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Several matrix decompositions which are of some interest in statistical

calculations are presented. An accurate method for calculating the

canonical correlation is given.
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0. Introduction

With the advent of modern digital computers, many of the well

known hand calculator methods for making statistical calculations

have been revised. For example, Hotelling [19J proposed a number of

methods for solving matrix problems. Yet today almost none of these

methods are in current use. In this paper, we shall present several

well known matrix decompositions and show their relevance to statistical

calculation. Some of the properties of the numerical algorithms shall

be discussed.
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1. Cholesky decomposition

Let A be a real, symmetric, positive definite matrix of order

n . It is well known that we may factor A so that

where R is an upper triangular matrix (7). The decomposition (1.1)

is known as the Cholesky decomposition. The calculation of R may be

A = RTR (1.1)

performed in two ways.

a) Complete Cholesky Decomposition Algorithm (CCDA)

Let

rll = bll)1’2 and r =a
13

/r
lj 11

(j=2,...,n) .

Then for i= 2,..., n,

r = ( a i-1 2 l/2
ii ii - gl 'li) '

i-l
rij

= a -
ij _ Ll rkirkj)/rii(j=i+19  l l l ,n> l

b) Sequential Cholesky Decomposition Algorithm (SCDA)

Let

Then for k = 1,2,..., n ,

a (1) =
ij

- a
ij '

2



r& = ( w‘kk 1 049 rkj = akj /rkk  9 (Pk)  f

I

(1,2)

i, 3 =k+l,..., n.

Since the Cholesky decomposition is unique when rii > 0 , each of

the algorithms produces the same R . Each of these methods require

3n /6 + C(n2) multiplications plus n square roots. The CCDA has the

thadvantage that if the i- row of the matrix R is being computed,

ththen it is only necessary to have available the i- row of the matrix

A, and the (i-l) previously computed rows of R . This is especially

advantageous when the matrix A is so large that it is necessary to

store it in auxilliary  storage.

3



2. Accuracy  of the Cholesky decomposition

J. Wilkinson[311 has given an error analysis of the SCCA. He

assumes that the error in the basic operations are as follows:

fr(aLb) = a(l+al) 2 b(l+Eg)

fa(aXb) = ab(l+a3) I I& < 20t
i-

fa(a/b) = (a/b)(l+~~)

where a mantissa of t binary digits is used. The notation f1(a 'op'b)

indicates the result of the operation with two floating point numbers

a and b when standard floating point arithmetic is used. Furthermore,

it is assumed that if

x = fl(sqrt a)

then

i

where

!
i

X2
-5= a(l+a) with 1~1 5 2 X 2

When the SCDA is used, arithmetic errors are introduced at each

stage of the calculation. Indeed it is possible that for some positive

definite matrices it will be impossible to complete the algorithm because

4
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of the roundoff error. Wilkinson has given sufficient conditions for

which it is possible to complete the SCDA. In addition, he has shown

that the computed Cholesky decomposition will be exact for some

perturbed matrix A + E . Let II...II
2

indicate the spectral norm,

and let E be the computed Cholesky factor. /

Theorem 1. (Wilkinson): If A is a positive definite matrix of

order n > 10 , then provided

h . (A) > 20nmin - -3/22-t1jlA/j2

the Cholesky factor E can be computed without breakdown and the

computed E satisfies the relation

ETE = A + E ,

11311,  5 2.5n3'22-tljjAil, .

Thus the relative perturbation viz l/~ll,/ll~ll
2'

is but a few units

of the mantissa for the Cholesky factorization. The above result is

independent of the choice of pivots.



- - -- - -- -
1

3. Solution of linear equations

Given the Cholesky decomposition, it is a simple matter to solve

a system of linear equations or to compute the inverse. To solve

Ax,=;, the most convenient procedure is to first solve

RTx =k (3.1)

e and then solve

Since R is \1 and T
R is I\, this requires a total of n2 + O(n)

multiplications. To compute the inverse, compute R-l which is \I

and then compute R-lR-T , taking advantage of the triangular form

of R
-1

and the symmetry of A
-1 n2

; this requires
7

+ O(n2)

multiplications. Thus to invert a positive definite matrix requires

2
n*/2 + O(n ) multiplications which is fewer multiplications than

multiplying two matrices by the usual algorithm!

