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ABSTRACT

Several matrix deconpositions which are of some interest in statistica

calculations are presented. An accurate method for calculating the

canonical correlation is given.
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- 0. Introduction
2 Wth the advent of modern digital conputers, many of the well

f known hand cal culator nethods for making statistical calculations
- have been revised. For exanple, Hotelling [19] proposed a nunber of
nmethods for solving matrix problens. Yet today al nost none of these
~

nethods are in current use. In this paper, we shall present several

|

. wel | known matrix deconpositions and show their relevance to statistical
‘ calculation. Some of the properties of the numerical algorithnms shall
|

= be discussed.

.

|

-

|

-

|

!

.

{

L

E

-

k y

(-

‘\

-

L

'i

-



—

1. Chol esky deconposition

Let A be a real, symmtric, positive definite matrix of order

n. It is well known that we may factor A so that

A =RTR (1.1)

where R is an upper triangular matrix (). The deconposition (1.1)
i's known as the Chol esky deconposition. The cal cul ation of R may be
performed in two ways.

a) Conplete Chol esky Deconposition Al gorithm (CCDA)

Let

1/2 .
r ) / and r_ :alj/r11(3=2,...,n) .

1 = (e 13
Then for i =2,..., N,

i-1
r.. = (all _lz 2 1/2

Tei ’
(1.1)

i = (aij _-}g;lrkirkj)/rii<j=i+l"'.

b) Sequential Chol esky Deconposition Al gorithm ( SCDA)

Let

a-(-l) =a
I ]

Then for k = 1,2,4.4, N,



= (o(K) k .
Tk - (akk) > Ty = al(ij)/rkk > (35k) ,
(k) _(k) (1.2)
k+1 a, ."a;’.
agj' ) =a§§) ’kﬁ:ﬁ‘]—, i, d =k+l’j"’ n.
kk

Since the Chol esky deconposition is unique when r.;>°  each of
the algorithns produces the same R Each of these methods require

3 2

n"/6 + 0o(n%) multiplications plus n square roots. The CCDA has the

. th . . .
advantage that if the i= row of the matrix R is being conputed,

then it is only necessary to have available the ith row of the matrix
A, and the (i-1) previously conmputed rows of R. This is especially
advant ageous when the matrix Ais so large that it is necessary to

store it in auxilliary storage.




2. Accuracy of the Cholesky deconposition

J. Wilkinson [31] has given an error analysis of the SCCA He

assunmes that the error in the basic operations are as foll ows:

fi(a+b) = a(1+el) + b(l+82)
f2(axb) = ab(l+53) leg. < o™t
£2(a/v) = (2a/b)(1+e),)

where a mantissa of t binary digits is used. The notation fi(a bp'b)
indicates the result of the operation with two floating point nunbers
a and b when standard floating point arithnetic is used. Furthernore,

it is assuned that if

X = fi(sqrt a)

t hen

-t
x2=a(l+e) with |e] < 2 x2 1

o wher e

r—

tp =t - log2(l.06) .

When the SCDA is used, arithmetic errors are introduced at each

stage of the calculation. |Indeed it is possible that for sonme positive

-

definite matrices it will be inpossible to conplete the algorithm because

—



of the roundoff error. WIkinson has given sufficient conditions for

which it is possible to conplete the SCDA. |n addition, he has shown
that the conputed Chol esky deconposition will be exact for sone
perturbed matrix A + E . Let ll...H2 indicate the spectral norm

4

and let R be the conputed Chol esky factor.

Theorem 1.  (Wlkinson): If Ais a positive definite matrix of

order n > 10 , then provided

A 2 2063/ "2 |all,

the Cholesky factor R can be conmputed without breakdown and the
computed R satisfies the relation
—T—

RR=A+E,

lell, < 2.50%/227 ), .

