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Abstract
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Several algorithms are presented for solving block tridiagonal

T
L

systems of linear algebraic equations when the matrices on the diagonal

are equal to each other and the matrices on the subdiagonals are all

i
L

equal to each other. It is shown that these matrices arise from the

finite difference approximation to certain elliptic partial differential

f

1

L

equations on rectangular regions. Generalizations are derived for higher

order equations and non-rectangular regions.
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1. Introduction

In many physical applications, it is necessary to solve an NxN

system of linear algebraic equations

where M arises from a finite difference approximation to an elliptic

partial differential equation. For this reason, the matrix M is

sparse and the non-zero elements occur in a very regular manner. As

'an example of this, let

M =

and we partition 2 and x to conform with M . If it is possible to

interchange the rows and interchange the columns of a matrix so that it

has the form of (M-I) , then the matrix is said to be 2-cyclic (cf. [lo]).

Expanding (l.l), we have

+ Fx21 42 = x1

FTzl+  %=G .

Multiplying the first equation by -FT and adding we have

(I-F~F)&= G - FTxl . 0.3 >

Thus by this simple device, we have reduced the number of equations.

If (I-FTF) is also 2-cyclic then we can again eliminate a number of the

variables, and we can continue until the resulting matrix is no longer I

2-cyclic.
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Based on the suggestion of one of the authors, Hackney [6] has used

this device extensively and effectively. Recently Buneman [2] has devised

a method for easily solving the reduced system of equations. The technique

is particularly attractive since in theory it yields the exact solution

to the difference equation whereas commonly used methods seek to approximate

the solution by iterative procedures (cf. Varga [lo]). An extensive list

of references is given in the excellent survey of direct methods by

Fred W. Dorr [4]. The method of odd/even reduction and factorization -

described in this paper is similar to that of Buneman. In addition, a

generalization of Hackney's direct method using Fourier analysis is given.

Extensive numerical computations will be reported later.
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2. Matrix decompositions

Consider the system of equations

c=x (2.1)

where M is an N x N real symmetric matrix which has the block

tridiagonal form

Ms

'A T
.

T A. 0
. . .

,O
. . - T

T A
I

. (2.2)

The matrices A and T are p x p symmetric matrices, and we assume that

AT = TA .

Such a situation arises for those problems which can be handled by the

classical separation of variables technique. Indeed, the methods discussed

here amount to an efficient computer implementation of the idea of

separation of variables carried out on a discretized model of the elliptic

differential equation. Since A and T commute and are symmetric it is

well known (cf. [l]) that there exists an orthogonal matrix Q such that

QTAQ=A , QTTQ=R (2.3 >

and A and- 0 are real diagonal matrices. The matrix Q is the set

of eigenvectors of A and T , and A and R are the diagonal matrices

of eigenvalues of A and T , respectively.

In order to conform with the matrix M , we write the vector x
rV

and y in partitioned form
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x =N .
.
.

Furthermore, it will be quite natural to write

x2j
.
.
.

Y
Pj

.

x2j
.
..

X
Pj

(2* 4)

The system (2.2) may be written

L
Azl + Ts = x1 (2.54Y

,

i
TX + Ax + TX-j-l -j -j+l =  ~j 9 j = 2,3,. . .,q-i

TX + Ax
_-w 9 . = .h

Using (2.3), this becomes

Ai& + fi?g& = &

522 + A;;. + szz-j-l -j wj+l = xj

nK +A;; -
--g-l *=&

.

L

L

I (2.6)
L

t (3 = 2,3,-.,9-l)

1

L

c
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where

Zj =QT~j , ~j=QT~.
J ' j = 1,2,...,q .

The components of 2
-j

and j;-3 are labeled as in (2.4). Then

equation (2.6) may be rewritten for i = 1,2,...,p

hii
i il

+cUii
i i2 =Yil )

u.:
1 ij-1 + A.2

1 ij + 0.2
1 ij+l = 'ij

(j = 2
Y l l l , q- 1) Y

03
1 iq-1 + A.2

1 iq = Yiq . -

NOW let us write

ri =

.

‘i w. 1

cu. A
1 i l

0

. . .0 . . w. 1

cu. A
1 i 4

A
, x.=

-1

rxs

.

2
il

;;
i2

.

.

.

;
%II ,

so that (2.7) is equivalent to the system of equations

ii =

.

5.1

'i2

.

.

