csS 121

ACCURATE BOUNDS FOR THE EIGENVALUES OF THE LAPLACIAN
AND APPLICATIONS TO RHOMBICAL DOMAINS

BY -

CLEVE B. MOLER

TECHNICAL REPORT NO. CS 121
FEBRUARY 19, 1969

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY




r—

r-

r— — r

— — [

—

r— r— r— (-

ACCURATE BOUNDS FOR THE EIGENVAIUES OF THE LAPLACIAN
AND APPLI CATI ONS TO RHOMBI CAL DOMAINS*

by

Odeve B. Moler

1. Introduction. By an eigenvalue and eigenfunction of Iaplace's

operator on a bounded two-dinmensional domain G we nean a positive

number A and a non-zero function u(x,y) which satisfy

(l) i Au(x)y) + >"u<x;y) =0 , (X:y) e G

and

(2) u(x,y) = 0, (xy) el
>, dF

where I' is the boundary of G and A = — t —5 .\ enumerate
ox oy

the eigenvalues so that 0 <A <A, < >\5 <.

In [1] and [2] a method is described for finding accurate approxi-
mations to these eigenvalues and eigenfunctions together with rigorous
bounds on the error in the approxinations. The nethod nakes use of
known particular solutions of the differential equation (1) and involves
two nmain steps. First, a linear conbination of the particular solutions
is determned which approximtely satisfies the boundary condition (2).
Second, the error on the boundary is neasured and used to conpute upper

and |ower bounds for a true solution. The pertinent portions of [1] and

[2] are sumarized in Section 2.

* Supported by N.S.F. grant Gp-8687 and O N.R contract N0OOOlk-67-A-0112-0029.

* Egpartrnant of Mathematics, University of Mchigan, Aan Arbor, M chigan,
103.
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This paper is primarily concerned with the first step of this
process. A generalization of the interpolation technique of [1] for
determ ning a good linear conbination is described in Section 3. The
basic tool is a Householder-Qr al gorithm[5]-[6] for computing the

singul ar values of rectangular matrices.

In Section 4 the revised nethod is illustrated by taking the domain

G to be a rhonbus. Such domains are difficult to handle with the
original method. The Winstein nethod of intermediate problens has
al so been applied to rhombical domains by Stadter [3]. W concl ude by

conmparing Stadter's results with our own.

2. Summary of [1] and [2]. Introducing polar coordinates (r,0)

and scal ed Bessel functions stv(g) we note that for any v the

functions

pv(r,o;h) = stv(‘/'K r) cos VO , v=0,1,2 ... and
(3)

p_, (r,0;M) = stV(/X r) sin V0 |, v = 1,2,3 ,...

are solutions of the differential equation (1). Consequently, finite
l'i near conbinations of these functions may approximate the desired
eigenfunctions. These "particular" solutions are chosen because
results of S. Bergman and |.Vekua inply that |inear conbinations of
them can approximate any eigenf'unction arbitrarily closely and because
simlar particular solutions can, in prinicple, be generated for nore

general differential equations.
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Any symetries in the domain G can be used to elininate terns

from the linear conbination. For exanple, if Gis symetric with

respect to both the x and y axes, then the first eigenfunction

(corresponding to A can be approximated with n ternms by

1)

(4) u,(r,9) %Pp; _o(r,050,)

|1 M:

The parameter M, and coefficients ¢ are to be deternined so that
J

u, is close to zero onT .
The method used in [1] involves choosing n points (r ,0.)
1" 1
on I' and requiring that u, interpolate zero at these points, that
S
u*(ri,Gi) =0, i =1,...,n .

This determnes the coefficients to be the solution of A(M)c =0

where ¢ = (cl,...,cn)T and A(AN) is the n-by-n matri x whose

i,j-th element is a.l’j(X) = p23‘ 2(:r-i,@i;k) , i,j =1...,n . Non-zero
coefficients are obtained if and only if A(M) is singular, consequently
A, is taken to be a zero of deternminant (A(*)).

It is convenient to normalize u, SO t hat

2n 6
(5) j"[ (r,rdrdO:l

where & is the rauius of the largest circle centered at the origin and
contained in G. This can be achieved wthout nunerical integration
because the particular solutions (3) are orthogonal over this circle

and becone orthonormal if 5, is defined by
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2 6 2
.. on j I ¢/ r)r dr =1,

(6) 0

2 6 o
s, - M J J, N ryr dr =1, v=1,2,... .
0

The desired normalization (5) of w, can then be achieved by requiring
@) i& c? =1
j=1

Note that the nornalization depends upon 6 and A .