Because of the roundoff error, equations (3.1) and (3.2) can be

replaced by a perturbed system of equations. Thus, in reality we have

-TY?(R +6R )u =k

I

and

(R+Gi)z = u ,

6
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and this implies that

where

&A
-Jr -T

=E+6R  XE+R x61i+6$?&.

Using Theorem 1 and Wilkinson's bounds for solving triangular systems

[3OtPg  991, it can be shown that

IbAil2 < 5n3/22-tl
lrAll,-

(3 03)

when the conditions of Theorem 1 are satisfied.

The bound given by (3.3) is quite gross but it does indicate that

solving equations using the Cholesky decomposition leads to a relatively

small perturbation in the original data. Note also that we can determine

a bound on the residual vector ; = 2 - AZ . Since (A+SA)z = 2 ,

rE = 6A2 and thus

llgll, 5 5n3’22dt111Al12  .

Of course, if the norm of the residual vector is small it is not true

an accurate solution has been determined since

-1
X - z =A 2

7
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and hence

II&l, 5 llA-111211&  .

It is possible to bound the norm of the relative error providing an

upper bound for the condition nwllber K. (A) = I(AI/,J(A-~I~~ is known.

Since E-&=-A-1RAE, a shQrt manipulation shows that when

(3 04)

where p = 116A(Id/1A112 l This bound is independent of the method used.

8
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4. Conditioning of matrices

Since the bound (3.4) is dependent upon the 'condition number, it

is frequently desirable to replace the original system of equations

Ax, = 2 by a new system .

where D is a diagonal matrix with non-zero diagonal elements. Let

*n be the set of all n X n diagonal matrices with non-zero diagonal

elements. We wish to choose fi so that

~(fid) < K(DAD) for all DE&, .

A symmetric matrix is said to have Property & if there exists a permuta-

tion matrix II such that

nTArI =
where A eB

1 P and A2E% -
and p+q=n. All tri-diagonal matrices

have Property A.
/

Let &On and {tlii = l/Jr . Forsythe and Straus [IO] have
ii

shown that for matrices that possess Property A, 8 =fj . More

generally, for all positive definite matrices A , van der Sluis [$I

has shown that

K(h$) < nK(fi& l

9

(4.1)



Therefore in the absence of other information, it would appear that

it is best to precondition the matrix A so that all the diagonal

elements are equal, e.g. the covariance matrix should be replaced by

the correlation matrix.

The problem of precondkioning  symmetric positive definite

matrices arise in the other statistical contexts (cf. [l$j).

I
i

i
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5. Iterative refinement

Once an approximate  solution to & = b has been obtained, itN

is frequently possible to improve  the accuracy of the approximate

solution. Let i be an approximate  solution,  and let r = 2 - 4 ,

Then if i‘= & + 5 j i satisfies  the equation

Ai = 2 . (5 4

Equation (5.1) can be solved approximately  once the Cholesky  decomposition

2of A is known;  indeed,  it requires but n + O(n) multiplications

to solve for the correction  i . Of course, it is not possible  to solve

precisely  for i so that the process may be repeated, Thus for

X
(0)

N given, the algorithm proceeds  as follows:

1) compute z(k) = B - 4(k) ;

2) solve Ai04 = g(k) ;

3) compute  5(k+Q = x(k) + g(k) .H H

The process continues until

_ 11 (k+ly
25 II < s ’

a predetermined  constant or some other criterion  is satisfied. The

above  algorithm is known as iterative refinement  and has been extensively

discussed in the literature (Cfe [ 24, 3211) .

