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Abstract

Several algorithms are presented for solving block tridiagonal
systems of linear algebraic equations when the matrices on the diagona
are equal to each other and the matrices on the subdiagonals are al
equal to each other. It is shown that these matrices arise fromthe
finite difference approximation to certain elliptic partial differentia
equations on rectangular regions. Generalizations are derived for higher

order equations and non-rectangul ar regions
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1. [ ntroduction

In many physical applications, it is necessary to solve an y y §

system of linear algebraic equations

Mx =y (1.1)

where Marises froma finite difference approximtion to an elliptic
partial differential equation. For this reason, the matrix Mis

sparse and the non-zero elenents occur in a very regular manner. As

an exanple of this, let

M= (1.2)

and we partition x and y to conformwith M. If it is possible to
interchange the rows and interchange the colums of a natrix so that it
has the formof (MI) , then the matrix is said to be 2-cyclic (cf. [10]).

Expandi ng (1.1), we have

+.FX =
PSR A O]

T
F»}El-}- 2{2=

Mul tiplying the first equation by -7 and addi ng we have

T : T

Thus by this sinple device, we have reduced the nunber of equations.

| f U;FTF)is also 2-cyclic then we can again elimnate a nunber of the

variables, and we can continue until the resulting matrix is no |onger

2-cyclic
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Based on the suggestion of one of the authors, Hockney[6] has used
this device extensively and effectively. Recently Buneman [2] has devi sed
a method for easily solving the reduced system of equations. The technique
Is particularly attractive since in theory it yields the exact solution
to the difference equation whereas conmonly used nethods seek to approximte
the solution by iterative procedures (cf. Varga [10]). An extensive |ist
of references is given in the excellent survey of direct methods by
Fred W Dorr [k]. The nethod of odd/even reduction and factorization
described in this paper is simlar to that of Buneman. In addition, a
general i zation of Hockney's direct method using Fourier analysis is given.

Extensive nunerical conputations will be reported |ater.



2. Matri x deconpositions

Consi der the system of equations

Mx =y (2.1)

~ A

where Mis an N x N real symetric matrix which has the bl ock

tridiagonal form

M= o . (2.2)

O ..
T A

=4 -

The matrices Aand T are p x p symetric matrices, and we assune t hat
AT = TA .
Such a situation arises for those problems which can be handled by the
classical separation of variables technique. |ndeed, the methods discussed
here amount to an efficient conputer inplenmentation of the idea of
separation of variables carried out on a discretized nodel of the elliptic
differential equation. Since A and T commute and are symmetric it is
wel | known (cf. [1]) that there exists an orthogonal matrix Q such that
dae=4 , Jdra=0 (2.3)
and A and- o are real diagonal matrices. The matrix Qis the set
of eigenvectors of A and T, and A and o are the diagonal matrices
of eigenvalues of A and T, respectively.

In order to conformwith the matrix M, we wite the vector x

and y in partitioned form

2-1
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Furthernore, it will be quite natural to wite

X
r 1
X
X, = 23
~J
X .
bd
- -

The system (2.2) may be witten

A§l+- Tx

~2

Txsop v A5 H T.>53'+1 =3
qu_l +~é¥
Using (2.3), this becones
Ax + Qze i&
ng_l + A:;Sj ~3+1 = &
Q%q-l + AX i@

2-2
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XQJ
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2)5:'°':Q‘l)

(2.4)

(2.5a)

(2.5b)

(2.5¢)

(2.6)



wher e

_ T - T .
zgj—Qgsj, zj=QXj P J = 1,2,...,q .

The conponents of 533 and y are labeled as in (2.4). Then

J
equation (2.6) my be rewitten for i =1,2,...,p

AKX+ WO . o=
itil T %2 =Y,

ERT IS T “Fi541 Yy 022,000 000) (2.7)
(DiXi q-l + ?\.iXi q = yiq .
Nowlet us wite
>\i w. 1 X Yiq
w. A z -
1 i %2 Yio
F. = A A
1 ) 'Zgi = ) X,j_ =
.1
®5 KI < i y
. L 1d iq
axq ’ - -
so that (2.7) is equivalent to the system of equations
A A
'i % = % : (2.8)

Thus the vector %i satisfies a symetric tridiagonal system of equations

which has a constant diagonal elenent and a constant super and sub-diagonal element.
In [6], a fast and accurate algorithmis given for solving such a system

of equations. After (2.8) has been solved, it is possible to solve for

X, =QX. .
~J Q~J



Thus the algorithm proceeds as follows:

1) Conpute or determne the eigenvectors of A and the eigenval ues

" of Aand T .

i 2) Compute §, = QT;LJ (i =1,2,..0,q) .
3)  Solve Pi,%i = ﬁr'i (i =1,2,...,p) .

