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1. Introduction. By an eigenvalue and eigenfunction of Laplace's

operator on a bounded two-dimensional domain G we mean a positive

number h and a non-zero function u(x,y) which satisfy

(1) ,

and

n"(x,d  + h'-&y) = 0 , (x,y) c G

(2) U(X,Y> = 0 ) (X,Y> E r

where P a2 a2is the boundary of G and n = - + -
i3X

2
3Y2

. We enumerate

the eigenvalues so that 0 < Al < A2 5 A3 < . . . .

In [l] and [2] a method is described for finding accurate approxi-

mations to these eigenvalues and eigenfunctions together with rigorous

bounds on the error in the approximations. The method makes use of

known particular solutions of the differential equation (1) and involves

two main steps. First, a linear combination of the particular solutions

is determined which approximately satisfies the boundary condition (2).

Second, the error on the boundary is measured and used to compute upper

and lower bounds for a true solution. The pertinent portions of [1] and

[2] are summarized in Section 2.
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This paper is primarily concerned with the first step of this

process. A generalization of the interpolation technique of [1] for

determining a good linear combination is described in Section 3. The

basic tool is a Householder-Q,R  algorithm [5]-[6] for computing the

singular values of rectangular matrices.

In Section 4 the revised method is illustrated by taking the domain

G to be a rhombus. Such domains are difficult to handle with the

original method. The Weinstein method of intermediate problems has

also been applied to rhombical domains by Stadter [3]. We conclude by

comparing Stadter's results with our own.
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2. Summary of [1] and [2]. Introducing polar coordinates (r,Q)

and scaled Bessel functions “vJv(Q we note that for any v the

functions

(3)

P$,QN = JsvJy( X 4 ~0s VQ , v = 0,1,2, . . . and

P-v(r,Q;h) = JsvJv( h d sin VQ , v = 1,2,3 ,...

are solutions of the differential equation (1). Consequently, finite

linear combinations of these functions may approximate the desired

eigenfunctions. These tlparticulartt solutions are chosen because

results of S. Bergman and I.Vekua imply that linear combinations of

them can approximate any eigenf'unction arbitrarily closely and because

similar particular solutions can, in prinicple, be generated for more

general differential equations.



t
I-
i.
1
ti
i
1

t

1
IL

1

Any symmetries in the domain G can be used to eliminate terms

from the linear combination. For example, if G is symmetric with

respect to both the x and y axes, then the first eigenfinction

(corresponding to hl ) can be approximated with n terms by

n
(4) u*hQ) = 1 C.P

j=l J %-2 hQ;A*)  l

The parameter A* and coefficients c
i

are to be determined so that

u* is close to zero on r .

The method used in [l] involves choosing n points

on I' and requiring that ujc interpolate zero at these

is

CrijQi)
points, that

,

u,(ri,Qi) = 0 , i = l,...,n .

This determines the coefficients to be the solution of A(h)c P 0

where c = (cl""'Cn~n~T and A(h) is the n-by-n matrix whose

i,j-th element is a. .(A) 5= p
l>J

2j 2(ri,@i;h) , i,j = lj...,n . Non-zero

coefficients are obtained if and only if A(h) is singular, consequently

h* is taken to be a zero of determinant (A(h)).

It is convenient to normalize uJt so that

(5) 7 y u$r,e)r dr de = 1

0 0

where 6 is the rauius of the largest circle centered at the origin and

contained in G . This can be achieved without numerical integration

because the particular solutions (3) are orthogonal over this circle

and become orthonormal if s t, is defined by

L
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The desired normalization (5) of us can then be achieved by requiring
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2 6
s l

0

& s JE (Jh r)r dr = 1 ,

0

2 6
S

V
l 7-r s Jz (/A r)r dr = 1 , v = 1,2,... .

0

(7 >

,
L

n

c c2 1. = .
j=l J

Note that the normalization depends upon 6 and h .

The approximate eigenf'unction u,(r,Q) determined in this way is

a solution of the differential equation which is zero at n selected

boundary points and hopef'ully  small on the rest of the boundary. To

obtain error bounds, we compute

(8) (u*(r,B)I . ,/area of G .