.

b 'iq

(24

Thus the vector ii satisfies a symmetric tridiagonal system of equations

which has a constant diagonal element and a constant super and sub-diagonal element.

In [6], a fast and accurate algorithm is given for solving such a system

of equations. After (2.8) has been solved, it is possible to solve for

2j =Qiij.

L
2-3
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Thus the algorithm proceeds as

1) Compute or determine

of A and T .

2) Compute y. = QTy
-J 4

3) Solve I?& = ii

4) Compute x. = QG.
-J -3

Hackney  [63 has carefully analyzed this algorithm for solving Poisson's

follows:

the eigenvectors of A and the eigenvalues

(j = 1,2,...,q) .

( i = 1,2,...,p) .

(j = 1,2,...,q) .

equation in a square. He has taken advantage of the fact that in this

case the matrix Q is known and that one can take advantage of the fast

Fourier transform (cf. [3]). Shintani [p] has given methods for solving

for the eigenvalues and eigenvectors in a number of special cases.

It is not necessary that A and T commute. Assume that T is

positive definite and symmetric. It is well known (cf. [l]) that there

exists a matrix P such that

T
T

= P P , A=PnPT (2.9)

where n is the diagonal matrix of eigenvalues of T-lA and P
-T

,

is the matrix of eigenvectors of TWIA . Thus using (2.9)’ we make the

following modifications in the algorithm.

1) Compute or determine the eigenvalues and eigenvectors of T-IA .

- 2) Compute 7. = P
-1

-J
x. .

3

3) Solve Pi$ = ii where

II

Ei 1

1 'i

.

0.. 1

1 3.
I

1 2-4
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4) Compute x. = P-T -
-3 +Zj  l

Of course, one should avoid computing T?A since this would destroy

the sparseness of the matrices. In [5] an algorithm has been proposed

for solving Au =rV 6Tu when A and T are sparse.N
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3. Block cyclic reduction

In the previous section, we gave a method for which it was necessary

to know the eigenvalues and eigenvectors of some matrix. In this section,

we shall give a more direct method for solving the system of equations (2.1).

We assume again that A and T are symmetric, and that A and T

commute. Furthermore we assume that q = m-l and

m=2k+l

,where k is some positive integer. Let us rewrite (2.5b) as follows:

TX-j-2 + Ax + TX-j-l -j = Xj-1

TX
-j-l +A% + Tx'-J+l = ~j

T~j + A~j+l + TX.
-J+2 = Xj+l ’

Multiplying the first and third equation by T , the second equation

bY -A 9 and adding we have

T2x-j-2 + (2T
2 2
-A )zj + T2x

-j+2 = Ty
-j-l - ':j + Tzj+l '

Thus if j is even, the new system of equations involves
;fsj 's with

even indices. Similar equations hold for 3 and x
Ml-2 l

This process

of-reducing the equations in this fashion is known as cyclic reduction.

Then the equations (2.1) may be written as the following equivalent

L
f
L. ”

system:

3-l
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m
(2T*-A2) T2

T2 (2T2-A2) T2. .
0 .

= 1
and.
A 0

0 A . 0
. . .

0 . . C

0 P
m

.

.

T2

0 -
T2

(2T2-A2)

m

TX1 + TY
13

- AY&

T% + TY+ - A&+

.

..

I TLMl + TY4-3 -A&n-2
.

.

X
-1

$3

.

.

.

x _
en.-,

II

5
- T%

=

%
- T% - Ta

...
&n -- T&l2

.

5
a
...
&l-z

(3.1)

(3.2)

Since m = 2k+l and the new system of equations (3.1) involves 2j
'S

with even indices, the block dimension of the new system of equations

-is 2k . Note once (3.1) is solved, it is a simple task to solve for

the ~~3 with odd indices as evidenced by (3.2). We shall refer to the

system of equations (3.2) as the eliminated equations.

i.

i

i
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Also, note that the algorithm of Section 2 may be applied to the

system (3.1). Since A and T commute, the matrix (2T2-A2) has the

same set of eigenvectors as A and T . Also if

h(A) = h
i' h(T) =o

i for i = 1,2,...,m-1

X(2T2-A2) =q - XT .

This procedure has been advocated by Hackney [6].

Since the system (3.1) is block tridiagonal and of the form (2.2),

we can apply the reduction repeatedly until we have one block. However,

as noted above we can stop the process after any step and use the methods

of Section 2 to solve the resulting equations.

