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1 Introduction. One of the fundanental formulas of analysis is the

G am Schm dt, orthonormalization process. Unfortunately it is also notor-

iously conputationally unstable. Rice [1] presents sone computational tech-

ni ques which seem to reduce the nunerical error propagation, but he presents

no anal ysis explaining why his methods work. This paper attenpts to provide

a heuristic error analysis of the Gam Schmdt process which will show why

It is unstable and why Rice's techniques reduce numerical error.

2, Gam Schm dt Process.  This section will present a basic exposition

of the Gam Schmdt process showing the principal sources of round-off error.

Consi der a set of linearly independent vectors W Wy Ty in B

with an inner-product (*, °). W want to find a set of orthonormal vectors

Vl’ V2, .nD VN such that, for each i, Vi is a linear conbination of

Wos Wos oo Woe The Gam Schmdt process does this in a straight forward

manner as foll ows:

* The authors would like to acknow edge the financial support of the
National Science Foundation while both were at the Department of Computer

Science, Stanford University and the assistance of the Ofice of Naval
Research in the preparation of this report for publication.
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(1) U =W, - :le (W ,v,) vy
(n=1, 2, .... N)
v, = v /vl
1

where ||zl = (2, z) -é..

If we define o =1/|[ufland k; = (W ,V,) then (1) becones,

n-|

(2) Vy = o Wy - ig-:l kni vye

If we denote by the vector g the numerical round-off error in eval-
uating (2) in finite-precision floating-point arithmetic on a conputer, then

(2) becomes,

(3) V =g W - 12;1 kni Vit g

If we orthonormality as the neasure of the error in a set of conputed

vectors, then we are interested in the magnitues of,

Enm = (Vn,Vm) - Grlm'

- In the absence of round-off error ¢ =0 for 1<n<N1<m<N

3. Heuristic Error Analysis. Since the objective of this paper is to

present a heuristic analysis rather than to establish rigorous error bounds,
we shall neke a nunber of assunptions about the error terms. The validity
of these assunptions will be supported by numerical experiments

In this type of heuristic error analysis sonme notation for the nunerica

size of a quantity is needed. The O(r) notation is too precise a concept
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for this type of analysis. Dr. George Forsythe has informally proposed
the notation Y = 6(r) to mean Y = gr, where |6| < K for some unknown con-
stant K with the general assunption that K < 10°, (The val ue 10° i's sub-
ject to change as needed).

Since we are interested in stable nunerical procedures, we assune that

lenln <.01, and it is understood that the error analysis will be abandoned
once this limt is exceeded. This assunption allows us to do a first order
error anal ysis.

Consi der the general G am Schmdt process (1). Since the nornalization
of U, is the last arithmetic operation performed, previous errors do not
directly affect (vV,V ). Thus we may assune. that (v ,v ) =1 + (1) where

1 1.
=3 alt for a machine with t digits in g radix. Now, if all errors

.
associated with v, were of nagnitude r, we would have a nunerical process
as accurate as we could reasonably expect. Since the Gam Schm dt nethod
I's not such a process we can assume that €, | S inconsquential in conparison
with other errors associated with Ve Ve can thus ignoree inafirst
order error analysis.

Since €om = Emn’ and in light of the previous assunption that €on - 0,
it will be convenient to consider € m for mn unless specified otherw se.

Since we are interested in the growth of round-off error we wll
occasional |y assume that ey 97 OVS with n. Then, for a first order error
anal ysis, we may ignore € om terms in conparison with €y LENMB when p<a.

Consi der the basic round-off error vector g in (3). Since n-1 vector
subtractions, n inner-product evaluations, and n multiplications of a vector
by a scalar are required to conpute v it is reasonable to assume \‘ign'.\ =0(nr).

Expandi ng v, as in (3) we can derive an error propagation formila

3
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for the basic G am Schm dt nethod:

(%) em = (Vo V)
n- |
= (V) = 0 Ky (VW) + (607
=a (W ,v ) - o W,V )V ,V )
| n- |
= “nifni " i=§+1 “ni%in
+ €V,
=, (W, )@ - (L-e ) )
m | nzl
- K .e_. - k .g.
lz=l nl mi {=mH1 nl im
+ (gn’vm)
m | nzl (1)
= - K .e . = k .e. + 6{(nr
i=1 ni mi i=mHl ni 1m

because ¢ = 0.
mm

Since we are interested in errors larger than v, we will often ignore

the 8(nr) termin (4) in the presence of other error terms. Thus (4) will

often be used in the following form

(5)