The approxi mate ei genf'unction u*(r,O) determned in this way is
a solution of the differential equation which is zero at n selected
boundary points and hopefully small on the rest of the boundary. To
obtain error bounds, we compute
(8) e = mx |u/(r,0)|. Jarea of G

(r,0)el

The first theorem of [2] then inplies that there is an eigenval ue hk

in the interva

b
>

* A *
©) Tre S ™ S Toe

The other theorens in [2] bound the error in u, . Thus it is possible
to obtain upper and | ower bounds for both the eigenval ues and eigen-

functions.

3. New nethods for determning the coefficients. The interpolation

t echni que described above is a special case of the follow ng genera

and e . Let m

met hod for determ ning the;f. 's, A and hence u,
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poi nts (ri’oi) , I =1,...,m , be chosen on the boundary, let n be
the nunber of terms to be used and assume m>n . (|n practice, we
wll take n to be 10 or 20 and mtwo or three tinmes n .) Let
A(h) be the rectangular matrix with elenents

(10) ai’j(%.) = pu(ri,Oi;?\),i = 1l,...,m, | = 1,...,n
dJ

where the vJ. are determned by any symetries in the domain. |et

‘e = (cl,...,cn)T and | et I-Im and |-|n be norms on m -vectors and
n -vectors respectively. Conpute
() e,
11 mn mn T
AoC Sln
by an al gorithm which al so conputes the mnimzing Aand ¢ . et the

mnimzing A be the approximate eigenvalue A, and the mnimzing c
be the coefficients in the approxi mate eigenfunction .

n

u*(r,O) = ) c.p (r,03N)
; 3 Fv.
J=1 J

The actual value of the mninumis not used. In principle, infinitely

many A, 's could be found, each giving a local mnina and each approxi-

mating an eigenvalue of the original problem |n practice, a rough
estimate of an eigenvalue is known from other considerations and the
mnimzing search is carried out near the estimte.

The quotient in (11) should not be confused with the Rayleigh
quotient occurring in variational nethods. The value of our quotient

is hopefully very small and is a measure of the error in satisfying the
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boundary condition. In nmost variational methods the base functions
in the linear conbination already satisfy the boundary condition, but
not the differential equation, and the value of the Rayleigh quotient
approxi mates the eigenvalue itself.

Ifm=n, we technically have the original interpolation nethod
because a mninmum equal to zero occurs when A and c are such that

A(MN) is singular and AMec = 0. |If m>n

the mnimumwll not

be zero except in special circunmstances and u, wWill not be exactly
zero at the chosen boundary points.

In the experinments to be described in the next section, we have taken
both ||jm and ||-|| to be Euclidean length, thus obtaining a discrete
least squares fit to the boundary condition. |t js known that any

mby-n matrix A, and in particular our A(N) , can be factored

into a singular value deconposition y g vT where U is mby-m
orthogonal , v ois n-by-n orthogonal and £ is mby-n with the form
o}
1
0
%
T = 0 .
. . . . . cn
0
where 0 2096%>. . .20 >0. The singular values o, are the square

roots of the eigenval ues of ATA and in our case are functions of A .

[t is inmediate that

llAg) llax, |
(12) an—l'Eﬂ = g, = Eﬂ'
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where v_ is the last row of v .
—n
Several algorithms for conputing the singular value deconposition
wi thout the loss of accuracy resulting fromthe use of ATA are proposed
by Golub and Kahan in [4] and by Golub in [5]. The algorithmin [5]
uses Househol der transformations to reduce A to a bidiagonal nmatrix J
and then a variant of the QR algorithmto conpute the singular values

of J . An Algol procedure for the algorithmis given by Businger [6].

The matrix VT and hence our coefficient vector ¢ is a biproduct of

“the algorithm The ¢ automatically satisfies (7). To conplete the

process we carry out a one-dinensional mnimzing search to find |oca
m ni ma of cn(k). The minimzing M are our approxinate eigenval ues.
This nmethod is often superior to the original interpolation
approach.  The boundary points nust still be chosen, but their effect
on the final approximtion and bounds is |ess pronounced. Furthernore,
t he Househol der-m al gorithm provi des a stable, accurate nethod for
conputing the coefficients, the nmost critical portion of the process
It might appear even nore desirable to use a Chebyshev criterion at
the boundary by taking H'Hm in (11) to be the maximumnorm  But now
we see no natural choice for |[.|| . If the maxinumnormis also used
for H-Hn we do not.know of an algorithm for conputing the mininizing c .

