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1. Introduction. One of the fundamental formulas of analysis is the

Gram-Schmidt, orthonormalization process. Unfortunately it is also notor-

iously computationally unstable. Rice [l] presents some computational tech-

niques which seem to reduce the numerical error propagation, but he presents

no analysis explaining why his methods work. This paper attempts to provide

a heuristic error analysis of the Gram-Schmidt process which will show why

it is unstable and why Rice's techniques reduce numerical error.

2. Gram-Schmidt Process. This section will present a basic exposition

of the Gram-Schmidt process showing the principal sources of round-off error.

Consider a set of linearly independent vectors Wl, W2 . . . WN in EN,

with an inner-product (' , '). We want to find a set of orthonormal vectors

v Y1 9 l m0 VN such that, for each i, Vi is a linear combination of

w 9 wp1
. *. wi. The Gram-Schmidt process does this in a straight forward
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manner as follows:

* The authors would like to acknowledge the financial support of the
National Science Foundation while both were at the Department of Computer
Science, Stanford University and the assistance of the Office of Naval
Research in the preparation of this report for publication.
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(1)
n-l

'n =wn - C CwnYvi) '*
i=l

1
1

1 ( n=l, 2, . . . . N)

'n = unAl"Jl I

1

whepe \Iz\\ = (z, Z) ?

If we define on .= I/\\uJ and kni.= an (Wn,Vi) then (1) becomes,

(2)
n-l

'n = an wn - c
i=l

k Vi.ni

If we denote by the vector 0, the numerical round-off error in eval-

uating (2) in finite-precision floating-point arithmetic on a computer, then

(2) becomes,

n-l
(3) 'n =anWn - c k

i=l ni Vi + 5.
n

i
If we orthonormality as the measure of the error in a set of computed

I
L
,I
I&

1
I
L
L

vectors, then we are interested in the magnitues of,

E m = <v,,v,>  - 6&

_ In the absence of round-off error enm = 0 for 15 n f N, l<, m 5 N.

3. Heuristic Error Analysis. Since the objective of this paper is to

present a heuristic analysis rather than to establish rigorous error bounds,

we shall make a number of assumptions about the error terms. The validity

of these assumptions will be supported by numerical experiments.

In this type of heuristic error analysis some notation for the numerical

size of a quantity is needed. The O(T) notation is too precise a concept

L
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for this type of analysis. Dr. George Forsythe has informally proposed

the notation Y = e(7) to mean Y = 07, where 101 < K for some unknown con-

stant K with the general assumption that K < 102. (The value lo2 is sub-

ject to change as needed).

Since we are interested in stable numerical procedures, we assume that

I IE < .Ol, and it is understood that the error analysis will be abandoned
nm -

once this limit is exceeded. This assumption allows us to do a first order

error analysis.

Consider the general Gram-Schmidt process (1). Since the normalization

of Un is the last arithmetic operation performed, previous errors do not

directly affect (Vn,Vn)m Thus we may assume. that (Vn,Vn) = 1 + e(7) where

1 1-t
7 =F f3 for a machine with t digits in B radix. Now, if all errors

associated with Vm were of magnitude 7, we would have a numerical process

as accurate as we could reasonably expect. Since the Gram-Schmidt method

is not such a process we can assume thatgnn is inconsquential  in comparison

with other errors associated with Vn. We can thus ignore snn in a first

order error analysis.

Since snm = Ed, and in light of the previous assumption that snn = 0,

it will be convenient to consider E
-m

for m<n unless specified otherwise.

Since we are interested in the growth of round-off error we will

occasionally assume that srUn grows with n. Then, for a first order error

analysis, we may ignore E
Pm

terms in comparison with Ed terms when fin.

Consider the basic round-off error vector sn in (3). Since n-l vector

subtractions, n inner-product evaluations, and n multiplications of a vector

by a scalar are required to compute Vn, it is reasonable to assume \\s,\\ =0(nT).

Expanding Vn as in (3) we can derive an error propagation formula

3



for the basic Gram-Schmidt method:

(4) c* = (VnYVm,

n-l
= y,pnYv,> - c

1=1
kni(ViYvm> + (gnY'm>

= “,<w,YVml - an(wnYvm)(vmYvm)

m-l

-c

n-l

i=l
knj.Ea - C

i=m+l kni'im

m-l

-c

n-l
k

i=l
ni'mi - c k .c.

i=m+l rp lrn

m-l n-l
= - c k + 0(m)

i=l
ni%i - c

i=m+l
kniEim

because Ed % 0.

