CS 135 |

CIL
| COMPILER""'flMPLEMENTATION LANGUAGE

BY

DAVID GRIES

TECHNICAL REPORT NO. CS 135
MAY 1969

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY







— o -

—

o rc— r— r— r— r— 1

e

=

—

CIL

COMPILER IMPLEMENTATION LANGUAGE *

BY

DAVID GRIES

Computer Science Department

"Stanford University

*This report initially issued by the Stanford Linear Accelerator Center as
report SLAC-102; UC-32; (MISC) for the U. S. Atomic Energy Commission under
contract no. AT(Ok-3)-515, Mr. Gries was supported in part by both SLAC
and the Computer Science Department during the time he was performing the
research and prepaering the report.






r—

— o

2-

fe

8.

8.2.

INTEOLUCTION Revised 3/10,69
1.1. Basic_features of CIL

1.2. How_to_read this Leport
1.3. Acknowledyements

TERMINOLOGY AND NOTATION Revised 11,20/68
2.1. Definitions

Z.2. Syntax_notation
2.3. Syntactic entities

BASIC ELEMENTS OF THE LANGUAGE Revised 11,/20/68
3.1%. Basic_symbols, comuwents _and_sraces

3-2. Ildentifiers_and integyers

3-3. Reserved words

3.4. Source_lanyuage Symbols

STRUCTURE OF A PROGRAM Revised 11,2068
b.1. Coreload descriptions

4.2. Global declarations

4.3. PasSes

VALUES, TYPES AND CONSTANTS kevised 3,10/69
>-1. Basic_types

5«2. Structured values and _types

5.3. Constants

T — . o o ——

DECLARATIONS Revised 11/20/08

6.1. Basic_and structured type declarations
6.2. Table, stack and dice_declarations
6.3. Procedure declarations

6.4. Int declarations

VARTABLES AND INDIRECT REFERENCES Revised 11,20/68

7.1. Sipple variables

7.2. Component variables and selectors
7-3. Indirect_references

7.4. Examples

EXPRESSIONS Revised 3,/10/09
8.1. Fungtion designators

expressions

primaries

precedence of operators
conversion ot operands
arithmetic operators
bits operators
relational operators
logical operators
catenation

Pt
Q

WX LT D®DOoE
S o 2 v s ¥ LR TY)
NN NN N NN NI
¢ 2 0 D e ¢ s .
DN N EWN -

8+.3. Structure expresé;ggg

Nyt £ W o

- - OO O
-tk

12
12
12
13

14
14
15
17

19
19
19
21
22

23
23
24
25
26

27
27

27
28
28

30
30
30
31

31



10.

11.

12.

14.

STATEMENTS Revised 11/20/68
9.1. Compound statements

9.2. Assignment statements
9.3. Conditional statements

9.4, Iterative_statements
S5.5. Case statements

Q A rantrnl ctataoamand o
e Ue :glll—bv‘& DDLU LT UMT LD
5-7-. Procedure_statements
9.8. Scanner_statements

9.9. Input-output
9.10-. Releasingy storage

CPFERATIONS ON TABLES, DICTS AND STACKS Revised 11/20/68

10. 1. Qperations_on_tabples
10. 2« Operations_on_dicts

10.3. Operations on stacks
10.4. The_table SINTDIC

STOKAGE ALLOCATION AND ALIGNMENT OF VALUES
~ kevised 11/20/568

SCANNER DEFINITIONS Revised 11/20/68

1¢<. 1. Scanning_and_the_internal dictionary
12z.2. Defining synonyms

12.3. Set_definitions

12.4. Reserved words

12.5. String and comment .juotes

12.6. Processing_before_scanning

PRODUCTION LANGUAGE (PL) Revised 11/20/68
13. 1. Comments _and_blanks

13.2. PL_reserved words

13.3. Source_language symbois

13.4. Metasymbols

e e i s i ot s i e i ape

13.5. Identifiers

13.6. Communication between syntax_and_semantics

13.7. Declarations in_PL
13.8. Productions

- 13.9. Actiouns

:CCDE GENEBATION SYSTEM (CGS) Revised 3/10/69

14. 1. CODEAREAS

14. 1.1 introduction
14. 1.2 register descriptions

14.1.3 system variables connected with CODEAREAS

14.17.4 creating and switching CODEAREAS
14.17.5 entering data into a CODEAREA
14.1.6 initial conditions

14.2. DATAAREAS
T4.2.1 introduction

14.2.2 system variables connected with DATAAREAS

14.2.3 creating and switching DATAAREAS

14.2.4 allocatiny and initializing DATAAREA storage

14.2.5 initial conditions

34
34

34
36
36

- -y

37

2Q
> )

39
40
41

43

44
44
45
49
50

51

53
54
55
56
57
57
58

60
60
61
61
61
61
62

64
65

67
67
67
68
69
69
69
70

70
70
71
71
72
75



{
L

{

r—

— r— — — r— r—

14. 3.

14. 4.

14.2.6

addressing DYNAMIC DATAAREAS

The DESCRIPTOR

14.3.1

14.3.2
14.3.3
T4 3. 4
14.3.5
14. 3.6

14.3.7

structure of the DESCRIPTOR
generating DESCRIPTORS
defining the basic address (BA)

defining the erffective address (EA)
the lengtn ot &¢BYTES variables

75

76
77

82
82

(o -4

82
85

runtime entry points and external references 85

generatiny DESCRLPTORS for constants

Runtime registers_and_their_descriptions

14,41
14.4,2
14.4. 3
14,424
14.4.5
14.4.6
14.4.7
14, 4.8

register numbers and names

general runtime register usage

register descriptions

testing register status

generating code to dumfp registers
generating code to load and use registers
altering reyister descriptions

saving and restoriny register descriptions

14.5. Code expressions

14.6.

14.7.
14.8.

14.6.

Code_statements

14.6.1
14602
14.6.3
14.6. 4
14.6.5
14.6.6
14.6.7

compound runtime statements
assignment runtime statements
conditional runtime statements
runtime label definitionms

runtime control statements

runtime procedure calls

runtime procedure entries and returns

Teamporary_runtime_storaje

When CGS releases_DESCRIPTORS

Specifying _multiple coreloads

Aprendix A. TABLES OF PERMISSABLE OPERANDS FOR OPERATORS

Revised 11/20/08

Appendix B. SYSTEM IDENTIFIERS Revised 11/20/68

Aprendix C. PROGRAM EXAMPLES Revised 3,/10/69

86
87

88
89
90
90
91
91
92

93
94
95
95
95
96
96
97
98
99
99

99

Al
A4

A6






(o

{—'2..'...~

—

r— r— rr—

-

1« INTRODUCTION TO CIL 1

1. INTRODUCTION TO CIL

This report is a manual for the proposed Compiler Implementation
Language, CIL. It 1is not an expository paper on the subiject of
compiler writing or compiler-compilers. The language definition may
changje as wecrk progresses on the project.

1.1. Easic_features of CIL

The Coapiler Implementation Lanyuage is designed for writing
compilers for the IBM 360 computers. The heart of the system is a
procedure oriented ALGOL-like lanyuaye with expressions, assignment
statements, iterative statements, etc. However the basic data types
of the languaje are those of the IBM 360 - byte, halfword integer,
'segyuence of 1 to 256 bytes, etc - while the basic operations on
these types of data are also those of the 360. This should allow the
compiler writer to have more feeliny for the code generated by the
metaconmpiler and thus make it possiple to write more efficient
compilers. N

In addition, the followiny features are provided to facilitate.
compiler writing:

1. Scanpner__definitions. A <compiler writer declares the source
language symbols (reserved words, operators, format of
identifiers, etc.) in a scanner definition. From this the
metacompiler builds an efficient scanner which, at compile-
time, will read a source program, break it up into these

symbols and pass them one at a time to the compiler itself.

The scanner definition has been designed to handle most of the
existing languages. It has however been restricted so that
efficient scanners can be built. Should it be necessary, the
compiler writer can inspect the string of characters making up
any symbcl and/or switch to a character-by-character scan, in
which case he may form his own symbols.

2. Atoms. A hash-coded iaternal dictionary of all source language
: symbols is kept current as a source program is read by the
scanner. This dictionary is used to replace each symbol by a 16

kit representation called an atom. It is this atom that is
passed to the compiler by the scanner. The compiler
automatically uses these fixed length atoms instead of the
variable-length source language symbols. 1In this report,

"source language symbol" and "atom" are used synonymously.

3. Production_language_ (PLj. This is a sublanguage for performing
the syntax analysis of source programs. It consists of "Floyd
productions", each of which attempts to match certain symbols
with the top symbols of a last-in-first-out (LIFO) stack. When
a match occurs, "actions" in the production change the stack
and cause "semantic routines" to be called in order to process

the symbols matched.

4. Structured types. A programmer canh define his own structured




ol
[
bt
2!
]
=]
C
o
cl
(@]
=
L
(@]
=2
]
<
Ci
-l
=
[ ¥)

types; these are sejuences of components, analogous to the
WIRTH and HOARE records. In order to save space, several
alternates can be declared for each component. Once defined,
variablea of a struc tured type can be declared in the same wvay

rds; the

e are all sequences of reco
records are accessed. No upper
bound on the number of records need be given. The records

themselves may have a structured type (see (4) above).

Records of a dict are chained to records of the internal
dictionary (see (2) above) to provide fast searches of records
based on source language identifiers.

6. Multiple coreloads. A compiler can consist of any number of
coreloads, which are executed 1in a fixed order. Thus, both
single-pass compilers and compilers which perform sophisticated
transformations and code optimization can be written.

7. Code__generation. This 1is the most important addition to the
language. Our code gyeneration system (CGS) 1is based on
Feldman's "code bracket" scheme {Comm. Of the ACM, Vol. 9, Jan.
1966] . The purpose is to give the compiler vwriter a high-level
language for generating IBM 360 machine language. The compiler
writer should be familiar with the IBM 360 data types and the
instruction set. However he <can leave register allocation,
storage allocation, generation or instructions, conversion of
runtime operands, etc. To the systen.

The basic features of this system are:

A. CODEAREAS and DATAAREAS. A compiler wvwriter may generate
code into any number of CODEAREAS (read-only storage at
- runtime) and may use any number of DATAAREAS (read-vrite
storaye). This ability to use different CODEAREAS (one for
each subroutine, say) and DATAAREAS {(one for the variables
associated with each subroutine,say) simplifies the
compiler writer's task. Most problems connected with
addressing code or data in these AREAs are handled by CGS.

B. Register descriptions. CGS maintains register
descriptions describing the runtime state of the IBM 360
registers after tane last-generated instruction has been
executed. CGS pertorms some local code optimization with
the help of the register descriptions. The descriptions
may also be tested and changyed by compiler writer.

C. DESCRIPTORS. DESCRIPTORS are used to describe runtine
variables in terms of the basic data types of the IBM 360,
such as byte, haltword integer and fullword integer. The
runtime address ot a variable is described by a CODE or
DATAAREA number and an offset into the AREA. The
DESCRIPTOR can also indicate up to two levels of indirect
addressing and/or subscripting. The DESCRIPTOR also



—— cC r oo

— oo

S

1. INTRODUCTION TO CIk 3

contains information such as whether the value is in a
register, whether it is a constant, etc.

D. Storage allocation and initialization. Primitives exist
for allocating storage 4in CODE or DATAAREAS for runtinme
variables. Problems or correct alignment and the like are
handled by CGS. In certain cases the allocated storage can
be initialized.

E. Code brackets. In yeneral, any statement or expression
may appear between tne code brackets “CODE (" and ")"w,
This 1indicates that the statement or expression is to be
executed at runtime. The operands of the statement or
expression must be DESCRIPTORS (of runtime variables),
constants, or variables declared to be valid at runtime.
For example, suppose D1 and D2 are DESCRIPTORS of an
integer variakble and an array element, respectively. Then
execution of

CODE( FOR D1 = 1 UNTIL 10 DO D2(D1) = 5)

would generate code to set the first 10 elements of the
array to 5.

When a code-bracket statement 1is executed, code is
generated into the «current CODEAREA as specified in the
statements or expressions within the code brackets, and
the register descriptions for that CODEAREA are changed to
describe the new runtime state of the registers. CGS also
automatically yenerates code for any necessary conversions
between data types.

All the additional features or Cil need not be used. For exaample,

1« An interpreter could pe written without the use of the code
generation system; a first pass could put the program in an
intermediate form and a second pass could then interpret it.

2. Production language need not be used; any type of syntax
analyzer can be projrammed using the normal ALGOL-like
ccnstructs of the languaye.

3. The language can be used for writing "normal" progranms.
Throw out the scanner detinition, PL, and CGS and an ALGOL-
like language remains. The basic data types of the 1language
and the operations on them are those of the IBM 360 computer;
this high-level languaje just provides a convenient tool for
using them.

How to read this report

best way to get acjyuainted with the language is to read the



1. INTRODUCTION TO CIL 4

program examples in Appendix C. You will find that CIL is basically
an ALGOL - like procedural language. Then read Sections 2 through 10
which describe this procedural ianyuage and its normal use. Skip
over references to the scanner detinitiom, PL or CGS. Finally, read
the three additional sections 12 (on the scanner definition), 13(on
PL) and 14 (on CGS). -

1-3. Acknowledgements

Shelden Becker, Lee Erman, Gary Goodman, Lockwood Morris, Jim Cook
and Christiana Riedl have all programmed or are programming parts of
the system. All of them have contributed to the language and this
zanual. Thanks also go to Jerry Feldman for his useful thoughts on
the subject.



L

—

r— r—

i e

=

-

o

2. TERMINOLOGY AND NUTATION 5

2. TEEMINOLOGY AND NOTATION

2.1 Definitions

Metacorpile time is the time Jquring which a compiler - or any
frogram written in CIL - is peinj compiled.

Compile__time is when a source program is being compiled by a

compiler written in CIL.
xuntime is when a compiled source pro ram is being executed.
A source_program is a program written in a source language.

languagje reters to the languagye for which a compiler has been
in CIL.

=3 |

<.2- Syntax_notation

Backus Normal Form (BNF) witn some modifications will be used to
descrikte the syntax of this proyramming language. Syntactic class
names (nonterminal symbols) are enclosed in angular brackets "<" and
">", while the symbols of the 1languayge (terminal symbols) are
represented by themselves. A production consists of a left_ _part,
which 1is always a syntactic class name, followed by the metasymbol
"3:=m", fcllowed by a right part - one or more syntactic class nanmes
or terminal symbols. It indicates tunat the syntactic class given by
the left part consists of tnose stringys of symbols described by the

right part. Thus the groductions

<identifier> ::= <letter>
<identifier> ::= <identitier> <letter>
<identifier> ::= <identifier> <digit>

indicate that an identifier consists of a letter or another
identifier followed by a 1letter or digit. In other words, an
identifier 1s a letter followed by zero or more letters or digits.
As an abbreviation, the metasymbol "|" is used to write the above
three gproductions as

<identifier> ::= <letter> | <identifier> <letter>
| <identitier> <digit>

Thus "|" is used to separate right parts of productions vwhose left
parts are the sane.
The following modifications to BNF have been introduced to

rrovide a clearer syntactic description.