Thus the relative perturbation viz ”EHQ/”AHZ' is but a few units

of the mantissa for the Cholesky factorization. The above result is

i ndependent of the choice of pivots.
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3. Solution of linear equations

G ven the Chol esky deconposition, it is a simple matter to sol ve
a system of linear equations or to conpute the inverse. To solve

Ax = b, the nost convenient procedure is to first solve

(3.1)

o’

Ry =

-and then solve

K=y -

Since Ris <g and RT is &, this requires a total of n° + Qan)
nul tiplications. To conpute the inverse, conpute R* which is <g

and then conpute RIRT , taking advantage of the triangular form

of R'1 and the symmetry of A'1 . this requires %1-2 + o(ne)
mul tiplications. Thus to invert a positive definite matrix requires
n2/2 + QnQ) mul tiplications which is fewer nultiplications than
mul tiplying two matrices by the usual algorithn

Because of the roundoff error, equations (3.1) and (3.2) can be

replaced by a perturbed system of equations. Thus, in reality we have
(R+R)u = 1
and

(R+6R)z = u ,
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and this inplies that

(A+5A)£ =

o

wher e
A = E + 6R'x '§+§'Tx6§+ STT x 6R .

Using Theorem 1 and WIkinson's bounds for solving triangular systens

[30 ,pg 991, it can be shown that

ll6ll
-t
mg_z < 507/%271 (3.3)

went he conditions of Theorem 1l are satisfied.

The bound given by (3.3) is quite gross but it does indicate that
solving equations using the Chol esky deconposition leads to a relatively
smal | perturbation in the original data. Note also that we can determnine

a bound on the_residual vector r =15 - ~. Since (A+6A)z =1 ,

x = 8Az and thus

3/2, -t
I, < 507527 all, .

O course, if the normof the residual vector is small it is not true

an accurate solution has been determ ned since
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and hence
-1
-zl < 1A~ gl .

It is possible to bound the normof the relative error providing an

upper bound for the condition number K. (A) =IIAH‘,2HA'1H2 isknown.

Since g -x = -A léAz,, , a short manipul ation shows that when

~1

Izl
ZXllo K(A
Tl S TMA) (5.4

where p = ||5AH2/”A”2 . This bound is independent of the nethod used.



4., Conditioning of matrices

Since the bound (3.4) is dependent upon the 'condition nunber, it
is frequently desirable to replace the original system of equations
Ax = b by a new system

DADw = Db

where D is a diagonal matrix with non-zero diagonal elenents. Let

sn be the set of all n x n diagonal matrices with non-zero diagonal

elenents. W wish to choose 8 so that
k(3aB) < «(paD) for all Ded .

A symetric matrix is said to have Property A if there exists a pernuta-

tion matrix |l such that

wher e Alesp and Agesqandv p+g=n. Al tri-diagonal matrices
have Property A

Let 13sﬂn and {f)]i\i = l/fa-‘_*'i'i Forsythe and Straus [10] have
shown that for matrices that possess Property A B-d . Mmre
general ly, for all positive definite matrices A, van der Sluis [29]

has shown that

k(BaB) < nc(Dad) . (4.1)



Therefore in the absence of other information, it would appear that
it is best to precondition the matrix A so that all the diagonal
el enents are equal, e.g. the covariance matrix should be replaced by
the correlation matrix.

The probl em of preconditioning symmetric positive definite

matrices arise in the other statistical contexts (cf. [12]).

10
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5. Iterative refinement

. - Once an approximate solution to Ax = L has been obtained, it
is frequently possible to improve the accuracy of the approximate

solution. Let x be an approximate solution, and let r = b - Ax ,

Then if g: X+ g B g satisfies the equation
= AS = r. (5.1)

Equation (5.1) can be solved approximately once the Cholesky decomposition

of A 1is known; indeed, it requires but n2

+ 0O(n) multiplications
to solve for the correction 8 . Of course, it is not possible to solve
v precisely for 2 so that the process may be repeated. Thus for

X(O) given, the algorithm proceeds as follows:

- 1) compute £(k) =) - A,E(k) ;
(k) _ (%)

2) solve A§ =r ;
(1) _ (0, ,(8)

~ ~

3) compute x

- The process continues until

V ”x(k+l) _x(k) “

. ” x(k*l-lT”