Since we are interested in errors larger than 7r we will often ignore

the e(nT) term in (4) in the presence of other error terms. Thus (4) will

often be used in the following form,

(5) m-l n-l
E = -

c k
i=l

ni'mi - c
i=m+l

kniEim

E2,1 = e(27).
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4. Modified Gram-Schmidt Process. Rice [l] has proposed a simple

modification

severe error

experimental

of the standard Gram-Schmidt process which seems to reduce

propagation, though he presents no analysis to explain the

success of the method. It involves no additional computation,

though the definition is a bit more involved:

(6) vln = wn

l +1 .*If = d-n n - (<Y'i) 'i

'n = qyllqJl

or

vnn = wn - t1 (u$Vi)Vi.
i=l

To further illustrate the relationship between this process and the

(X=1,2, . . . . n-l)

regular Gram-Schmidt method; (1) could be written in the form of (6) as follows:

uln = wn

-+1 l

If- =
vl -n n CwnY 'i >'i

If we define-a: = l/l\ urn \I, Vi
* l

=o!n tin,
*

and k =
ni

then (6) becomes,
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(7) $n = a; wn

i+l .

'n = V; - kzi Vi

vn = <.

An error analysis of this scheme depends on the following lemma, which

is easily proven by backwards induction on m:

(8)
n-l

Vn = $ - c ktiVi.
i=m

proof: The lemma holds trivially for m=n. Assume it holds for

m=p+l. Then,

n-l

'n
= p+l -

n c
i=p+l

kIiVi

= v;
n-l

- k*V - c k*V
nP P i=p+l ni i

n-l
= v; - c k* v

i=p ni i'

This completes the proof of (8).

From (8) we get an error formula for computation:

c nm = bJnYv,>

= (~,Vm) - '~ -k,xi(Vi,Vm)
i=m

+ (&pm)

n-l

- c
i=m+l

k~i~im + &pm>*

Making the same assumptions regarding (V,,V,> that we made before, we get,

6



(9)
n-l

E = -
c kCi"im + e(m).

i=m+lL
L The improvement of (9) over (4) is obvious.

Having devised an error formula (9) for the modified Gram-Schmidt

process (6) which is similar to that of the regular process (5), it is

appropriate to consider the relation between kni and k*.. A considerationni

of the properties of orthonormal vectors shows that they would be identical

i
L

I
L if there were no round-off error. This is an important consideration for

the theoretical properties of the two methods, but does not explain why the

L Modified Gram-Schmidt process seems to be better. From (7) it is apparent

I that,
i-l

c
j=l

.
v: = a;wn k* Vnj j'

L
From this we get,

L
(10) kti =IL

i-l
= ~:: (wn,vi) - C $j ('j  Yvi)

j=l

fe

! * . i--l
=an kni -- c k*

a j=l njEij'
nt

L
It is thus apparent that kni and kii are of similar magnitude until the

L error becomes truly severe. Since we are conducting a first-order error

analysis with the assumption that Is.. I < .Ol, we may assume k*
13 ni

= kni for

the purposes of our analysis.L
L
i



Recall that for the regular Gram-Schmidt process we had,

(4)
m-l n-l

t
%m - ci=l

kniEmi - C kniEisn + e(n+
i=m+l

Since we are interested in the conditions under which severe error

propagation occurs, it is reasonable to assume that snm increases with n

(since m C n). Then, assuming that the kni are of similar magnitude for

i C n and for i C n, we can assume error bounds for the regular Gram-Schmidt

process as follows:

n-l
(11) %m -- c

i=m+l
kniEim + e(Emm-l) b<n- 1)Y

n-2
E n,n-1 = - c

i=l
kniEn-l i + e (n>*Y

The simularity of this and (9) allows us to use the same error analysis

for both methods, the only difference being for sn n-lo
Y

r 5. Error Propagation Analysis. For the purpose of further analysis

we will assume that Ikni\ 2 Kn independently of i. We will also define

e = I I%lm l

The error propagation- formulas then become:

(12)
n-l

e < Kn Cnm- i=m+l eb
(m< n - 1)

\

e <
n,n-1 -

n-2

Kn C ei=l n-l i Regular Gram-Schmidt
Y

eh). Modified Gram-Schmidt

8



The following lemma is required for this analysis:

03)
9

l+' c

q

i=p
bi ;i" (bj + 1) = 17 (b. f 1).

j=P jzp J

proof: For q C p, 1 + 0 = 1. Now by induction on q for E q:

+1
1+ k1=p bi ;i' (bj + 1) 5 bq+l i;- (bj + 1)

j=P j=p

This completes the proof of the lemma.