1. The right part of a production may be partly described by a
comment enclosed in guotes. Thus we write

<string> 2:= ' "sejuence 0of 1 to 256 EBCDIC characters" !



2. TERMINOLOGY AND NOTATION 6

2. In order to prevent misinterpretation, the source symbols "<" and
">" will always be enclosed in guotes. Thus we write

<relation> ::= <expression> <" <expression>

-

3. Sguare brackets are used to enclose optional entities. For
examgle,

<factor> ::= { <unary op> ; <primary>
is eguivalent to

<factor> := <primary> | <unary op> <primary>
4. The nonterminal symbol <empty> represents the empty string.

5. A sequence of one or more symools, all belonging to the syntactic
class <x>, can be written as <<x> 1list>. If they are to be separated
by a terminal symbol, then this terminal symbol directly precedes
the word "list". Thus

<kasic decl> ::= <basic type> <<Kidentifier> ,list>

is exactly equivalent to

<tasic decl> ::= <basic type> <id list>

<id 1list> ::= <identifier> | <id list> , <identifier>
and

<integer> 1= <<digit> list>

is-.eguivalent to

<integer> 1:= <digit> | <integer> <digit>

6o If;a nonterminal appears more than once in a production, the
occurrences may be numbered so that they can be identified in the
semantic discussion. Thus we write

<for 1list> ::= <expressionl> UNTIL <expression2>

7. The syntactic classes <specfunc> and <specproc> denote special
function designators and special procedure calls respectively. The
syntax of these <specfunc>s and <specproc>s 1is always given in
boxes. For example,

r
| PUSH ( <stack identifier> { ,<exp>]) |
b e e e e e " "~ " o 2o - v F]



{
]

r—

— r— r— r—

-

2. TERMINOLOGY AND NOTATION

2.3. Syntactic_entities

{with corresponding
numbers)

<action>

<actual fparameter>
<add op>

<altered value>
<alternate selector>
<arith type>
<assignment runstated>
<assignment statement>
<kasic symbol>

<tasic type>

<tasic type dec>

<begin quote>

<bit>

<bit integer>

<bit op>

<bits type> ~
<case statement)>
<char sequence>
<char set>
<character>

<class dec>

<class nanme>
<classlat dec>
<closed cond runstate>
<closed cond state>
<clcsed iter state>
<closed runstate>
<closed statement>
<code statement>
<component>
<component id>
{component selector>
{compcnent specifier>
<comgcnent variabled>
<compound runstate>
<compound statement>
<ccnstant>
<constituent>
<ccntrol runstate>
<control statement>
<corelocad>

<coreload descriptiond>
<dec integer>
<declaration>
<delimiter>

<DESCE destination>
<destination>

<dict declaration>
<dict designator>
<dict identifier>
<digit>

<EBCLIC char>

WWWNONd Y WO UM E STV NNV O ~d@JdWwn
]

Section

W

WwWwrho e
O

wn ©
’
N

8 ¢ NN Waatd o aph?d

NUd Wil N

-k ed e B WOV O NIW NN WO e VT OO DO —

—
WWWRNNNSE & 8 88 A8 8 s 8 £ 8 8 0 o

14.6.3
9.3

-

14.06

(Yol
&

O

14.6

] [ 3 R R T ~ N Y
[<X o
. .
(%5} -

Waead =t NS N W =N

& o 0 & 0 s o
- N e -

<EBCDIC or hex>
<empty>

<end gquote>

<exp>

<expr>

<exfression)>
<tfactor>

<tormal parameter seg>
<function designator>
<global declaration>
<go to op>

<hex char>

<hex integer>
<hexit>

<identifier>
<indirect reference>
<int dec>

<int declaration>
<int identifier>
<integer>

<label>

<label definition>
<left part>

<letter>

<long real>

<keyword component>
<main stack dec>
<metasymbol>

<mult op>

<newv value>

<number selector>
<old value>

<openn cond runstate>
<open cond state>
<open iter stated>
<open runstated>
<open statement>
<pass>

<pass number>

<PL declaration>

<PL identifier>

<PL int>

<PL label>

<PL subprogram>
<pointer cons>
<pointer type>
<gointo type>
<positional component>
{preprocessor>
<primary>

<procedure body>
<procedure call>
{procedure control>

<procedure declaration>

<procedure heading>

12.2

N
N

12.5

o ©
D)

TSI
NNNNESS aNawWwWd AN aWwhN
N

WiwN =20 E0ND®
L T N I U RN I R
N W aa e
@ <

" e (e
-

PN
W wne

[]
swe

DO dOXDaNONWOWWWO aad
[~3)
.
(%]

14.6

9.7
14.6.8
6.3
6.3



2. TERMINOLOGY AND NOTATION

<procedure runcall> 14.0.7
<production> 13.8
<program> 4.
<guote defd> 12.5
<guote pair> 12.5
<real> 5.3
<register name> 14,421
<register no> 14,441
<relational op> 8.2
<reserved def> 12.4
<reserved word> 12.4
<right part> 13.8
<runlabel definition> T4.0. 4
<runexg> 14.5.1
<runifactor> 14.5.1
{runprimary> 14.5.1
<runstate> 14.6
<scale factor> 5.3
<scanner def> - 12.
<scanner id> 3.2
<set definition> 12.3
<sign> 5.3
<simple variable> 7.1
<source id> 12.4
<source language symbol>3.4
<scurce symbol> 13.3
<stack identifier> 3.2
<stack declaration> 6.2
<{stack designator> 7.1
<{statement> 9.
<storage alloc> 6.2
<string cons> 5.3
<string type> 5.1
<struct exp> 8.3
<structure definition> 5.2
<structured type> 3.2
<structured type dec> 6.1
<sukbyte designator> 7.1
<substriny designator> 7.1
<symb> 13.8
<symbol> 13.7
<symbol-label> 13.7
<synonym> 3.2
<synonym def> 12.2
<synonym pair> 12.2
<type dec> 6.1
<table declaration> 6.2
<table designator> 7«1
<table identifier> 3.2
<termin> 12.4
<type> 5.
<type specifier> 6.3
<unary Og> 8.2
<unscaled reail> 5.3
<variatle> 7.1



3. THE BASIC ELEMENTS OF THE LANGUAGE 9

3. THE BASIC ELEMENTS OF THE LANGUAGE

3. 1. Basic symbols, coamments and spaces

Syntax
<tasic symbol> 1:= <letter> | <digitd> | <delimiter>
<letter> i=A | B | C}JDI|E}F}]G{H}I f{ J | K
}' L] M) NJO}JPJIQIRYIS])T
U V| WYy X1 Y121 68
<kit> 2= 0 11
<digit> 2=0 1 V) 2) 3141516171819
<hexit> i3=4<diyit> | A §{ B | C} D} E}]F
<delimiter> =t | -1 * ) /]~ =]
‘ P« 1o 0501 (1) 1
' "(M l ")ll 1 ‘ll(:" ‘ ll>=ll
- | M~K" | wadm | L=
L1 sy /% | %/ | s/ | %%
<EBCLIC char> ::= "any EBCDIC character except space"

Semantics: Letters are use for torming identifiers and reserved
words. Digits are used in forming numbers and identifiers. Bits and
hexits are used in forming constants. The meaning of delimiters will
be given at the appropriate place in the sequel.

Except in a PL subproyram and a scanner definition, a comment
cf the form

/* "any sequence of characters not including "x/w w %/

hay appear anywhere. It is the ejuivalent of a single space,
Changing to a new card or line has no significance. Outside of
strings, spaces have no meaniny except for the following rules:

1. At least one space must separate two adjacent identifiers,
<source language symbol>s (cf Section 3.4), integers or reserved
vords. ‘

2 A space may nRot separate two characters of a delimiter,
identifier, integer, reserved word or source language syabol.

This section has defined the characters used in vriting a
compiler in CIL. This does not preclude the use of other characters
or the use of these characters in a different vay in a source
language for which a compiler is being written.

3.2. Identifiers_and_integers

Syntax



3. THE BASIC ELEMENTS OF THE LANGUAGE 10

<identifier> ::= <letter> | <identifier> <letter>
| <identifier> <digit>

<integer> 1:= <<Kdigit> list>
<component id> ::=<identitrier2

<dict identifier> ::=<identifier>

<int identifier> ::=<identitier>

<label> s:=<identifier>

<scanner id> s:=<identifier>

<{stack identifier>::=<identifier>
<structured type> ::=<identifier>
<{synonym> 1:=<identifier>

<taktle identifier>::=<identifier>

1]

<integyer> "between 1 and 25"

e
(X3

-<{pass number>

Semantics: Integers have their conventional meaning as decimal
numbers. Identifiers have no inherent meaning but serve to identify
variables, labelb, procedures, structure types, and scanner
detfinitions. They may be chosen freely except that they may not also
be reserved words of the lanjuage (cf Section 3.3). In addition,
several identifiers are already implicitly declared by the systen.
They may be declared in a program, but this precludes their use as
system identifiers (cf Appendix B). Note that the letter & may be
used in an identifier. Many system identifiers begin with & and it
would be wise to refrain from using & in this way.

The same identifier cannot be used to denote two different
quantities except when these quantities have disjoint scopes as
defined by the declarations of the program {(cf Sections 6 and 4.2).

The recognition of the detinition of a given identifier (but
not a component identifier -cf Section 7) is determined by the
tollowing rulesa.

Step 1. If the identifier is defined by a declaration of a
quantity or structure type, or is standing as a label within a
procedure embracing the occurrence of the identifier, then it
denotes that guantity, structure type, or label.

Step 2. Otherwise, if the identitier is a formal parameter of a
frocedure embracing the occurrence of the identifier, then it
stands for that formal parameter.

Step 3. Otherwise, 1if the identifier is defined by a
declaration of a quantity or structure type or by its standing
as a 1label within a pass embracing the occurrence of the
identifier, then it denotes that guantity, structure type, or
lacel.

Ster 4. Otherwise, ‘it the identifier is defined by a
declaration of a quantity or structure type in a global
declaration valid in the pass (or global declaration) embracing
the occurrence of the 1identifier, then it stands for that



3. THE BASIC ELEMENTS OF THE LANGUAGE 11

|
L

quantity or structure type.

r—

Step 5. Otherwise, it the identifier was declared as a
<{synonym> in a scanner detftinition, then it stands for the
corresponding source language symbol.

—

If any single step could lead to more than one definition, then the
identification is undefined.

—

{_ 3. 3. Reserved_words
& The following reserved words may not be used as identifiers.
— ALT ANT

BACK BEGIN BITAND BITEXOR BITOR
BYTE BYTES BYTE2 BYTE3 BYTEY
CASE CODE CODEAREA CONTENT CORELOAD
DATAAREA DEC DELETE DICT DO DWF DYNAMIC
ELSE END ENDCASE ENDPASS ENTEK
FOR FRCM FWF FWI
GO GOIF GOIFNCT GOTO
 HWI
IF IN
LOOK
MAIN
NOT
L CF OF
PASS PASSES POINTER POP PROCEDURE PRODLANG PUSH
KEM RETUEN RUNTIME
SCANNEF STACK STATIC STRING STRUCTURE
SUEBYTE SUBSTR SYNTAX
TABLE TALLY THEN TO
UNTIL
WHILE
&C

r— —

r—

r—

3.4. Source_ language symbols

—

Syntax:

<source languagye symbol> ::= <synonym>
{ | 3 <<EBCDIC char> list>
~ Semantics: A source lanjuage symbol is a sequence of characters
( defined in a scanner definition to be a delimiter or reserved word
! of the language for which a compiler is being written. One refers to
L the BYTE2 atom tor a source language symbol either by preceding it

by a dollar sign, or by using a synonym for it (cf Section 12.2). No
space may separate the dollar siyn trom the character 1list or the
characters in the list themselves and a space must follow the last
character.



-
[\S)

4. STRUCTURE OF A PROGRAM

Syntax:

<grogram> 2:= BEGIN | <<declaration> ;list> ]
L <<statement> ;list> ] END

<frogram> ::= BEGIN <coreload description>

. <<scanner def> list> ]

. <<3lobal declaration> list> ]
<<pass> list>

END

Semantics: The first detfinition ot a program is for the usual
ALGOL-like [froyram consistinj; otf declarations (cf Section 6) and
statements (cf Section 9). tThe second must be used for programs with
multiple passes or programs which use a scanner or production
language.

4.1. Ccreload des i;gg

Syntax:
<coreload description> ::= <<Kcoreload> list>
<coreload> $:= CORELOAD <Kinteger>

<<pass number> list>

Semantics: The coreload description indicates how storage is to
te allocated to the passes ot a compiler. The coreloads must be
numbered (by the <integer>) in ascending order, starting with 1. At
compile time, initially all the passes associated with coreload 1
are in core, and the first pass listed is executed. Upon execution
of a CALLPASS statement (cf Section 9.6) which refers to a pass in a
different coreload, the new coreload is brought into core. The
passes in the previous coreload may not be referred to again.

-

4.2. Global declarations

Syntax:
<global declaration> ::= PASSES <integerl> <integer2>
’ <<declaration> ;:;list>

| PASSES <integeri> RUNTIME
<<declaration> ;list>

| RUNTIME <<declaration> ;list>

Semantics: A global declaration declares identifiers (and their
attributes) which are to be used glopally in

a) passes numbered <integert!> tnrough <integer2>;
b) passes <integeri>, <integyeri> + 1,..., and at runtime;
c) at runtime only.

The following restrictions are placed on identifiers declared in a



r-, — r e Il

—

I

4. STRUCTURE OF A PROGRAM 13

global declaration

a) no identifier may be a reserved word (cf Section 3.3);
b) the same identifier may not be declared in two global
declarations which have a pass in common. Thus

PASSES 1 4 BYTE A,B
PASSES 2 3 BYTE B,C

is illegal; , ,
c) an identifier must be declared before it can be used.

Declarations themselves are discussed in Section 6.

Examples:

PASSES 1 2 BYTE A,B,C; POINTER P
PASSES 5 RUNTIME STRING X
RUNTIME BYTE Y; FWI A,B

4.3. Passes
Syntax:
<{pass> ::= PASS <pass number> [<PL subprogramd]
{ <<aeclaration> ;list> ]
{ <<statement> ;list> ]
ENDPASS

Semantics: A pass is a logical unit - a subprogram. Section 9.6
discusses the statements which control the order of execution of
passes. When a pass begins, it no PL subprogram is present, the
first statement in the list is executed. If a PL subprogram is
present, execution beyins with the tirst production in it.