<e,

a predetermined constant or some other criterion 1s satisfied. The

above algorithm is known as iterative refinement and has been extensively

discussed in the literature (cf. [ 24, 32]) .
There are three sources of error in the process: (1) computation

of the residual vector g(k), (2) solution of the system of equations

1l




for the correction vector g(k) , and (3) addition of the correction
vector to the approximation gg‘(k) . It is absolutely necessary to
conpute the. conponents of the residual vector using double precision
inner products and then to round to single precision accuracy. tpe
convergence of the iterative refinement process has been discussed in
detail by Mler [24]. Generally speaking, for a large class of matrices
for k> k, all conponents of i(k) are the correctly rounded single
preci sion approxi mations to the conponents of x . There are exceptions

to this, however, (cf,[21]). Experinentally, it has been observed,

in nost instances, that if ”’{L(O) ”m/”?é(o) ”wSE-P wher e

el = wex Iy,
I<isn
t hen ky 2 [t/p] . W shall return to the subject of iterative refine-

ment when we discuss the solution of linear |east squares problem

12
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6. Partial Correlation

Again let A be a positive definite matrix and we partition the

matrix in the follow ng form

_ A'.Ll A12
A= A A
21 | 22
wher e A is p Xxp, Ans is gxq , and AiQTE Ay - Suppose

the SCDA is used but the algorithmis stopped after p steps, Then

g R Y

here R, is the Cholesky factor of A, SO t hat RiRl = A

1
Equating matrix blocks, we see

AL, = KIS
Ayy~= 55 + W
Thus
W= 4, - A R RTA

22 T o1ty 1 P12
A A A1*
= Bop = By Ayihs

13



. (o+1) .
The matrix W-is denoted by adgﬁl’ in (1.2).

Consi der the covariance matrix

' 211212 T
Z-— 221222 . where 11 is p X p .,

The partial covariance nmatrix

L, L Lk

22-1 21711712

z

when the first p variables are held fixed, and the regression function

is defined by
-1
2@ LT T W )
where &(1) ’ g(e) are the correspondi ng vectors of expected val ues.
1 f
Thus if we apply the first p steps of the SCDA, c§?+ ) corresponds

to the partial covariance when the first p variables are elimnated.
W can elinmnate the effect of the first (p+l) variables by sinply

performng one nore step of the SCDA. It is a sinple matter to conpute
o ©o-1

. T -1
the regression function since & ]la , corresponds to S"R.T

1k
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7. Least squares

Let A be a given mxn real matrix of rank r and b a

given vector. V¥ wish to determine % such that

m n

2 .
i{:l (bi - Z aijxj) =mn .

i=1

or using matrix notation
le-axll, = nin . (7.1)

If m>nandr <n, then there is no unique solution. Under these
conditions, we require amongst those vectors x which satisfy (7.1)

t hat
|é{j'|2 =mn .

For r=n, % satisfies the normal equations

ATA;@ = A% . (7.2)
Unfortunately, the matrix AA s frequently ill-conditioned and

influenced greatly by roundoff errors. The following exanple illustrates

this well. Suppose

15
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which is clearly of rank 4. Then

l+s2 1 1 1
1 1+e 1 1
Ala -
1 1 1+e® 1
1 1 1 140
and the eigenval ues of ATa are 4+52, 52, 82’ e . Assume that the

elements of A'A are' conput ed using double precision arithnetic, and

then rounded to single precision accuracy. Now if ¢ < Jot ,

£e( ATA) =

L
I T
I T
[T S SN

a mtrix of rank one, and consequently, no matter how accurate the linear
equation solver it will be inpossible to solve the normal equations (7.2).
Longl ey [23] has given exanples in which the solution of the nornal

. equations leads to alnost no digits of accuracy of the |east squares problem

L 16



8. A matrix deconposition

vowllgl, = (fpY? so thatllagl, = ligl, when Qis an

orthogonal matrix, viz, QTQ=I . Thus
lo-Axll, = lle-eaxll

where ¢ =@qb and Q is an orthogonal matrix. W choose Q so that

QA =R = <§> | (8.1)
0 /1(m-n) x n

where R is an upper triangular matrix. |et

rll rl2 L] . L] rln
~ Thm o o o T
~ 22 on )
0 ",
t hen
2 : 2
lo-pxlly = (ey-ryyxy-rp ey - e ry x)
2
¥ (Cz-r22x2 T I‘2nxn)
2
T cn-rnnxn)
2 2 2 .
+
+Cn+l+Cn+2 ,,,+Cm .