There  are three  sources  of error in the process: (1) computation

of the residual vector ;(k), (2) solutionof  the system of equations

11



for the correction vector i04 j and (3) addition of the correction

vector to the approximation x(k) .N It is absolutely necessary to

compute the. components of the residual vector using double precision

inner products and then to round to single precision accuracy. The

convergence of the iterative refinement process has been discussed in

detail by Moler [2&l. Generally speaking, for a large class of matrices

for k>-kg all components of x(k)- are the correctly rounded single

precision approximations to the components of z . There are exceptions

to this, however, (cf,[21]). Experimentally, it has been observed,

in most instances, that if 116_(O) ll,/ll~(“) lr, 5 KP where

II IIxm= max IYil Y
l<i<n- -

then k. 2 [t/p] . We shall return to the subject of iterative refine-

ment when we discuss the solution of linear least squares problem.

12
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Again let A be a positive definite matrix and we partition the

matrix in the following form:

A =

where TAll is p X p , A22 is -q X q , and Al2 = A2l . Suppose

the SCDA is used but the algorithm is stopped after p steps, Then

here Rl is the Cholesky factor of
91

so that RTRl = Al1 .

Equating matrix blocks, we see '
- . .

Al2 = R$

A22
-= STS + w '.

Thus

W = A22 -
A21!?-R;TA12

= A22
-1

- A21AllA12  l

13



The matrix W 4.s denoted by a..
1J

in (1.2).

Consider the covariance matrix

where xl1 is P X P l

The partial covariance matrix

when the first p variables are held fixed, and the regression function

is defined by

k(2) +I c -1(xo) _jto)
21 11 N

(1)whe=k ,j&(2) are the corresponding vectors of expected values.

(Id '
Thus if we apply the first p steps of the SCDA, oij corresponds

to the partial covariance when the first p variables are eliminated.

We can eliminate the effect of the first (ptl) variables by simply

performing one more step of the SCDA. It is a simple matter to compute

the regression function since corresponds to STRol
1 l

14
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7. Least squares

Let A be a

given vector. We

given m X n real matrix of rank r and b aN

wish to determine $ such that
/

m n

CL
b

i= i - c
i=l

aijxj)

2
= min .

or using matrix notation

1Ik-+l/,  = min . (7.1)

If m >, n and r < n , then there is no unique solution. Under these

conditions, we require amongst those vectors 5 which satisfy (7.1)

that

AII II52 = min .

For r=n, $ satisfies the normal equations

ATA? = ATb .-N (7.2)

Unfortunately, the matrix ATA is frequently ill-conditioned and

influenced greatly by roundoff errors. The following example illustrates

this well. Suppose

15



A =

1 1 1 1

E 0 0 0

0 E 0 0

0 0 & 0

0 0 0 E

which is clearly of rank 4. Then

ATA =

and the eigenvalues of

T

1+e
2

1

1

1
m

1

1+E2
1

1

1

1

1+s2

1

1

1

1+s2

ATA are 2 24+s , s2, E , E2 . Assume that the

elements of A'A are'computed using double precision arithmetic, and

then rounded to single precision accuracy. Now if s < J2 -t ,

fe(ATA) =

m

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
.

a matrix of rank one, and consequently, no matter how accurate the linear

equation solver it will be impossible to solve the normal equations (7.2).

Longley [23] has given examples in which the solution of the normal

equations leads to almost no digits of accuracy of the least squares problem.

16



8. A matrix decomposition

NOW 11$1, = (E~J$-'~ so that k@112 = 11x11, when Q is an

orthogonal matrix, viz, TQ Q = I . Thus

lip&II,  = Ilk-Qpx,ll 2

where c=eN and Q is an orthogonal matrix. We choose Q so that

Q,.A=R=

where ii is an upper triangular matrix. Let

then

Ill+& = (c -r 21 llx1-r12x2 - . . . -
rlnxn)

+ (c -r 2
2 2fZx2 - l ** - '2nxn)

+ 2. . . + ( cn-rmxn>

2
+ c + c2 + 2 /

n+l n+2 . . . + c
m '

17



Thus j(b-px,l(22 is minimized when

ii
A h

rll 1 + r12x2 + . . . + rlnxn = cl

8
ArS2 2 + . . . + r2nxn = c2

..
' A
r x =c
nn n n

i.e., $=E where

F =N ( cpcp . ..YCJ ,

and

llp$y~ = c;+l + c;+2 + . . . + c2 lm

Then

RTR =

=

(iT:o)T(rii:o). .
@JaTuuJ  = ATA ,

(8.3)

and thus iiri"ii  is simply the Cholesky decomposition of T
A A .