5. VALUES, TYPES AND CONSTANIS 14

S. VALUES, TYPES AND CONSTANTS

A variable is a symbolic representation of a quantity that may

assume difterent values . The vaiue of a variable is always the one

most recently assigned to it. Each variable has a type which defines
the class of values that the variaole may represent.

Types fall into two classes: pasic_types - which are the basic,
elementary types in the lanyuaje - and structured types - which are
ordered sets of one or more basic types and possibly other
structured types. Structured types are defined by the programmer in
a structure definition.

The number of bytes each different type of value uses in the
IBM 360 and the aligynment of these pytes in memory are discussed in
Section 11. Section 5.1 describes the basic types in the language,
Section 5.2 structured types and the structure definition. Constants
are descrikted in Section 5.3.

Syntax:
<type> ::= <pasic tjype> | <structured type>

5. 1. Basic types

Syntax:
<tasic type> :1:= <bits type> | <arith type>

| <pointer type> | <string typed>

e
e

<tits type> BYTE | BYTEZ2 | BYTE3 | BYTEY
BYTES ( <integer> )

HWI | FWI | FWF | DWF | DEC
POINTER

POINTEE ( <<pointo type> list> )

STRING ( <ianteger> )

<arith type>
<pointer type>

e o
oo 4 -

(1]
(Y3

<striny type>

<bits type> | <arith type> | POINTER
<string type> | <structured type>

e
‘e

<pointo typed>

Semantics: The types BYTE, BYTE2, BYTE3 and BYTE4 are
essentially abbreviations for BYTES(1), BYTES(Z2), BYTES(3) and
BYTES (4), respectively. Note however the different alignment
properties (cf Section 11).

The following table lists the values that may be associated
with a variable of each basic type.

type value

BYTES {(<integer>) sejuence of 8*<integerd> bits
({ 0 < <integer> <= 256)



§
b
-

— r— oo

-

5. VALUES, TYPES AND CONSTANTS 15
HWI IBM 360 Haltword Integer: 16 bits
( between -2*%*%15 and 2*%*%15-1)
FWl IBM 360 FullWord Integer: 32 bits
( petween -2%%31 and 2%%31-1)
FWF IBM 360 .FullWword Floating point number:
32 bits
DWF IBM 360 DoubleWord Floating point number:
64 bits
DEC DECimal number of 1 to 31 digits plus sign

STRING{(<integer>) segjuence of <integer> EBCDIC characters
{ 0 < <integer> < 256)
POINTER reterence to some value (24 bit address)

Wwhen referring to the value pointed at by a variable declared
as FOINTEBR, it 1is necessary to indicate what type that value has.
This can bte done at the point of referral (cf sectiom 7.3), or in
the declaration itself through the 1list of <pointo typed>s. For
examgle, -

POINTER A A may point at any value.
PCINTER (FWF) B B may only point at values
of type FWFa.
POINTER (FWF HWI)C C may point at values
of type FWF and HWI.

Hierarchy of _types. It is sometimes necessary to perform
automatic conversion of values. For example, if one adds an FWI
value to an FWF value, the FWI value must first be converted to
floating point form. The hierarchy ot type precedences is:

DWF
FWF
DEC
FWI
HWI
BYTES

S-.2. Structured values_and _tjpes

'y

Syntax:
<structure definition>
::= STRUCTURE <structured type>
( <<constituent> ,list> )

<constituent> ::= <component>
| <constituent> ALT <componentd>

<component> 1:= <typge> <component id>
| <component id> (<<constituent> ,list>)



5. VALUES, TYPES AND CONSTANTS 16

Semantics: A structure definition defines a new structure named
<structured type>. A structured value is a set of constituents -
which at any instant of runtime are values with basic types and
possibly cther structured types. Each constituent consists of a
single component or it consists of a set of alternative components
separated by the reserved word ALT . This is used mainly to save
space. Only one of the alternative components may be in use at any
time, and it is the responsibility of the programmer to know which
cne 1is being used.

The name of each component is the component id. This name is
used to refer to that «component of the structured type. The
conponent id may be any valid ideantirier which is not a structured
type; the only rule to be rfollowed 1is that, when referring to
compcnents and subcomponents of a structured value, the metacompiler
must be able to uniguely determine what is meant. See Sectiom 7.2
tor tull details.

Note that a _component may itself contain subcomponents. If a
structured type is used as the type of some component, this
structured type must have been previously (statically) declared.

while not necessary, it majy be useful for the programmer to
know how storage is allocated to components. This is discussed in
Section 11.

Examples:
1. STRUCTURE SUBSCK ( BYTE AREA, BYTE3 OFFSET, POINTER 3)
A value of type SUBSCR consists of

. a) a BYTE value named AREA , followed by
b) a BYTE3 value named OFFSET , followed by
c) a POINTER value named 5.

2. STRUCTURE D1 (BYTE KIND ALT HWI B, C (BYTE C1, POINTER C2),
SUBSCR D, SUBSCR E)

A value of type D1 consists ot

a) EITHER a BYTE value named KIND

or a halfword integer named B, followed by
b) a value named C. C itselr consists of

1) a BYTE value named C1 tollowed by

2) a POINTER value named ClZ.

C is followed by
d) a value, named D, ot structured type SUBSCR
e) a value, named E, of structured type SUBSCR



S e

—

r— r— rl’,'-m, o

—

5. VALUES, TYPES AND CONSTANTS 17

5.3. Constants

Syntax:
{constant> ::= <inteyer> | <hex integer>
| <pit integer> | <dec integer>
| <real> | <long real>

| <loyical cons>

| <striny comns> | <pointer consd>
| <synonym> | <int identifier>

X * <<hexit> list> !

B ' <<Kpit> list> ?

<inteyer> D

<unscaled real> [ <scale factor> ]
<

?

<hex integer>
<kit integer>
<dec integer>
<real>

<long real>
<string cons>

real> L
nseqyuence of 1 - 256 EBCDIC
cters® ¢

[ L T | I 1 1]

oY

ar

se () 3 88 4o 80 ss W
40 LI 40 s €8 86 s e

a
{fointer cons> 0
= <integer> . <integer> | <integer> .
- <integer>
= E <sign> <integer>

<unscaled real>

<scale factor>
<sign>

80 00 wmm b

Semantics: Integers, «reals and long reals are interpreted
according to the conventional decimal notation. A scale factor
denotes an inteyral power of 10 which is multiplied by the unscaled
real preceding it. A dec intejer is an integer of 1 to 31 digits
which will be represented in packed decimal notation.

A string constant is a sejuence of 1 to 256 characters,
enclosed by the string gquote * * "_, Within the sequence, the string
gquote itself is to be represented by two adjacent string quotes. The
numper of characters in the string is called the 1lenygth of the
string.

Each hexit in a hex integer represents 4 bits in the |usual
manner. Both hex integers and pit integers are right adjusted in
their field, with leading zero pits added if necessary (see below).

The pointer cons 0 fails to point to a value.

A synonym denotes the atom‘corresponding to the source language
symbol associated to the synonym in a <synonym def> of the scanner
suklanguage (cf Section 12.2).

An int identifier is a BYTEZ2 coanstant. The actual value is
assigned by the metacompiler (see Section 6.4).

Each constant has a unijue type, as defined by the following
list. It should be noted that any necessary conversion of constants
is done at metacompile time when possible.



<integer>
<hex integer>

<bit integer>

<dec integer>
<real>

<long real>
<string cons>
<pointer cons>
<synonym>

<int identifier>

Stype2

HWlL if less than 65536. FWI otherwise

BYTES (1), where if there

are J hexits, 2*I >= J > 2%I-2
BYTES (1), where if there

are J bits, 8*I >= J > 8%I-8
DEC

Fui

DWI

STRING (<integer>)

POINTER

BYTE2

BYTEZ2

In addition, the following system identifiers for constants can be

used.

TRUE
FALSE

Examples:
<constant>
<integer>
<hex integer>
<bit integer>
<dec integer>
<real>

<long real>

<string cons>

BYTE1 (=X'FF')
BYTE1 (=X'00")

exanmples
1 - 23 325678
X'0A" X'832A" X' FFFFFFFF!

B'0110¢ B*10010010000°

32b 100D 1357312389D

3. .50 32.03 3.E-20
2.7182818284590452353L - 3E-1L
'STRING®* 0! 111¢ is the string

consisting of a single apostrophe.



(

— r—

r—

6. DECLARATIONS 19

6. DECLARATIONS

Declarations serve to determine the scope of identifiers and to
define permanent properties of them (type of value that may be
associated with them, structure). Generally, a number of bytes are
allocated to each identitier ~“(depending on the type) to hold the
value associated with it. See Section 11 for full details.

Cunédaswve
~YULQA.

<declaration> <structure definition>
<type dec>

<int declaration>
<table declaration>
<dict declarationd>
<stack declaration>
<main stack dec>
<procedure declaration>

—— e — ——— |

—— . . . s > et < eSO

Syntax:
<type dec> ::= <basic type decd>
| <structured type dec>

<basic type> <<identifier> ,list>
:=<structured type> <<identifier> ,list>

<tasic type dec> :
<structured type dec>

Semantics: Basic and structured type declarations serve to
associate a type with identifiers. Only values of that type may be
assigned to the identifiers. The structured type mRmust have been
previously (statically) declared.

Examples:

FWlI aA,B,C

POINTER (SUBSCR) D (see Section 5.2 for the structure
definition for SUBSCR).

SUBSCR E,F,G

6.2. Iable, dict_and_stack_declarations

Syntax:
<table declaration> ::= <storage alloc> <type> TABLE <integer>
<table identifier>
| STRING TABLE <table identifier>
= <<striang cons> ,listd>

<dict declaration> - ::= <storage alloc> <type> DICT <integer>
<dict identifier>

<stack declaration> ::= <storage alloc> <type> STACK <integer>
<stack identifier>

gy



6. DECLARATIONS 20

<rain stack dec> 2:= MAIN STACK <stack identifier>

<storage alloc> ::= STATIC | DYNAMIC | <empty>

Semantics: Table, dict and stack declarations all serve to
associate a sejuence of data records of type <type> with the table,
dict or stack identifier. Tne dirterence is only in the way the
records are added, deleted or accessed. See Sectiom 10.0 for full

details:

A table is a 1linear sejuence o¢f records. Records are
usually accessed throuyh pointers to them and by the operations
LCOK and ENTER. They may however be accessed exactly like a one
‘dimensional ALGOL array.

A dict is also a seyuence of records, these records are
however list-structured ror tast searches based on source
language symbals. Records may pbe added to or deleted from the

A3~ mh A 3 F 3 3 3
dict. They m®may alsc bpe taken off the chain which list-

structures them. The type ot the dict records must be a
structured type. Further, the structured type, say T, must
begin as follows:

STRUCTURE T (BYTE NAMEZ1, POINTER NAMEZ2, ...

Here, the <compoment ids are not important; only the fact that
the first two components are a BYTE and a POINTER. The reason
for this will become clear when Section 10.2 on LOOK and ENTER
is read.

A stack is a LIFO (last-in-first-out) stack. Records may
ke added and deleted in the customary manner.

<storaye alloc> indicates how storage is to be allocated to the
sequence. It STATIC or <empty>, <integer> gives the maximum number
of records in the table, dict or stack. These records will be
contiguous. If DYNAMIC, <integer> detines the number of coantiguous
records in a "block". Storaje is initially allocated to one block of
records; extra blocks are added as the need arises while the progran
is being executed.

Each pass which uses production language must have a stack to
communicate between the production language and semantic language.
This stack is specified by a <main stack dec>. The stack identifier
in the <main stack dec> must pbe a previously declared STATIC stack.
In addition, the type of the stack records must be a structured
type, say S, which begins as follows: ‘

STRUCTURE S (BYTE2 NAME1, BYTEZ NAME2, BYTEZ NAME3, ...

Here, the «component ids are not important; only the fact that the
first three components are BYTEZ guantities. See Section 13.6. .




-~ oo

r

6. DECLARATIONS 21

Examples:

SUBSCR TABLE 200 A
CYNAMIC D1 DICT S50 B
STATIC D1 STACK 100 C
MAIN STACK C

6.3 procedure declarations

Syntax:

<frocedure declaration> ::= PROCEDURE
<procedure heading> ; <procedure body>
§ <type> PROCEDURE
<procedure heading> ; <procedure body>

<procedure heading> ::= <identitier>
L ( <<formal parameter seg> ;list>) ]

<type specifier> <<identifier> ,list>
<type> | BYTES | STRING

| <type> TABLE | <type> DICT

| <type> STACK

<formal rarameter seg>

<tyre specifier>

<rrocedure body> ::= <statement>
| BEGIN | <<type dec> ;list> ]
{ <<statement> ;list> ] END

Semantics: A procedure declaration associates a procedure body
with the identifier immediately tollowiny the symbol PROCEDURE. A
proper procedure (case 1 above) is invoked by a procedure statement
{cf Section 9.7) and a function ( typed procedure - case 2 above) by
a tunction designator (cf Section 8.1) or a procedure statement.

The procedure heading also describes the formal parameters and
their types. All formal parameter identifiers in a formal parameter
segment are of the same indicated type. The type specifiers BYTES
and STRING specify formal parameters whose corresponding actual
Farameters at a call point are BYTES(I) and STRING(I) for sonme
integer 1I. It is more efficient to indicate the number of bytes if
it is constant for all calls of the procedure or function.

The value to be returned by a function is indicated by
assigning it to the function identifier.

Examples:

PEROCEDURE LOOKLAB (BYTE2 ATOM; POINTER P);
/* LCOK IN SYMBOL TABLE SSYMB FOR THE SOURCE SYMBOL "ATOM" WHCH
IS A LABEL. RETURN THE ADDRESS OF THE RECORD IN P.*/
BEGIN P = LOOK(SSYMB,ATOM) ;
WHILE P -= 0 DO BEGIN IF P.TYPE = LABEL



»
)
(@]
‘z
tn
(N}
o

THEN RETURN;
P = LOOK(SSYMB,P)

END

6.4. Int declarations

Syntax
<int declaration> 1= INT <<identifier> ,list>

Semantics: In production language an INT is a nonterminal or
INTernal symbol used to help parse the program. In order to allow
the semantic portion of a complier to test the main stack and to
provide more communication petween syntax and semantics, the int
declaration has been provided. Each identifier declared as INT is a
BYTEZ constant - the actual value being assigned by the
metacompiler. It may be used anywhere a constant may be used (cf
Secticn 13).