17



Thus lb-Axll> i's ninimized when

Tii¥p t ot t ok - ¢
A —
Taghp ¥ o T I S0
. A
"% ~Cn
ie, =% where
S = (cl,CE’. .-,Cn) )
and
2 2 ) o
Io-aRll; = cppp * Cpup * o a2 (8.2)
Then
T (ol ~e
RR = (R:0)%(R:0) = &R
(8.3)

(aa)T(aa) = aTa |

1

and thus ®% is sinply the Chol esky deconposition of ATA.
There are a number of ways to achieve the deconposition (8.1);

e.g., one could apply a sequence of plane rotations to annihilate the

elements bel ow the diagonal of A. A very effective nethod to realize

the deconposition (8.1) is via Househol der transformations. A matrix

Pis said to be a Househol der transformation if

18



P=1 -2uuT, uTu=l.
~~ ~ N

Note that 1) P = P’ and 2) PP = | - 2yl - e’ +huwun’= I  so
that P is a symetric, orthogonal transfornation.

Let A(l) = A and |et A(z), A(B),... A(n+l) be defined as

fol | ows:

A p(9,(8) e o n)

wher e P(k) =1- Qg(k)g(k)T s ﬁ(k)TE(k) = 1. The matrix P(k)

(k+1) (k+1) (k+l
chosen so that N1,k T P2,k T = aﬁ,k) = 0 . Thus after k
t ransformations
(2) _(2) (2
8117 %12 . . : © 8n
(3) (3)
N . © 8
0 .
A(k+l) | a}(dlzﬂ) ' . al(qyfq.l)
(k+1)
0 fkt1, ktl
0 . . .
(k+1) (k+1)
0 0 am,k+l ‘ amn

The details of the conputation are given in [5] and [13].

19
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Cearly,

R = A(n+l)

and

Q= p(Mp(n-1) p(1)

al though one need not conpute Q— explicitly.

tions required to produce R is roughly nﬁ -

2
mn

20

The nunber of multiplica-

n5 .
3 wher eas approxi mately

2 mul tiplications are required to formthe normal equations (7.2).
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9. Statistical calculations

In many statistical calculations, it is necessary to conmpute certain
auxiliary information associated wth ATA These can readily be obtained

from the orthogonal deconposition. Thus

T\ _ 2
det(A"A) = (rllxr22 X X rnn) .

Since
AT = ®y , Tt - xlx T

The inverse of ® can be readily obtained since ¥ is an upper triangular

mtrix. It is possible to calculate (ATA)'l directly from®. et
Tt =x =
Then from the relationship

¥x=%"T

and by noting that {?’T}ii = 1/rii, it is possible to conmpute X 0% 15
x . The nunber of operations are roughly the same as in the first
method but nore accurate bounds nay be established for this nethod
provided all inner products are accunulated to double precision.

In some applications, the original set of observations are augmented
by an additional set of observations. In this case, it is not necessary
to begin the calculation fromthe beginning again if the method of ortho-

gonal i zation is used. Let ﬁi, correspond to the original data after it

bl
has been reduced by orthogonal transformations and |et Assby correspond to
the additional observations. Then the up-dated |east squares solution can

be obtained directly from

21
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This follows inmmediately fromthe fact that the product of two orthogona
transformations is an orthogonal transformation.

The above observation has another inplication. One of the arguments
frequently advanced for using normal equations is that only n(n+l)/2
menory locations are required. By partitioning the matrix A by rous,
however, then simlarly only n(ntl)/2 | ocations are needed when the nethod
of orthogonalization is used.

In certain statistical applications, it is desirable to remove a row

of the matrix A after the least squares solution has been obtained. This

can be done in a very sinple manner. Consider the matrix

where ¢ is the row of A which one wishes to renmove, g is the corresponding

el ement of b, and i = /-1. Note that

STS = ?mﬁ - 021 = ATy - aQa

005,
0

0°
sin e -cos 8

Let

1,n+1 =

()

(1) _ (2) _
S =S . and S = Zl,n+1

22
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W choose cos g so that {s(2) -
{ b1 = O Thus
(2) . 2 2
S = -
{ b0 11 ~ 9
5@y o Ty Ty
1,3 2 _
11 7 9%
(s(®) Hogryy - oyryy
n+l,j >
1179

Note no conplex arithmetic is really necessary.