)y by
€ = - kK .e.. - k .e.
nm i=1 nli mi i=m+1 ni im

€p,1 = e(er).
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L. Mdified GamSchmidt Process. Rice [1] has proposed a sinple
modi fication of the standard G am Schmidt process which seems to reduce
severe error propagation, though he presents no analysis to explain the

experimental success of the method. |t involves no additional conputation,

though the definition is a bit nmore involved:

© o -
U?l? E?UI:E] - (Ui,Vi) Vj_ (i=1,2, . . . . n-1)
v, =u/lull
or

To further illustrate the relationship between this process and the

regul ar Gam Schnidt nethod; (1) could be witten in the formof (6) as follows:

n n
It =Uﬁ - (W, v,
v,o= Uﬁ/\\ Uﬁﬂ-

L% i * * *, 4 i
If we define o = 1/| Uﬁ s v, =a, U;, and k. = an(U;,vi) = (vrll,vi)

then (6) becones,



An error analysis of this scheme depends on the follow ng |enmm,

is easily proven by backwards induction on m

8 - Sy Ky
(8) vn VIr!: i:Z kniVi
proof:  The lemma holds trivially for m=n. Assume it holds for
m=p+l. Then,
n-|
ptl
Vo= ). .V
n Y] i=p+l nil 1
n- |
S *
= v - k - )
n o i=p+l kn|v|
n- |
— Y
= \' - *
n Z|:=pk nivi

This conpl etes the proof of (8).

From(8) we get an error fornula for conputation:

em = (VoVp)
n-1 . .
= (V) - L kL (VLV) o+ (gV)
=m
* *
=% (UI:’Vm) T %y (Ulr?’vm) (Vm’vm)
n- | %
- knieim + (gnlvm)°

whi ch

Maki ng the same assunptions regarding (Vm,Vm) that we nmade before, we get,

6
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(9) Em = T Z k iesp + 8(nr).
i=m+1l

The inprovenent of (9) over (4) is obvious.

Havi ng devised an error formula (9) for the nodified G am Schni dt
process (6) which is simlar to that of the regular process (5), it is
appropriate to consider the relation between kni and k;n, A consideration
of the properties of orthonormal vectors shows that they would be identical
if there were no round-off error. This is an inportant consideration for
the theoretical properties of the two methods, but does not explain why the
Modi fied Gam Schmidt process seens to be better. From(7) it is apparent

t hat,

Fromthis we get,

* i
(10) ky = (V,V,)
| *
= o (W,v) - anj(vJ V)
J=1
o i-- %

It is thus apparent that k. and k, are of sinmilar magnitude until the
error becomes truly severe. Since we are conducting a first-order error
analysis with the assunption that lfj* | < .01, we may assune k:i =k . for

nl
the purposes of our analysis.
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Recal | that for the regular Gam Schm dt process we had,

m | n- 1 ()
(h) £ = - k .e . - kK .e. + o(nt).
nm igl ni mi i=mFL ni im

Since we are interested in the conditions under which severe error
propagation occurs, it is reasonable to assune that € increases with n
(since m< n). Then, assuming that the k . are of simlar magnitude for

I <nand for i <n, we can assune error bounds for the regular Gam Schm dt

process as follows:

(11) €m = Z k i€im T e(em,m-l) (m<n- 1)
i=m+l
n-2
€ayn-1 - T igl knien-l,i + 8 (n).

The sinularity of this and (9) allows us to use the sane error analysis
for both methods, the only difference being for €, . q°

5. Error Propagation Analysis. For the purpose of further analysis

we W Il assume that \kni\ < K independently of i. W will also define

€ om = lenml. The error propagation- fornulas then become:
n-|
(12) e < K )
nm n, S e (m<n-1)
n-2
Xn {-1 ©p-1,; Regular Gam Schm dt
<
en,n-l -
e(nrt). Modi fied G am Schmidt
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The following lemma is required for this analysis:

(13)

proof :

q i-1 q
1+ Zp b, TT (bj+1):']"|'(b. + 1).
= J=p j=p 7
For g <p, 1 +0 =1 Now by induction on q for p< q:
L -l q
1+2 bi 1_‘]' (bj + 1) = L TT (bj + 1)
i=p J=p J=p
i-1
+ 1+ b, TT (b.+ 1)
i= e Y
b TT ( )
= b 1
q+l j=p 9
q
+ TT7 (b, +1)
J=p
qt+l
=TT (b, + 1).
j=p ¢

This conpletes the proof of the |emm.

