computer Science Departrmt, Stanford (Junelg?).

49

Appendix I

mblication / Machine Character Set Mapping

Publication

Cha;racte? Set

a

Z

A

z

0

9
I?

9
get

#

1

list

abs

2%

put

type
+

Machine Character

Set (EBCDIC) '

(no equivalent)

. . .

(no equivalent)

A

. . .

Z

0

. . .

9
?I

<

>

(

1

(-

J

$

I

I

GET
. .
#

1

LIST

NEG -

+

Publication

Character Set

@

+

mod /
base

=

f
,

>

z

<

s

A

V

I

-e

.

+

1

a

:

;

E

*

eof

Machine Character

Set (EBCDIC)

(comment bracket)

*

DIV

MOD

BASE

=

+

GT

GTE

LT

LTE

OR

I
a -

4

->

1

=>
..

;

&

.
1.

?

fSYNPHOC

1
2
3
4
3
6
7
8
9

10
11
12
13
1 4
15
16
17
18
19
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
31
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 c
4 1
4 2
4 3
4 4
4 5
4 6
4 7
48
4 9
5 0
21
5 2
5 3
5 4
5 5
5 6
5 7
5 8

<PROG>
<G-EXPR>

< Q - C L A U S E >
CV-EXPR>
<V-EXPR*>

CPROC H O + >

<#‘ROC H O >
<SEGMENT>

< S - E XPR>
<S-EXPR*>

< I N F I X >

<PRIMi

< P R E F I X >

,

< P R I M * >

<CELL>
<CELL*>

<REF>
<REF*>

< S - P R I M >
<S-PRIM*>

r

5 0

1:s I <V-EXPR> !
: := ;V-EXPR>

< Q - C L A U S E > <G-EXPR>
::= <V-EXPR> =>
::= <V-EXPR*>
::I <SEGMENT>

<PROC HO> <V-EXPR> ’
CV-EXPR*> -> <CELL>

::r 8
<PROC H O + > (IOENT)

l l = <PROC H O + >.* 1
l l = <S-EXPR>*.

<S-EXPR> _ <S-EXPR>
<S-EXPR>

-.= <S-EXPR*> -
<S-EXPR> _, <S-EXPR>

. .
::= CQRIM> .

<S-EXPR*> <INi=IX> <PRIM>
.‘. *. . +

*
OIV . -
MOO
BASE
=

: :=

f :=

: :=

: t=

: =I

: :=
: :=

: :s
: :=

ii
GTE
LT
LTE
AND
OR
I
<PR f,l’W>
< P R E F I X > <PRIM>
< I N F I X > / <PRIM>
#
q
L I S T
A6S
NEG
PUT
TYPE
<CELL>
<REF>
< S - P R I M >
<CELL*>
(IDENT)
< C E L L * > (, <V-EXPR> ,)
<CELL*> % *
<REf *>
d (IDENT)
<REEF*> 1, < V - E XPR> _)
< S - P R I M * >
<CONSTANT>
G E T
<L I ST>
<PRIM*> <LIST>
t <V-EXPR> 1

T
ii

5 9
6 0
61
6 2
6 3
6 4
6 5
6 6
6 7
ia
6 9
7 0
71
7 2
7 3
7 4

i 7 5
7 6

t
7 7
78

i 7 9
8C

i
i

ai
a 2
8 3
04
a 5

<CONSlANT>

<LIST>
<LIST HD>

< B E G I N >
<BEG IN>
<OECLARE>

<CASt H O >

<CASE I OX>
< F O R HD>
<biHILE HD>
<F/n HD>
< F O R SET>
<FOR SE J+>
<kHILE>
CkHXLE’>
CCUHILE CON>

51

<CASE HD> <V-ExPR> 1
<FQR H O > >
<WHILE H O > >
< F / W HO> >
< S - P R I M * > (, <V-EXPR> -1

::= (IhiJEGERj
(S T R I N G)
< B E G I N > >

: := <LIST HO> >
::r < B E G I N > <G-EXPR>.

< L I S T HO> 9 <G-EXPR>
- l ⌧.a <

l . = <OkCLARE> 1*.