The process is continued as fol | ows:

Let
L) ' k
1 X
1 ]
LIS ]
bgypey S| 0 v ceose o L.y
X 1
l.. 1
| sin 6,
Then
(k+1) _ (x)
S - Zk,n+1S ’
23

j = 2,3,1.-,11

i =2,3,...

.-cos 6, | n+l

eeyn

.
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and cos §,_is deternined so that {s(k+l)}

k,n+l

0.

Thus roughly 5n2

mul tiplications and divisions and n square roots are required to form

the new .

Suppose it is desirable to add an additional

matrix A is augmented by a vector g (say).

are unchanged.  Now-one conputes

h=ptl )

variable so that the

The first n colums of ?5

NONCHES

From h one can compute P(™L) gng apery it 4o 2™ p(1)

It is also possible to drop one of the variables in a sinple fashion

after R has been conputed. For exanpl e,

t hen
E‘lg .
r22 L]
R = d

suppose we wish to drop variable 1,

1n

r
nn

nx (n-1)

By using plane rotations, similar to those given by (9.1), it is possible

to reduce ¥ to the triangular form again.

2k
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10. Gram=Schmidt orthogonal i zation

In section 8, it was shown that it is possible to wite
QA =R. (10.1)

The matrix Q is constructed as a product of Househol der transformation.

From (10.1), we see that

where PTp = In, S:J . Each row of S and each colum of P is uniquely
determned up to a scalar factor of nodulus one. In order to avoid conputing
square roots, we nodify the algorithms so that S is an upper traingular

T

matrix with ones on the diagonal. Thus P°P = D, a diagonal matrix. The

calculation of P and s may be calculated in two ways.

a) C assical Gam Schmidt Al gorithm (CGSA)

The elenents of S are conputed one colum at a time. Let

(k)

A. = (gl, 7?.2’ ceey gk"l’ Elk, coey En)
and assumne

pT p. = 6..d 1<1i,j< k-1

i &S lJ i’ g JJ .

At step k, we conpute

slk_plfik/di ’ 1<i <kl
k-1 5
B tm D tuk o bm B

25



b) Modi fied Gam Schmidt Al gorithm (MSSA)

Here the elenents of S are conmputed one row at a tinme. W define

k k k
A8 < (s p s gy B s )
and assume
T _ T (k) _ .
Rigj_éijdi’giil =0 ,1<i, j <k, k<z<n,

(
- At step k, we take o = 3{‘1‘), and conpute

g =lpls » s =ppalP/e @B g 5

I'n both procedures, S T 1.  The two procedures in the absence of
roundoff errors, produce the same deconposition. However, they have
conpletely different numerical properties when n> 2. |If Ais at all
"ill-conditioned", then using the CGSA, the conputed colums of P will
soon lose their orthogonality. Consequently, one should never use the
CCSA without reorthogonalization  which greatly increases the anount of
conputation. Reorthogonalization is never needed when using the Misa. A
careful roundoff analysis is given by Bjorck in [2]. Rice [27] has shown
experimental [y that the MGSA produces excellent results.

The M3SA has the advantages that it is relatively easy to program
and experimentally (cf. [20]), it seens to be slightly nore accurate than
t he Househol der procedure. However, it requires roughly 5'521-2- oper at i ons
which is slightly nore than that necessary to the Househol der procedure.
Furthermore, it is not as sinple as the Househol der procedure to add

observations.

26
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11.  Sensitivity of the solution

Ve consider first the inherent sensitivity of the solution of the
| east squaresproblem  For this purpose it is convenient to introduce the

condi tion number K(A) of a non-square matrix A . This is defined by
K(A) = o,/0 5 o, = max||A x| /|| x o = minl|A x x
Y n? "1 x40 ,J\Q “ ~ Il > n X#OH ~”2/H X Hg

2
1

Fromits definition it is clear that K(A) is invariant with respect to

so that o7 and oi are the greatest and the least eigenvalues of ATA

unitary transformations. |f ® is defined as in (8.1) then
cl(?f) = cl(A) s Gn('R') = on(A) » K(R) = «(a),

whil e
oy (®) = || ||, and o, (®) = 1/ ¥ "1, .