The first theorem of [2] then implies that there is an eigenvalue hk

in the interval

(9) ic-<�k<K l

The other theorems in [2] bound the error in ujc . Thus it is possible

to obtain upper and lower bounds for both the eigenvalues and eigen-

functions.

f
i

3. New methods for determining the coefficients. The interpolation

technique described above is a special case of the following general

method for determining the c. 's, A* and hence ujc and E . Let m
3
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points (ri,Qi) , i = l,...,m , be chosen on the boundary, let n be

the number of terms to be used and assume m 3 n . (In practice, we

\
t

will take n to be 10 or 20 and m two or three times n .) Let

t
A(h) be the rectangular matrix with elements

ai j(h) = p, (ri,Q.;h)  , i = l,...,m, j = l,...,n
9 3

1

where the V
j

are determined by any symmetries in the domain. Let

* c = ( c1' ...,c~)~ and let (I*ilrn and )l.Iln be norms on m -vectors and

n -vectors respectively. Compute .

(11) min min
IIAOcllm

h c r

i
!

L-

by an algorithm which also computes the minimizing h and c . Let the

minimizing h be the approximate eigenvalue A++ and the minimizing c

be the coefficients in the approximate eigenf'unction .

u*(r,Q)  = f c. p
j=l J 'j

(r,Q;h) .

I
i

i
L

The actual value of the minimum is not used. In principle, infinitely

.mny A* 9 could b.e found, each giving a local minima and each approxi-

mating an eigenvalue of the original problem. In practice, a rough

estimate of an eigenvalue is known from other considerations and the

minimizing search is carried'out near the estimate.

The quotient in (11) should not be confused with the Rayleigh

quotient occurring in variational methods. The value of our quotient

is hopefully very small and is a measure of the error in satisfying the

!
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boundary condition. In most variational methods the base functions

in the linear combination already satisfy the boundary condition, but

not the differential equation, and the value of the Rayleigh quotient

approximates the eigenvalue itself.

Ifm=n, we technically have the original interpolation method

because a minimum equal to zero occurs when h and c are such that

A(h) is singular and A(h)2 = 0 . If m>n , the minimum will not

be zero except in special circumstances and ujc will not be exactly

*zero at the chosen boundary points.

In the experiments to be described in the next section, we have taken

both II l 11; and Il.()n  to be Euclidean length, thus obtaining a discrete

least squares fit to the boundary condition. It is known that any

m-by-n matrix A , and in particular our AP) , can be factored

into a singular value decomposition u c VT where U is m-by-m

orthogonal, VT is n-by-n orthogonal and C is m-by-n with the form

c

where o1 2 a2 > . . . 2 an > 0. . The singular values oi are the square

roots of the eigenvalues of ATA and in our case are functions of h .

It is immediate that

(12) 11 -IIAC
min

IlqJl
=

c 2II
on =
m



where v is the last row of VT .
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Several algorithms for computing the singular value decomposition

without the loss of accuracy resulting from the use of ATA are proposed

by Golub and Kahan in [4] and by Golub in [5]. The algorithm in [5]

uses Householder transformations to reduce A to a bidiagonal matrix J

and then a variant of the QR algorithm to compute the singular values

of J . An Algol procedure for the algorithm is given by Businger [6].

The matrix T 'V and hence our coefficient vector c is a biproduct of

' the algorithm. The 2 automatically satisfies (7). To complete the

process we carry out a one-dimensional minimizing search to find local

minima of o,(h) . The minimizing h are our approximate eigenvalues.

This method is often superior to the.original  interpolation

approach. The boundary points must still be chosen, but their effect

on the final approximation and bounds is less pronounced. Furthermore,

the Householder-m algorithm provides a stable, accurate method for

computing the coefficients, the most critical portion of the process.

It might appear even more desirable to use a Chebyshev criterion at

the boundary by taking ((*I(m in (11) to be the maximum norm. But now

we see no natural choice for II IIl n' If the maximum norm is also used

f°F ll*Iln _we do notknow of an algorithm for computing the minimizing c .
If we take ll~lln = 1 cl1 , the inner minimization in (11) in effect

becomes

03)
n

min max lai 1 - C C. a. 1 .
Cpa-,Cn i 9 j=2 J i,j
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The resulting coefficients must be renormalized to satisfy (7). We

have not had much experience with this approach. Some preliminary

experiments encountered difficulties possibly related to the fact that

h is chosen so that the particular solutions pv(r,B;h) do not form

a Chebyshev system on the boundary. Further investigation is planned.