There are a number of ways to achieve the decomposition (8.1);

e.g., one could apply a sequence of plane rotations to annihilate the

elements below the diagonal of A . A very effective method to realize

the decomposition (8.1) is via Householder transformations. A matrix

P is said to be a Householder transformation if

18



P = I

Note that 1) P = PT and 2) pPT = I T-2% - -  --=I so2uuT + 4uuTuuT

that P is a symmetric, orthogonal transformation.

Let A(1) = A and let Ac2), A(3) ,... Ah-l+') be defined as

follows:

where Pw = w(k)Twb) 1

(;I 1)

. The matrix P(k) isN N

chosen so that +
= . . . C anyk = 0 . Thus after k

transformations

Ack+l) =

(2)
all

0

0

.

.

.

.

0

(2)
al2 l .

(3)
a22 l l

. .

+ag 1)

2 0

0

.

0

(2). l

aln

(3). .
a2n

. .

( k+l). . akn

aLz+l . .Y
. .

. . .

(k+l)
am,k+l .

The details of the computation are given in [5] and[13].

19



Clearly,

R = Ab+l)

and

Q = PWpb1) pm. . .

although one need not compute Q- explicitly. The number of multiplica-

2 n3tions required to produce R is roughly mn - F whereas approximately

TM2
2 multiplications are required to form the noMna1 equations (7.2).

Ii
20



9. Statistical calculations

In many statistical calculations, it is necessary to compute certain

Tauxiliary information associated with A A. These can readily be obtained

from the orthogonal decomposition. Thus

det(ATA) = (rll X r22 x . . . x rnn)
2

.

Since

ATA = Pr'Tw , (ADA)-' = fi-$YT .

The inverse of fi can be readily obtained since # is an upper triangular

matrix. It is possible to calculate (ATA)-' directly from '#. Let

(ATA> -1
= x = (zl, ~,*+g*

Then from the relationship

and by noting that {rTjii = l/rii , it is possible to compute xwn'2n-1y

c,
I
i-

. . ..X .\ -1
The number of operations are roughly the same as in the first

method but more accurate bounds may be established for this method

\ provided all inner products are accumulated to double precision.
L

I In some applications, the original set of observations are augmented

by an additional set of observations. In this case, it is not necessary

\,
to begin the calculation from the beginning again if the method of ortho-

i
c gonalization is used. Let fil,'?l correspond to the original data after itN

i
4

has been reduced by orthogonal transformations and let A2,s correspond to

the additional observations. Then the up-dated least squares solution can

be obtained directly from

21
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A =  [;),, b= @

This follows immediately from the fact that the product of two orthogonal

transformations is an orthogonal transformation.

The above observation has another implication. One of the arguments

frequently advanced for using normal equations is that only n(n+1)/2

memory locations are required. By partitioning the matrix A by rows,

however, then similarly only n(n+1)/2 locations are needed when the method

of orthogonalization is used.

In certain statistical applications, it is desirable to remove a row

of the matrix A after the least squares solution has been obtained. This

can be done in a very simple manner. Consider the matrix

AC! and:=@ .

where Q/ is the row of A which one wishes to remove, p is the correspondingN

element of b, and i = J-1. Note thatN

STS = RTR - cyTcY = ATA - cyT,, .rVN NN

Let

z
l,n+l =

r mcos 8 sin 8

1 . 0
L

0 '1

sin 8 -cos e

S (1) = S , and S (2) (1)
= �l,n+lS l

22



We choose cos 8 so that {S (2) ]n+l 1 = 0. Thus
Y

{SC’)3
1,j =

{SC2)j
n+l,j

Note no complex arithmetic is really necessary.