7. VARIABLES AND INDIRECT REFERENCES 23

7. VARIABLES AND INDIRECT REFERENCES

In Secticn 5 we described tne ditiferent types of values possible. In
Section 6 we indicated now these types could be associated with
identifiers. Wde now describe how -one references the value associated
with an identifier - either to use it or to change it.

Syntax:
<destination>. ::= <variable> | <indirect reference>
<DESCR destination> ::= <destination> "of type DESCRIPTOR"

<variable> ::= <simple variable>
<component variable>
<simple variable> 2:= <identirier>

<dict designator>
<stack designator>
| <substring designator>
- | <subbyte designator>

1
| <table designator>
1
|

<component variable>::= <simple variable>.<component selector>

<indirect reference>::= CONTENT( <POINTER expr>
L <pointo type> ])
| <variable> . <component selector>

<table designator> ::= <table identifier> ( <expression> )
<dict designator> ::= <dict identifier> ( <expression> )
<stack designator> ::= <stack identifier> ( <expression> )
} LO } L1 § L2 § L3} L4 | RO | RT | R2

<substring designator> ::= SUBSTR ( <destination>

, <expression> [ , <expression> ] )
<sukbyte designator>::= SUBBYTE ( <destination>

. <expressicn> [ , <expression> ] )

<component selector>::= <<compoment id> .list>
| <<number selector> .list>

<number selector> :3= <integer> [ -~ <integer> ]

7-1. simple variables

—_—

A table designator denotes a record of a table. The expression is
evaluated, assiygned to an internal integer variable I (say), and the
Ith record is chosen. The value I must be greater than 0 and, if the
table is STATIC, less than or egjual to the number of records
declared.

The time necessary to calculate the address of a record T(I) is
directly proportional to the number of the block in which the record
resides.

The usual way of accessing table records is through the LOOK



7. VARIABLES AND INDIRECT REFERENCES 24

and ENTER commands and throujh POINTER variables which point at the
records. If these commands are used, tne following restriction is
placed on the used of table designators: the value of I must always
select an already-existing record; if not, an error may result. This
is not checked at runtinme. ; ‘

If ENTER, LOOK and DELETE are not used, then the table is
actually a one dimensional arraye. It it is declared DYNAMIC, then it
may have any number of records. Thus, if a value I is used but there
are not as yet I records in the table, enough blocks of records are
added to yield I of then.

A dict designator denotes a record of a dict. This works
exactly like a table designator.

A stack designator references a stack record. The expression is
evaluated, assigned to an internal integer variable I, and the 1Ith
record from the top of the stack is chosen. Thus, if S is a stack,
S{0) refers to the top record, S(1) the first from the top, etc. If
a pass has a main stack, then the system identifiers L0,...,LU4 refer
to the top main stack record,..., 4th record from the top of the
main stack, before matching ot the last production began, while
RO,R1, AND R2 refer to the current top, 1st and 2nd records of the
rain stack, respectively.

A substring designator denotes a sequence of characters of the
string <destination> the first expression is evaluated and assigned
to an internal integer variable I. 1 then selects the position in
the <variable> of the startiny cnaracter of the sequence. The first
character has position 0. Thus we have 0 <= I < declared length of
the string variable. The second expression is evaluated and assigned
to an internal integer variable J. J is then used as the length of
the selected seguence. I+J wmust pe 1less than or equal to the
declared 1length of the striny variable. The default value for the
second expression is (lengta ot string variable -I).

A subbyte designator denotes a sequence of bytes of a BYTES

variable or indirect reference. The semantics are the same as those
of substring designators.

7.2. Component variables and_selectors

A component variable references a component of some structured
variakle. The first syntactic entity in a component variable is a
simple variable, which chooses the particular structure from vwhich
the <component is to be taken. Tais is followed by a period and a
ccmponent selector, which picks out the desired component. There are
two methods for this -~ naminy the component, or indicating its
position by a seguence of numbers.

A. Naming_ _the component. The component selector is a sequence
cf component identifiers, separated by periods. The first |is
the name of a component of the structure. If there is only one




e

7. VARIABLES AND INDIRECT KEFERENCES 25

component identifier, tnen the desired component bhas been
tcund. If there are more, then the first must name a component
which itself has subcomponents. The second nanme picks out the

desired subcomponent, etc. As an example, consider the
declarations

STRUCTURE SUBSCR (BYIE AREA, BYTE3 OFFSET, POINTER S);
STRUCTURE D1 (BYTE KIND ALT HWI B,

C (BYTE C1, POINTER C2),

SUBSCk D, SUBSCR E);
D1 a;

To pick out component B of A use A.B .
To pick out component C1, use A.C.C1 .
To pick out component S ot component D of A, use A.D.S .

It is not always necessary to give the complete list of
component ids. Thus, in tne above examples, A.C1 is equivalent
to A.C.C1s The only rule is that the component variable must
unambijuously define a component. A.S Would not be valid, since
it could be either A.D.S Or A.E.S.

B. Numberinj the compoment. Constituents are numbered from the
left, starting with 1. within a constituent, the alternate
components are similarly numbered. A number selector I selects
the first component of the Ith constituent. Thus we have:

A.1 eguivalent to A.KIND
A.2 equivalent to A.C
A. 2.1 eguivalent to A.C.C1 .

How would we reference componeat B? By A.1-2. Here, the "-2w
specifies the particular alternate (the second). 1In jJeneral,

. "I-~J" means, the Jth alternate fror the Ith {sub) constituent. As
illustrated above, A.1 is eyuivalent to Al.~1.

; 7-.3. Indirect_references

A simple reference

CONTENT ( <POINTER expression> )
references the variable “pointed at"™ by the POINTER expression.
Thus, using the examples of the preceding section, if PP is a
Fointer variable, then executing

PP = @ A.KIND; CONTENT(PP) = 3

sets the component A.KIND to 3 (ctf Section 8.2.1). The reserved word
"&§C" can be used as an abbreviation for ®"CONTENTY.

It is necessary to indicate what type of value is being pointed



9]
r3

o

x
o
ta
o
ted
]
2]
t
tn
o
(<)

at, by including a <pointo type>. This may of course be done in the
declaration of a PFOINTER variable (ct Section 5.1), in which case it
can te left out here. The above example could be written as

PP = 3 A,

=

IND; CONTENT (PP BYTE) = 3

hed R A VL W Y -~

If a POINTER expression points at some structured type value,
then cone can designate a component or subcomponent of that value
exactly as was explained in Section 7.3.

Again, the <pointo type> may be omitted here if it is possible
to determine from the component selector which structured type is
being reterred to. Thus, using the examples of Section 7.2, if there
is no other structure with a component named C, CONTENT (PP).C could
be used instead of CONTENT (PP D1).C.

As a further simplification - one which should be used often -
if the POINTER expression is just a variable, and if the <pointo
type> can be omitted, then the <contents brackets can also be
omitted. We could thus write PP.C for CONTENT (PP D1).C and PP.C.C2
for CONTENT({PP D1).C.C2.

7.4. Examples

syntactic_entity example
<identifier> A
<table designator> T(I+J)
<dict designator> D (N)
<stack designator> 5 (0)

. <substring designator> SUBSTR(ST,5)
<sukbyte designator> SUBBYTE (SY,5,1I)
<component variable> D(N).C.C2

A.S

<indirect reference> CONTENT (P SUBSCR)

) CONTENT (P)
CONTENT (P SUBSCR) . ARFA
CONTENT (P) . AREA
&C ( &C (P SUBSCR) .S BYTE)
P-.AREA
P.5.S (P points to a SUBSCR)




r_,, - r._._.. rm_., rl. -

r

U
to
v
%
-
)
[~
ta
N
~

8. EXPRESSIONS

Expressions are rules which sgeciry how new values are computed fronm

existirng ones. These new alues are obtained by performing the
operations indicated by the cferators on the values of the operands.
Expressions fall into two classes: basic_expressions - those whose
values are of some basic type - and structured expressions - those

whose values have some structured type. The former we abbreviate
simply by the syntactic class <expression> or <expr>, the latter by
<struct exp>.

Syntax
<exp> <expression> | <struct exp>
<exgr> <expression>

<EOINTER expr>
<STRING expr>
<BYIE expr>
<DESCR exp>

<expr> "with type POINTER"™
<expr> "with type STRING"
<expr> "with type BYTE"
<struct exp> "with type DESCRIPTOR"™
| <POINTER expr> "to a DESCRIPTOR™
= <exp> "with type &DDRESS"

84 oe 84 o0 3 s
88 00 65 v b6 B0

<EDLRESS exp>

8.1. Function_designators

Syntax:
<function designator> ::= <identitier>
( <Kactual parameter> ,list> ) ]

r

Semantics: A function designator defines a value which can be
cbtained as follows; the identifier must identify a function. The
body of this function is copied, moditied by the actual parameters,
and executed exactly as specified in Section 9.7. The value is the
last value assigned to the runction identifier during this execution
(undefined if none); its type is the type of the function.

Examples: MAX{ X**x2, Y)

YCUNGESTUNCLE ( JAMES)

8. 2. Basic_exfressions

Syntax
{gprimary> 1:= <constant> | <variable> | @ <variable>
| <indirect reference>
| <function designator>
| <specfunc>
| { <expression> )
<factor> ::= <primary>
j <primary> ** <factor>
{ <unary op> <factor>
<expression> ::= <factor>
1

<expr> <mult op> <expr>



8. EXPRESSIONS 28

Kexprr> <add op> <expr>

<expr> <pit of> <expr>

<expr> <relational op> <expr>
<expyr> AND <expr>

<expr> On <expr>

<unary op> 3= + | = | NOT

<mult op> t:= % { /| // | REM

<add op> R E .

<tkit op> ::= BITOR | BATAND | BITEXOR
<relational op> R I C I B I L T S e i

Note that the above syntax is ampijuous. Expressions are evaluated
in a left to right manner, using the precedence of operators given
in Section 8.2.2.

8.2e1 primaries. The primaries <constant>, <variable>,
<indirect reterence> and <tunction designator> have already been
discussed. The primary @ <variapnle> yields a POINTER value which is
the address of {(a pointer to) the variable. <specfunc> stands for
"special function designator". See Section 2.2.

8.2.2 precedence of operators. Expressions are evaluated in a
left to right manner, accordinyg to the following hierarchy of
operatcr precedences (parentheses may be used to overide thenm):

unary + unary - NOT

£k

* / // Ril

binary + oinary -

BITOR BITAND BITEXOR
- = A= £ K D> ~D>

AND

OR

8.2.3 conversion of operands. The following table indicates how
values are converted from one basic type to ancther when necessary.
Each row I Tepresents tne pasic type of a value to be converted,
while each column J represents the type to be converted to. The
table element (I,J) is then a letter of a footnote below which
indicates how the conversion is made. A blank element signifies that
no automatic conversion is pertormed.

RESULT: B H F D F D P s

Y W W E W W 0 T

T I I C F F I R

E ) N I

S T N

CPERAND E G
R



BYTES A B C C C C I

HWI D - E E E E

FWwl D G - E £ E

CEC E E E - E E

FWF F F F F - E

DWF F F F F F -

FPCINTER -

STRING J H
A. If the operand type has tewer pytes than the resulting type,

E-

J-

leadiny zero bytes are added; if the operand has more, leading
(lettmost) bytes are discarded wuntil the they bhave the sanme
length.

I1f the operand 1is BYTE, 1t is considered to be an unsigned
integer. Otherwise the rigntmost two bytes of the operand are
considered to be a halfword integer without any other conversion
(the leftmost bit is the siyn).

If the operand has 1,2 or 3 pytes, it 1is considered to be an
unsigned 1integer and is chanjed to FWI format. Conversion then
proceeds with this new operand. If the operand has 4 or more
bytes, the rigntmost 4 oytes are considered to be a fullword
integer without any real conversion being performed. Conversion
then proceeds with this new operand.

The HWI (FWI) operand is considered to be a sequence of 16 (32)
bits - that is, a BYTE2 (BYTE4) value. The sign bit is Jjust
another bit 1in the sejuence. Conversicn proceeds with this new
operand.

Normal conversion. Some sigyniticance can be lost in the case FWI
to FWF and when the operand is DEC.

Normal conversion with truncation. If the result is to be BYTES,
the operand is first converted to FWI and then to BYTES.

The rightmost 2 bytes are considered to be a halfword. If the
operand 1is between -—2%%¥15 and 2**15-1, the result has the sanme
arithmetic value as the operand; otherwise not.

If the result has <fewer characters, use only the leftmost
characters of the operand. If the result has more, add blanks to
the right of the operand characters.

The operand is assumed to pe a string value - each byte is a
character. Conversion H above is then performed.

The operand characters are considered to be BYTES and the whole
orerand to be a BYTES value; conversicn proceeds from there.

8,2.4»arithmetic operators. The tollowing table defines the



8. EXPRESSIONS 30

arithmetic operators:
QEEEATOR MEANING

A A (identity)
A sign inversion
** B exponentiation of A to the power of B
* B multiplication
/ B division
// B integer division. Defined by
SGN (A*B) * D (ABS (A),ABS(B))
where SGN is defined by
HWI PROCEDURE SGN( FWI X);
IF X < 0 THEN SGN=-1 ELSE SGN=1

B> b | 4+

and D is defined by
fWwl PROCEDURE D( FWI X,Y);
IF X < Y THEN D=0 ELSE D=D(X-Y,Y) +1

A REM B A - (A//B) * B
A + B addition
A - B subtraction

. With the arithmetic operations, operands of type BYTE, BYTE1,
BYTE2 are considered as positive integers, while a BYTEY4 operand is
a signed integer (the leftmost oit is the sign). Not all basic type
values are valid operands ot arithmetic operators. Appendix A
contains tables which indicate tne valid operands, the automatic
conversions performed, and the type of the result of each
comkbination of operator and operands.

8.2.5 bits operators. The bits operators are BITOR, BITAND and
BITEXOK. They perform bitwise operations on the two operands as
follcus:

A B A BITOR B A BITAND B A BITEXOR B
0. 0 0 Y] 0
1 0 1 0 1
1 1 1 1 0

See Appendix A for a list of valid operands, automatic conversions
performed, and for the type of the resulting operand.

8.2.6 relational operators. The relational operators yield the
result TRUE (X'FF) or FALSE (X*'00'), depending on whether the
relaticn is true c¢r not.

If the two operands are arithmetic but have different types,




— r— rr r-

[

8. EXPRESSIONS 31

the value with the lowest type precedence (cf section 5.1.2) will
first be converted to the other type.

If the two operands are of type BYTES but have different
lengths, leading zero bytes will be added to the shorter one. The
values are considered to be positive integers for the comparison.