To define the procedure recursively, let

( >A0 = A ,  To =T( ) ( 10
J Xj =gj  > (j = 1,2,..., m-l) .

Then for r = O,l,...,k ,

-where

= T(r)(Y(r)  + z(I) )- A(d

J-2r j+Z

At each stage, we have a new system of equations to solve:

&)Z(r) = f Cd
N N

(3.3)

(3.4)

3-3
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MT( > I

( >rz =N

m

Ar( > Tr( >

Tr Ar .( > ( > 0

X
-r2

25 r+l2
.
.
.

X
�j l $... m

.

.

Tr( >

Tr( >

Ar( >

.

Yr( >
-r2

( >r
z2r+l

.

.

x
id

jeer
.
.
.

The eliminated equations are the solution of the block diagonal system

N(d w(r) = g'r)
N (3*5)

where

0

(r-1)

.

rl

0

r-l)
J

L
L
L
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( >r
W =
rV

,

z2r-2r-l

25 r+l2 -2r-:

.

.

.

2 r
j2 -2

r-l

.

.

.

( >r
7 g =

_ Txkwl) '
-r2

ybl)

- r+l
_ T (x bd+ x b-‘3

2 -3-l N2r+l - r2

.

.

.

I

Either we can use the methods of Section 2 to solve the system

M(dzk) fb)= or we can proceed to compute Mb-1)Iv N and eliminate

half of the unknowns. After k steps, we must solve the system of

equations

Ak( >
z2k

od
=g2k '

In either case, we must solve (3.5) to find the eliminated unknowns just

as in (3.2). This can be accomplished by any of the following methods:

a> direct solution,

b) eigenvalue-eigenvector factorization,

4 polynomial factorization.

*The direct solution is especially convenient when k is small.

One can form the powers of A and T quite easily and solve the resulting

equations by Gaussian elimination. Thus if k = 1 and A and T are

tridiagonal matrices, A 0) is a five diagonal matrix and for such band

matrices it is easy to solve the resulting system of equations.

3-5
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It is possible to compute the eigenvalue - eigenvector decomposition

of A ( >r
and Tr( > . Since A ' = Q A QT( > and T '( 1 =QilQT , we may

write

Ar( > = Q dr) QT and T ( >r = Q &?(l") QT .

From (3.3), it follows that

&+l)

= 2(&))2  w (*(‘))2

0 h-+1) = ($p)” .

Thus the eigenvalues of A r( > and-T r( > can be generated by the simple

rule

Jr+l)
i

= 2((ufry  -(Xp))2 , do) = h
i i'

(Jr+l> 0
i = 2(Jr))2 ( >

i > w.1 = UJ.
1 ' i = 1,2,...,m-1  .

i
i

c
1
i

L
I

t

f
i

Hence the methods of Section 2 can easily be applied to solving the system

&-)z(r) f-b-) and Nb$ b)= W b-1
N Cy - =g l Hackney [7] has described this

algorithm as the FACR(P) algorithm where I refers to the number of cyclic

reductions performed. He has shown that under some circumstances for

solving Poisson's equation, it is best to choose I = 2 .

From (3.1), we note that A 0) is a polynomial of degree 2 in A

and T . By induction, it is easy to show that A '( > is a polynomial of

degree 2r in the matrices A and T so that

2r-l

A(') = zc (8 A2j T2r-2j ~ p
j=o 2j 2r

(A T)
9 .

We shall proceed to determine the linear factors of P (A,T) .

2r
Let

2r-l

p
2r

(a&) = CCL:) a2j t2r-2j , Jd =-1 .
j=o 2r

I
L
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For tf0, we make the substitution

a/t = -2 cos Q .

From (3.3), we note that

2r+l
P2r+1 (a& = 2t - (P (a,t))2 .

2r

(3 l 7 >

(3.8)

It is easy to verify then, using (3.7) and (3.8), that

p
2'

(a,t) = -2t2r cos 2r Q ,

and consequently

P (a,t) = 0 when
2r

a/2t = - cos ("j-l) Tc
2r+l

for j = 1,2,...,2r .