The process is continued as follows:

Let

k

zk,n+l L:

Then

j = 2,3,...,n

3 = 2,3,...,n .

n+l I
I

sin 0k.
I

0 *
1' :

I .
I_ 1 :I 0 Q I

sih 8 .
k ' -CA 8

- k‘
-

s b+1) = zk S (k)
-,n+l

k

n+l

k = ly2,...,n ,

23



and cos 0 k is determined so that {S (k+l)]
k,n+l =

0. Thus roughly 3n2

multiplications and divisions and n square roots are required to form

the new #.

Suppose it is desirable to add an additional variable so that the

matrix A is augmented by a vector 5 (say). The first n columns of Rn

are unchanged. Now.one computes

h =P" . . .( > .Cv
p(2)p(l) &

From h one can compute Pb+l> ( > (1)N andapplyittoPn P. . . b.N
It is also possible to drop one of the variables in a simple fashion

after x has been computed. For example, suppose we wish to drop variable 1,

then

r12

r22I0 rln

I

r
nn

nx (n-l)

By using plane rotations, similar to those given by (g.l), it is possible

to reduce fiT to the triangular form again.

i

24
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10. Gra@$chmidt orthogonalization

In section 8, it was shown that it is possible to write

QA=R* (10.1)

The matrix Q is constructed as a product of Householder transformation.

From (lO.l), we see that

\

A = QTR =, PS

where PTP = I
n'

determined up to

square roots, we

matrix with ones

calculation of P

sm l Each row of S and each column of P is uniquely

a scalar factor of modulus one. In order to avoid computing

modify the algorithms so that S is an upper traingular

on the diagonal. Thus PTP = D, a diagonal matrix. The

and $ may be calculated in two ways.

4 Classical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one column at a time. Let

and assume

T
24 2j = Gijdi , 15 i,j < k-l.

At step k, we compute

1 < i < k-l- -

25



b) Modified Gram-Schmidt Algorithm (MGSA)

/

i

Here the elements of S are computed one row at a time. We define

and assume

T
x-i zj = 'ij diY pi EfT 04 = 0 , 15 i, j 5 k-l, k < 12 n.

04e At step k, we take & = & , and compute

k+l< a < nti- a

In both procedures, skk = 1. The two procedures in the absence of

roundoff errors , produce the same decomposition. However, they have

completely different numerical properties when n> 2. If A is at all

"ill-conditioned", then using the CGSA, the computed columns of P will

soon lose their orthogonality. Consequently, one should never use the

CGSA without reorthogonalization , which greatly increases the amount of

computation. Reorthogonalization is never needed when using the !&GSA. A

careful roundoff analysis is given by Bjb'rck in [2]* Rice [27] has shown

experimentally that the MGSA produces excellent results.

The MXA hasthe advantages that it is relatively easy to program, -

and experimentally (cf. [2O]), it seems to be slightly more accurate than

the Householder procedure. However, it requires roughly $ operations

which is slightly more than that necessary to the Householder procedure.

Furthermore, it is not as simple as the Householder procedure to add

observations.

26
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11. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the

least squaresproblem. For this purpose it is convenient to introduce the

condition number K(A) of a non-square matrix A . This is defined by

K(A) = Olj”n ” O1 = $lA ~141 2 II ’ ‘n = $$lA jlJl z l(e

2so that al and CJ~ are the greatest and the least eigenvalues of A A.T

From its definition it is clear that K(A) is invariant with respect to

unitary transformations. If g is defined as in (8.1) then

p> = al(A) , CT
n (fir) = o,(A) , K(z). = K(A),

while

al(K) = \I fi’ \I2 and on(‘R) = l/II PT’ -’ \I2 .

The commonest method of solving least squares problems is via the normal

equation

ATA x =ATb .N N (11.1)

TThe matrix A A is square and we-have

K(ATA) = K2(A) .