If one operand is BYTES and the other arithmetic. The BYTES
value will first be converted to type FWI and an arithmetic
comparison Will be performed.

It the two operands have type POINTER the relation must be = or
~=. The pointers are equal only if they are both zero or if they
Foint at the same record.

~If the two operands are string-valued, the comparison is
according to the EBCDIC collatiny sequence. If the lengths of the
operands are different, blank characters are appended on the right
of the shorter until the lengths are the sanme.

Only those combination of operands suggested above are allowed.

8.2.7 logical operators. Tae operators NOT, OR and AND have the
tollowing meaningy:

NOT A IF A = 0 THEN TRUE ELSE FALSE
A OR B IF A ~= 0 THEN TRUE ELSE B ~= 0
A AND B IF A = 0 THEN FALSE ELSE B ~= 0

Note that nect only the BYTE values X'FF' and X'00', but all basic
values except strings may be operands of the logical operators. Zero
means FALSE, anything else means TRUE. Note also that the second
operand, B, is not always evaluated. Thus, constructions like

IF¥ PCINTERVARIABLE AND POINTERVARIABLE.COMPONENT = 3 THEN<..
Are rossible, since if POINTERVARIABLE is zero, the reference to
COMFONENT will not be made.

8.2.8 catenation. The CAT operator produces a string whose
value 1is the characters or the first string operand followed by
those of the second string operand.

8.3. Structure expressions

Syntax: -
<struct exp> ::= <old value> | <altered value)>
| <new value> | <DESCR exp>
<o0ld value> ::= <destination>
<altered value)> :2= <destination> ( <component specifier> )
<new value> ::= <structured type> ( <companans



8. EXPRE3SSIONS 32

specifier> )

<component specifier> ::= <<keyword component> ,list>
| <<positional component> ,list>
ompohent selector> =

<keyword component> ::= <cC
| <component selector>
|
|

{exp>
<tositional component> ::= <empty>
<alternate selector> _
alternate selector> <exp>
| <alternate selector>
( <<positional component> ,listd> )
<alternmate selector>::= <empty> | -~ <integer>

Semantics: A structure exyression yields a value having sone
structured type. There are taree ways of writing a structure
expression:

Angt +ha
Ju“v S AR N
u

rse be

b
-

Cco

*Jl

1. The value nf an <o0ld valued> structure expressi

| e R TR YTQa T/

current value of the destination. The type must o
structured. No space is allocated for the value.

3

2. The wvalue of an <altered value> is found as follows. Space
is allocated for the new value. The current value of the
destination 1is moved into this space. The components are then
altered as indicated by the component specifier (see below) to
yield the resulting value. The destination must of course be
structured.

3. The value of a <new value> is tound as follows. Space is
allocated for a value of tne structured type. All components
are undefined. The components are then altered as indicated by
the component specifier to yield the resulting value.

There are two ways of specifyiny which components are to be altered
- throuygh keyword components and positional components.

1. A keyword component consists of a component selector (cf
Section 7.2) which selects tae component to be altered,
focllowed by an egual siyn, rollowed by an entity to which the
ccmponent is to be chanyed. This entity is either

A. The character "_". This indicates that the component is
"empty". The meaniny of this will become clear when
Section 9.2 on assiynment statements is read.

B. An <exp>. The <exp> must be assignment compatible with
the component selected. It is evaluated and assigned to
the component, exactly as in an assignment statement.

The components are altered in the order in which the keyword
components appear (left to right).



e

— o

r

vy

—TETETTN

8. EXPRESSIONS 33

2. When positional components are used, the order and number of
positional components must correspond to the order and number
of constituents of the structured type; the Ith positional
component indicates what to-do with the Ith constituent. The
alternate selector indicates which alternate component of the
consituent to use; an empty alternate selector indicates the
first alternate.

The entities "_" and <exp> appearing in a positional component
have the same meaning as in keyword components (see above). In
addition to these there are two more ways of specifying what is
to be done with the component:

A. If the positional component is empty (not there), the
component is not changjed.

B. If the positional component has the form
<alt€rnate selector> ( <<positional component> ,list> )

then the corresponding component of the structured type
must have subconstitueants. This new list of positional
components is handled exactly in the same way.

The reader may have noticed that with <altered value> and <new
value> structure expressions storage must be allocated. Section 9.2
on assignment statements specities in which cases it is the
prograpmer's responsibility to release this space.

Examples: We use the structured types

STRUCTURE SUBSCR (BYTE AREA, BYTE3 OFFSET, POINTER 5);
- STRUCTURE D1 (BYTE KIND ALT HWI B,
C(BYTE C1, POINTER C2),
SUBSCR D) ;
 SUBSCR V1,V2;
- D1 V3,V4y;

The following is an <o0ld value>: V1

The following are equivalent examples of <altered valueds:
V3( B = _, C.C1 =5, C.C2 = 0)
V3(-~2 — {(5,0),)

The tollowing are equivalent exaumples of <new valuesd>
C1(D= SUBSCR(0,0,0))
D1(,,SUBSCR(0,0,0))



9. STATEMENTS 34

9. STATEMENTS

A statement denotes a unit of action. To execute a statement means
to perform this action. Statements are usually executed in segquence,
except when a control or pass communication statement causes a

change.

Syntax:
<{statement> 1:= <open statement> | <closed statement>

= <label definition> <open statementd>
| <open iter stated
} <open cond state>

<open statement> ::

-<closed statement>::= <empty>

|} <label definition> <closed statement>
} <compound statement>

| <assijnment statementd>

] <closed cond state>

] <closed iter state>

| <case statementd

| <control statement>

| <procedure calld>

] <code statement)>

|

<spectunc> |} <sgecproc>

<label definition> ::= <label> :

9. 1. Compound_statements

Syntax:
<compound statement> ::= BEGIN <<statement> ;list> END

Semantics: As in ALGOL, the <compound statement is used to
rracket a seguence of statements.

9. 2. Assignment statements
Syntax:
<assiynment statement> ::= <destination> = <exp>
Semantics: This statement is executed as follows:

1. The address of the <destination> 1is calculated, 1if
necessarya-

2. The <exp> is evaluated.

3. The result of (2) is converted and stored - according to the
rules given in the tabple below - at the address calculated in
(1) Only those combinations ot types of the <destination> and



-

9. STATEMENTS 35

<exp> are valid which are indicated in the table below. Those
pairs of destinations and exps which are valid are called
assignment compatible.

The following table indicates how values are converted and
assigned to a destination. Each row represents a possible type of
the destination; each column a possible type of the <exp>. An
element is either blank - which means the combination is not legal -
or is a letter identifyingy a footnote which explains how the
ccnversion and assignment takes place.

Type of
destination type of exp
bits aritha pointer string structured

_bits A A A Cc

arith - A A

Fointer B E

string A B

structured C D

A. The conversion is as explained in Section 8.2. 3.
B. No conversion necessary.

C. The value of the <exp> as it is in memory is stored in the
<destination> without any conversion (zero bytes are added to the
right of the <exp> if it is too short, or the rightmost bytes are
discarded if it is too long).

D. The <exp> and <destination> must have the same structured type.
The <exp> is evaluated and assigned to the destination. That is,
components of the destination corresponding to "empty"™ components
in- the structure expression {(cf Section 7.2) remain unchanged,
all others are assigned the value of the corresponding structure
expression component. Any space allocated in evaluating the
structure expression is automatically released.

E. "empty" components become undefined, and the address of the
resulting value is stored into the destination. If space was
allocated for the evaluated structure expression, it is now the
programmers responsibility to release this space when no longer
needed (cf Sections 7.3 and 9.10).

Examples:

B
SUBSCR (A. KIND=5)

TENT(P) = SUBSCR (A.KIND=5)

CONTENT {(P) (A.KIND=3,A.AREA=2,A.0FFSET= )

o

= 0w

L-Nol.- B



9. STATEMENTS 36

9.3. Conditional statements

Syntax:

<open cond state> ::= IF <expression> THEN
<closea statement> ELSE <open statement)>
| IF <expression> THEN <statement)>

<closed cond state>
::= IF <expression> THEN <closed statement)>
ELSE <closed statement>

Semantics: These have the same semantics as in ALGOL.

-Examples:

IF X = Y THEN GO TO L
IF X THEN U=0 ELSE IF Y=0 THEN U=Y

9. 4. Iterative statements

- Syntax: In the followinj productions, the letter "J" is to be
systematically replaced by the word "open" or the word "closed".

<J iter state> 2:= FOR <destination> = <expri>
{ STEP <expr2> ]
UNTIL <expr3> DO <J statement>

| WHILE <expression> DO <J statement>

] FOR <POINTER destination>

IN <tord identifier>

i FROM <POINTER expr!> TO <POINTER expr2>]
DO <J statement>

<tord identifier> ::= <table identifier>
‘ ] <dict ideantifier>

Semantics: The default option for <expr2> is 1. The default
option for <POINTER expr!> and <POINTER expr2> is d<tord identifier>
(1) and @<tord identifier> (N) respectively, if the table or dict
has presently N records.

The statement
FOR I = J STEP K UNTIL L DO <statement>

where I is a destination and J, K and 1 are expressions is
equivalent to the following Sejuence of statements;

DEST = @I; &C(DEST) = J;
STEPV = K;



{
L

— ¢ r— o T

- r—

—

— oo

r—

O
n
"3
"
td
=
by
2
1
n
W
~

[y
o

ENDV = L * SGN (STEPV) ;
AGAIN: IF &C (DEST) * SGN (STEPV) <= ENDV
THEN BEGIN <statement>; &C (DEST)=8C (DEST) +STEPV; GO TO AGAIN

END
where DEST is an internal POINTER variable and STEPV and ENDV are
internal variables having the same types as K and L respectively.

The statement
WHILE <expression> DO <statement>
is eguivalent to
AGAIN: IF <expression> THEN BEGIN <statement>; GO TO AGAIN END
The statement
FOR P IN TAB FROM P1 TO PN DO <statement>

where P,P1, and PN are pointers and TAB is a table, is executed as
follcus:

DEST = @ P; ENDV = PN; CONTENT (DEST) = P1;
AGAIN: IF CONTENT (DEST) == 0
THEN BEGIN <STATEMENT>;
IF CONTENT (DEST) -~= ENDV
THEN BEGIN TALLY (TAB, CONTENT(DEST));
GO TO AGAIN
END
END;

where DEST and ENDV are pointer variables.

Examples:

FOR I = 1 UNTIL B*3 DO A(I) = I

FOR P.X = 10 STEP — 1 UNTIL 1 DO Y(B.Z) = 5
WHILE PA DO BEGIN PA.D=0; PA = PA.P END

FCR P IN SSYMB DO P.KIND = 0;

9.5. Case_statements

Syntax: ‘
<case statement> ::= CASE <expression> OF <<statement> ;list>
ENDCASE

Semantics: The expression 1is evaluated and assigned to an
internal variable I of type FWI. If I <= 0 or I > (the number of
statements in the 1list), no action is taken. Otherwise, the Ith



9. STATEMENTS 38

statement in the list is executed. If this statement does not cause
control to leave 1it, control then passes to the point beyond the
ENLCCASE symbol.

Example:

CASE N OF

¢ =3;

FOR I = 1 UNTIL N DO A(I)=0;

GC TO LAB;
BEGIN Q = 5; FOR I

1 UNTIL N DO A(I)=0 END

~-ENDCASE

9.6. Control statements
Syntax: .
<controi statement)> {gyoto op> <label>

RETURN | SYNTAX | COMPLETE

HALT { ( <integer> ) ]

CALLPASS ( <pass number> )

BEGINPASS ( <pass number> )

R ——

<goto op> 2:= GO | GO TO } GOTO

Semantics: Execution ot a yoto statement transfers control to
the statement labeled <label>. One cannot jump into or out of a
frocedure or into the statement of an iterative statement.

. The RETURN statement is used only in procedures; it causes the
procedure to return to the point from which it was called.

The SYNTAX statement is wused only if the pass has a syntax
subprogram. It may not be wused in procedures. Execution of the
statement causes control to return to the syntax subprogranm
following the last EXEC action executed.

Execution of COMPLETE tells CIL that the program is done. If
CGS was used, the object module for the generated program is
completed and written out. Execution then stops.

Execution of HALT ( <integyer> ) causes the message " HALT
<integer> " to be printed and execution to halt.

Execution of BEGINPASS causes control to transfer to the
beginning of pass <pass number>, while execution of CALLPASS
transfers control to pass <pass number)> at the place where it 1last
executed a BEGINPASS or CALLPASS (if it had never been executed,
ccntrol goes to the beginning of it). The CALLPASS is thus like a
coroutine call.



¢
i
(-

— - o r—-

— r— (—

cooor

—

-

9. STATEMENTS

[¥)
w0

It the pass being called is in another coreload, that coreload
is brought into <core. Passes in the previous coreload may not be
called again.

9.7 procedure statements

Syntax:

<procedure call> ::= <identifier>
i ( <<Kactual parameter> ,list> ) ]
| <specfunc> | <specproc>

<actual parameter>::= <expression> | <table identifier>
| <dict identifier> | <stack identifier>

Semantics: Execution of a procedure statement is equivalent to
the following process:

A copy is made of the procedure or function body identified by
the identifier in the procedure statement. The actual
parameters of the procedure statement, which must agree in
number and order with the formal parameters of the procedure or
function, systematically replace those formal parameters as
follows:

1« If the actual parameter is a <destination> wvhose type
is the same as the type of the formal parameter, the
address of the <destination> is calculated and assigned to
an 1internal variable, say I, which is different from any
other variable. The indirect reference "§C(I)" then
replaces every occurrence of the formal parameter
identifier in the copy of the procedure body.

2. If the actual parameter is a constant, the constant is
converted to the type of the corresponding formal
parameter (this must be possible) if necessary and the
result replaces every occurrence of the formal parameter.

3. If the actual parameter is any basic expression not
covered in 1 or 2, it is evaluated, assigned to an
internal variable, say J, whose type is the same as the
type of the corresponding tormal parameter. The variable J
then replaces every occurence of the formal parameter.

4. If the actual parameter 1is a table, dict or stack
identifier, the corresponding formal parameter must be a
table, dict or stack, respectively, with the same type.
The actual parameter replaces every occurrence of the
formal parameter identifier in the copy of the procedure
body. ’

The replacement of parameters must yield valid expressions and
statements. The modified copy of the procedure body is then



9. STATEMENTS 40

executeda.

It a tunction is executed in this manner, the value it produces
is lost.

<specfunc>s and <specprocrs are calls on special functions and
special frocedures. See Section Z.2.