- 4) Conpute Xy = chﬂ. (j =1,2,0..,q) .

Hockney [6] has careful |y analyzed this algorithm for solving Poisson's
equation in a square. He has taken advantage of the fact that in this
case the matrix Qis known and that one can take advantage of the fast
Fourier transform (cf. [3]). Shintani [9) has given nethods for solving

for the eigenvalues and eigenvectors in a number of special cases.

— M r—

It is not necessary that A and T conmmute. Assune that T is

positive definite and symmetric. It is well known (cf. [1]) that there

—

exists a matrix P such that
T T

T=PP , A=PAP (2.9)
where A is the diagonal matrix of eigenvalues of 7718 and P'T
is the matrix of eigenvectors of T Thus using (2.9), we make the
following modifications in the algorithm

B 1) Conpute or determine the eigenvalues and eigenvectors of 77

S |
2) Conpute L= Py

A A _ A
3)  Sol ve Ty X = 3 wher e

S (5. 1 )
i
1 8. : O
i




L
L
i

r—

4)  Conpute X, = P'Tg'sj

1) since this woul d destroy

O course, one should avoid conputing T~
the sparseness of the matrices. In [5] an al gorithm has been proposed

for solving Au = 8w when A and T are sparse.

2-5



|

[
—

— r

—

I

r— r

r—

r— r— r— 1

3. Block cyclic reduction

In the previous section, we gave a nethod for which it was necessary
to know the eigenval ues and ei genvectors of sone matrix. In this section
we shall give a nmore direct method for solving the system of equations (2.1).

W assume again that A and T are symetric, and that A and T

comute. Furthernore we assune that g = ml| and

m= 2

-where K is some positive integer. |et us rewite (2.55) as foll ows:

Tx. + Ax, + Tx. -

~J"2 ~J—l ~J zj_l
TX. . Ix, =
~J"l + AZSJ + "}EJ"']. ;LJ

1]

Tx. + Ax, + .

Mil tiplying the first and third equation by T , the second equation

by -A , and adding we have

Thus if j is even, the new system of equations involves x 's with
~j

even indices. Sinilar equations hold for x, and K- This process

of -reducing the equations in this fashion is known as cyclic reduction.

Then the equations (2.1) nmay be witten as the fol | owing equival ent

system

3-1
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(2T2-A2) T %5
72 (2’1‘2-1-\.2) @ X,
| |
| 7°
7@ (2T2-A2) X
~m-2
- 1 L J
Tzl+ TYB - Aze
Tyé + Tz}j - AXJ.L
= ’ (5'1)
Ty _:L+’I.‘2(_3-Ay_.2
b
and
-l - o~ - ot ‘1
A X1 n-T%
A 2% 15 - Tx, - Tﬂ;
i (3.2)
0
0 & Zin-: In = e
aad d L el ' -
. _ ok+l . .
Since m= 2 and the new system of equations (3.1) involves iij's
with even indices, the block dinmension of the new system of equations
is 25 . Mote once (3.1) is solved, it is a sinple task to solve for

t he 5j's with odd indices as evidenced by (3.2). W shall refer to the

system of equations (3.2) as the elimnated equations.

3-2



Al'so, note that the algorithm of Section 2 may be applied to the
system (3.1). Since A and T conmute, the matrix (2T2-A2) has the

same set of eigenvectors as A and T . Al so if

(A =r 5 T =0 for i = 1,2,...,m-1

M2TE-A%) = 202 - A2
1 1
This procedure has been advocated by Hockney [6].

Since the system (3.1) is block tridiagonal and of the form (2.2),
we can apply the reduction repeatedly until we have one bl ock. However .

as noted above we can stop the process after any step and use the methods
of Section 2 to solve the resulting equations.