1
-This means that if A has a condition number of the order of 9

2 then
TA A has a condition number of order 2

t
and it will not be possible

using t -digit arithmetic to solve (11.1). The method of orthogonal

I

t

transformations replaces the least squares problem by the solution of

27
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the equations xx = E and K(x)  = K(A).N It would therefore seem to have

substantial advantages since we avoid working with a .matrix with condition

number K~(A).
1

We now show that this last remark is an oversimplification. To this

end, we compare the solution of the original system (A 1 b) with that of a
l -

perturbed system. It is convenient to assume that

01 = IPII, = II 2 112 = 1 ;

this is not in any sense a restriction since we can make IIAI\~ and II b- 11,

of order unity merely by scaling by an appropriate power of two. We now

have

K(A) = K(CiT)  = 11 F -’ II, = l/On .

Consider the perturbed system

:
(A + eE l

; b + E$ Y ll~ll,  = \I z II, = 1 Y

where E is to be arbitrarily small. The solution z of the perturbed-

system satisfies the equation

(A + EE)~(A + EE) G = (A + eE)T(b + Ee) .N N N (11.2)

If ^x is the exact solution of the original system and Q is the exactN

orthogonal transformation corresponding to A we have
s

37
QA = ..a[I -Y Q(A + sE) =

0

F + sF
. . . . . . .

EG 1 , Qy .;[I$
28



a n d

r b-A%= , ATr 5 8 l

N N N N N

Equation (11.2) therefore becomes

(A +-EE)~(A + EE) = (AT + sET)(A x + r + se)N N N

giving

Neglecting e 2 where advantageous

.(z + EF)T (w + EF) 5; =-
(g + ,F)%& + s(fzI + EF)~L + sETz + O(s2)

x =N (?t + sF)-l'iT ^x + e((# + ,F)-'f +N N

+ E(XT w,-+ET; + O(E2)

=gOE~-5 ^x + sRN + ,(pir w,-lET~ + O(s2)

We observe that the bounds include a term EK~(A)\\~J\~  . It is easy to

- verify by means of a 3 X 2 matrix A that this bound is realistic and

that an error of this order of magnitude does indeed result from almost

any such perturbation EofA. We conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in
I

29



the use of the normal equations the value of K~(A) is still relevant

to some extent.

When the equations are compatible l\rJ\ = 0 and the term in K~(A)

disappears. In the non-singular linear equation case r is always nullN

and hence it is always K(A) rather than K2(A) which is relevant. Since

the sensity of the solution depends on the condition number, in the

absence of other information, one should normalize each column of A so

that its length is one in accordance with (4.1).

.
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12. Iterative refinement for least squares problems

The iterative refinement method may also be used for improving the

solution to linear least squares problems.

Let

so that

T
cYA P = ATb T

N - AA?-=2 .N

When cy = 1, the vector p is simply the residual vector r . Thus
N N

1
1
,
i
i
L

1

1

L

I 2 b
. . .

K-l
. . .

^x
.- ft.m

Y (12.1)

One of the standard methods for solving linear equations may now be

used to solve (12.1). However, this is quite wasteful of memory space

since the dimension of the system to be solved is (m + n).

We may simplify this problem somewhat by noting with the aid of

(8.3) that

a1 A

AT 0
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We are now in a position to use the iterative refinement method for

solving linear equations.

Thus one might proceed as follows:

1) Solve for x Ot >
N using one of the orthogonalization procedures outlined

in section 8 or 10. ft(must  be saved but it is not necessary to retain Q.

Then

PN
(‘I = .$ (b - A x(O)) .

N N

2) The vector y(s+uH is determined from the relationship

s+g( l) ( 1 ( >=g +zs

where

( 1 ( )BeS =&-ByS =hS .( >
N N N (12.2)

This calculation is simplified by solving

Lzs =hS( > ( >
N N

UP =zs .( > ( 1
N N

a

The vector-h '( >
N must be' calculated using double precision accuracy and

then rounding to single precision.