Examples:
&£JOINREGS (P)

TIME
LCOKLAB( A, PP)
~YCUNGESTUNCLE ( JOHN)

The following <specproc>s are used to communicate with the
scanner:

| SCANNER ( <scanner id> ) |
L e o e e e e e e e o e e e e e o 3

Execution of SCAN causes the next symbol to be read f£from the
source language program being compiled. It dis put in location
SCANSYM and on the main stack of the pass in which the SCAN appears
(if applicable). See Section 12.1 tor an exact description.

Execution of the statement CHARMODE causes the scanner to
change its method of scanniny the source program to a character by
character scan. See Section 12.1.

Execution of the statement NOERMODE causes the scanner to scan
the source proygram in normal fashion. See Section 12. 1.

Execution of SCANNER (<scanner id>) causes the scanner to begin
using the scanner definition named <scanner id> for forming source
language symbols.

9.9. Input-output



4
i
—

o

.r---~\

9. STATEMENTS 41

The I/0 provided is quite primitive. More powerful I/9 may be
added at a later date if necessary.

9.9.1. Input. Section 12.6 explains input procedures when the
normal scanning is performed . (cf Section 9.8). In additiom, the
<{specgroc>

reads the next card into the system string variable &EINLINE.

9.9.2. Output. Execution of the <specproc>

= e e e e e

r
{ E0UT ( <<expr> ,listd> ) |

causes the expressions to be added to the current output line.
Strings are added without conversion. Pointer and bits type
expressions are first converted using the function &HEXT (see
below), HWI, FWI and DEC expressions are first converted using the
function &DECT, while FWF and DWF expressions are first converted
using the function SFLPT. When the current output line is filled  up
a new one is started, execution of the <specproc>

r 1
1 &0UT |
S 3

causes the current line to be written out (if not empty).

Execution of the <specproc>

————— — - A W <D > - —“‘————’

r
| EOUTDESCR ( <DESCR exp> ) |

L ——— ————— e e 3

causes the current output line to be written out and the DESCRIPTOR
to ke written out in a readable fora.

9.9.3. Conversion functions. The following <specfunc>s return a
tinary representation of the STRING parameter S:

S can comntain only

<specfunc> S is the characters result is
| s181N(S) | bimary 0,1 ~ BrrEs |
: aroc;?;; | octai- Opecesd o BYTES :
| etoEc(s) 1 decimal  0ye-srs w1 i



9. STATEMENTS 42
| - - - - - |
L-——-_——_-‘.--—---.—-—.--------—-----—-—‘~—---_-------J

The result is right-adjusted with leading zeroes if necessary. The

number of
binary. An
charactersa

bytes is the number necessary to represent the string in
error message is printed if S contains illegal

The following <specfunc>s perform the same function except that

the parameter A is an atom ( BYTE2 representation) of the string S:

The following <specfunc>s are used to convert an internal number to
character form. The result is thus a STRING expression. Below, A
represents an atom ( BYTEZ2 expression).

the STRING result is

e e o o e e e e e e e e e e e e o e e e e s o o s i v

T
| SEINT( <expr> ) | <expr> expressed in binary characters |
|

- —— - ——— —— - — ——— —— — . " T~ - —— '

<specfunc>

| 6DECT( <expr> ) | <expr> expressed in decimal char. |

] 6FLPT( <expr> ) | <expr> expressed in floating pt. Char.]

‘---_————————-———————.—--_-—- - —— ———— —— ——— ——— o - — -~ — v > l

1 E6HEXT( <expr> ) | <expr> expressed in hex characters. i

' ——— — —————_—— — — — - o - — ] A " = —— - ——— i — - — - > - oo M~ " > " 1

} 6CCIT( <expr> ) {| <expr> expressed in octal characters. |

1 ETEXT( A ) | strln; corresponding to atom A }
e e e e e e e e e e e e e e e e e e e e e e i e e e o e e 4

No conversion is performed on <expr>; it is changed as it stands in

REMOLY.

Examples:

*11010°
1260
12.0
1A
13210
'-30450017"

GBINT({ B*'11010') is equal to
EDECT( B'11010') is egqual to
EFLPT( B*'11010') is egual to
GHEXT( B'11010') is equal to
ECCTT( B'11010') is egqual to
SLCECT ( —-3645001) is equal to

E+01?

[ .



r— r— r— —

—

— r—

r—

s

[N

9. STATEMENTS 43

9.10. Releasing storage
If an assignment statement
<POINTER destination> = <struct exp>

(vhere the <struct exp> is not an <old valued) is executed, CIL
allocates storage for the <struct exp> and puts its address in the
<FOINTER destination>. It is then the programmers responsibility to
release this storayge when no longer needed (see Section 14.9 for the
special case of DESCRIPTORS). The <specproc>

P e e e e e ———————————

] SRELEASE ( <POINTER destination> [ ,<pointo type> ] ) |

L S |

releases the storage pointed at by the POINTER and sets it to zero.
The <pcinto type> is needed it the declaration of the POINTER did
not unambigously indicate the data being pointed at.



44

10. CPERATIONS ON TABLES, DiCTS AND STACKS

This section describes how one adds, deletes and searches for
records 1in tables, dicts and stacks. Each <specfunc> described here
yields a POINTER value - either 0 or the address of a table, dict or
stack record. Thus they may be used anywhere a function designator
is used. They may also appear separately like procedure statements,

in which case their value is lost.

10.1. Cperations on_tables

Syntax: The syntax or tne ENTER, LOOK, TALLY and DELETE
<specfunc>s is

e |
| ENTER ( <table identifier> | , <exp> ] ) ]
j  — — ——— — — ———————— - — o — > T " — A~ " -
| LCOK ( <tablg identirier> [ . <component selector> ]|
| , <expression> |
| [ FROM <POINTER expressioni> ] |
| [ TO <POINTER expression2> ] |
l [ . BACK ]) |
_____________________________________________________ ‘
TALLY ( <table 1dent1:1er> + <POINTER expression> ) |
[ » BACK ]) I

DELETE ( <table 1dentltler> ’

I
|
|
l - -
|
L=

Semantics:

ENTER. A new record is added to the table identified. If the
<exp> is present <exp> (which must pe assignment compatible with the
tyre of the table records) is assiyjned to this new record; otherwise
its value is undefined. The value of ENTER is the address of the new

record.

LOOK. If the type of the records of the table is a basic type,
the component selector may not appear. A subset of the records is
searched for one which is ejual to <expression>. If the type of the
records 1is a ‘structured type, a subset of the records is searched
for one whose component selected by the component selector (default
option is *"1-1") 1is equal to <expression>. The comparison is done
according to the rules of Section 8.2.6.

<POINTER
the Ith (default

expression!> must point at a record of the table, say
option 1is tne address of the first record).

<EOINTER expression2> nmust point
Jth (default option is the address

I1f BACK 1is missing, the

at a record of the table, say the
of the last record).

records tested are records I,



ot T T T o

r—

10. OPERATIONS ON TABLES, DICTS AND STACKS 45

I41,-<-,d, in that order (none if J < I). If BACK appears, records
J,J-1,<..,1 are tested, in that order (none if J < I).

If a record is found, the value of LOOK is the address of the
record. Ctherwise the value is 0.

TALLY. The POINTER expression must be 0 or the address of a
record of the table identified. The value of TALLY has type POINTER
and is given by the followiny table, assuming the table has N

recordse.

value if BACK Value if BACK

POINTER expression  is_not_present is_present

0 addr. Uf record 1 addr. Of record N
addr. Of record 1 addr. Of record 2 0

addr. Of record N 0 addr. Of record N-1
addr. Of record J addr. 0f record J+1 addr. Of record J-1

{ 1 < J < N)
v v R Ry

DELETE. The POINTER expression must be the address of a record
in the table, say record I. If there are currently N records in the
table, records I, I+1, ... , N are deleted from the table. The value
of DELETE is the value of the new last record - record I-1 (0 4if

table is now empty).

10. 2. Cperations_on_dicts

Syntax: The syntax of these <specfunc>s ENTER, LOOK, TALLY and
CELEIE is

> - - o W D S~ W — — Y " V_——— — o V> T — - —

[ b |
] ENTER ( <dict identifier> , <BYTE2 expression> i
|

I [ » <exp> ])

'-- ——— ————— — —— — ————— - v f— - ——— ——— ——
| ENTER ( <dict identifier> , <POINTER expression>

| [ » <exp> ])
l -
] LOOK ( <dict identifier> , <BYTE2 expression> )

l ——— s > — T ——— ——— T~ o - - —— - —— -

| LOOK ( <dict identifier> , <POINTER expression> )

l.--.——-—-———-———-———————-—...--—----——.-——— - - —

§ TALLY ( <dict identitier> , <POUOINTER expression>
| [  BACK ] )

' — - e -

| DELETE ( <dict identifier> , <POINTER expression> )

[ — - — — -

e e o e e co s B M e — - -

Semantics: As discussed in Section 12 on the scanner



10. OPERATIONS ON TABLES, DICTS AND STACKS 46

definition, each compiler automatically uses a hash-coded internal
dictionary SINTDIC to aid in changing from source language symbols
to their internal representations called ATOMs. There is one record
in the internal dictionary tor each source language symbol
recognized. By using dicts the compiler writer can use the internal
dictionary to search his own symbol tables efficiently.

In the discussion of dict declarations it was stated that the
structured type of the records must begin with a BYTE component
tollowed by a POINTER component. The first component automatically
contains an internal number ideantifying the dict. The second
compocnent is used to chain dict records which refer to the same ATOM
to the internal dictionary record for that ATOM. Thus, in order to
tind the record in a dict for an identifier, one only has to search
the -chain Lkased on the internal dictionary record for that
identifier.

Fig. 1, part A shows the record for an ATOM, I, before any dict
records have been chained to it; the second component of the record
points to the record. In the same part A it is assumed that the
dicts DICT1 and DICT2 are empty; the other parts of figure 1 will be
used to illustrate the operations on dicts.



!
|

r—

r—

r-co o o o o T T

r-

10. OPERATIONS ON

INTERNAL DICTIONARY

TABLES, DICTS AND STACKS

FIGURE_1

DICT2

- —

O] B B ———— > -4

L) —=|=mmmmmmmms>)

| . |

AToM I

| P |

RECORD 1

- —————— e e e e e o e o e

|

RECORD

e > —=1-

———— s wa o — ’

‘ ———--—.—l

RECORD 1

———— — T — Vs —

r

w1 ===y

|
RECORD 1

— - — - — —

o1

ATOM I

L) —= ===

|

RECORD 2

RECORD 1

- ——— — -

;--
1 RECORD 1
|
|
34

b |

— ]
> ===
[

—— o e o o o e e e e e e

—_—
—-—)I —-‘—J

L

' D
|  RECOBD 1
1

e

> == | =———m==D) -=1-4

RECORD 2

S |

RECORD 2

47



10. OPEBRATIONS ON TABLES, DICTS AND STACKS 48

ENTER. A nev record is added to the dict identified. If <exp>
is rresent, it 1is assigned to the record (it must of course be
assignment compatible with the recora); otherwise the record value
is undefined. The record is then chained to the internal dictiomary,

as follows:

1. If the second parameter is a BYTE2 expression, its
value must be an ATOM - that is, the internal representation of
some source language symbol. The new record is inserted in the
chain directly after the internal dictionary record for the
atom. As an example, consider rig. 1, part A. Executing

ENTER (DICTZ2,I)

-would yield fig. 1, part B. Purther execution of
ENTER (DICT1,I)

wculd yield fig- 1, part C.

2. If the second parameter is a POINTER expression, its
value must be the address of some <chained dict record (not
necessarily the dict identitied in the ENTER operation.) the
nevw record is inserted in the <chain after the <chained dict
record. For example, consider fig. 1, part C. If P is a POINTER
variable, executing

P = ENTER( DICT1, DICT1(1))
would yield part D. Further execution of
ENTEK (DICT2, P)

would yield part E.

LOOK. There are two variations:

: 1. If the second parameter 1is a BYTE2 expression, its
value must be an ATOM. The chain based on that ATOM is searched
for a record in the dict. The value of LOOK is the address of
the first one found (0 if none found). For example, consider
fig. 1 part D. Execution ot

LOOK (DICT2,I)

yields the the address of the record DICT2(1), while execution
of the same statment but with the configuration of fig. 1 part
E would yield the address of DICT2(2).

2. If the second parameter is a POINTER expression, its
value must be the address of some chained dict record. The
records after the one addressed and up to the internal

dictionary record are searched for one in the dict specified.
The value of LOOK is tne address of the first one found (0 if



S R

r—

e r— oo o

—

r—

r—

— r— -

r—

10. OPERATIONS ON TABLES, DICTS AND STACKS 49

none found). For example, coasider fig. 1 part E. Executing
LOOK (DICT1, DICT1(1))
yields the address of DICT1{2), while executing
LOOK (DICT1, DICT1(2)) or LOOK{DICT1, DICT2(2))

yields the value 0.

DELETE. This works exactly as the DELETE operation with tables,
wvith the addition that the records are taken off the chain before
being deleted.-For example, consider tig. 1 part E. Execution of

P = DELETE( DICT2, DICT2(2))

yields the address of record DICTZ2(1) in P and the configuration in
fig. 1 part D.

10. 3. Qperations_on_stacks

Syntax: The form of the PUSH and POP <specfunc>s is

— s o - ——— —————---.-—-----,—--’--—---——-—1

[ 4

The value of the record is the value of <exp> (which must be
assignment compatible with tne record), if present; otherwise it is
undefined. The value of PUSH is the address of the new record.

POP. Executing POP deletes the top record from the stack
identified. If the destination is present, the top record (which
must be assiynment compatible with the destination) is first
assigned to the destination. The value of POP is the address of the
new top stack record (0.if the stack is now empty).

Care must be taken when PUSHing and POPing the main stack of a
pass; a semantic routine should not PUSH and POP if it later refers
to the main stack via 10, L1, L2, L3, L4, L5, R1, R2, or R3.



10. OPERATIONS ON TABLES, DICTS AND STACKS 50

10.4. The_table &INTDIC.

&INTDIC is the hash-coded INTernal Dictionary used to transfornm
source language symbols into atoms. The following <specfuncd>s are
rrovided to allow a compiler writer some access to it.

| LOGK (&6INTDIC, <STRING expr> ) §

‘ e i v o oo ———— -— ————— T — — —— S " o > - '

| ENTER(&6INTDIC, <STRING expr> [ ,<BYTE expr>] ) |

| === === = ———mom—mse -

} ATOM ( <POINTER expr> ) i

I_-.—-- - — - — - — - ——— —-.-.l

| ATOM ( <STRING expr> ) }
- = e e !
ETYPE( <FOINTER expr> ) }

- - - ———— —— - - 1

|

i

| ETYPE( <STRING expr> ) |
. -

-

LCOK returns the address of the EINTDIC record for the STRING
expression (or 0 if no record for it).