To define the procedure recursively, |et

2 (0) =A, 700 _q , ,3!,50) =%, o (=52, .

Then for r = 0,1,...,k ,

A(r+1) _ Q(T(r))e ) (A(r))E )

T(r+].) - (T(r))E ? (3.3)
(r+1) _ (), (r) + _(x)y_ ,(xr) _(r)

% ’ (X:J-Er e R )

At each stage, we have a new system of equations to solve:
(r) () _ . (r)
AR (3.4)

~

-where

3-3
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The elimnated equations are the solution of the block diagonal

wher e

x(®)

(r) _

N(r) w

~

-
alr-1)

(r)

~

A(I‘-l)

3-4
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Xr r-1 ~(Jl;-lx)--l - TXSCI‘-U
272 27 -2 ~2
(r-1) (r-1) (r—l))
X . v - T (x + %
2r+l_’2r - ~2r+l_2r—l ~2r+l ~2r
(r) . ;
17' = : s ’\g.‘(r) — .
X oo A TCA S A
j2°-2 jo-2 e ~(3-1)2

Either we can use the methods of Section 2 to solve the system
M(rzg(r) =‘£(r) or we can proceed to conpute MT*L) and elininate
hal f of the unknowns. After k steps, we nust solve the system of

equations

A(k> zgk = ’y“él;) . (3.6)

In either case, we nust solve (3.5) to find the elimnated unknowns just
as in (3.2). This can be acconplished by any of the follow ng nethods:
> direct solution,
b) eigenval ue-eigenvector factorization,

c) polynonmial factorization.

The direct solution is especially convenient when k is small.
One can formthe powers of A and T quite easily and solve the resulting
equations by Gaussian elimnation. Thus if k = 1 and A and T are

tridiagonal matrices, AL is a five diagonal matrix and for such band

matrices it is easy to solve the resulting system of equations

3-5
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It is possible to conpute the eigenvalue - gjgenvector deconposition
Of A(r) and T(r) . S| nce A(O)= Q A QT and T(o) = QQ QT , e nay

wite
2 _0a® F ang T Lq @)

From (3.3), it follows that
Alr+l) 2(Q(r))2_(A(r))2

1) | ()2

Thus the eigenval ues of A(*) and ) can pe generated by the sinple

rul e

}\r(r+l) =2(wi<r))2 _(}\ér))e , >\-—<O.) -

I i ’

Cl)‘(:c'+l)

I = E(w.(r))g

f

b

cnl(o) =wq I = 1,2,000,m-1 .

Hence the nethods of Section 2 can easily be applied to solving the system
I\’I(r)’%(r) =f(r) and N(r) W(r) - g(r)

~ ~

Hockney [7] has described this
algorithm as the FACR(Z) algorithm where 4 refers to the number of cyclic
reductions perfornmed. He has shown that under some circunstances for

solving Poisson's equation, it is best to choose 2 =2 .

From (3.1), we note that Am is a polynomal of degree 2 in A
and T . By induction, it is easy to show that Al) is a polynomal of

degree 2 in the matrices A and T so that
2r-l r
A =j-zo cég) I s P _(a,1)

W shall proceed to determne the linear factors of P (AT)

T
Let
r-1 r
p r(a,t) = i : cz(r) a2 225 c(r) =1
2 ji@* J gr

3-6



For t £0, we neke the substitution
alt = -2 cos © . 57

From (3.3), we note that

2r+l 5
P (@) =20 - (Py(a,0)) (.8)
It is easy to verify then, using (3.7) and (3.8), that
_ o r
p (a,t) = -2t cos 2 6
2I
and consequently
Per(a,t) =0 when a/2t = - cos (;Lﬂ) « for j =1,2,...,2" .
Thus we may wite
21‘
Pgr(a,t) = - 1 (a + 2t cos gfg}li) 1),
and hence
(*)_ _ 1% ¢)
A =—Tr(A+2cosO§j' T) (r >0)
J=1

