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COVPLEMENTARY SPANNI NG TREES
BY
GECRCGE\ B. DANTZI G

G ven a network G whose arcs partition into non-overlapping
"clubs" (sets) Ri° D. Ray Ful kerson has consi dered the probl em of

constructing a spanning tree such that no two of its arcs belong to

" (represent) the same club and has stated necessary and sufficient

conditions for such trees to exist [1].

(1) o 6

- [1]

In Exanple (1) no such "representative" tree exists. \Wen each club
R, consists of exactly two arcs, we shall refer to each of the arc
pair as the "conplement” of the other, and the representative tree as

a conplenentary tree. In Exanple (2) the heavy arcs {1,2,3}

31
(2) !
2|
formsuch a tree. —  The conplenents of {1,2,3}, nanely {1',2',3"}

forma cycle. However, {1',2',3} form another conplenentary tree
Qur objective is to prove

Main Theorem If there exists one conplenentary tree, there exists at

| east two.
The general idea is to pass from one conplementary tree to the

other by a sequence of "adjacent” (or "neighboring") trees which are
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"al nost" conplenentary, An al nost-conplenentary tree is defined to be
one where each set.Ri furnishes exactly one arc with the exception of
one "special" set which furnishes two and one other set which furnishes
none. I n Exanple (2), the al nmost conplementary trees with respect to
the special set {1,1% are {1,1',2}, {1,1',2'}, {1,1',3} and {1,1',3"'}.
A sequence leading from{1,2,3} to {1',2',3} along a path of adjacent

al nost - conpl enentary trees is {1,2,3}, {1,1',3}, {2',1',3}.

Two trees are said to be adjacent or neighbors if they differ by

one arc. The general procedure for generating a sequence of adjacent
al nost -conpl ementary trees is as follows: Start with a conplenentary

tree, Add to it any out-of-tree arc, say A, formng a cycle.

IStep @ If either A or A .is another arc of the cycle,
delete it and termi nate,%lhe new tree thus formed is conplenmentary.
[f not,

Step Il: Arbitrarily*drop sonme other arc of the cycle formng an

adj acent al nost-conplenentary tree with respect to AA'.

Step Ill: Introduce as out-of-tree arc the conplement of the
arc dropped in Step Il. Return to Step I.

Note especially that the sequence of al mpst-conplenmentary trees
thus generated all contain A, A as the special pair of arcs. In

all discussion that follows the "alnmost" is defined with respect to a

fixed pair of special arcs.

* This will be changed |ater.
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Let us see what happens if we apply these steps to Example (3).

The given starting conplenentary tree is {a,b,c,d,e,s}, see (4).

4) IA(Z/O}S (4a) IA % :
S S S

I'n (4a) we have chosen s' as the starting out-of-tree arc so
that the sequence (path) of adjacent alnost-conplenentary trees

generated by the rules will be with respect to the special set s,s'

According to Step Il we can elect to break the cycle by arbitrarily
dropping arc a to obtain (5). Since a is dropped, Step II1l requires
that a' , its conplement, nust be the next out-of-tree arc see

Ve arbitrarily break the cycle by dropping d, see (6), then in
(6a) introduce its conplenent d'. Next we drop e and introduce e',
see (7) and (7a). Next we drop d° and introduce back d, see (8) and

(8a) . Next we drop e and introduce back e, see (9) and (9a).
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— Note that (9a) is identical to (5a) and our rules allow us to drop
d so that we return to (6), Le., the path circles back on itself
| -
l- Thus we see in Exanple (3) that the idea of noving fromone almost-
conpl ementary tree to the next by arbitrarily dropping an arc of a cycle
\
— fails to terminate with another conplenentary tree. Instead it generates
@ a. cycle of alnost-conplenentary trees that repeat ad infinitum Note
-
that Tree (6) is adjacent to Tree (5) as well as Tree (7) and Tree (9).
. What we need is a nodified rule for dropping an arc of a cycle so
|
o that each al nost-conplenmentary tree so generated is adjacent to exactly
two others, one or both of which could be conpletely conplementary. If
-

this could be arranged it is easy to see that the nethod woul d never repeat

r
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an al nost-conpl ementary tree nor could it return to the original
conpl ementary tree because we have arranged it so that there is only
one path out of it. W need a dropping rule which would give rise to

a set S of trees which satisfy the follow ng abstract properties:

(1) Gven a finite set S and a relation "nei ghbor".

(i) If i is a neighbor of j then j is a neighbor
of i.

(iii) No el ement has nmore than two nei ghbors.

(iv) At least one elenent has exactly one nei ghbor.

Theorem S contains at least two elenents with exactly one

nei ghbor .