ENTER 1is executed as follows: If no record exists for the
STRING, one is added to ¢&INTDIC. Then the value of the BYTE
expression becomes the type ot the string for the current scanner
definition (cf Section 12.1). The default option for the BYTE
expression 1is 0. The value of this <specfunc> is the address of the
§INTLIC record.

ATIGM returns a BYTE2 value. In the first case, the POINTER
expression must yield the address of an EINTDIC record or a dict
record.e The value returned 1is the atom for the symbol associated
with the record. In the second case, the value returned is the value
assigned to the BYTE2 variable B whean the following statements are
executed:

.P = LOOK(§INTDIC, <STRING expr>);

“IF P
THEN B = ATOM(P)
ELSE B = ATOM{ ENTER(6INTDIC, <STRING expr>) );

12.1) associated with the EINTDIC or dict record pointed at by the
EOINTER expression (case 1) or with the STRING expression (case 2) =~
which must already be in E&INTDIC.




|

r

r—

oo o

r— —

e

——

11. STORAGE ALLOCATION AND ALIGNMENT OF VALUES 51

11. STORAGE ALLOCATION AND ALIGNMENT OF VALUES

While aot necessary, it is often helpful to know how storage is
allocated. 1In the IBM 360, data must often begin on a halfword,
fullword or doubleword boundary. We define the alignment_ _factor as
follows:

data_must begin on alignment factoxr is

doubleword
fullword
halfword
byte

[N S — e ]

In other words, if the alignment factor is i then the address of the
leftmost byte of the data must be a multiple of i . The following
table gives the alignment factor and storage requirement for basic
type values.

Type alignment number of
— ' factor bytes used
BYTE 1 1

BYTE2 2 2

BYTE3 4 (see A below) {see A below)
BYTE4 4 4

BYTES (I) 1 (see B below) I

HWl 2 2

FWI 4 4

DEC to be deterained later

FWF 4 4

DWF 8 8

FEOINTER 4 (see A below) {see A below)
STIRING (I) ’ 1 (see B below) I

~ A. BYTE3 and POINTER values are contained in the last 3 bytes
of an IBM 360 fullword. The first byte may or may not be used for
anether value.

B. In certain cases, a BYTES or STRING variable may be given
four tytes - one for the length minus 1 and the other three for the
address where the actual value really is.

The following rules are used to allocate storage for structured
type values.
1« The alignment factor for a structured type value is the maxinum

of the alignment factors.of all its components and subcomponents.

2. The alignment factor for any component with subcomponents is the
maximum of the aliynment factors of those subcomponents.



11. STORAGE ALLOCATION AND ALIGNMENT OF VALUES 52

3. All components of a constituent use the same space. The number of
bytes allocated to a constituent is the maximum of the number of
bytes needed for each component of the constituent.

4. Bytes are allocated to constituents in a left-to-right manner.
The constituents are packed tojether as close as possible, taking
into account their alignment factors.

5. The number of bytes used is a multiple of the alignment factor.
Examples
STRUCTURE S1(BYTE B, HWI C, BYTE D1 ALT HWI D2);
~-STRUCTURE S2 (BYTE E, FWI F, G(BYTE2 G1 ALT BYTE G2), S1 H);

S1 A1 ; S2 A2;
A1 will begyin on a haltword, A2 on a fullword. They 1look as
follows (bytes are numbered starting at 0; the underlining after

each identifier indicates which bytes that comfponent uses):

BYTE 0 1 2 3 4 5

BYTE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

G1 B C D1_
G

_ T T TTpa2__




L

— r—

r- rr— — r— r=

— rr—

- - r— r— r—

n
(V8]

12. SCANNER DEFINITIONS

The scanner is that part of a compiler which reads in the original
n

h
source program characters and composes them into atoms -
sdantifiarae intagoar cinala and AdAnounla ~rhararcréar Aalimi+arac anAd
1GLlitiiliels, ihxegel, S1h0gaCe and-4aousac LhRaraviiced Q8il1&R1iTCIl S, anl
reserved words. The scanner definition indicates how these atoms are
to be formed.

As indicated 1in Section 4, several scanner definitions may be
gyiven. Initially, the first omne 1is in effect until changed at
compile time.

The scanner definition was defined with two conflicting goals

in mind:

1. The scanner should be efficient. To accomplish this, the IBM
360 "translate and test"™ instructions are used, along with
three or four 256-byte tables per scanner definition. With
this, for example, sequences of 1 to 256 blanks in the input
source program can be skipped with one instruction.

2. The scanner definition should be flexible enough to
accomodate all existinj lanjuages. This of course was not
possible. 1In order to accomodate more languages, the compiler
writer can test, insert and delete characters from each card
tefore it 1is actually scanned. He can also switch back and
forth from normal scanning to character - by - character
scanning (in which case he buiids atoms himself).

At this point, an example will help to make the next sections
easier to understand. Suppose our source language consists of octal
expressions using the operators +,-,¥,/ and **. Parentheses ( and )
are also used. Numbers are octal integers. Identifiers must begin
with $ or one of the letters A throuyh J; the succeeding characters
must be one of the letters A throuyh J. IDBEG is a reserved word
used to identify the beginning and end of expressions. Comments
begin with /¥ and end with */. Spaces are ignored. The scanner
defipition is

SCANNER ONE (ONE identifies the scanner def)
SYN IDBEGSYN IDBEG (IDBEGSYN is a synonym for IDBEG)
DIGIT 0 12 3 45 6 7 (detines digits)
IDBEG $ A B CD
EFGHTIUJ (defines beginning id chars.)
IDCHAR A BC D EF G HI J (defines other id chars.)
TERMIN + - * / () (defines single

character delimiters)
IGNORE X'40° (spaces are completely ignored)
INVIERMIN NONE (this class of symbols is empty)
BES IDBEGSYN ** (defines reserved words and

. 2-character delimiters)

COMMENTQ /% */ (comments begin with /*

and end with *))
ENDSCAN (end of scanner definition)



12. SCANNER DEFINITIONS 54

Syntax:

<scanner def> 2:= SCANNER <scanner id>
[ <<synonym def> list> ]
<<set definition> list>
[ <<reserved-def> list> ]
[ <Kguote def> 1list> ]
[ BEGIN <preprocessor> ]
ENDSCAN

12.1. Scanning _and_the_internal dictioaary

—— —— - —— ——— .

When scanning a source proyram, the scanner proceeds from left to
right through the program. The end of a 1line (card) has no
significance. (the compiler writer may, however, have his own
internal character inserted at the end of each line to give it some
significance - <¢f Section 12.6). In case there are several
alternatives for the next source language symbol, the scanner always
Ficks the longest one. Thus if *BEGIN! and 'BEGIN are both reserved
vords and the characters ', B, E, G, I, N and ' are scanned, then
'BEGIN' will be formed.

Scanning_in normal _mode (NORMODE) (cf Section 9.8). When a
source language symbol is formed, it is replaced by a 16-bit number.
The compiler works exclusively with this number. The word atom is
used both for a source language symbol and its 16-bit
representatioa.

In order to replace a symbol by its 16-bit representation, the
system uses a hash—-coded internal dictionary, named SINTDIC. SINTDIC
contains a record for each source language symbol scanned. Besides
the symbol itself and its internal representation, this record
indicates (for each scanner definition) hov the symbol has been
used. The possibilities are:

type meaning

o

The symbol is undefined (has not been scanned using
this scanner definition).

6 The symbol is an identifier (I).

7 The symbol is a number (N).

8 The symbol is a strinyg (S).

9 The symbol is a reserved word or terminator (like + -
BEGIN END) (R).

10 The symbol begins a comment {CQ).

1 The symbol begins a string (SQ).

When an atom 1is scanned, it is passed to the coampiler in
location SCANSYM. SCANSYM contains two BYTE2 components. Just how
the atom is put in SCANSYM depends on its use. If it is a reserved
word or terminator (R), the atom for it is put in SCANSYM.1 (first
component), while SCANSYM.2 becomes undefined. If it is an
identifier (number or striny), the metasymbol I (N or §) is put in



f
-

r—

r= r— -

r r— r—

r-r— rr— r— r— r— r

—

12. SCANNER DEFINLITIONS ' 55

SCANSYM.1 and the atom for the identifier (number or string) itself
is put in SCANSYM.2.

Scanning_in_character mode_ (CHARMODE) (cf Section 9.8). When in

character mode, the source program characters are put in SCANSYM.1
as they are scanned. SCANSYM.2 becomes undefined.

12.2. Defining synonyms
Syntax:
<synonym def> HH
<{synonym pair> ::

= SYN <<synonym paig> list>
= <synonym> <<EBCDIC char> list>
| <symonym> <char sequence)>

<char sequence> ::= <EBCDIC or hex>
| <char sequence> CAT <EBCDIC or hex>
<EBCDIC or hex> =

::= <EBCDIC char> | <hex char>
<hex char> H

X ' <hexit> <hexit> ?

Semantics: A <hex char> may not be X*'70'. The <hex char> allows
one to use other 8-bit combinations as characters, besides the
EBCDIC bit combinations. Note that a space must be represented by
its hex representation, X*40°'.

The synonym definition associates a CIL identifier (the
synonym) with a sequence of characters which form a source language
symbol (the <EBCDIC char> list or the <EBCDIC or hex>s in the <char
sequence>). The synonym must be used later in a set definition (cf
Section 12.3) or in a reserved word definition (cf Section 12.4), to
indicate how the source languaye symbol is used.

Any source language symbol cam be given a synonym; the
following must have a synonym;

1« Those source language symbols which are scanner definition
reserved vords:

BEGIN

CAT COMMENTQ

DIGIT

ENDSCAN

IDBEG IDCHAR IGNORE INVTERMIN
NONE

RES

STRINQ SYN

TERMIN

2. Those source language symbols which contain (or are) a space
or a character which is not an EBCDIC character.

A synonym may not be a reserved word of a sublanguage inm which it is



12. SCANNER DEFINITIONS 56

used (production language or semantic sublanguage or scaaner
definition.) '

Syntax:

<set definition> ::= DIGIT <char set>
IDBEG <char set>
IDCHAR <char set>
TEBRMIN <char set>
INVTERMIN <char set>

IGNORE <char set>

———— — |

ONE | <<character> list>
EBCDIC or hex> } <synonym>

<char set>
<character>

0 oo
W
A=

Semantics: Set definitions serve to describe the use of each
character in the source language. Each character amust appear in at
least one set definition. These definitions are used by the scanner
to build the actual source lanyuage symbols. A set definition with
the <char set> NONE defines an empty set. The sets have the
following meaanings:

1. The set of DIGITs are used to torm numbers according to the
syntax

<{source number> ::= <<L4igit> listd.

When a source number is formed, the metasymbol N is returned in
SCANYSM. 1, while the atom for the source number itself is put
in SCANSYM.2. Note that no actual conversion of the number is

performed.

2. The sets IDBEG and IDCHAR are used to form source_{langquage)
identifiers according to the syntax

<source id> ::= <char in set IDBEG>
[ <<char in set IDCHAR> list> ].

When a source identifier is formed, the metasymbol I is
returned in SCANYSM. 1, while the atom for the source identifier
itself is put in SCANSYM. 2.

3. The set TERMIN contains the single character symbols of the
source language. Examples from ALGOL and FORTRAN are + - ( and
) - These characters are called terminators, since they
terminate identifiers or numbers. When scanned, the atom for a
terminator is put in SCANSYM.1 while SCANSYM. 2 becomes
undefined. :

4. The <characters in the set INVTERMIN signal the end of an
atom being formed. For example, in some languages a space



r-

r~ cc r- r r— >

—

— -

—

12. SCANNER DEFINITIONS 57

following an identifier ends that identifier; A B is two
identifiers — A and B. However, these characters are INVisible
- they are not passed on to the compiler (except in strings).

5. The characters in the set IGNORE are completely ignored
(except in strings) if they appear in the source program. For
example, in some ALGOL implementations blanks are ignored; A BC
is the identifier ABC.

The default option, in case a set definition for one of the sets is
missing, is taken from the tollowing set definitions:

DIGIT 0 12 345673839
IDBEG A BC DEF GHIJKLMNOPQRSTUVWIXYZ
IDCHAR ABCDEFGHIJKLMNOPQRSTUVHEXYZOI1
234567289

TERMIN NONE
INVTERMIN X*40°
IGNORE NONE

The following restrictions are placed on the sets. The sets IDBEG
and ICCHAR may have a nonempty intersection. The sets IDCHAR and
DIGIT may have a nonempty intersection. The intersection of any
other two sets must be empty.

12.4. Reserved wvords

Syntax
<reserved def> ::= RES5 <<res word> list>
<res word> ::= <source id>
' ] <termin> <source id> [ <termin> ]
| <termin> <termin>
| <synonym>
<termin> "a character in the set TERMINY®

[T 1)
L1}
W

"a source laaguage identifier (cf sets
IDBEG, IDCHAR)™

<source id>

Semantics: The reserved detinition declares the reserved words
of the source language. Note that we include double character
symbols 1like // and /* here. If a synonym appears here, the source
language symbol it represents must have one of the other forms given
above.

12.5. String_and_comment_guotes

Syntax
<quote def> 2:= STRINGY <<guote pair> list>
| COMMENTY <<quote pair> list>

<begin guote> <end quote>
<termin> ] <res word> | <synonym>
<termin> | <termin> ] | <synonym>

<quote pair>
<begin quoted>
<end gquote>

TRIRT
40 00 e
W



12. SCANNER DEFPINITIONS 58

Semantics: The set COMMENTY contains pairs of beginning and end
gquotes for comments. The beyinning quote can be any terminator or
reserved word; the end quote must consist of one or two terminators.
Comments are deleted from the source program. A comment is thus an
invisible terminator (set INVTERMIN).

The set STRINGQ coatains pairs of beginning and end quotes for
strings. The beginning guote can be any terminator or reserved word,
while the end quote must consist of one or two terminators. +W#hen a
string is detected, the metasymbol S is put in SCANYSM.1 and the
atom for the string (without the quotes) is placed in SCANSYM.2.

12.6« Processing_before scaan

i~

ng

Syntax: <preprocessor> ::= <procedure call> " of a procedure
without parameters"

Semantics: The procedure must be in core during the time the
scanner definition is wused. When reading in a new source progran
line, the scanner puts it in the system string variable EINLINE and
executes the procedure call. This procedure can then do any
preprocessing necessary before the scanner actually scans the line.
The result of this preprocessing must be put in the system string
variable &§SCLINE. The original line should also be written out using
&§0UT.