4. Experiments with a rhombus. The least squares method described

*above was tested by taking G to be a rhombus with sides of length n

and obtuse interior angle p for various values of S . This region

was chosen for several reasons. First, the corners in the region

have a direct effect on the accuracy of the method. Second, the rhombus

has been used by Stadter to illustrate the method of intermediate

problems and we wish to compare the two methods. Third, we wish to

extend Stadter's tabulations to include eigenvalues of all symmetry

classes.

Since we are not interested in just the rhombus itself, we have

avoided using any of its special properties. It is possible to use

our computer program to bound the eigenvalues and eigenf'unctions of

any other star-shaped symmetric domain by "just changing one card".

Unless S is a submultiple of 180’, some high order derivatives

of the eigenf'unctions will be unbounded near the corners of this domain.

However, the particular solutions and hence our approximating eigen-

functions have bounded derivatives of all orders. Consequently, we can

expect slow convergence of the approximations and will have to take

many terms in the linear combinations to get reasonable accuracy.

8



In [l] an L -shaped domain with one reentrant corner was studied using

particular solutions of fractional order to match the boundary condition

and derivative singularities at the corner. Upper and lower bounds

which agreed to better than eight significant figures were obtained

rather easily. We avoided such an approach with the rhombus because it

becomes too special when more than one "bad" corner is involved and because

we were interested in the effect of the singularities on convergence.

Upper and lower bounds for the first five eigenvalues of six

different rhombuses are given in Table 1. (The approximation h, may

be easily recomputed from the table using h, = a - d2/a where a

and d are respectively the average and half the difference of the given

upper and lower bounds.) The first five eigenvalues of the corresponding

square, that is p = 90' , are 2, 5, 5, 8 and 10 .

If the rhombus is oriented as in Figure 1, then the first five

eigenfunctions  have the following qualitative properties. With respect

to the x -axis, u1 , u2 , and u4 are symmetric, u3
and u

5
are

antisymmetric. With respect to the y -axis, u1 ,
u3 '

and u4

are symmetric, u2 and u
5

are antisymmetric. Only u4 has curved

nodal lines; they are sketched in the figure and they approach the lines

y=+x as B approaches 90' . The nodal lines of u2 ,
u3

and u- 5

are the y -axis, the x -axis and both axes, respectively, Because of

the symmetries, the particular solutions used from (3) were those involving

only even cosines for u1
and u4 '

odd cosines for u2 , odd sines for

u3
and even sines for u

5 l

9
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For all the values tabulated, 40 boundary points and 20 terms in the

series were used. The number of boundary points and their distribution

did not have a marked effect on the accuracy, although it was found

helpful to space the points more closely together near the corners.

As @ varies, the effect of the corners upon accuracy can be seen

immediately from the values of e given in Table 2. In general, as the

angle at a corner increases, the severity of the singularity also

increases (see [7]) and consequently the accuracy for a fixed number of

terms will decrease. This is observed for k = 1, 3 and 4 where e

increases as B increases. In these three cases, the second derivatives

of uk are unbounded near the obtuse corner.

For k = 2 , the nodal line bisects the obtuse angle and hence all

the angles are effectively acute. The second derivatives are now bounded

but the third derivatives are unbounded. The largest angle is 180’+ j

which'decreases as p increases. The net effect is significantly greater

accuracy for k = 2 than for k = 1, 3 or 4 and decreasing E with

increasing @ .

For k = 5 , the nodal lines bisect both angles and all angles are

effectively less than 60’. The third derivatives are bounded while the

fourth derivatives are not. The accuracy is greater than even k = 2 ,

but its dependence upon @ is complicatedt apparently by the presence

of two comparable angles.

A special situation occurs with p ~120' and k = 2 or 5 . The

eigenfunctions
u2 and u

5
are then also eigenf'unctions of equilateral

and 30-60-91”  triangles respectively. It can be shown that such eigen-

functions are analytic. We can actually obtain several decimal places

of accuracy with only a few terms.

L 10
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The canputations were done on an IBM 360/67 using long form arithmetic

(roughly 16 significant decimal digits). Each 40-by-20 case took about

20 seconds. Some 20-by-10 cases were also tried; they each took 2 or 3

seconds. A.Fortran version of the Algol procedure in 161 was used for

the singular value decompositions. The one-dimensional minimizations

were done using repeated quadratic interpolation.