If we take [l2]| = |¢c the inner nininization in (11) in effect

ik
becones

n
(13) mn miax lai,l - Zec.Ja |
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The resulting coefficients must be renormalized to satisfy (7). W
have not had nuch experience with this approach. Sone prelimnary
experiments encountered difficulties possibly related to the fact that
A is chosen so that the particular solutions pv(r,O;)\) do not form

a Chebyshev system on the boundary. Further investigation is planned.

4, Experinents with a rhonbus. The |east squares method described

.above Was tested by taking Gto be a rhonbus with sides of length ¢

and obtuse interior angle B for various values of g . This region
was chosen for several reasons. First, the corners in the region

have a direct effect on the accuracy of the nmethod. Second, the rhonbus
has been used by Stadter to illustrate the nethod of intermediate
problens and we wish to conpare the two nethods. Third, we wish to
extend Stadter's tabulations to include eigenvalues of all synmetry

cl asses.

Since we are not interested in just the rhonbus itself, we have
avoi ded using any of its special properties. It is possible to use
our conputer programto bound the eigenval ues and eigenf'unctions of
any other star-shaped symmetric domain by "just changing one card".

_ Unless B is a submultiple of 180° sone hi gh order derivatives
of the eigenf'unctions will be unbounded near the corners of this domain.
However, the particular solutions and hence our approximating eigen-
functions have bounded derivatives of all orders. Consequently, we can
expect slow convergence of the approxinmations and will have to take

many terns in the linear conbinations to get reasonable accuracy.
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In 1) an L -shaped donmain with one reentrant corner was studied using

particular solutions of fractional order to match the boundary condition
and derivative singularities at the corner. Upper and |ower bounds
which agreed to better than eight significant figures were obtained
rather easily. W avoided such an approach with the rhonbus because it
becomes too special when nore than one "bad" corner is involved and because
we were interested in the effect of the singularities on convergence.

Upper and |ower bounds for the first five eigenvalues of six
different rhonbuses are given in Table 1. (The approximation A, nay
be easily reconputed fromthe table using A, = a - d-2/a where a
and d are respectively the average and half the difference of the given
upper and | ower bounds.) The first five eigenval ues of the corresponding
square, that is p=9° , are 2, 5,5, 8 and 10 .

If the rhonbus is oriented as in Figure 1, then the first five

eigenfunctions have the following qualitative properties. Wth respect

to the x -axis, U, Uy, and u, are symetric, wuw, and u_ are

3 5
antisymetric. Wth respect to the y -axis, u . Uz, and u,
are synmmetric, u, and u are antisymetric. Only u, has curved

nodal lines; they are sketched in the figure and they approach the lines

y =+ x as B approaches 90° . The nodal |ines of uy . Us and U,

are the y -axis, the x -axis and both axes, respectively, Because of
the symetries, the particular solutions used from (3) were those involving

odd sines for

only even cosines for u, and Uy » odd cosines for u,

1

u, and even sines for u
] 5.
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For all the values tabulated, 4 boundary points and 20 terms in the
series were used. The number of boundary points and their distribution
did not have a marked effect on the accuracy, although it was found
hel pful to space the points nore closely together near the corners.

As g varies, the effect of the corners upon accuracy can be seen
imediately fromthe values of e given in Table 2. In general, as the
angl e at a corner increases, the severity of the singularity also
increases (see [7]) and consequently the accuracy for a fixed nunber of
terms will decrease. This is observed for k =1, 3 and 4 where ¢
increases as p increases. In these three cases, the second derivatives
of u, are unbounded near the obtuse corner.

For k = 2, the nodal line bisects the obtuse angle and hence al
the angles are effectively acute. The second derivatives are now bounded
but the third derivatives are unbounded. The largest angle is 1800-3,
whi ch' decreases as p increases. The net effect is significantly greater
accuracy for k = 2 than for k =1, 3 or 4 and decreasing ¢ with
increasing B .

For k =5, the nodal lines bisect both angles and all angles are
effectively less than 60°. The third derivatives are bounded while the
fourth derivatives are not. The accuracy is greater than even k = 2
but its dependence upon B is complicated, apparently by the presence
of two conparable angles.

A special situation occurs with g =120° and k = 2 or 5. The
eigenfunctions u, and 115 are then also eigenf'unctions of equilatera
and 50-60-90”Atriangles respectively. It can be shown that such eigen-
functions are analytic. W can actually obtain several decinmal places

of accuracy with only a few terns.

10
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The canputations were done on an | BM 360/67 using |ong form arithnétic
(roughly 16 significant decimal digits). Each 40-by-20 case took about
20 seconds.  Sonme 20-by-10 cases were also tried; they each took 2 or 3
seconds. A Fortran version of the Algol procedure in [6] was used for

the singular value deconpositions. The one-dinensional minimnzations

were done using repeated quadratic interpolation.