wher e ogr) = (23-1)n/2"+t
Let us wite

Gj(k) =A + 2 cos ng) T

Then in order to solve (3.6), we set z = 1ZK§) and solve repeatedly

1 >
dk)z =z for | = 1,2 oK (3.9)
) Zie1 TRy i = 1L,2,..., ) .
Thus
_ X
K Tk
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If Aand T are of band structure it is sinple to solve (3.9) although
under some circunstances the equations may be "ill-conditioned". |, order
to determne the solution to the elininated equations (3.5) a simlar
algorithm may be used with
r
L 5@ ' (5.10)
j=1
The factorization for A(F) may also be used to compute y;r+1)
in(3.3). It is possible, however, to take advantage of the recursive

nature of the polynomals p clat) " Let
2

ps(a,t) = -2t% cos so

where again for t £#0, a/t =-2 cos o,

Then a short mani pul ati on shows
v (a,t) = -ap__ (a,8)-tp__,(a,8) , s >2
Po(a,t) = =2 , pl(a,t) = a

Therefore to conpute A(r)zér) as in (3.3), we conpute the following sequence

NP _ (1)
ll.o a%j/ ! ,Tll - A)XJ

2 _ r
’n’s - -Ajls—l - T Rs_g for s = 2,5,-.-,2 .

Thus
= p AT)y(,r).—': A(r) (r)
3421' 2r( RSy .3:.3
The factorization (3.10) nust be used with care. Nunerical experinents
have indicated for r >5, the roundoff error may becone a significant
problem  Buneman [2], however, has reorganized the calculation in a stable

fashion, see [7] for details. W denote this nethod as the Cyclic Odd/Even

Reduction and Factorization (CORF) algorithm

3-8
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4, Poi sson's equation with Dirichlet boundary conditions

It is instructive to apply the results of Section 3 to the solution
of the finite difference approximation to Poisson's equation on a

rectangle R with' specified boundary val ues. Consider the equation

1

uxx+uyy f(x,y) for (x,y)eR

(4.1)
g(x,y) for (x,y)edR

u(X:y)

(Here OR indicates the boundary of R.) It is assumed that the reader
has some famliarity with the general technique of imposingameshof

discrete points onto R and approximating (4.1). The equation

w  + U = f(x,y) i s approxi mated at (xi,yj) by
- + .. ~aev, . tv, .
Virl,g "%,y PV o+ Toger Ty TVign
(ax)? (oy)° ez
(1<i<nl, 1<j<ml),
with
, = v, = 1< < ml
VO}J gO)J ? m, J gm:J ( I= )
and
= = < -
Vi, 0 g'l,o ? Vi,m gi,.m (1<t <nl)
o i i . . =f(x.,y.
Then Vi i's an approximtion to u(xi,yj) and f.l,J (xl’ya) ,
= From here-on-in we assume
gi,j g(xi,yj-) .
n < okl

Wien u(x,y) is specified on the boundary, we have the Dirichlet boundary

condition. For sinplicity, we shall assune hereafter that Ax = Ay . This

| eads to the system of equations

hY=%



wher e My is of the form(2.1) with

A= . . . , and T =1,

“(n-1)x(n-1)

The matrix I indicates the identity matrix of order (n-I) . A and T

1
are symetric and commute, and thus the results of Section 3 are applicable.
In addition, since Ais tridiagonal the solution of the resulting system
of equations is greatly sinplified (cf. [6]). In fact any tridiagonal
matrix of the form (2.2) where A and T are scalars nay be sol ved by
either cyclic reduction or CORF. If the factorization is not used then
per(a’t)i s conputed recursively by (3.8).

In the next section, we shall generalize the CORF algorithmto

situations where the matrix is not of the form (2.2).

4-2
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5.  Neumann boundary conditions

Wien the nornal derivative, 5?, is specified on the boundary, we

have the Neumann boundary conditi on.

V& make the approximation

du

X

3 =
on

w h e n

u(x+HAx,y) - U x-Ax,y

Assune

(x,y)edR

ou . u(x,yHy) - u(x,y-Ay)

Y

This approximtion leads to the matrix equation

Her e

A

M v=%
wher e MN is of the form

2T

T T
2T A |
| |
1 - 1
2 -
b

5-1

(n+1)x(n+1)

(5.1)
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Again A and T conmmute but M, no | onger has the structure given by
(2.2). Therefore it is necessary to nmodify the algorithmof Section 3.