We can now show that for m < n-l,

+1+ bi +- (bj+ 1)
3=P

= b
q+l fi Cbj + '1

j=P

+ fi (bj +l)
j=P

= s (bj + 1).
j=P

n-l -
(14) e <Kenm - n m+l,m ( 7l tKi + 'I>*

.i=m+2

proof: By induction on n for E m+2:

for n=m+2, (12) gives,

e '=Ke <Knm - n n-1,m - m+2, 5 Knem+l , 'ii" (Ki + 1).m
i=m+2

I

9



For n > m+2 by induction on n:

n
e <Kn+l,m - n-t1 c e.

i=m+l

n i-l
<K (e
- n+l m+l,m

+ c
i=m+2 Kiem+l m1 n CKj + '1)

j=m+2

.

5 Kn+lem+l,m (1 + f Ki ii'
i=m+2 j=m+2

(Kj + 1))

L 'n+l em+l mY I? 0$+1)
i=m+2

which completes the proof. The final step used the lemma with

p=m+2 and q=n.

, This completes the error analysis for the modified Gram-Schmidt process.

In summary,

n-l
(15) e <K ITn m - n CKi + '1 l e(w).

i=m+2

This is maximized for a given n by m = 1. This is verified by computa-

tional results. Table 2 presents the sllM for a modified Gram-Schmidt pro-

cedure with kni= -9. The results are in good agreement with (15). Indeed,

it appears that the error bounds for e are achieved by the Ed. This

reflects the fact that the above proof can also be used to show the follow-

ing:

10



L
06) Defining Kn = -kni independently of i.,

n-l
Em '= Kn"m+l m ( nY i=m+2 (Ki + 1))

n-l

I For an analysis of the regular Gram-Schmidt procedwe we replace (14)

L with,

1)
I n-l

em 5 (Kn + ') em+l m,( ll CKi+l
.

c

ia+2

n

I

<e- m+l,m 7-l
i=m+2

Li '

i
where we define Li = Ki + 1. With this we can prove that for m >, 2,

(17)
m+l

e < zrnm2e
m+l,m - 2;1 n CKi + 1).

i=3

proof: By induction on m 2 2.

For m = 29 from (J-J-1 e3,2 5 5 e2,1 I tKx + ‘1 e2,1
/

For m > 2,

m-l

em+l,m 5 Km+1 c
e

1-l
mi

m-2

Lrgl+l (emml+ C9 - i=l

m
l-l

j=i+2
(‘3 + l)ei+l i)9

L
11
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<L (e- m+l m,n-1 + E2 fi Lj ei+l i>
icl j=i+2 Y

+t2(fi
i+l

i=2 j=i+2
Lj) (2i-2 J-l+ Lj)

J=3 e2,1

<II- m+l [2m-3 + 1 + t2 2i-2] c3
i=2

L e
j 2,l

< [2m-3 + 1 + (2”‘3 - l)]
m+l

e2y1 'j.7-r
i=3

< 2m-2
m+l

‘2 1 ~ <Ki + 1).Y i=3

This completes the proof.

Combining (14) and (18) completes the error analysis for the regular

Gram-Schmidt process:

08)
n-l

e <K e
nm - n m+l,m ( TT (Ki + 1))

i=m+2

e2,1

-- I-.

I? CKi + ‘1 for m = 1
i=3

<

m-2
2 ( Ki + 1) for m > 2.

It is clear that ellM will be maximized for a given n when m=n-1. This

is also verified by experiment. Table 1 presents snm for k
ni = -9.

It also appears that the error bounds for snm are nearly achieved by the

actual E
ml' The above proof can be used to prove equality when the enra are

replaced by the snm if the approximation Ki = K. + 1 is allowed.
1 From the

12
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closeness of the results in Table 1 it appears that is not too bad an

approximation when Ki = 9. This result bears the same relationship to (18)

as (16) does to (15) for the Modified Gram-Schmidt procedure.

The superiority of the Modified Gram-Schmidt procedure over the regular

process is also verified by comparing Tables 1 and 2.

6. Method of the Linear Corrector. Formula (5) is a, very good

approximate representation of the error for the regular Gram-Schmidt pro-

cess. But, if we know in advance what the error is going to be, we

should be able to eliminate it. For this purpose we formulate the regular

Gram-Schmidt process with linear correctors dni. We shall then use (5)

to determine optimum values for dni.