5." Conparison with the method of intermediate problems. The nethod

of internediate problenms, introduced-by A Winstein and extended by

N. Aronszajn, is the basis for several techniques for computing bounds
for the eigenvalues of certain sem bounded, self-adjoint operators on

H lbert space. As the survey articles [8] and [9] indicate, the nethod
has both a rich theoretical background and inportant applications to many
probl ens in physics and engineering. One of the techniques, the so-called
B*B nmethod of N. Bazley and D. Fox, has been used by Stadter [3]to
bound the eigenval ues of Iaplace's operator on a rhonbus.

Stadter chooses to consider only eigenfunctions which are symetric
with respect to both axes, although he could easily handle others.
Consequently, his ?\l , >\2 , >\3 , 7\1, ?\4 , }\6 ,

o}

He-tabul ates results corresponding to our g = 105° |, 120 yeer, 1657 .

Hence our tables overlap in the follow ng four places:

Qur bounds Difference  Stadter's bounds Difference
* (105°) 2.1138 2.1150 .0012 2.1137 2.1163  .0016
?\-1(1200) 2.5192 2.5261 .0069 2.5210 2.5307 . 0097
M, (105°) 8.0043 8.0133 .0090 7.9960 8.0286 .0326
A, (120%) 8.4751 8.5100 .0349 8.4807 8.5365 .0558
11
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W see that the accuracies of the two methods are conparable for this
particular problem Qur bounds are somewhat tighter, but Stadter's
paraneter which roughly corresponds to our n was only 15,versus
our 20. Wth our n also set to 15 , we obtain accuracies very
simlar to Stadter's.

It is also interesting to note that the center of Stadter's intervals
are close to the upper ends of our intervals. This, conbined with the
fact that our A, 's are probably much nore accurate approxinations than
the bounds indicate, |eads us to suspect that Stadter's |ower bounds
may be much closer to the actual eigenvalues than his upper bounds.

Qur nmethod al so produces approxinate eigenfunctions and bounds on
their accuracy. The nethod of intermediate problens does not do this.

In a sense, this domain leads to a very easy test of the method of
i ntermedi ate probl ems because a rhonmbus can be mapped onto a square by a
sinple affine coordinate transformation. The resulting eigenval ue problem
on the square provides a very natural application of the nethod. However,
with other domains for which the transformation is nore conplicated, or
unknown, the application becones nore difficult or inpossible. For exanple,
we do not see how to apply the nethod to the L-shaped domain in [I]. On
the other hand, our nethod has the advantage that it can be applied
directly to any other domain.Apparently the accuracy of both nethods
-is affected by singularities at the corners.

It should be pointed out that, although the theoretical basis of

our nethod is quite general [2], it has so far been applied only to the

12
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"fixed, honpbgeneous vibrating nmenbrane" problem (1)-(2). The method of
internediate problens has been successfully applied to a nunber of other
differential equation eigenval ue problens.

In sunmary, for the specific problem of Iaplace's operator on a
rhonbus the two nethods give conparable results. For Iaplace's operator
on other domains, especially if eigenf'unctions are also desired, our
method is to be preferred because it can be applied with no change.

For certain other types of eigenvalue problems involving other operators,

the method of internediate problenms may be applicable where ours is not.
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2,01218
2,01248

L. 90375
4.90403

5.15659
5.15750

7.99206
7. .

10.0574
10.0578

9

.028
.088
.117

.018

100°

2.049kL7
2.04992

4.86522
4.86550

5.38023
5.38324

7.98392
7.98866

10.2334
10.2337

105°

2.11389
2.11494

4. 88407
4.88424

5.68125
5.68840

8.00439
8.01321

10. 5372
10.5375

Table 1

110°

2.20923
2.21134

L.96317
k. 96325

6.07504
6.08970

8.079k4k
8.09402

10. 9864
10. 9866

115°

2.34135
2.34527

5.10907
5.10916

6.58418
6.61170

8.23001
8.25296

11.6080
11.6086

Bounds for eigenvalues of rhombus

100
.107
.027

279
.296

. 009

105
.2h6
.017
.627

0 5

.006.

Table 2

Values of

16

110

00

1.21
. 900
.008

6.103

115
834
4y
2.09
BdEw

. 021

120°

2.51921
2.52606

5.33333
5.33334

7.24150
7.29028

8.47510
8.50997

12,400
12,4005

120
1.36
<.001
3.36
2.05

<.001
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Figure 1

Nodal Iines of w , B = 105°
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