From (5.1), we see that

AX‘O + ET,Y.]_ =¥
T"\"/‘j-l + ij + T"Y',j"'l = z,j J J = 1,2,...,111—1 y
2 sz-l + A'Y-m =y, -

performng the cyclic reduction as in Section 3, we have

2 2 _ 3
(217-A )Zo + 2Ty, = -Ay o+ 2Ty,
2 2 2 a _
Ty ® (er "g)xj * T Vo T T(Xj_fz.jﬂ) 'Alj
(5.2)
j =24 ,m2,
2Tv + (2T2-A2)v = 2Ty - Ay
~m-2 ~m A~m- ~
y

The similarity of (5.2) with (3.1) should now be evident, Since (5.2)is

of block dinmension 2%+1 , We have after k steps the system

A& x® o T v [ ,.X((Dk‘) 1

o) LK) ) e |- xé};) s (5.3)
, (k) (x) (k)

i 0 2T A 1 L z2k+l— | X2k+l i

and a final reduction yields

()2 <A<k>)213;2k= r(y) zéill" Azéi) , (5.1)

5-2
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Equation (5.4) is equivalent to witing

() (k+1)
P A,T)v . _ ¥y
A A (5.5)
wher e Fiﬂzl@A,T) is again a polynonial of degree 251 in A and T.
Note from (3.8)
N 2r-irl
P;rzl(a,t) = 2t (pg(IllI)(a,t))2 , T =0,1,...,k-1,
“and from (5.4)
k+1
N 2
p M) (a,8) = 1% - (0 (a,1))2
2 2
h f : Ek k .
Therefore since pgk(a,t) = -2t~ c0s 2° 9,
k
ot
pé}l\;)rl(a,t) = [2t° sin Q7
and thus
(N) _ j7 . Tk
p2k+l(a,t) =0 when a/2t = - cos fi:l; for j = 1,2,...,2%7 .
Consequently, we may rewite (5.5) as
e (1) (1)
k+1 k+1
[A+ 2 o 9} Tlv . = -¥ ~
k+1

k+1 . ) . .
wher e Og )==jn/2k . Again v is determned by solving 2

k
2
tridiagonal systems. The other conponents of v are solved for in the

same manner as indicated in Section 3.

It is well known that the solution to Poisson's equation is not unique

inthis case. Therefore we would expect the finite difference approxi mation



r

to be singular. This is easy to verify by noting

Mye=2
wher e ET: (1,1,...,1) . In addition, one of the systens of the tridiagonal

matrices in (5.6)is also singular. It is easy to verify that the eigemvalues

of (A + 2 cos Oj T) satisfy the equation

h&A+ECosGJ. T) =4 -2 cos (%—)+Zcos (11)

oK
(L =0,0,2,...,m; | = 1,2,...,25)
Then A, = 0 when | = oK Normal Iy the physics of the problem

determnes the coefficient of the honbgeneous solution for the singular

case.

5-4
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6. Peri odi ¢ boundary conditions

In this section, we shall consider the problem of solving the finite

difference approxination to Poisson's equation over a rectangle when

u(XO)Y) = u(xn,Y)

(6.1)
u(x, y ) . ulxy,)
The periodic boundary conditions (6.1) leads to the matrix equation
MP v=y (6.2)
wher e
- -q
A 0 0 T
T A T 0
0 [
MP = . | I
0 . T A
T 0 0 A
and
p— -
-k 1 0 0 1
1 -4 1 0 0

. . ,  Ter
. O | | 0
0 1 -4 1
1 0 0 1 -4
e “ nxn

6-1



|

—

r— r

—

r—

 r— — r—

Not e M, is "alnost" an m block tridiagonal systemand simlarly

Ais "alnost" an nxn tridiagona

again be perfornmed on (6.2) and this leads to the reduced system

(2T2-A2)z2 + 7

1%%g -2
2 2 2
vy ¢ Py ot

The simlarity with the previous cases is again evident.

(6.3) has bl ock dinension ok

+ (212-& )xJ + T

A?)v
~

(k-1)
(k-1) T
My =
7 (k-1)

LA

2
Ti+2

and finally after k reductions

2 ()

oy ()

From (6.4) the final equation becones

O A s M

2T(k)f

2 (k)

2

6-2

2

matri Xx.

