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Given a network G whose arcs partition into non-overlapping
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"clubs" (sets) Rie D, Ray Fulkerson has considered the problem of

constructing a spanning tree such that no two of its arcs belong to

' (represent) the same club and has stated necessary and sufficient

conditions for such trees to exist [l].

In Example (1) no such "representative" tree exists. When each club

Ri consists of exactly two arcs, we shall refer to each of the arc
.

pair as the "complement" of the other, and the representative tree as

a complementary tree. In Example (2) the heavy arcs {1,2,3)

(2)
1'

form such a tree. The complements of {1,2,3), namely {1',2',3')

form a cycle. However, {1',2',3) form another complementary tree.

Our objective is to prove

Main Theorem: If there exists one complementary tree, there exists at

least two.

The general idea is to pass from one complementary tree to the

other by a sequence of "adjacent" (or "neighboring") trees which are
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"almost" complementary, An almost-complementary tree is defined to be

one where each set.Ri furnishes exactly one arc with the exception of

one "special" set which furnishes two and one other set which furnishes

none. In Example (2), the almost complementary trees with respect to

the special set {l,l? are {1,1',2), {1,1',2'), {1,1',3) and'(1,1',3').

A sequence leading from {1,2,3) to (1',2',3) along a path of adjacent

almost-complementary trees is (1,2,3), {1,1',3),  {2',1',3).

Two trees are said to be adjacent or neighbors if they differ by

one arc. The general procedure for generating a sequence of adjacent

almost-complementary trees is as follows: Start with a complementary

tree, Add to it any out-of-tree arc, say A', forming a cycle.
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I :Step If either A or A' ..is another arc of the cycle, .

delete it and terminate '
Yb

e new tree thus formed is complementary.

If not,

Step II: Arbitrarily*drop some other arc of the cycle forming an

adjacent almost-complementary tree with respect to AA'.

Step III: Introduce as out-of-tree arc the complement of the

arc dropped in Step II. Return to Step I.
c

Note especially that the sequence of almost-complementary trees

ii
I
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thus generated all contain A, A' as the special pair of arcs. In

all discussion that follows the "almost" is defined with respect to a

fixed pair of special arcs.

* This will be changed later.
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The given starting complementary tree is {a,b,c,d,e,s} , see (4

Let us see what happens if we apply these steps to Example (3).

In (4a) we have chosen s' as the starting out-of-tree arc so

that the sequence (path) of adjacent almost-complementary trees

generated by the rules will be with respect to the special set s,s' .

According to Step II we can elect to break the cycle by arbitrarily

dropping arc a to obtain (5).- Since a is dropped, Step III requires

that a' , its complement, must be the next out-of-tree arc see (5a).

We arbitrarily break the cycle by dropping d, see (6), then in

(64 introduce its complement d', Next we drop e and introduce e',

see (7) and (7a). Next we drop d' and introduce back d, see (8) and

(W b Next we drop e' and introduce back e, see (9) and (9a).

3
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Note that (9a) is identical to (5a) and our rules allow us to drop

d so that we return to (6), Le., the path circles back on itself.

Thus we see in Example (3) that the idea of moving from one almost-

complementary tree to the next by arbitrarily dropping an arc of a cycle

fails to terminate with another complementary tree. Instead it generates

a. cycle of almost-complementary trees that repeat ad infinitum. Note

that Tree (6) is adjacent to Tree (5) as well as Tree (7) and Tree (9).

What we need is a modified rule for dropping an arc of a cycle so

that each almost-complementary tree so generated is adjacent to exactly

two others, one or both of which could be completely complementary. If

this could be arranged it is easy to see that the method would never repeat

i
i
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an almost-complementary tree nor could it return to the original

complementary tree because we have arranged it so that there is only

one path out of it. We need a dropping rule which would give rise to

a set S of trees which satisfy the following abstract properties:

(9 Given a finite set S and a relation "neighbor".

(ii) If i is a neighbor of j then j is a neighbor
of i.

(iii) No element has more than two neighbors.

(iv) At least one element has exactly one neighbor.

Theorem: S contains at least two elements with exactly one

neighbor.