Thus we may write

2r 2-01
P
2r

(a$) = - JT (a + 2 t cos (A) 7r) ,
j=l

2r+1

and hence

( > 2'
Ar =- r(A+2cosQr T)( > (r > o>

j=l 2

where Q (r) = (2j-1)fi/2r+1  .
3

Let us write

04G. =A+268(k) T .
J j

Then in order to solve (3.6), we set zl = -Y(~)
"2k

and solve repeatedly

odG. = z
J Zj+l -j

Thus

for j = l,2,...,2k . (3.9)

I z2k+l = z2k
I

l

3-7
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L

:

i
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If A and T are of band structure it is simple to solve (3.9) although

under some circumstances the equations may be "ill-conditioned". In order

to determine the solution to the eliminated equations (3.5) a similar

algorithm may be used with

2r
Ar =w~G.~ .( 1 ( 1

j=l J

The factorization for A r( > may also be used to compute (r+l)y.
-J

. in (3.3). It is possible, however, to take advantage of the recursive

nature of the polynomials p
2r

(a,t) -. Let

p,(a,t) = -2tS cos SQ

where again for t f: 0 , a/t = -2 cos Q ?

Then a short manipulation shows

Ps(a,t) = -ap,-1 (a,t)-t2psw2(a,t) ) s 2 2 ,

Po(a,t) = -2 ) Pl("'t) = a .

Therefore to compute A as in (3.3), we compute the following sequence:

Jo -j
= -2y r ,( > = Ay r( >

11 -j

‘I-S = -A&1 - T2&w2 for s = 2,3,...,2r .

Thus

v ( >= P (A,')gjr = A

~-2' 2r

The factorization (3.10) must be used with care. Numerical experiments

have indicated for r 2 5 , the roundoff error may become a significant

problem. Buneman [2], however, has reorganized the calculation in a stable

fashion; see [7] for details. We denote this method as the Cyclic Odd/Even

Reduction and Factorization (CORF) algorithm.

3-8



4. Poisson's equation with Dirichlet boundary conditions

It is instructive to apply the results of Section 3 to the solution

of the finite difference approximation to Poisson's equation on a

rectangle R with' specified boundary values. Consider the equation

U +u
YY

= f&Y) for (x,ykR ,,

(4.1)

U(X,Y> = dX,Y> for (x,y)eaR .

(He r e  aR indicates the boundary of R .) It is assumed that the reader

has some familiarity with the general technique of imposing a mesh of

discrete points onto R and approximating (4.1). The equation

U +u
YY

= f(x,y) is approximated at (xi,yj) by

V
i-1,j

- *vi . + vi+l .
YJ

V.
33 + i,j-1

- 2vi . + vi
9J 33

'+1
= f.

(-4-4
2

0
2 l,j

with

(1 < i < n-l ,L- - 15 j s m-l) ,

and

V
or3

= Q, j 9
9

vm j = gm j (1 < j < m-l)- -9 9

v. = g.
1, O 1,o '

V. =
1,m

gi m (1 < i < n-l) .- -t

Then vij
is an approximation to u(xi,yj) and f.

l,j =  f(xi,Yj) Y

g.l,j
= g(⌧i,Yj)  l

From here-on-in we assume

m=2k+l .

When u(x,y) is specified on the boundary, we have the Dirichlet boundary

condition. For simplicity, we shall assume hereafter that &x = Ay . This

leads to the system of equations

MD-
v = 2

4-l



where s is of the form (2.1) with

I'
L
I

L
I
I
L
L

A = .

0
. . 9 and T = I

n-l '

. . 1

1 -4

(n-l)x(n-1)

The matrix In 1 indicates the identity matrix of order (n-l) . A and T

are symmetric and commute, and thus the results of Section 3 are applicable.

In addition, since A is tridiagonal the solution of the resulting system

of equations is greatly simplified (cf. [6]). In fact any tridiagonal

matrix of the form (2.2) where A and T are scalars may be solved by

either cyclic reduction or CORF. If the factorization is not used then

p2r(a,t) is computed recursively by (3.8).

In the next section, we shall generalize the CORF algorithm to

situations where the matrix is not of the form (2.2).

L
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5. Neumann boundary conditions

3-uWhen the normal derivative, x , is specified on the boundary, we

have the Neumann boundary condition. Assume

auan = dX,Y> w h e n  (x,y)&R .

We make the approximation

3-u
axA

u(x+Ax,y) - u x-Ax,y &A, ay & u(x.Y+ny)~yu(x,Y-ny)  .

This approximation leads to the matrix equation

YN-v = 2

where
!N is of the form

L
L
L
L
I
L
L
I
I.-
L

Here

A =

A 2T

T A T 0
0

. . .
T . T

2T A

0
. . .