]

Tg&'+

T(y'_l+yj+l) - Ay

<j
j

T(.Xl +

(k+1)

J
~2k

The cyclic reduction can

LA

Lj 7’

~

= 2,4,...,m-2 ,

Ym-1) = Al

After (k-1) reductions we have
k-1) T(k-lf
A1) (1)
(k-1) (1) (k1)
(k-1) , (k-1)

Equation

(6-3)

(6.4)
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which is equivalent to

(P) (k+1)
P (A,T)v . _ y

The analysis of the factorization of p(P)
oK+l

of the Neumann case including the fact that one of the factors of the

(A,T) is identical to that

polynomial nmust be singular.
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7. Hgher dinensional problens

It is not difficult to extend the applications given in Sections
4, 5 and 6 to higher dimensional problens. g show this by a sinple
exanple.  Consider Poisson's equation in 3 dinmensions over the
rectangle R :
Ux + uy.y + u,, = f(x:Y)z) (X)Y)Z)eR

u(x,y,z) = g(x,y,z) (x,y,z)eaR

Again we assume the nmesh is uniformin each direction so that

Xi+l=xi+Ax (i =0Ql,...,n) ,

yj+l=yj+ﬁy (j =01I,...,m ,

Zz+l - 2y + Lz (a =0,1,...,p) .

At the point Y. we approxi mte u(x.,y. b
P (x353505 ) pp ( 1,33_1,%) y Vi . e

v \
~1,4 V1,3,2
V,
~2 .4 v .

W, = ’ where v, , = 24,4

~, NJ’I
v ) .
~m-1, 1 vn-l,j,l/

Assune that the usual finite difference approximation is nade to .

for fixed (x,y,z), viz.

u(x,y,z-02) - 2u(x,y,z) + u(x,y,z+z)

« U
uzz(x)y)z)= -(\2)
Az




It is easy to verify then that for £ =1,2,...,p-1,

Mpop ¥, +w, =5

wher e L and m% are prescribed by the initial conditions and tz

is a function of the given data. Thus again we have a block tridiagona

matrix, and we are able to use the previous developed nethods. npte also
that His a block tridiagonal matrix so that it is possible to solve

any of the elimnated systens of equations by applying the CORF al gorithm
repeatedly. Qher boundary conditions can be handled in the same manner

as prescribed in Sections 5 and 6.
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8.  Further applications

Consider the elliptic equation in self adjoint form
(@(x)w), + BEw) + ulxy) = any) , (¥R

u(X,Y) = g<X:Y) ) (X;Y)GBR

Many equations can be transfornmed to this form The usual five point

difference equation when AX = Ay leads to the follow ng equation:

-, 4 V. . - 0L . - v -
1+§ i+1, al—% VJ.-l,J Bj+—k vi,j+. Bj—% Vi,J'-l

]

2
()™ g

»d

+ (oci% + o g * Bj-l—% + aj_% - (AX)E)vi,j
wher e

aiﬂ = OL(Xi + % &), Bj’l’% =B(YJ- + Ay)

q.(xi) y,j )

4,3
If the equations are ordered with

P

&
[
-

.

1<
il

%4 cee &)4

l«/ Vn'l,“

then the linear system of equations M = d will have the block form

(8.1)

(8.2)



i
-

R

-

—

r r

Fe—

r— r

O | ‘ Tm- 22 ‘ .
T A d

m2 “m-1 Xm-1 ~m-1

Her e

A-=[Bj+%+ﬁj§'(1—\x)]l+

7j I+C

T. =8B,

5% P T

Now suppose we have the deconposition
dca=0

T .
where Q°Q = I and diag(®) = (9,,95,...,9, ;) « Thus

(i = ,2,.0.,n-1) »

[
N}
+
S
-

xi (AJ. )

1
P




As in Section 2, we define

- T
= V. d. = d,
< » & =9 g

and after a suitable pernutation we are led to the equations

A .
r, % =_3|. i = 1,2,...,n-1 ,

wher e

l"i = )
. B
2
m 3
° 3 i,m-1
2 -
vil dll
Vi2 A 4o
A
V. = > d. = .
~7 ~1
v. d.
I, ml . i,m-1 |
-l

Thus the vector frd satisfies a symetric tridiagonal system of equations.