& can now show that for m< n-1I,

(1k)

proof :

n-1 -
enm<-Knem+1,m( TT (& + 1))

A=mt+2

By induction on n for n> m+2:

for n=m+2, (12) gives,

n-1
eom <% %-1,m S Fmre, S Kefwiem TT (k, + 1).

i=m+2



For n > m+2 by induction on n:

n
e < K e,
ntl,m — "ntl i=§+l im
i -1
<K .fe ¥ K,e TT, + 1))
n+l mtl,m 1520 1 m+l,m jemt2 J
<K _e n i-1
= "n+l°m+l,m (1 +_Z kK, TT (Kj + 1))
i=mt+2 J=mt2
n
S Ky Cpa,m T (& + 1)
i=m+2

which conpletes the proof. The final step used the lemm with
p=m+2 and g=n.

This conpletes the error analysis for the nodified Gam Schm dt process.
In summary,

n-|
(15) e K, TT (k, +1) . ofar).

i=m+2
This is maximzed for a given n by m= 1. This is verified by conputa-
tional results. Table 2 presents the € for a modified Gam Schmdt pro-
cedure with k= -9. The results are in good agreement with (15). Indeed,
it appears that the error bounds for em are achi eved by the €’ Thi s

reflects the fact that the above proof can also be used to show the follow

ing:

10
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(16) Def i ni ng K = -k, i ndependently of i,

n- |

m+l,m ¢ 11 (Ki + 1))

ji=m+2

™
]

= Kne

n-1.

j=m+2

K, C TT (x. +1)) - e(or).

For an analysis of the regular Gam Schnidt procedure we replace (14)

Wi th,

n- |

e, <(K +1) e ( T
nm - "'n mt+l ,m {=mto
Tr.]T
<e , L. °
- m+l,m {i=m+2 1

(Ki +1))

where we define L, = K, + 1. Wth this we can prove that for m2 2,

m-2 m+l
< . .
(17) ptl,m = 2 0,1 1i‘l=3 (, + 1)

proof: By induction on m> 2.

For m= 2, from (11) €5 2 < Kie2,l < (K3 + 1) €1

For m> 2,
m |
em-*-].,m < Km+l lz_l ni
2
+
S K +1 (emsm"l i=1

11

(Kj + 1)e



L [2.m-3 + 1 + Z 21'2]

= "mtl .
i=2 3;[5 LJ eg:l
m+l
<™ 413 ~
( )] €1 L‘]; L,

m-2 m+l

< 2,1 7 (K, + 1).

This conpl etes the proof.

Conbining (14) and (18) conpletes the error analysis for the regular

G am Schm dt process:

n-|

(18) S I:Tme(xi + 1))

n
€1 T (%, + 1) for m=1

i=3
<
m2 B
- 2 " e TT (k. + 1) for m> 2.
. 2’1 i=3 1

It is clear that e, Wil be maxinized for a given n when men-1. This

is also verified by experinent. Taple 1 presents e for kni - .

It also appears that the error bounds for e 7€ nearly achieved by the

act ual € m The above proof can be used to prove equality when the €m are

replaced by the e if the approximation K, = K+ 1is allowed. g om the
1

12
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cl oseness of the results in Table 1 it appears that is not too bad an
approxi mation when K, = 9. This result bears the sane relationship to (18)
as (16) does to (15) for the Mdified G am Schm dt procedure.

The superiority of the Mdified Gam Schmdt procedure over the regular
process is also verified by conparing Tables 1 and 2.

6. Method of the Linear Corrector. Formula (5) is a, verygood
approxi mate representation of the error for the regular Gam Schm dt pro-
cess. But, if we know in advance what the error is going to be, we
should be able to elimnate it. For this purpose we formulate the regul ar
G am Schm dt process with linear correctors s W shall then use (5)

to determ ne optimm val ues for d ;e

n-1
(19) v, =g, T i.gl (kni + dni)vi'

Once again, ignoring errors of normalization and allowing m> n for
€ m produces an error formla:

n-1

= i + -
€om = (VpoVp) (kni  * dpy) (Vo) - a

=1
ifm
n-|

= - + - .
iz=l (kni dni) € im dnm
i fm

To determ ne dnl’dn2’ '”’dn,n-l so that €p1 = €povc s € nog”
require the solution of a system of n-1 linear equations in n-I unknowns at

each step of the Gam Schnmidt process. This is not a practical nethod. If,

15
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on the other hand, we assune that this nmethod will elimnate instability,

we mey take |d ;| < <|k,|, and then consider the system

€ = = z k . . - .
nm i=1 ni in nm
ifm
Setting € = 0 gives,
(20) b b
20 d = - k .e . = k .e. o
nm i=1 ni mi {=m+1 nl im