The conmonest nethod of solving |east squares problems is via the nornma

equation

AT x =aTp (11.1)

~

The matrix ATA I's square and we-have

k(aTa) = «°(a) .

|-

-This neans that if A has a condition nunber of the order of 2 pep

ATA has a condition number of order 2t

and it will not be possible
using t -digit arithnetic to solve (11.1). The nethod of orthogona

transformations replaces the |east squares problem by the solution of

27
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the equations X x = ¢ and «(R)=k(A). It would therefore seemto have
substantial advantages since we avoid working with a matrix With condition
nunber KE(A). l

V& now show that this last remark is an oversinplification. Tg this
end, we conpare the solution of the original system(A§ ) with that of a

perturbed system |t is convenient to assune that
o, < HAHQ = | b ”g =13

this is not in any sense a restriction since we can make [[Al|2 and || b U2

of order unity nerely by scaling by an appropriate power of two. & now

have

-1
k(A) = k@®) = | ¥ \\2 = l/crn :
Consi der the perturbed system
(A+eE; b ee), B, =llell, =1,
where ¢ is to be arbitrarily small. The solution x of the perturbed
system satisfies the equation
T - _ T,
(A +€E)" (A + eE) x = (A + ¢E) (b +ee) (11.2)

If X is the exact solution of the original systemand Qis the exact

orthogonal transformation corresponding to A we have

R R+ ¢eF f
QA = fes] QA+ eE) = [ Qe =[x
0 eG ~ g

28



[

and

r=b-A

[
=
L]
#
@

Equation (11.2) therefore beconmes

(A + eE)T(A + ¢E) = (AT + sET)(A X + 1 + se)

giving
R+er| T [R+eF| ¥+cr| T | % £ .
ecesoce esesese] X = R .e X+€ :\: +EE r
eG eG ~ eG o1~ g -

Negl ecting 52 where advant ageous
X + EF)T(R‘ + ¢F) i: X + EF)T‘R'% +e(® + gF)T£ + gET}; + 0(32)
X = X + gF)'l'R’ % + e(® + eF)'li;+
+ e (@ M)ET + 0(c?)
=% - K IFx R L e + o(?)

giving

I - %1l < el®HIEIN & Nl + el® e, + B2 e, + o®)
< ex(A)[F, + ex(a) + ek®A||gl, + 0(c?)

V¢ observe that the bounds include a term eKE(A)\\E\\e.It is easy to
~verify by means of a 3 X 2 matrix A that this bound is realistic and

that an error of this order of magnitude does indeed result from al nost

any such perturbation E of A . W conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in
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the use of the normal equations the val ue of KQ(A) is still relevant

to some extent.

Wen the equations are conpatible ||l = 0 and the termin KB (a)
di sappears. In the non-singular |inear equation case I is always null
and hence it is always k(A) rather than KE(A) which is relevant. Since
the sensity of the solution depends on the condition nunber, in the
absence of other information, one should normalize each colum of A so

that its length is one in accordance with (4.1).
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12. lterative refinement for |east squares problens

The iterative refinement nethod nmay also be used for inproving the

solution to linear |east squares problens.

Let

ag=b-a% ,a>o
so that

anly = > ATa g0

Wien « = 1, the vector p is sinply the residual vector r . Thus

ZU.

all A b
T e R 3 (12.1)
A"] O X 0
or
B{z g .

One of the standard methods for solving |inear equations may now be
used to solve (12.1). However, this is quite wasteful of nenory space
since the dinension of the systemto be solved is (m+ n).

Ve may sinplify this problem sonmewhat by noting with the aid of

(8.3) t hat
JaT|l 2 a
ol | LIl O Jo | U
aTlo X o |-ix
) Jo  |/a Jo
31



W are now in a position to use the iterative refinenent nethod for
solving linear equations.

Thus one mght proceed as foll ows:

1) Solve for x(o) using one of the orthogonalization procedures outlined
in section 8 or 10. ¥ must be saved but it is not necessary to retain Q.

Then

p(o)=§'7(b-A (0))_

~y

2)  The vector st+l) is determned from the relationship
A1) (8) , 4(s)

~ ~

wher e
55 _ g- By =nl) (12.2)
This calculation is sinplified by solving

L,E(S) - ,13(8)

0 s(e) - (o

The vector—h(s) must be' cal cul ated using double precision accuracy and

then rounding to single precision.