::=- < s
<DECLARE> t IDENT 1
< D E C L A R E > (IDENT) I <V-EXPR>)

::= < C A S E 10X> (<V-ExPR> ;
< C A S E tiO> <V-EXPR> ;

::=. L <V-EXPR> -1
: := < B E G I N > s < F O R SET> <G-EXPR>
: := <BEGIN> <WHILE CDN> CG-EXQR>
::= < B E G I N > <FOR SET> < W H I L E C O N > <G-EXf’R>
3 :=. <f13R S E T * >
::= (IGENT) c &-EXPRB
::= l

::= <UHILE> < Q - C L A U S E >
: := < W H I L E ’ > :

PHECEDENtiE FUNC;T I O N S

1
2
3
4
5
6
7

. a
9

1c
11
12
13
14
15
16
17
ia
19 *
20
21
22
23
24
25
26
27
2tl
29
30

. 31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
40
49
50
51
52
53
54
55
56
57
58

<YHOG>
<G-EXPR>
<&CLAUSE>
<V-EXPR>
<V-EXPR*>
<PROC H O + >
CPROC HD>
<SEGMENT>
<S-E XPR>
<S-EXPR*>
<INf I X >
CPR I M>
< P R E F I X >
<PRIM*>
<CELL>
cCtLL*>
<REF>
<REF*>
< S - P R I M >
< S - P R I M * >
<CONSTANT>
<LIST>
<LIST HO>
<UEG IN>
<DECLARE>
< C A S E HD>
<CASE IDX>
<FOR HD>
<WHILE H O >
<f-/w IiD>
<FOR SET>
< F O R SET*>.
<MHI LE>
<WH-ILE’>
<WHILE CDN> ’
!
=>
a
->
t I0Eh.J 1

8
CIV
rcoo
EASE
=
7=
GJ

-GTE
LT
LTE
ANO
CR

rc

1 1
3 2
2 3
5 4
4 5
9 5
4 5
7 5
7 5
a 6
6 a

10 6
6 7

10 7
12 7
12 8
12 7
12 7
12 7
12 7
13 7
13 10
2 11
2 11
9 11
4 7
13 7
2 7
2 7
2 7
2 2
1 3
3 3.
1 3
2 2
4 5

14 5
10 5
7 4

13 9
14 9
5 7

14 9
14 9
14 9
14 9
14 9
14 9
14 9
14 9
14 9
14 9
14 9
14 9
14 9
A4 9
6 6

14 7

52

59
60
61
42
63
64
65
66
67

g
. 70
71
72
73
74
75
76
77
78
79
a0
81

ELAPSEC J IME IS 00:06:00

9

LI ST
ABS
hEG
PUT
TYPE

‘s
%
ii
GET
I
1
>
(INJUEH)
(STRING)

;
s
i

E
I

14
14
14
14
14
14
4

14
13
9

13
4

13
13
13
13
2
14
10
14
14
4

14

.

7
7
7
7
7
7

1'2
5

12
7
7

13
5
2
7
7
2

11
14
5
1

13
3

53
g:HUJANT 1

0 0 0 0 : F A C T O R I A L C A L C U L A T I O N - S E C T I O N 6.3.1 ? .
0 0 0 0 < F A C T O R I A L I
000 1 ’ N I L 2-(N=O) ,J (1; N*FACTORIAL< N-l > I’ -> F A C T O R I A L
0 0 3 2 < N c l-6 :
003 0 PUT{ (N BASE 10) 1 (1 F A C T O R I A L = ” 1 (FACTORIAL< N > BASE 1Or 1
0 0 6 0 >

>

END cf COMPlLATION _ ’

ECAPSEC TIME IS 00:00:49

%MUJANJ 2
I

1 FACTORIAL = 1 \
2 FACTOF$IAL = 2
3 f;ACJOitIAL = 6
4 FACTORIAL = 2 4
5 F A C T O R I A L = 1 2 0
6 FACTORIAL = 7 2 0

E L A P S E D TIME I S OG:00:36

OMUTANT 1

0000
oooc
0 0 0 2
0 0 3 3
0 0 4 3
0 0 5 3
0 0 5 9
0 0 6 7
OOA4
OOA9
OOA9
0 0 0 4
OOCA
0005
OOFC
OOFO
0100
0101

5-4

? EXTENDED F A C T O R I A L C A L C U L A T I O N - SECTION 8.3.2 3
< S F A C T O R I A L P R O D I

< ’ N 1 (, Z-(N+O) ,I 4 1 ; N*FACTQRIALI,l,b< N-l > 1 ' v
' N I */(l,t'lJ @ 9
’ N I PROD< 1-N > ’

> -> F A C T O R I A L ,
‘Cl (-'2-(#L=l1 ,)'

i L4,l-1 i PROD< L(, l,#L OfV 2 -1 >+PROD< L(, #& D I V 2+l,#L J) 1
-> P R O D , .

.