This assunption gives an efficient formfor dnm.lt remains for experi-
mental results to show if the assunption is valid. From conputational results
like Table 3, it appears to be so. The only appreciable additional conputa-
tions are for the e+ |f these are being calculated anyway, then the method
is a definite saving. However, it is less clear that the calculation of
€ m purely for the use of this nethod is efficient.

(oserve also that if there is no round-off error then all d; = 0 and
we have the regular Gam Schmdt process. Even when this condition does not
hold the linear corrector will not take v, lout of the plane' since d s is a

scalar like k ..
nl

14



The exposition of the method of the linear corrector is in terns of
kni' But k ; cannot be used in a conputational algorithm because it involves
o, which is 'not available until the normalization of U, is performed. o
ever, the nethod of the linear corrector can easily be fornulated in a
manner which is applicable for a computational algorithm  tne pasic defini-

tion of the Gam Schmdt process with l[inear corrector is,

n-1
L =W - i;l [(W,sV;) +D_; v,

(e
1

<3
I

B

n = U/l Y

9]

>

o

@D

~
=]
=

i

ay (W ,V;), we get D, = dpg/o.. Fromthis and (20) ve

Dni = dni/an

n-1

(- izﬂ:l kni eni) / “n

i#m
n-1

=L (k) @ e

i=1

i#m

L

n~1
- ) - ];l(wn,vi)e‘ni.

ifm

This formula can easily be made into a conputational algorithm

Since the Mdified Gam Schmdt process is nore efficient than the
regul ar nethod, the possibility of usi'ng a linear corrector with the nodified

method arises. Proceeding as before:

n-1
* * *
(21) Vo= oW - :‘LZ=:1 (kg + a_ V.

15



An error analysis like (9) gives,

n-|
*
€ = - 2: (k_.
i=m+l ni

+d*) *
ni’ €im = Ypp’

If we proceed as we did for (20) we get,

n- |
* *
d = - k . e, .
i'-'-ZlH'l ni im
This is a sinple form except that kni cannot be evaluated until after
* . .
¢ m has been determned (since i > m+l). However (10) gave us the result,

*

kni = kni + e(Kijeij).

Since we have already assumed stability when we required |dnm|< <1knm!,

We can once again assume |eiJ.] < .01 and define,

-
(22) & = P Y ke, .

. . *
However, this requires that we evaluate k_, as well as k., and ¢
ni ni nm

It is doubtful that it represents a saving.

7. [teration. O'ten none of the above nethods wilk produce
sufficiently accurate results. This often happens when @ and k,are
large. This is the result of the (gn,vm) term which cannot be elim nated.
In this case, the best procedure is to repeat the Gam Schm dt process
using the inaccurate v, as the new Wn. Let Vn be the result of this

second pass. Then, for the regular Gam Schm dt nethod:

16
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If the error in the v, is'not too great then Vn wi || approxinate v,
and 'lEnm = - Since the error in the Vn vectors is proportional to the
'Enm, which is of the same magnitude of the first pass errors, this iteration
represents a 'second-order' nethod.

Iteration can be used with any nodification of the Gram Schm dt tech-
ni que.

8. Nunerical Experinents. In order to conpare the three conputation
variations of the Gam Schmdt process considered in this paper, and in
particular to test (15) and (18), numerical experiments were conducted on
an | BM 360/67 conputer using |ong-precision arithnetic (14 hexadecinmal digits).
An exanple was constructed with kni = -Kn= -9 for n=l, 2, ..., 10. The
results of this experiment are presented in Tables 1, 2, and 3. Taple 1
presents € for the regular G am Schmidt process. Conpare these results

with (18). For m> 2 (18) becones,

si nce (Ki + 1) = 10.
This aspect of the formula is readily verified by examning any row or