3) Terminate the iteration when ﬂf‘s%hmes%\is less than a prescribed
nunber .

Note that the conputed residual vector is an approximation to the
residual vector when the exact solution 3’ is known. This may differ

from the residual vector conputed from the approximate solution to the
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| east squares problem

A variant of the above procedure has been anal yzed by Bjorck [3],
and he has also given an ALGOL procedure. This has proved to be a very
effective method for obtaining highly accurate solutions to linear |east
squares problens. Bjorck and Golub [4] have described a similar iterative

refinement method for solving |east squares problems with |inear constraints.
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"be applied on the right of AT*1) 5o that the elements of S

13. Singular Systens

If the rank of Ais less than n and if colum interchanges are

performed to maximze the diagonal elenments of R, then
1

F;xr \ S(n-r)xr

A(r+1) _
0 0]

when rank (A) = r. A sequence of Househol der transformations may now

(n-r)Xr
become annihilated. Thus dropping subscripts and superscripts, we have

veer{ 4]

where % is an rxr upper triangular matrix. Now

o -axl,=1p-e 2%,

= \\3 -T l“g

where ¢ = @ and y = ZTx . Since Tis of rank r, there is no unique

~ ~ ~

solution so that we inpose the condition that || % ||, = mn.  But

Iz ll, = llxl, since T is orthogonal and || y ||, = nin. when

yr+l = yr+2 = eee T ym = O.
Thus
1
% = Ol an

3k
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This solution has been given by Fadeev, et. el.[7] and Hanson and

Lawson [18]. The problem still remains how to nunerically determne

the rank which will be discussed in section 15.
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14k. Singular value deconposition

Let Abe areal, mxn matrix (for notational convenience we assume

that m>n). It is well known (cf. [22])that
_ T
A= Ugv (1%.1)
wher e
_ T _
ot = I, W o= I
and
cl, e,0
z— O, ese 30
0 (m-n)x n.

The matrix U consists of the orthonormalized eigenvectors of AAT, and the
matrix V consists of the orthonormalized eigenvectors of ATA  The

diagonal elenents of g are the non-negative square roots of the eigen-

T

val ues of A"A; they are called singular values or principal values of A

% assume

Thus if rank (A) =r, 0., 0.5 = = o, =0. The deconposition (14.1)

is called the singular value deconposition (svD).

Let

E={,T o] - (14.2)

It can be shown [22] that the non-zero eigenval ues of X always occur in

+ pairs, viz
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15. Applications of the SVD

The singular value deconposition plays an inportant role in a nunber
of least squares problems, and we will illustrate this with sone exanples.
Throughout this discussion, we use the Euclidean or Frobenius norm of a

matrix, viz.

242

4l = (T1ay5®
A)  Let U be the set of all n xn orthogonal natrices. For an arbitrary
n xn real matrix A, determne qun such that

2 - al < lla - x| for any xeu.
It has been shown by Fan and Hoffman [8] that if

A = Uzv' , then Q=uw .
B) An inportant generalization of problem A occurs in factor analysis.
For arbitrary n xn real matrices A and B, determne Qe such that

|a -Bql| < || - BX|| for any XeUl .

It has been shown by Green [17]and by SchSnemann[28] that if

T

BAZUZVT,then Q-_-UvT .

- C)  Let wz,ﬁk) be the set of all mx n matrices of rank k. Assune

s

Améfr)l .Det erm ne BE'”&le,tl)q (k < r) such that

|A -8B <||a-x|for all Xgmlgll:r)l :

38



It has been shown by Eckart and Young [6] that if

A=V, then B = WV (15.1)
wher e
Ul O
a
Q .=v 2 ¢ ‘ ‘ (15'2)
k A T, .
U y qk
Not e t hat
L
2
o -8 =)z -0l = (65, +..c +62° . (15.3)

D) Annx mmtrix Xis said to be the psuedo-inverse of an m X n

matrix A if X satisfies the follow ng four properties:

i) AXA = A,

ii) xax = x,
iii) (ax)T = Ax,
V) xa)T = xa.