This type of theorem is used by Euler to resolve the Koenigsberg

Bridge problem. Lemke and Howson were the first to turn the underlying

idea into a constructive procedure for proving theorems by rigging the

network relations to have the abstract properties. Lemke showed that

the complementary pivot algorithms used to solve linear and positive-

definite quadratic programming problems could be modified to find

complementary solutions to bi-matrix games and certain other non-convex

problems [See References 2-9.1.

Curtis Eaves tells the following Ghost Story to illustrate Lemke's

principle, Once upon a time, there was a haunted house. A brave lad

L

L-

-

entered the front door, (Doors are marked by an x in (10) "> Suddenly,
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he saw a Ghost. He turned to flee but a gust of wind slammed shut the

front door and it would not open. He ran from the room through a second

door only to discover himself in another room with a Ghost. He fled

from room to room with a Ghost hoping to find sanctuary by exiting

through a door which led to the outside or led to a room without a Ghost.

The house had property that if a room contained a Ghost it had exactly

two doors. Query, did the brave young man find Sanctuary?

(lo) -

r-r G
Lemke was able to apply his principle because his elements ("rooms")

were a selected subset of the extreme points of a convex set. Two elements

were adjacent if they had an edge (door) in common. We shall establish

the main theorem by setting up a correspondence between certain trees of

graph G and certain extreme points of a linear program, namely the

following network flow problem:

Arbitrarily order the nodes in G . Next orient each arc (Lj)

as a directed arc from i to j, if i'j and from j to i if

j g i, Assign to the arcs of the given complementary tree arbitrary

values a
ij

> 0 and
aji = -aij

if (i,j) is a directed arc of the

tree, for all other (i,j) let a
ij

= 0, Let node values bi = 1 a...
j 'J

6
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where

c x -
ij c b

i&U. k&V xjk= j
J j

U
j
= {iI (i,j) is a directed arc of G)

V
j

= {k] (j,k) is a directed arc of G)

It is well known that the arcs (i,j> corresponding to basic

variables (feasible or not) form a tree, If feasible basic solutions

are non-degenerate and the feasible set is bounded, then a new basic

The network flow problem is then to find x 2 0 such that
ij -

feasible solution can be obtained by increasing sufficiently the flow

X
ij

on a directed out-of-tree arc (W) while adjusting the flows on

basic arcs. The arc dropping out of the cycle will then correspond to

the unique basic variable whose value decreased to zero0

Uniqueness is a consequence of non-degeneracy, One way to avoid

degeneracy is to assign as the n-l arc flows of the starting complementary

tree n-l different powers of E ' 00 Arc flows in subsequent almost-

complementary trees will then be polynomials expressions in E which

will be strictly positive for some range 0 < E g Eo.

Boundedness is a consequence of first ordering the nodes and then

orienting the arcs consistent with this node ordering. If this is done

there can be no directed cycles -in G, In general, the feasible set is

bounded if and only if there is no cycle in which all arcs are oriented

in the same direction around the cycle.

i



The almost-complementary trees correspond to the sequence of

basic feasible solutions can now be easily shown to satisfy the

conditions of Theorem 2 and the main Theorem follows as a consequence.

We illustrate the procedure on Example (3). The letters

will now represent not only the name of the arc but also the directed

flow on the arc. The node ordering was chosen arbitrarily. For

starting flow in the complementary starting tree we assume

c12Azl=  (12a) de Max 8=6

In (12a) we arbitrarily introduce the out-of-tree arc s' with flow

s' = 8, this causes a change of flows about the cycle in order that

the net-flow around each node remains the same. Thus the net flow at

node (5) in (12) is c+d = 7; if s is increased from s = 0 to

S = 8 then c changesfrom c=4 to c=4+8; similarly, a = 6

changesto a=6-0, The maximum change in 8 that preserves

feasibility is 6 = 6 at which value a = 0 and arc a drops out,

see (13)0 Therefore a' = 8 is introduced in (13a).

8



(13a) Max 8=3

Max 8-5

(15a>  0 Max 833

(164 1

a= New Complementary Tree

Modified Algorithm: After node ordering, arc orientation, assigning basic

feasible flows, and chasing a special basic arc, increase flow on its

complement.

Step I'-: Drop arc of the cycle as in simplex algorithm. If arc

dropped is a special arc, terminate. If not,

Step II': Introduce as incoming arc the complement of the arc

dropped. Return to Step I',
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