Agai n, once _w'}i Is conputed for all i , it is possible to compute V..
lynch et al[8] has considered a sinmilar nethod but their algorithm

requires nore operations. Unfortunately, it does not seem possible to

use the nethods of Section 3 on (8.2) in this situation.



|
—

r

r—

r— r

—

r— r—

r

Now we may wite the equivalent to Poisson's equation in two dimensions
in cylindrical coordinates as follows:

1

(ru), + 77" ugy = s(x,0)
and

(::‘ur)r+ruZZ = t(r,2z)
The matrix Awll still betridiagonal and T will be a diagonal matrix

with positive diagonal elenments. W my make the transformation

~

Y5 :1'8y53 and are thus led to the equations

~ _ 8 -%9 ~ _ _%
Vyer TTU AT T =T 4,

~j o~

Thus by ordering the equations correctly and by making a sinple transformation
it is possible to apply the cyclic reduction and the CORF algorithmto
solve the finite difference approximation to Poisson's equation in
cylindrical coordinates.

Anot her situation in which the methods of Sections 2 and 3 are
applicable is when the nine point formula is used for solving the finite
difference approximation to Poisson's equation in the rectangle. In this

case when Ax = Ay

- (n-1)x(n-1) ~ n-1)x(n-1)
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— — I

It is easy to verify that AT = TA, and that the eigenvalues of A

and T are
ki(A) = -20 +8 cos %% (i =1,2,...,n-1)
xi(T) = 4+ 2 cos %? (i =2,2,...,n-1)

Because of the structure of A and T the fast Fourier transform may
be enmpl oyed when using the nethods of Section 2.
V¢ |eave as an exercise to the reader the application of the methods

in Sections 2 and 3 to the biharmonic equation.
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9. Non-r ect angul ar

regi ons

In many situations,

the region

one wishes to solve an elliptic equation over

Ve shal |

same throughout the region

assune Dirichl et

boundary conditions are given.

When Ax is the

this leads to a matrix equation of the form

= - =
G b O x(l)
P
T
P
0 H x®)
wher e
P -~
A
' A
G= .
A
b= ol

Also, we wite

NeR

~

(2)

(9.1)

. (9.2)



;f
(-

e,

e

——

— rm r—

—

e

-

e
~L
(1)
(1) _| ~=

(D)
~Ir

N [~

&

(2) X

We assume again that AT = TA and BS = SB .

From (9.1), we see that

(1) _ gl (1) L

~ ~

(2) _ g1 1(2) )

1]

Now et us wite

MONNCOR
-
o) - .(.)
£

e

(D)
~T

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)



r— r——

r—-—--<

r— r r— [

—

r—

e~

Then partitioning the vectors i(l)’ ,Zv(e) and the matrice W)

and V\,(e) as in (9.3), the equation (9.4) and (9.5) becomes

.-}53(1) = E,J(l) - wj(l) _X](_E) (G = 1,2, ,I‘)
(9.8)
35§2) - Ege) ) Wj@) 5 (3 =1,2,...,5)
From (9.8), we have
(1) x(1) , (1)
r ~r ~r
@) (2) (2)
1 351 51

This system of equations is 2-cyclic and thus we may reduce the systemto

(I - wr(l) %(2))3(1) (1) _ W(l),%(l‘e)

r ~r r

(9.9)

This system of equations can nost easily be solved using Gaussian elimnation.
Once the 'L-cyclic system of equations (9.9) has been solved, all other
conponents may be conputed using (9.8) or by solving the system

07

0
OBNON R MO

~

PPT-
0
NONNON R e
-O L




If the system (9.1) is to be solved for a nunmber of different right hand

si des,

then it is best to save the LU deconposition of

1) _(2)

(I - uf w§ ) (9.10)

Thus the algorithm proceeds as follows:

1)

2)

4)

Sol ve for Eél) and Eéz) using the nmethods of Section 2 or

Section 3.

Sol ve for W£l) and Vﬁe) using the nethods of Section 2 or

Section 3.

Solve (9.9) using Gaussian elimnation. Save the LU

deconposition of (9.10).

Solve for the unknown conponents of 'é(l) and X(E) ,
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