< I & L-3 :
C P U T .” “9 P U T ~“HETHUO "141 B A S E 10) b,

< N c i-8 3
P U T ((N EjASE lO)I“ FACTOR,IAL = “)(FACTORIALt,I,K N > B A S E LO) 1

> ,
>

>
>

EN0 (;F COMPILATION

ELAPSED TIME IS 00:00:4C

tMUJANJ 2 '

MfJHOCl 1
1 FACTORIAL = 1

2 FACTORIAL = 2
13 FACJORiAL = 6

4 F A C T O R I A L = 2 4
5 F A C T O R I A L = 1 2 0
6 F A C T O R I A L = 7 2 0
7 F A C T O R I A L = 504C
8 FACTORI& * 40320

'WETHOC 2
1 FACTORIAL = 1
2 FACTORIAL 7 2
3 FAGJORIAL = 6
4 FACTORIAL = 24
5 FACJORIPL = 120
6 F A C T O R I A L = 7 2 0 ’
7 FACTORIAL = 504G
a FACTORIAL = 40320

.

.

METHOC 3 -
1 FACTORIAL = 1
2 FACTORIAL = 2
3 fACJORIAL = 6
4 FACTURIAL = 24
5 FACJOI(IAL = 120
6 FACTORIAL = 72C
7 FAC JOR IAL = 5040
8 FACTORIAL = 40320

ELAPSEG TIME IS 00:00:43

55
8RUfANT 1

0000 3 INNER PROOUCT - S E C T I O N 8.393(A) 3
.0000 PUT t I +/(< Ae2,3 >*C 3,2vl > 1 1 8ASE LO 8

ENP Q F CCMPILATION

ELAPSED TIME IS 00800:35

tWUTANT 2

10

ELAPSEC TIRE IS 00:00t37

i
i

f
i

L

L

i
I,

L

L

L

i

,

56
tHUJANT 1

0000 3 bERHUTATION G E N E R A T O R - S E C T I O N 8.3.3(e) ‘?
o o o c < S PER?l 1
000 1 ’ x I t, 29(#X=11 -1
0 0 1 3 t<x>;
OOlA (I< I c l,YX.:
0 0 2 9
006 1

< J C PERI!< Xi, 1,1-l ,)lX(, I+l,#X ,) > : Xt, 1-1 ,)iJ >
>

0 0 6 4 1 ’ -> PERM,
0 0 7 6 < T E S T C < “ A ” , @‘A&P, “A8C”r “ABCO” > : P U T PERCrC T E S T > >
0 0 9 A >

E N D CF WMPILAT ION

E L A P S E C T I M E I S 00:00:36 .

%CUTANT 2

A
A8 ’
0A
AbC
AC8
&AC
f3CA
CAB
CBA
ABCD
A80C
ACBD
ACDB
ACBC
ADC8
BACD
BADC . .
tiCAD
tiCDA
0CAC
BDCA
CAB0
CAD8
CtJAC J
CBDA
CCAS
CCBA -
DABC
CAC8
iIt3AC
CBCA
DCAt)
GCtiA

E L A P S E D TiME IS OCt00243 '

IL-
1 SYMUTANT 1

L COO0
0000
0000
0014

i OOlE
004 e

I 004c

L 0053
0054
OG64

/ 0082
L OOBE

008f

3 PRIME S I E V E SAHPLE PROGRAH - S E C T I O N 8.3.4 3
C I PRIMESIEVE

4 ‘ N I <SCT 12-N.>Le
< l #l - 0 a+) :

< L(,lJ -> T, < I & I, : I MQD 1 -= 0 *> I > -> C >t,l,i
>

M-2,) e
) 1
C N C < 259 250 > :

< PUT (“PRIMES IN 2 TO ” 1 (N BASE 101 1 “:“I,
P U T (PRIMESIEVE< N > 6ASE 10)

>
>

0090 >

t E N D GF CC#lPILAffDN

E L A P S E D T I M E I S 00:00:40
,

%WJTANT 2

P R I M E S IN 2 T O 25:
I i 2

I

i
3
5
7
11
1 3
17 .
1 9
23
PRIMES I N ‘ 2 T O 25C:.
2
3
5
7
11r
13

i 17 ,
1 9

I 23
-

L 29 31
37
41

I
i

43
47
53

I *

i

59
61
67
71

i 73
i 79

, 03
89

97
101
103 4

1 0 7
1’09
1 1 3
127
131
137
139
149
151
157

.

163
167
173 -
179
181
191
193
197
199
211
223
227
229
233
239
241

E L A P S E D T I M E I S OO:O&t09

5 8
rlMlJTAN1 1

0 0 0 0
o o o c
000 1
0 0 1 3
OOlA
0 0 2 9
0 0 5 2
OC58
d05F
0074
009C
OOA8

3 P E R M U T A T I O N G E N E R A T O R 3
< S PER&l I

’ x I (, 2-(#X*L1 -1
l<X>;

I/< I E l,#X :
< T C PERM< Xt, 1-I-l ,I I Xt, I+l,#X -1 >=
< xt- I ,) > I T

>
> 1’ -> PERMr

C TEST C < l-1, l-2, l-39 l-4 > :
< P & PERM< TEST > : PUT4 I/(P BASE 10) 1 >

> >

EN0 CI; C O M P I L A T I O N

tCAPSEC J IME IS GO:00:39

8MlJTANT 2

1
1 2
21
123
132
213
2.31
312
321
1234
1243 .
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2431 -
3 1 2 4
3142
5214
3241
3412
3421 _
4123
4132
4213
4231
4312
4321

tLAYSEL; T I M E I S 0C:O0:44

!&MUTANT 1
.