1 -4 1

.

(5.0

> T Ir
n+l l



f

Again A and T commute but s no longer has the structure given by

(2.2). Therefore it is necessary to modify the algorithm of Section 3.
I

c . From (5.1), we see that

Ic AL + 2T3 =Y&

f TV
i -j-l

+A~j + T~j+l=y. .
-3 Y J = 1,2,...,m-1 ,

i

L

L

2 TL~+A.. =3&a

performing the cyclic reduction as in Section 3, we have

(2T2-A*& + 2T3 = -AL + 2Txl

T2v
2 2

-j-2 + (2T -A )zj + T2zj+2 = T(Y-j-l+Zj+l' - Ay-j

t

i

t
L

f
i

i

iL-
?
L

f

i

2T&ml-2 + (2T2-A2)% = ~TL- - NY .

j = 2,4,.. .,m-2 ,

The similarity of (5.2) with (3 .l) should now be evident,
.i

Since (5.2) is

and a final reduction yields

! (5.2)

.

of block dimension 2K+l , we have after k steps the system

[4(T(k))2 - (A(k))2]v = T(
"2k

ck) )a A ck)
+ x2k+l x2k

.

(5.3)

(5.4)

i
5-2
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Equation (5.4) is equivalent to writing

P (N) (A&V (k+l)
*k+l

"2k
= z2k (5*5)

where Pg@ 0I is again a polynomial of degree 2k+l
in A and T.

Note from (3.8)

*r+l
P@&(a,t) = 2t - (P(N)(a,t))2 , r

2r
= O,l,...,k-1 ,

'and from (5.4)

(N) (a,t) = 4t2
k+l

P2k+l - (P;;)(a,t))2

Therefore since 2kp
gk

(a,t) = -2t cos 2
kQY

(N) (a,t) = [2t2k
p2k+l ksin 2 Q] 2

and thus

P;$(a,t) = 0 when a/*t = - cos JL
ek

for j = 1,2,...,2k+1  .

Consequently, We may rewrite (5.5) as

2k+l

l-n
j=l

A + 2 CQS Q(k+1)T]~2k = -z&r')
3

where Qck+l) i j3$Zk .
j -

Again v
“2k

is determined by solving 2k+l

tridiagonal systems. The other components of v are solved for in the
N

same manner as indicated in Section 3.

It is well known that the solution to Poisson's equation is not unique

in this case. Therefore we would expect the finite difference approximation

5-3
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to be singular. This is easy to verify by noting

%- -
e = o

T
where e = (1,1,...,1) .N In addition, one of the systems of the tridiagonal

matrices in (5.6)is also singular. It is easy to verify that the eigenvalues

of (A + 2 cos Qj T) satisfy the equation

h&A + 2 cos 8. T) = 4 - 2 cos (&)+ 2 cos
3 n (Jq

gk

'(1 = 0,1,2,...,n ; j = 1,2,...,2k+1) .

Then ho = 0 when j = 2k . Normally the physics of the problem

determines the coefficient of the homogeneous solution for the singular

case.
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6. Periodic boundary conditions

In this section, we shall consider the problem of solving the finite

difference approximation to Poisson's equation over a rectangle when

u(Xo,Y) = U(x,,Y 1
(6.1)

u(x, Y,> = u(X,Y☺  l

The periodic boundary conditions (6.1) leads to the matrix equation

where

c
A

T

0

Mp
= .

.

0

T
0

and

T 0

A T

. .

0
.

.

0 - .

1 0

-4 1

. .

.

0

0 .

. . 0

.. .0

. . .

T A

. 0 T

. . 0

0 . ... 0.
. . l

1 -4

. 0 1

6-1

c

T

0

.

l

0

T

A
I

/
1

0

.

.