3) Terminate the iteration when I\8(s)II/l\y(s)II  is less than a prescribed
N N

number.

Note that the computed residual vector is an approximation to the

residual vector when the exact solution 2 is known.N This may differ

from the residual vector computed from the approximate solution to the

32



least squares problem.

A variant of the above procedure has been analyzed by Bjb'rck [3],

and he has also given an ALGOL procedure. This has proved to be a very

effective method for obtaining highly accurate solutions to linear least

squares problems. Bj&ck and Golub [4] have described a similar iterative

refinement method for solving least squares problems with linear constraints.
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I.
13* Singular Systems

If the rank of A is less than n and if column interchanges are

performed to maximize the diagonal elements of R, then

1

when rank (A) = r. A sequence of Householder transformations may now

'be applied on the right of Ab-+1) so that the elements of S
(n-r)Xr

become annihilated. Thus dropping subscripts and superscripts, we have

Q A Z = T =  ;;
C+l

where T is an rxr upper triangular matrix. Now

where c = Qb and y = ZTxN N N N . Since T is of rank r, there is no unique

solution so that we impose the condition that I\ 5 \I2 = min. But

I\ g \I2 = I\xI12 since T is orthogonal and \I ; I\, = min. when

Thus

34



This solution has been given by Fadeev, & 3. [7] and Hanson and

Lawson [183. The problem still remains how to numerically determine

the rank which will be discussed in section 15.
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14. Singular value decomposition

Let A be a real, m x n matrix (for notational convenience we assume

that m 2 n). It is well known (cf. [22])that

A= mVT

where

us = Im ., v-VT = In

and

The matrix U consists of the orthonormalized

(m- n)x n.

eigenvectors of

(14.1)

AATt and the

matrix V consists Tof the orthonormalized eigenvectors of A A. The

diagonal elements of C are the non-negative square roots of the eigen-
,

values of ATA; they are called singular values or principal values of A.

We assume

Thus if rank (A) = r, or+1 = org2 = .*a =cJ =o.
n The decomposition (14.1)

is called the singular value decomposition (SVL).

Let

(14.2)

It can be shown[22]that the non-zero eigenvalues of 'zi always occur in

L
L

+ pairs, viz
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Xj (x> = + oj (A) (j = l&...,r).

i
L
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(14.3)
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15. Applications of the SVD

The singular value decomposition plays an important role in a number

of least squares problems, and we will illustrate this with some examples.
I

Throughout this discussion , we use the Euclidean or Frobenius norm of a

matrix, viz.

A) Let Un be the set of all n x n orthogonal matrices. For an arbitrary

n x n real matrix A, determine C&U, such that

IIA - QII 5 \\A - XI\ for any XsU,.

It has been shown by Fan and Hoffman [83 that if

A = UCVT , then Q =wT .

B) An important generalization of problem A occurs in factor analysis.

For arbitrary n X n real matrices A and B, determine &EUn such that
I

IIA - BQII 5 \\A - BX\\ for any X&U, .

It has been shown by Green [171and by Sch&emann[28] that if

BTA = aVT, then Q =WT .

_ c) Let 04
?rn>n

be the set of all m x n matrices of rank k. Assume

A E r( >
%ltn

l Determine BE (k)s,. (k $ r) such that

IIA 7 B)\ 2 \\A - XI\ for all xs$i .

!
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It has been shown by Eckart and Young 163 that if

A = &, then B = 9sVT (15.1)

where

Note that

(15.2)

05.3)

D) An n x m matrix X is said to be the psuedo-inverse of an m X n

matrix A if X satisfies the following four properties:

ii) X&X = XI

iii) (AX)T = Ax,

i v )  (XA)T = x./l.

We denote the psuedo-inverse by A+ . We wish to determine A' numerically.