09) 'n = ctnwn - f1 (kni + dni)Vi'
i=l

Once again, ignoring errors of normalization and allowing m > n for

c nm produces an error formula:

c nm = ('n"m) = - -"c' (
i=l

kni + dni) (Vi,Vm) - dnm

i#m

n-l
= - c (k

i=l
ni ' dni) C im - do*

ifm

To determine d
nl"'n2' '*e9dn,n-l so that c n& = sn2 = l 0. = en,n-l= 0 would

require the solution of a system of n-l linear equations in n-l unknowns at

each step of the Gram-Schmidt process. This is not a practical method. If,

i
13



on the other hand, we assume that this method will eliminate instability,

we may take Idnil < < Iknil, and then consider the system,

n-l
cm = - c

i=l kni6in - dnm'

i#m

Setting enm = 0 gives,

(20)
m-l

m c

n-l
d =- k .C.

i=l
knismi 9 C

i=m+l ni irn'

This assumption gives an efficient form for dnm. It remains for experi-

mental results to show if the assumption is valid. From computational results

like Table 3, it appears to be so. The only appreciable additional computa-

tions are for the sm. If these are being calculated anyway, then the method

is a definite saving. However, it is less clear that the calculation of

%m purely for the use of this method is efficient.

Observe also that if there is no round-off error then all dni = 0 and

we have the regular Gram-Schmidt process. Even when this condition does not

hold the linear corrector will not take Vn fout of the plane' since dni
is a

scalar like k
ni'

14
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The exposition of the method of the linear corrector is in terms of

kni' But kni cannot be used in a computational algorithm because it involves

tyn, which is 'not available until the normalization of Un is performed. How-

ever, the method of the linear corrector can easily be formulated in a

manner which is applicable for a computational algorithm. The basic defini-

tion of the Gram-Schmidt process with linear corrector is,

'n = wn - "c' r(
i=l

‘n,‘i) + D,ilv’1

'n = unAI 'n II'

Since kni = cyn
(Wn,Vi),  w get Dni = dni/~ ln From this and (20) we

get,
D
ni = d,i/cyn

= ( - >; k
l =

ni ‘ni) / an
ifm

= 9 ~’ (k,i/ Q)~)s~~
i=l
i#m

i#m

This formula can easily be made into a computational algorithm.

Since the Modified Gram-Schmidt process is more efficient than the

regular method, the possibility of us&g a linear corrector with the modified

method arises. Proceeding as before:

(21) 'n = a;wn - k
i=l

no + gi)Vi.
I

15
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An error analysis like (9) gives,

n-l
s* = - c (

i=m+l
+ dzi) cim - d;.

If we proceed as we did for (20) we get,

n-l
d*m = - c

i=m+l
k+&, Cim.

This is a simple form, except that kzi cannot be evaluated until after

d*nm has been determined (since i.2 m+l). However (10) gave us the result,

$i = kni + 6(Kijsij)*

Since we have already assumed stability when we required \dmlC <\knm\,

we can once again assume leijl 5 .Ol and define,

(22)
n-l

d; = - c knieim.
i=m+l

However, this requires that we evaluate kni as well as kzi and e
nm'

It is doubtful that it represents a saving.

7. Iteration. Often none of the above methods wil& produce

sufficiently accurate results. This often happens when cyn and kni are

large. This is the result of the (c,,Vm) term, which cannot be eliminated.

In this case, the best procedure is to repeat the Gram-Schmidt process

using the inaccurate Vn as the new Wn. Let vn be the result of this

second pass. Then, for the regular Gram-Schmidt method:

16
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- = vn - t1 (Vn,Ti)Ti.Y,
i=l

If the error in the Vn is'not too great then vn will approximate Vn

andE g 8
run* nm' Since the error in the vn vectors is proportional to the

%m, which is of the same magnitude of the first pass errors, this iteration

represents a 'second-order' method.

Iteration can be used with any modification of the Gram-Schmidt tech-

nique.

8. Numerical Experiments. In order to compare the three computation

variations of the Gram-Schmidt process considered in this paper, and in

particular to test (15) and (18) ,, numerical experiments were conducted on

an IBM 360/67 computer using long-precision arithmetic (14 hexadecimal digits).

An example was constructed with kni = -Kn= -9 for n=l, 2, .o.J 10. The

results of this experiment are presented in Tables 1, 2, and 3. Table 1

presents c, for thefregular  Gram-Schmidt process. Compare these results

with (18). For m>_ 2 (18) becomes,

m-2em = 2 e2,i + CKi + l>
i=3

m-2= 2 long1 i2 1
t

since (Ki + 1) = 10.