0

1

-4

(6.2)

I
=T In .
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Note
Mp

is "almost" an m block tridiagonal system and similarly

A is "almost" an nxn tridiagonal matrix. The cyclic reduction can

again be performed on (6.2) and this leads to the reduced system

(2T2-A2)a + T2v + T2vd ~ = T(Y1 + s'Ir) - A-

2* TV 2 2
hdj -2 + (2T -A )xj + T2zj+2 = T(Y-j-l+Xj+l) - Ay_j '

(6.3)
j = 2,4,...,m-2  ,

2
T.z2 + T2~ 2 + (2T

2 2
-A )L

The similarity with the previous cases is again evident. Equation

(6.3) has block dimension 2k . After (k-l) reductions we have

Ack-‘) Tck-‘) 0 ,-‘J ck-‘i
,-,‘J ck-‘) A(k-1) T(k-l) 0

=
0 T (k-1) A ck-‘) ,-,J (k-1)

Tck-‘) 0 T ck-‘) Ack-‘)
I

and finally after k reductions

From (6.4) the final equation becomes

[ (4T(k))2 - (Ack))2]v (k+l)
-2k

= x2k

. (6.4)

L
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which is equivalent to

z2k
(k+l)

= z2k .

The analysis of the factorization of P('I (A,T)
2k+l is identical to that

of the Neumann case including the fact that one of the factors of the .

polynorriial must be singular.
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L Higher dimensional problems

It is not difficult to extend the applications given in Sections

4, 5 and 6 to higher dimensional problems. We show this by a simple

example. Consider Poisson's equation in 3 dimensions over the

rectangle R :

U +u +u
YY zz

= fb,Y,Z) (x,Y,Z)ER .

U(X,Y,Z) = &,Y,Z)
(⌧,Y,zkaR  l

Again we assume the mesh is uniform in each direction so that

X
i+l

=xi+Ax ( i = O,l,...,n) ,

'j+l = 'j + Ay
(j = O,l,...,m) ,

za+l = za + AZ (a = O,l,...,p) .
.

At the point (xi,y.,z ) we approximate u(xi,y.,z ) by
J 1 J 1

vi,j,l  l

Let

where Lj,l =

fvl,j,l \

v2,W
.

i
Vn-l,j,l

/

Assume that the usual finite difference approximation is made to uzz

for fixed (x,y,z) , viz.-

uzz(x,y,z)  & u(X,Y,Z-w - yYY,Z) + u(X,Y,Z+nd .
@w

7-l



It is easy to verify then that for I = 1,2,...,p-1 ,

where
%

and w
-P

are prescribed by the initial conditions and f
-1

is a function of the given data. Thus again we have a block tridiagonal

matrix, and we are able to use the previous developed methods. Note, also,

that H is a block tridiagonal matrix so that it is possible to solve

any of the eliminated systems of equations by applying the CORF algorithm

repeatedly. Other boundary conditions can be handled in the same manner

as prescribed in Sections 5 and 6.
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8. Further applications

Consider the elliptic equation in self adjoint form

(a(x>u,>,  + (B(Y)uy)y + U(X,Y> = dx,y) 9 (x,Y)~

U(X,Y> = &Y> 9 (x,ykaR .
(8.1)

Many equations can be transformed to this form. The usual five point

difference equation when Ax = Ay leads to the following equation:

-%+& vi+l,j - ai-* vi-l, j -8
j+& vi,j+l - ) --  -Bj*vijl

where

52-t = a(xi + 8 ~) ~
%$ -= ecyj + nY>

L %..
J

r:  S("ilYj)  .

t
If the equations are ordered with

-(

v=

L-1,

vl,j
v%j

i J

...
V
n-l,'

then the linear system of equations Mv = ,$ will have the block form
N

t
8-1
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.
Al 3

T1 A2

.

0
m

b

3

22

.

.

.

&l-l
C

c

L

d-1

22

d
4-l

I ,

I

T2 0
.

. . Tm-2

T Am-2 m-l

Here

0i

t

i
.

A
j
= [~j~  + Bj 9 - (~>'I1 +I

L -a
3n- -2

-a
3n--2

zyjI+C ,

T
j= Bj* I

.
t
i

Now suppose we have the decomposition

i
f
L QTCQ=cP

f

;
L where QTQ = 1 and did@) = (‘p1,(~~,...4,&  . Thus

t.
'i('j) = 7j + cP* I ( i1 = 1,2,...,n-1) .,

E h.
bj l

i

8-2



As in Section 2, we define

L and after a suitable permutation we are led to the equations

-i

where

ri =

4. =
-1

I

A
i,l p3/2

$312 'i,2

.

,
Gil

?
i2

.

.
l

;;

i,m-1
.

i = 1,2,...,n-1 ,

Bg/2
. . 0. . .

. . B 3m- -2

' 3 'i,m-1
m- -2

t. =
-1

c

"il

ai

L ;

l

.

.

5i,m-1

J
.

.