This type of theoremis used by Euler to resolve the Koenigsberg
Bridge problem Lenke and Howson were the first to turn the underlying
idea into a constructive procedure for proving theorens by rigging the
network relations to have the abstract properties. Lenke showed that
the conpl ementary pivot algorithns used to solve linear and positive-
definite quadratic programming problems could be nodified to find

conmpl ementary solutions to bi-matrix games and certain other non-convex

probl ens [ See References 2-9.].

Curtis Eaves tells the following Ghost Story to illustrate Lenke's
principl e, Once upon a time, there was a haunted house. A brave |ad

entered the front door, (Doors are marked by an x in (10) .) Suddenly,
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he saw a Ghost. He turned to flee but a gust of wind slamed shut the
front door and it would not open. He ran from the room through a second
door only to discover himself in another roomwith a Gwost. He fled
fromroomto roomwth a Ghost hoping to find sanctuary by exiting
through a door which led to the outside or led to a roomw thout a Ghost.
The house had property that if a room contained a Ghost it had exactly

two doors. Query, did the brave young man find Sanctuary?

(10)

kS

Lenke was able to apply his principle because his elements ("roons")
were a selected subset of the extrene points of a convex set. Two el enents
were adjacent if they had an edge (door) in comon. W shall establish
the main theorem by setting up a correspondence between certain trees of
graph G and certain extreme points of a linear program nanely the

following network flow problem

Arbitrarily order the nodes in G. Next orient each arc (4i,j)
as a directed arc fromi to j, if 4i<j and fromj to i if
j <1i. Assign to the arcs of the given conplenmentary tree arbitrary
val ues aij >0 and aji = -a, if (i,j) is adirected arc of the

tree, for all other (i,j) let a,. = 0. Let node val ues bi = Z a..

i J
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The network flow problemis then to find Xij > 0 such that

z X.. = Z X., =0b
€U, '] eV, jk

wher e U,
N

V,
J

{i] (1,j) is a directed arc of G}

{k| (j,k) is a directed arc of G}

I't is well known that the arcs (i,j) corresponding to basic

variables (feasible or not) forma tree, If feasible basic solutions

are non-degenerate and the feasible set is bounded, then a new basic
feasible solution can be obtained by increasing sufficiently the flow
xij on a directed out-of-tree arc (i,j) while adj usting the flows on
basic arcs. The arc dropping out of the cycle will then correspond to
the uni que basic variable whose val ue decreased to zero.

Uni queness is a consequence of non-degeneracy, (One way to avoid
degeneracy is to assign as the n-1 arc flows of the starting conplenentary
tree n-1 different powers of ¢ > 0. Arc flows in subsequent almost-
conpl enentary trees will then be polynomials expressions in e which
will be strictly positive for sone range 0 < e < €,

Boundedness is a consequence of first ordering the nodes and then
orienting the arcs consistent with this node ordering. If this is done
there can be no directed cycles -in G. |n general, the feasible set is

bounded if and only if there is no cycle in which all arcs are oriented

in the same direction around the cycle.



The al nost-conpl enentary trees correspond to the sequence of
basi ¢ feasible solutions can now be easily shown to satisfy the

conditions of Theorem 2 and the main Theorem follows as a consequence.

W illustrate the procedure on Exa‘fnple (3). The letters

will now represent not only the name of the arc but also the directed
flow on the arc. The node ordering was chosen arbitrarily. For

starting flow in the conplementary starting tree we assume

Ma x

In (12a) we arbitrarily introduce the out-of-tree arc s' wth flow
s' = 8, this causes a change of flows about the cycle in order that
the net-flow around each node remains the same. Thus the net flow at
node (5) in (12) is ctd = 7; if s is increased froms =0 to

s =6 then ¢ changesfrom ¢ =4 to ¢ =4+ 08; sinmlarly, a =6
changesto a =6 - 6. The maxi num change in 6 that preserves
feasibility is 6 = 6 at which value a = 0 and arc a drops out,

see (13). Therefore a' =6 is introduced in (13a).

6=6



a3 ' (13a) 6=3
5
a4 3 _5p-13 s (14a) Nax =5
5
(15) 1 3 3 13 A (15a) Max 6=3
3
16 13 -8 =
ae) | g (16a) o | Max 6=6

<= New Conpl enentary Tree

Mdified A gorithm After node ordering, arc orientation, assigning basic

feasible flows, and chosing a special basic arc, increase flowon its

conpl enent .
Step I': Drop arc of the cycle as in sinmplex algorithm |f arc
dropped is a special arc, ternminate. I f not,
Step Il": Introduce as incoming arc the conplement of the arc

dropped. Return to Step I'.
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