W denote the psuedo-inverse by N . W wish to determine A" nunmeri cal ly.
It can be shown [26] t hat A" can al ways be determ ned and is unique. It

Is easy to verify that

A+ = VAU (15.4)
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In recent years there have been a nunber of algorithns proposed for

conputing the pseudo-inverse of a matrix. These algorithns usually depend

upon a know edge of the rank of the matrix or upon some suitable chosen
paraneter. For exanple in the latter case, if one uses (15.4) to compute
the pseudo-inverse, then after one has computed the singular value decom
position nunmerically it is necessary to determne which of the singular
val ues are zero by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as
A= B + @B

where ¢B is a matrix of perturbations and
lleBl| < 7.

Now, we wish to construct a matrix B such that

la - Bl s
and

rank (B) = mininum

Lo
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This can be acconplished with the aid of the solution to problem (C). Let

where Q is defined as in (15.2).

Then using (15.3),

B =B
P
i
1
2 2 2,2 <
(°p+l LA o ) =1
and
1
2 2 242
(Gp+°p+l+ +cn) > M.

) ~
Since rank (B) = p by construction,

“+ + 7
B =W .
P

Thus, we take B as our approximation to A

E) Let Abe a given matrix, and b be a known vector. peterpine % so
that amongst all x for which |b - Ax || = iy, I %\ =nin 1t is easy

to verify that

= a% .

Ux?
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16. Calculation of the svp.

I'n [14] it was shown by Golub and Kahan that it is possible to con-

struct a sequence of orthogonal matrices

P(k)] E:l, [Q(k)} 11;1;,5]]_-

via Househol der transformation so that

p(n)p(n-1) (1), (1)(2) | o

and J is an mxn bi-diagonal nmatrix of the form

The singular values of J are the same as those of A

val ue deconposition of

J= xzyt
t hen
A = pxzylql
so that
U=PX, V=qT

n-1) _

Oﬁ Bl 0 0
@ B, . 0
10
an
Q
n-
O V_}}(m-n')Xn :

= PIAQ = ¢

Thus if the singular

In [16], an algorithmis given for conputing the svD of J; the algorithm

is based on the highly effective algorithmof Francis [11] for conputing

the ei genval ues. k2
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It is not necessary to compute the complete SVD when a vector ) is
given. Since 25 = VZ+UT3, it is oniy necessary to compute V,T and UTE,
note, this has a strong flavor of principal component analysis. An AIGOL
procedure for the SVD will soon be published by Golub and Reinsch and a

complex FORTRAN procedure for- the gVD by Businger and Golub.
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17. Canonical correlations

It is well-known (cf. [1]) that in order to solve for canonica

correlations,, it is necessary to solve the matrix equation

O T} () (Ep O 2
T,y O B 0 £/ \8 (17.1)

where £,; is a p x p positive definite mitrix and 222 is agqxq positive

definite matrix. The eigenvalues of (17.1) correspond to the canonical

correlations.  Since T;; IS positive definite we have

0
T Q S— = A ;v
Y J |
L =T -1
where Q = IZ0, (17.2)

’S:ria,’n:].ﬂgevo

Thus by (14.2) and (1%.3)  we see that the canonical correlations, i., ge
J
the singular values of Q.

Suppose we have two sets of data X
N x p and Yn X o V¢ assume that

the mean of each variable is zero. Then

- T, < T, < Ty(e > 0
Ty ¢ XX, Ty v T Y, By, o X Y(c > 0) .

bl
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Using the Househol der al gorithm described in section 8 or the Gam Schm dt

al gorithm described in section 10, we may wite
_ I
X= QR} QQ:IP, R:q ’
- T, _
Y=PS, PP =| @ sl .

Hence by (17.2)

Q= R-TRTQ?PSS—l

T
=QP. (17.3)

Therefore the canonical correlations are the singular values of QP. ppte

o @<l Bl Il QT IR, <L

A short cal cul ation shows that &= rYu. and B.= s where u. and v. are
~l ~L ~1 ~L ~L ~L

the i*® colums of U and V, respectively. This nethod of characterizing the

canoni cal correl ations has been observed previously (cf. [25] ). An

al gorithm using these techniques will soon be published by Bjdrck and Golub.
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