5.' Comparison with the method of intermediate problems. The method

of intermediate problems, introduced-by A. Weinstein and extended by

N. Aronszajn, is the basis for several techniques for computing bounds

for the eigenvalues of certain semibounded, self-adjoint operators on

Hilbert space. As the survey articles [8] and 193 indicate, the method

has both a rich theoretical background and important applications to many

problems in physics and engineering. One of the techniques, the so-called

B*B method of N. Bazley and D. Fox, has been used by Stadter [3] to

bound the eigenvalues of Laplace's  operator on a rhombus.

Stadter chooses to consider only eigenfunctions which are symmetric

with respect to both axes, although he could easily handle others.

Consequently, his hl , A2 , h
3 � l **

are actually hl ) A4 j '6 , . . . .

He-tabulates results corresponding to our ,!3 = 105' , 120' ,..., 165' .

Hence our tables overlap in the following four places:

Our bounds Difference Stadter's bounds Difference

h,(105') 2.1138 2.1150 .0012 2.1137 2.1163 .oa6

h,(lqO') 2.5192 2.5261 .0069 2.5210 2.5307 . oogl

h&105') 8.0043 8.0133 .OogO 7.9960 8.0286 .0326

h4(120Q) 8.4751 8.5100 .0349 8.4807 8.5365 .0558

11



We see that the accuracies of the two methods are comparable for this

particular problem. Our bounds are somewhat tighter, but Stadter's

parameter which roughly corresponds to our n was only 15 , versus

our 20. With our n also set to 15 , we obtain accuracies very

similar to Stadter's.

It is also interesting to note that the center of Stadter's intervals

are close to the upper ends of our intervals. This, combined with the

fact that our A, 's are probably much more accurate approximations than

the bounds indicate, leads us to suspect that Stadter's lower bounds

may be much closer to the actual eigenvalues than his upper bounds.

Our method also produces approximate eigenfunctions and bounds on

their accuracy. The method of intermediate problems does not do this.

In a sense, this domain leads to a very easy test of the method of

intermediate problems because.a rhombus can be mapped onto a square by a

simple affine coordinate transformation. The resulting eigenvalue problem

on the square provides a very natural application of the method. However,

with other domains for which the transformation is more complicated, or

unknown, the application becomes more difficult or impossible. For example,

we do not see how to ap@ly the method to the L-shaped domain in [l]. On

the other hand, our method has the advantage that it can be applied

directly to any other domain.Apparently the accuracy of both methods

-is affected by singularities at the corners.

It should be pointed out that, although the theoretical basis of

our method is quite general [2], it has so far been applied only to the

12



"fixed, homogeneous vibrating membrane" problem (l)-(2). The method of

intermediate problems has been successfully applied to a number of other

differential equation eigenvalue problems.

In summary, for the specific problem of Laplace's  operator on a

rhombus the two methods give comparable results. For Laplace's operator

on other domains, especially if eigenf'unctions are also desired, our

method is to be preferred because it can be applied with no change.

For certain other types of eigenvalue problems involving other operators,

the method of intermediate problems may be applicable where ours is not.
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k
1

2

3

4

5

k
1

2

B 95O

2.01218
2.01248

4.90375
4.90403

5 l 1569

5.15750

7.99206
7 l  9 9 3 9 4

10.0574
10.0578

loo0 105O

2.04947 2.11389
2.04992 2.11494

4.86522 4.8849
4.86550 4.88424

5.38023 5.68125
5.38324 5.68840

732s~ 8.00439
7.98866 8.01321

10.2334 lo. 5372
10.2337 lo*5375

Bounds for eigenvalues of rhombus

B 95O loo0

.071 *lo7

.028 0027

.088 0279

.i17 .2g6

.018 . 009

Table 1

llo" 115O 120°

2.20923 2+34135 2.51921
2.21134 2.3458 2.52606

4.96x-7 5*1oYQ7 5 933333
4.96325 5.10916 5.33334

6.07504 6.58418 7.24150
6.08970 6.61170 7.29028

8.07944 8.23001 8.47510
8.09402 8.25296 8.509%

lo. 9864 11.6080
lo. 9866 11.6086

12.4444
12.4445

105O llo" 115O 120°

.246 l 475 .834 1;36

.017 l w .oog coo1

0627 1.21 2.09 3.36

l 55o *go0 1.39 2.05

.006. .008 .021 <.OOl

Table 2

Values of ~103
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Figure 1

Nodal lines of u4 , p = 105'
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