-It can be shown [26J that A+ dan always be determined and is unique. It

is easy to verify that

A+ = VM? (15*4)
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where

Ii

A =

/-
1

a1 0
1

O2 .
.
7

In recent years there have been a number of algorithms proposed for

computing the pseudo-inverse of a matrix. These algorithms usually depend

upon a knowledge of the rank of the matrix or upon some suitable chosen

parameter. For example in the latter case, if one uses (15*4) to compute

the pseudo-inverse, then after one has computed the singular value decom-

position numerically it is necessary to determine which of the singular

values are zero by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as

A = B + 6B

where 6B is a matrix of perturbations and

Now, we wish to construct a matrix ?3 such that

L
!
i

i

II A - “B\\ g 7
and

rank (^B) = minimum.
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This can be accomplished with the aid of the solution to problem (C). Let

Bk = rnkVT

where Rk is defined as in (15.2).

Then using (15.3),

^B = B
P

if

1

(
2

Op+l
+ CT2

pf2  + l .*
+ 0;)’ r r\

and

L
( 2 2++cJ
OP p+l

. . .

Since rank (?3) = p by*construction,

A$ = vsl+vT  .
P

h+
Thus, we take I3 as our approximation to A+ .

El Let A be a given matrix, and b be a known vector.

that amongst all x for which \Ib- - ", II

Determine ^x so
N

N N N = min, \I ^x I\ = min.N It is easy

to verify that

^x = A+b .N -
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16. Calculation of the SVTL

In [14]it was shown by Golub and Kahan that it is possible to con-

struct a sequence of orthogonal matrices

via Householder transformation so that

,b>,b-11
. . . P(‘)AQ(‘)QO pea~(nT1)  =, P~AQ = J

and J is an m X n bi-diagonal matrix of the form
--

J =

ok B, 0 . 0

a2 B, . 0

0
. . Bn-la

n

0 (m-n)Xn .
,

The singular values of J are the same as those of A. Thus if the singular

value decomposition of

J = XCYT

then

A = plccYTQT

so that ,

u=Px,v=QT  .

In [16], an algorithm is given for computing the SVD of J; the algorithm

is based on the highly effective algorithm of Francis [ll] for computing

the eigenvalues. 42



It is not necessary to compute the complete  SVD when a vector b isN

given. Since ^xN = V&JTb,  it is oiy necessary to compute V,C and $2;N

note, this has a strong flavor of principal component  analysis.  An AJXOL

procedure  for the SVp will soon be published by Golub  asd Reinsch  and a

complex  FORTRAN procedure  for. the SVD by Businger and Golub.
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179 Canonical correlations

It is well-known (cf. [l]) that in order to solve for canonical

correlations,, it is necessary to solve the matrix equation

where Cl1 is a p x p positive definite matrix and C
22

is a q x q positive

definite matrix. The eigenvalues of (17.1) correspond to the canonical

correlations. Since Cii is positive definite we have

cii = r;ri .

A short manipulation shows we may rewrite (17.1) as

(!IT i) (3 =A (:)
where R

(17.2)

Thus by (14.2) and (14..3) , we see that the canonical correlations, A.,_ are
J

the singular values of Q.

Suppose we have two sets of data X
nxp

and Y
n x q' We assume that

the mean of each variable is zero. Then

^cll = c⌧T⌧,  i22 = cYTY,  i,, = cXTY(c  > 0) l
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Using the

algorithm

Householder algorithm described in section 8 or the Gram-Schmidt

described in section 10, we may write

X = T
QR,QQ=LR: TJ

P

Y = PS, PTP = Iq' s:Y

Hence by (17.2)

ri = R-TRTQTpSS-l

= $P .

Y

.

(17m3)

Therefore the canonical correlations are the singular values of Q'P. Note

‘i(‘) L II fi II2 I II QT 1.12 ’ lIPI 5 1 l

A short calculation shows that s= R-ki and &= S-"L~ where zi and Li are

the ith columns of U and V, respectively. This method of characterizing the

canonical correlations has been observed previously (cf. [25] ). An

algorithm using these techniques will soon be published by Bj&ck and Golub.

i

L
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