This aspect of the formula is readily verified by examining any row or

column of Table 1. It is apparent that the actual errors nearly obtain the

17



error bounds for e
rim*

This suggests that the replacement of Ki by Ki + 1

does not adversely affect the accuracy of this heuristic error analysis.

Observe that the largest error is e
1099

= -2.9 qo-5. This element is the one

expected to have the largest error. Had this calculation been done in

regular precision arithmetic (6 hexidecimal  digits) there would have been

extreme instability after V
7

.

Table 2 presents the enm for the Modified Gram-Schmidt process applied

to the same problem. Error formula (15) is verified here, as is clear from

the columns of Table 2. As expected, the largest error is cl0 1 = -4*089*10

-7
l

9
'Compare this value with the corresponding value for the regular Gram-Schmidt

process, glo l = -4.0$*10 -7
l The similarity demonstrates how the modified

>

process prevents error propagation along the rows but not down the first

column.

Table 3 presents snm for the method of the linear corrector. The

largest error is e = 1.6010 d-4
10,5

, which is all that could be expected

from 14 digit-accurate computations.

Additional computations showed the method of the linear corrector to

be comparable with the method of Householder transformations when both were

applied to the Hilbert matrix of order 6.

- We suggest that the-basic utility of this paper is in presenting a

method of orthonormalization which is comparable in accuracy with more soph-

isticated techniques and yet is both easy to understand and to program.

1John R. Rice, "Experiments on Gram-Schmidt Orthonormalization," Math.
Comp., v. 20, 1966, pp. 325-328.

18



Table 1

-3.2000E-15
-4.1100&14 -2.78073-14
-4.0960~.13 -2.82393-I 3 -6;2449E-13
-4,0964E-12 -2.82473.!2 -6.2470E-12 -1.18433-11
-4.0963134 3 -2.8244E-11 -6.24723-11 -1.1844&10
-4.09623.?O

-2.253OE-10
-2.82433-!O -6.24723-10 -1.1844E-09 -2.25iOE-09 -4.27693-09

-4,0962E-09 -2,8243E-09 -6,2472E-09 -1.1844~08 -2,2510E-08 -4.27693-08 -8.1261E-08
-4,0962E-08 -2.8243E-08 -&24723-08 -?.1844E-07 -2,2510E-07 -4.27693-07 -8.126?E-07 -1.544OE-06
-4.09623-07 -2.82433-07 -6.24723-07 -).1844E-06 -2,2510E-06 -4.2769X-06 -8~26~3-06 -1.54403-05 -2.9335X-05

"ij for Roqular Warn-Schmidt Process with kni =L -9.



, Table 2

-3.2000E-15
-4J200E-14
-4.0900E-13
-4.0894E-12
-4,0894E-17
-4.0893E-10
-4.0893~b09
-4.0893EL08

g -4.0893E-07

5.1106E-15
4,7628E-14 3.82&E-I  5
4.7133E-13 4.1301E-14 1.95823-15
4.7177~~12 4.1196~13 1.4656~-14 8.6018~~15
4.71793-11 4.1183E-12 1.46883-13 8.4567E-~4 3.4853E-15
4.7179~10 4,1188E-ii 1.472lE-12 8.42673-13 2.71873-14 1.45373-15
4.7179%09 4.1187~~10 1.4726E-11  8.4282E-12 2.78963-13 1.4204E-14 6.3004-E-16
4.7179E-08 4.1187E-09 l.4726E-lo 8.4286E-11 2.78jlE-12 1.3676E-13 1.9133E-15 3.3034E-15

ei3 fog Modified Cram Schmidt Process with kni = -9.



Table 3

-3.2000E-15
-~.3200E-14 6.1939~16
-l.¶500E-I 4 -1.4794E-15 3.52233-16 \
-?.0200E-!4 -2.228013'~t5  ¶.9980E-15 -3.8554E-16
-9,6000E-15  -4,6356E-16 6,6069E-15 1.4187E-16 1.14363-14
-3.8000E-?  5 3.5273~015 3.9285%15 3.92243-15 1.06843-14 6,3989E-15
-2.70003-15 3.9701E-15 4.3554E-1,s 7.2906%15 6.20203-15 8.933OE-16 -2.36981%~5
-S.OOOOE-15 2.26573~I,5 6.0209W5 1.3287B-94 1.32873-14 2.1319E-15 -6.86813-15 7.465oE-15
-6,3oooE-15  -8,4736=16  4.73973-15 3.5569E-15 1.5569E-14 3.08273-15 -7.5095E-15 6.0888~.15 -2,426OE.15

eiJ for Regular Gram-Schmidt FVocess with Linear Corrector, kni = -9.