colum of Table 1. It is apparent that the actual errors nearly obtain the

17
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error bounds for € Thi s suggests that the replacement of K; by K, + 1
o does not adversely affect the accuracy of this heuristic error analysis.
| Cbserve that the largest error is €10,9 = 2.9 +10™. This elenent is the one
- ‘ expected to have the largest error. Had this calculation been done in
regul ar precision arithmetic (6 hexidecimal digits) there woul d have been
- extreme instability after V7.
- Table 2 presents the € m for the Mdified Gam Schmdt process applied
to the same problem Error fornmula (15) is verified here, as is clear from
: - | the colums of Table 2. As expected, the largest error is €10,1 - -4-089'10-7.
F* | Compare this value with the corresponding value for the regular Gam Schm dt
. pr ocess, ‘10,1 = -l+.o96‘10'7, The simlarity denonstrates how the nodified
_ process prevents error propagation along the rows but not down the first
col um.
— - Table 3 presents € for the nethod of the linear corrector. The
| argest error is €10,5 - l.6-1o_lu, which is all that could be expected
- from1k digit-accurate conputations.
_ Addi tional conputations showed the nethod of the linear corrector to
be conparable with the method of Househol der transformations when both were
- applied to the Hlbert matrix of order 6.
- W& suggest that the-basic utility of this paper is in presenting a
- nmethod of orthonormalization which is conmparable in accuracy with nore soph-
isticated techniques and yet is both easy to understand and to program
— 1John R Rice, "Experiments on Gam Schm dt Orthonormslization,” Mat h.
Conp., v. 20, 1966, pp. 325-%28.
;_ 18
L




6T

-3.2000E-15
~4.1100E-14
"'un 096OE‘1 3
-l&. 096’-&E-1 2
-4 .0963E-1 1
~4.0962E-10
<4 ,.0962E-09
-4 ,0962E-08
-4.09623-07

-2.7807E~-14

-2.82393-1

-2.8247E-12
-2.8244E-11
-2.8243E-10
-2.8243E-09
-2.8243E-08
-2.8243E-07

3 -6.2449E-13

"6 . 2“’70E"1 2
-6.2L72E-11
—6.2472E-09
-6.,2472E~08
-6.2472E-07

Tabl e 1

~-1.1843E-11
-1.1844E-10
-1.1844E-09
-1.1844E-08
-1 .1844E-07
-1.1844E-06

-2.2510E-10

-2.2510E-0

-2.2510E-07

€13 for Regular WArn-Schmidt Process with ko, =

4.278 E-09
-4 ,2769E~07 -8.1261E-07 ~1.5440E-06
-2.2510E-06 -4.2769X-06 -8.1261E-06 -1.5440E-05 -2.93352-05

-9.
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-3.2000E=-15
=4,1200E-14
-4.0900E-13
~4.0894E~12
-4.0894E~11
—’4.08935:-1 0
-4.0893E-09
-L"0893E-08

[ r r r— I r~ { r [ [
Table 2

5.1106E-15
L.7628E-14 3,8241E-1 5
4.7133E-13 4.1301E-14 1.9582E-15
4.7177B-12 4.1196E-13 1.4656E-14 8.6018E-15
L.7179E-11 4.1183E-12 1.4688E-13 8.4567E-14 3.4853E-15
4.71798-10 4.1188E-11 1.4721E-12 8.4267E-13 2.7187BE-14 1.4537E-15
4,7179B-09 4.1187E-10 1.4726E-11 8.4282E-12 2.7896E-13 1.4204E-14 6. 3004-E-16
4,71798-08 4.1187E-09 1.4726E-10 B8.4286E-11 2.7851E-=12 1.3676E-13

€1y for Mdified Cram Schm dt

Process with Ky = -9.
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Table 3

-3.2000E-15

-1.1500E-1 4 -1.4794E-15 3.5223E=-16

-1.0200E-14 -2,2280E-15 1,9980E=-15 -3.8554E~-16

~93.6000E=-15 =4,6356E=-16 6.6069E~15 1.4187E-16 1.1436E-14

-3.8000E-153.5273E=-15 3. 9285%l5 3.9224E-15 1.0684E-14 6.3989E-15

~2.7000E-15 3.9701E-15 4.3554E-15 7.2906E-15 6.2020E-15 8,9330E-16 =2.1698E=15

-5.0000E-15 2.2657E-15 6.0209E-15 1.3287B-14 1.3287B-14 2.1319E-15 -6.8681E-15 7.4650E-15

~6.3000E~15 -8.4736E-16 4,7397E-15 1.5569E-15 1.5569E-14 3,0827BE-15 <7.5095E-15 6.0888E-15 ~2.4260E-15

€y for Regular Gram Schm dt Process with Linear Corrector, Ky = -9.