Thus the vector -& satisfies a symmetric tridiagonal system of equations.

Again, once t
-i

is computed for all i , it is possible to compute v .N

lynch $- & [83 has considered a similar method but their algorithm

requires more operations. Unfortunately, it does not seem possible to

use the methods of Section 3 on (8.2) in this situation.
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Now we may write the equivalent to Poisson's equation in two dimensions

in cylindrical coordinates as follows:

and

(r urlr + r
-1

uQQ
= s(r,Q)

(r urlr + r uzz = t(r,z) .

The matrix A will still betridiagonal and T will be a diagonal matrix

with positive diagonal elements. We may make the transformation

N
Lj

8=T v.
-3

and are thus led to the equations

7 +T-8 A T - ?  +yQ = Q
-j-l -3 -j+l T- d

-j l

Thus by ordering the equations correctly and by making a simple transformation

it is possible to apply the cyclic reduction and the C0R.F algorithm to

solve the finite difference approximation to Poisson's equation in.

cylindrical coordinates.

Another situation in which the methods of Sections 2 and 3 are

applicable is when the nine point formula is used for solving the finite

difference approximation to Poisson's equation in the rectangle. In this

case when & = ny ,

I

L

t
A=

i

i
i

.
-20 44 -20 . 0

. . .0 . . 4

4 -20
.

T =

(=1)x(-l>

,
4 1

1 4 . 0
. . .

0 . . 1

1 4
+

n-l)x(n-1)

t 8-4

L



L
1

It is easy to

and T are

verify that AT = TA , and that the eigenvalues of A

I

i
L(A) = -20 + 8 cos F ( i = 1,2,...,n-1)

IL L(T) = 4 + 2 cos in ( i = 1,2,...,n-1) .
n

r

L
L
I
L

Because of the structure of A and T the fast Fourier transform may

be employed when using the methods of Section 2.

We leave as an exercise to the reader the application of the methods

in Sections 2 and 3 to the biharmonic equation.

1

v

L
f1L.
*
L
I
i
L
L
L
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9. Non-rectangular regions

In many situations, one wishes to solve an elliptic equation over

the region

We shall assume Dirichlet boundary conditions are given. When Dx is the

same throughout the region, this leads to a matrix equation of the form

L
Ik
i
i

i

b 4

G ‘ 0
P

PT

0 I H
I) 4

where

G =

A T

T AI .

0

. .

X (1)
N

-a.--

X (2)
N

m m

0.. T

T A

=

TT

El.=

.
B S

S B

.

0
"

. 0. .. . S

S B

(9.1)

. (9.2)

Also, we write
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f

i

1
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L
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L
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f
i

X0) =
Cu X0 =N

We assume again that AT = TA and BS = SB .

.
(2)

21

(2)
5

.

..

X (2)
-S
. 1

(9.3)

From (g.l), we see that

(9.4)

XN = H-l x(2) _ H-l
X (1) .-r

Now let us write

0

0

GW0) [I= .
.
.

P

(9.5)

(9.6)

(9*7 >
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Then partitioning the vectors z
N
(l), z(e> and the matrice WN

and W(2) as in (9.3), the equation (9.4) and (9.5) becomes

(1)
3 (1)= 3 _ w(1) xw

j -1

(2)
%

(2)
= %

_ w(2) x(1>.
j -r

From (9.8), we have

w

I

0
wl

.

(1)
'r

I

X (1)
-r

(2)
21

This system of equations is 2-cyclic and thus we may reduce the system to

(I - w(1) J2)) x(1) = 2(l) _ w(1) (21
r 1 -r -r r 21 l (9.9)

This system of equations can most easily be solved using Gaussian elimination.

Once the 'L-cyclic system of equations (9.9) has been solved, all other

components may be computed using (9.8) or by solving the system

Hz
(2) (2)=x - X (1)

-r

9-3
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If the system (9.1) is to be solved for a number of different right hand

sides, then it is best to save the LU decomposition of

(I - W(l) W(2))r 1 ' (9* 10)

Thus the algorithm proceeds as follows:

1)

2)

3)

4)

(1)Solve for zr and z0
-1

using the methods of Section 2 or

Section 3.

(1)Solve for Wr and W(2)
1 using the methods of Section 2 or

Section 3.

Solve (9.9) using Gaussian elimination. Save the LU

decomposition of (9.10).

Solve for the unknown components of x (1) and x (2) .N h,

9-4
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