L 0000
0000

i 0000
i 0 0 0 4

OOOB
oc30
0 0 4 7

L .0062
007F
0 0 8 0
0 0 8 0

L 009A
OOBL
OOBE
OOEA

L 0115
0 1 3 E
0 1 7 9
OlTE

L 0191
OlAA

5 9

3 G R A P H M A N I P U L A T I O N R O U T I N E S ?
C J; R E A C H V E C

(’ c I I
C $ PR R t58 N (#C) I

t l-N)-=1 -> 689 CI,I,) -> R, CISl N -> PRI
< 0 +/(PR=(R->PR))q=N => :
. < J C 1-N : BB(,J,) A N D PRI,J-1 =:)

’ < 0 -> 86(,3,), R OR C(,J,I -> R > >
a, R >(,5-I ‘1

Of SYLAYHATRI X
1’ C TITlE 1 <PUT ” “, P U T TITLE*

< I & l&K : P U T (l/Kt,I,) B A S E 21) >> ‘1
REACHMATR I X MAXSC SUBGRAPH T
c 4 < <lr1,O,0,brO>r cO~ltO,ltO,O>r <O*lr110,0t0>r

cO,O~Odtl,O>r <0~1~o10,lrO)r <1,0,0,0,0,1> > 1 I
’ c I < I c 1-E : REACHVEC<‘C, I > 3 ’ -> REACHMATRIX,
‘ R 1 C 1 E l,#R : < J & l,#R : R(,I,b(,J,) A N D Ri-J-)(,1,) > > ’

-> MAXSCSUBGRAPH,
OISPLAYMATRI XG C, “C M A T R I X ” >,
O I S P L A Y M A T R I X C REACHMATRIX< C >, “R M A T R I X ” >,
OSSPLAYMATRIXG HAXSCSUBGRAPHC REACHMATRIX< C > >, “MSC; M A T R I X ” > :

L
EN0 CF WMPICATION

ECAPSEG T I M E I S OCtOOt42

XMUTANT 2

C MATRIX
1 lOOGO
010100 .
011000
000110
010010
10000 1

R M A T R I X
1101.10
010110 >

011110
010110 -
010110
110111

YSC MATRIX
10000c
010110
00100c
010110
010110
coooc 1

kCAPSEC TIME IS 00:00:48

OHUTANT 1

0000
oooc
0 0 0 6
OOlF
0046
0 0 5 3
0 0 5 3
006.7
00’71
009F
OQA 7
0 0 0 2
OOEO

< S SQRT
(’ N 1 < J X ERR I

t N DIV 2 -> X I+N*Z -> ERR,
C l ERR Gf (ABS(X*X -- N 1 -> ERR) =>: t X + (N DIV X)1 DIV 2 -:
x >(,3,) ’ 1

PRIHESIEVE
(‘N 1 <SL T)2-N->L,
<* #C-=0 => :

< L(,l,) -> Tt < I & C : I MOD T -= 0 => I > -> l. >(,l,) >
>(,2,)’ 1 I

PUT m PRIMES AND INfEGERILEO SQUARE ROtlTS"t
< I C PRIHESIEVE< 250 > :

PUT ((I.BASE 10 ,I" "j~SQRT<I>BASElO~~> >

END GF COMPILATION

ELAPSE0 TIME IS 00tOOt39

!&MUTANT 2

PRIMES ANG INTEGERIZEO SQUARE ROOTS
2
3
5
7
11
13
17.
19
2 3
2 9
3 1
3 7
41
43
et
53
59
61
67
71
73
79
83
89
97
101
103
107
lC9
113
127
131
137
139

1
1
2
2

3
3
4
4
4
5
5
6
6
6
6
7
7
7
0
8
8 -
0
9
9
9
10
10
10
10
1c
11
11
11
11

149
151
157
163
l.67
1 7 3
179
1 8 1
1 9 1
1 9 3
197
199,
211
2 2 3
2 2 7
2 2 9
233-
239
241

ELAPSED TIME IS OG=O1:17

12 r
12
12
12
12
13
13
13
13
13
14
14
1 4
1 4
1 5
15
15
1s
15