For example, suppose we wish to preprocess a FORTRAN program.
The end of a line means the end of a statement except when column 6
of the next card is nonblank. In addition, columns 1-5,7-72 are
fixed fields. Suppose in the scanner definition we declared the
terminals EOS (end of statement) and EOL to be tvo byte
representations which cannot appear on the input card. The following
procedure then will accomplish what we want:

PROCEDURE PREPROC;

BEGIN &OUT(EINLINE); &OUIL; /% write out the line */
IF SUBBYTE (6INLINE,S5,1) = ' !¢
THEN BEGIN /¥ this is not a continuation card*/
ESCLINE = EOS /¥ put in end of statement,*/
CAT SUBBYTE (¢6INLINE,O0,5) /* label field,*/
CAT EOL /¥ end of label,*/
CAT SUBBYTE(&INLINE,6,66) /* rest of card */
END
ELSE BEGIN /¥ continuvation card. */
§SCLINE = SUBBYTE(6INLINE,6,66)
END

END

If the <preprocessor> is nmissingy from a scanner definition, a
procedure with the followiny procedure body is automatically invoked
before each new line is scanned:



SR

—

r—

c— r— - r— r— r— 6 r

c r—

-

2. SCANNER DEFINITIONS 53
BEGIN &0OUT( &CLINE, * *, /% line number */
SINLINE) ; /% input line */
&§0UT;

TN
ENU

§SCLINE = SUBBYTE (6INLINE,0,72); /* only cols 1 to 72 %/

The following system indentitiers are used in connection with
the scanner. .

STRING (80) &INLINE. Always contains the last source program line.

STBING (256) &SCLINE. Current source prograi line being worked on.

STRING{ 5) &CLINE. Contains the number of the current line (with
leading Etlanks).

HWI &ENLINE. The number of the current line.



o
(o]

13. ERCDUCTICON LANGUAGE (PL)

Frcduction_language (PL) 1is a sublanguage of CIL designed for

writing '"parsers" or '"syntax ahalyzers" of programs. It consists
primarily of so-called preoductions which work with a LIFO stack.

- iull e .- R aAaAaTWUW pavavLiaiss  Wiiarss W e WA Las

Briefly, as a source program is scanned, the source symbols are
rlaced on the stack and an attempt is made to match the top stack
symbols with those designated py the current production. If no match
cccurs the following production pecomes the current one and a match
is attempted again; this continues until a match occurs. When it
does, the top of the stack is rearranged and several actions are
performed as indicated by the current production. These actions may
cause more symbols to be stacked, may <cause a portion of the
semantic subprogram to be executed and may also indicate which
production is to become the current production.

At this point an example might help to make this whole section
clearer. Consider the following production:

-~

IF E THEN > ICL EXEC SIFCLAUSE GO THENPART

This fproduction has the following meaning: If the top three stack
records contain the symbols IF, £ and THEN, then replace these three
records by a single record coantaining the symbol ICL, execute that
portion of the semantic subproyram labeled SIFCLAUSE, make the
production labeled THENPART the current production and begin
matching again.

Production language need not bpe used, in which <case the
semantics portion of a pass is executed as a program in the usual
manner; statements are executed in the order in which they appear.

If production language is used 1in a pass, then it is the
production language subprogram which is in command - which drives
the <compiler. It causes source language symbols to be scanned and
invokes fparts of the semantic sublanguage.

Syntax:

<PL subprogram> ::= PRODLANG

' [ <<PL declaration> listd> ]
PRODUCTIONS <<production> list>
ENDSYNTAX

13.1 comments and blanks

A comment in PL is any seguence of characters, not including the
subsequence "::", enclosed in the comment gquotes "::" and "::" . A
comment may appear between declarations and/or productions.

Blanks may appear anywhere except between characters of a <PL
identifier>, <source symbol>, <identifier>, or reserved word. At
least one blank must separate them if they are adjacent.



—-

—

"
[

-
[=)]
b

13.2 PL_reserved words

The reserved words of production langjuage are:

ANY
CALL CLASS CLASSLAB

ENDSYNTAX ERROR EXEC

GO

HALT

I IF INT

N

PRODLANG PRODUCTIONS

RETURN

S SCAN SCANNER SCANSYM SIGNAL STAK
UNSTK

They may not be used as identifiers in a PL subprogran.

P2 — P

Syntax

<source symbol> ::= "any sequence of 1 to 250 EBCDIC
characters except wgn, mngn_ nw3n  apgd
space (blank). It may not be a PL reserved
word."
| <source language symbold>

Semantics: A source symbol is a sequence of characters vwhich
was declared in a scanner definition to be a symbol of the language
to be compiled (cf Section 12.2). Note that in this subprogram only,
the source symbol may appear without the "§" in front of it, as long
as it follows the rules given above.

Examples:

BEGIN

+

$$ is the source languaje symbol "$"

CLASS is not a source symbol since it is a reserved word.
$CLASS represents the source language symbol CLASS.

AND and $AND are eguivalent.

Syntax: <metasymbol> ::= I | N | S | ANY

The metasymbols I, N, and S represent an identifier, a number
(sequence of digits) and a string of the source language being
compiled, respectively. ANY represents any source language syabol.
Their use will be explained later.

13.5 PL_identifiers



e

13. PRODUCTION LANGUAGE (PL) 62

Syntax
<PL identifier>

]

..
e

"any sequence of 1 to 250 EBCDIC
characters except "§n, wy;w_ w3n_ angd
space. It may not be a PL reserved vord
or be used as a <source symbol>."

<PL identifier>

<PL identifier>

<PL ideantifier>

<PL label>
<PL int>
{class name>

‘e o8
0o

e 03 43

Semantics: By the symbol <identifier> we mean the usual

identifier (cf Section 1.3) - a sequence of letters and digits, the
first of which must be a 1letter. <identifier>s wused in a PL
subprogram are declared elsewhere - as a synonym for a source

lanjuage symbol, as a label in the semantic program, etc.

PL identifiers - those declared and used only in a PL
subprogram - are less restricted, as indicated by the above syntax.
A PL identifier may be declared only once in a PL program and nmust
be difterent from any identifier or symbol used in a PL subprogranm.

13.6. Communication_between syntax and_semantics

e S e i . o S < Yoo

13.6.1 the main stack

Production language uses a LIFO stack. This stack serves also
as the ma jor communication between the production 1language
subprogram and the semantic supbprogyrame. The stack to be used for
this purpose 1is defined by a <main stack dec> in the semantic
sublanguage (cf Section 6.2). It must be STATIC (cf Section 6.2) and
the first three components of the stack records must be of type
BYTE2. Apart from this, the compiler writer is free to define the
structure of the stack record as he chooses. The second component is
called the syntax component of the stack; it is used to store the
(atoms for the) symbols of the lanyuagye.

As source langyuage sympols are scanned at compiletime, they are
put in location SCANSYM (cf Section 12.1) and then pushed onto the
stack. as follows:

1« If the symbol is an identifier (number or string), the
metasymbol I (N or S) is put into the second BYTEZ2 component,
and the atom for the identifier (number or string) is put into
the third BYTE2 component. The rirst ccmponent is reserved for
systen use.

2. If the symbol is not an identifier (number or string),
its atom is put in the second BYTE2 component. The first
component is reserved for system use while the third component
becomes undefined.

For example, suppose the string "A = B PLUS 1" is scanned, where A
and B are identifiers, PLUS is a reserved word and 1 is a number in
the source language being compiled. Then the stack would be:




r—"--s

—ld
(%]
[ ]
<)
- &
(@]
(]
c-l
(@]
[
i
C
=
=
’I
|- 4
(]
[ o
x>
(9]
<1}
o
4 o]
-
S
[}
W

stack _rec. 1st_comp. 2nd_comp. 3rd_comp.

—— v - g —— o e e e

reserved
reserved
reserved

P W RN

A
LECOSTL VU

|
(o=
%7]

reservad

ST A VA

= WN —-O
[ KL o L -

13.6.2 location SIGNAL

BYTE identifier SIGNAL is a system identifier local to a pass
whose value can be <changed in the usual manner in the semantic
subklanguage and tested 1in production language. Its value is
initially undefined. (cf Section 13.9, action 7).

13.7. Declarations in PL
Syntax
<PL declaration> ::= <int dec> ] <class dec>
| <classlab dec>

<int dec> ::= INT <<PL int> 1list>

<class dec> :== CLASS <class name> <<symbol> list>

<classlab dec> 2= CLASSLAB <class name>
<<symbol-label> list>

= <symbol> <label)>
= <source symbol> |} <PL int> | I | N | S
] <int identifier>

<symbol label> :
<symbol> ' :

Semantics: The identifiers declared in an INTernal declaration
can be thought of as "nonterminal" symbols used to help define the
syntax of the source language. They can be placed in the syntax
portion (second component) of the stack. Each INT identifier is
represented internally by a 16 bit (BYTE2) integer assigned by CIL.

CLASS and CLASSLAB declarations serve to associate the
<symbol>s with the class name. This is simply a notational
convenience; a production containing a class name is equivalent to a
sequence of productions, each with one of the <symbol>s substituted
for the class name.

Additionally, a CLASSLAB declaration associates one semantic
label of the semantic sublanguage with each symbol, providing
another convenience mentioned later in discussing actions.

INT identifiers and class names must be declared before they
are used.

Examples:

INT PRIMARY FACTOR TERM EXPRESSION




[
o 23
-4
«
C
>
2]
o
o~
R
[
S
(=2}
rey

CLASS UNABYOPERATOR + -
CLASSLAB OPERAND I ROUTINEI N ROUTINEN PRIMARY RGUTINEP

Syntax
<production> $3

<PL label> : <production>

| <lett part> [ <right part> ]
<Kaction> list>
Ksymb> list>

">n | <K<syab> list> ]

"see Section 13.9"

<left partd>
<right part>
<action>

Wi

.
.
-
-
-
-

e 22 e

I}

<source symbol> | <meta symbold>
] <int identifier> | <PL int>
| <class name>

<symb> 33

A <left part> may contain at most 5 <symb>s in the list.
A <right part> may contain at most 3 <symb>s in the list.

Semantics: The first production to be executed 1is the first
one. Productions are executed in order of occurrence except when
this is changed by an action. A sejuence of productions may act as a
subroutine. See Section 13.9, actioas 1 and 8.

A production is executed as follows:

1. The <symb>s in the left part are compared with the syntax
components (second component) of the top records of the stack.
A mpatch occurs if one ot the rfollowing holds for each <symb> in
the left part:

. A) the <symb> is a <symbol> and the same <symbol> appears
on the syntax component of the corresponding record.

B) the <symb> is ANY (it matches any symbol on the stack).

C) the <symb> is a class name and the syntax component of
the corresponding stack record is a symbol in the class
<class name> (cf Section 13.7).

If a match occurs gyo on to step 2; if no match occurs,
execution is finished.

2. If the right part occurs in the production, then the records
matched in (1) are deletead from the stack. Any <symb>s
appearing in the right part are then stacked, in left-to-right
order, as follows:

A) 1if the <symb> is ANY, I, S, N or a class name, it must
also have appeared in the left part. The complete stack
record, whose position corresponded to the rightmost



13. PRODUCTION LANGUAGE (PL) 65

occurrence of the <symb> ia the left part, is stacked.

B) if the <symb> is a source symbol, PL int or int
identifier, a record is added to the stack and its second
component becomes that symbol.

3. The actions are executed.

13.9. Actions

We now present the possible actions which can occur in a

production.

2

5.

CALL_ _<PL__label> Execute the productions starting at the one
labeled by the <PL label>, and continue until the action RETURN
is executed. This is thus just a subroutine call. It may be
recursive. Restriction: the action EXEC <class name> may not
appear after a CALL action in a production.

EBROR_<integer> Print " ERROR <integer>",

at the statement labeled <label>. When the semantic statement
SYNTAX 1is executed, return to the action following this one.
The <label> may not be in a procedure or iterative statement of
the pass.

EXEC__<class_name> The class name, which must have been declared

in a CLASSLAB declaration, must also appear in the left part of
any production in which this action appears. Consider the
symbol in the stack corresponding to the topmost occurrence of
the class name in the left part of the production. The semantic
subprogram is executed bpeginning at the semantic label
associated with this sympol in the declaration of the class
name. Upon execution of the semantic statement SYNTAX, control
returns to the production subprogram at the point following
this action. Please note the restriction in action 1.

Example. Suppose we have the declaration

CLASSLAB SIGN + SPLUS - SMINUS

and that the stack contaians

E ¢ E- E (top of stack)

and finally that a match has just occurred using the production
E SIGN E SIGN E EXEC SIGN .

Then the semantic subprojram will be executed beginning at
label SMINUS.

GO_<PL_1label> The production 1labeled <PL 1label> becomes the




8.

9.
10<

1.

12.

13.

[ =1
-
c Y
t
o~
)
:-'1
—
[
[+

current production and matching begins. Any actions following
the GO action will never be executed.

HALT <integer> Print the messaye "HALT <integer>" and stop the
programe. -

IF_SIGNAL GO _<PL_label> If SIGNAL is TRUE (not zero), execute the
GO <PL label> action (cf Section 13.6.2).

RETURN Return to the point after the 1last CALL executed (cf
action 1).

SCAN If this pass is not in parallel with others, build the next
atom of the source program, put it in SCANSYM (cf Section
" 14« 1), and push it onto the stack (cf $section 13.6.1).

SCAN_ _<integer> This is eguivalent to SCAN SCAN ... SCAN
<integer> times.

SCANNER <identifier> The identifier must name a scanner
definition (cf Section 12.). Until another SCANNER action is
executed, the source program will be scanned according to the

scanner definition identified.

B gL >

of the new record - cf Section 13.6.1).

STAK_SCANSYM Push the symbol in SCANSYM onto the stack. (cf
Section 12.1).



14. CODE GENERATIUN SYSTEM (CGS) 67

14. CCDE GENERATION SYSTEM (CGS)

14.1. CODEAREAS

14. 1.1 introduction

A COLEAREA is a table for storing code (machine language) as it
is being generated at compile time. Code gets stored in a CODEAREA
automatically as code bracket statements (cf Section 14.6) and
expressions (cf Section 14.5) are executed. The compiler writer may
also enter his own information into a CODEAREA with an ENTER
statement (cf Section 14.1.5). At runtime, the contents of the
CCDEAREA becomes the program beinyg run.

Any number of CODEAREAs may be used at compile time. They may
contain code, tables of constants, or a mixture of both. Each
COCEAREA becomes a named_section, or CSECT, of the generated object
module.

We make the following restriction on the use of CODEAREAs: the
bytes of code for a subroutine snould be contiguous. By a subroutine
we mean a section of a program which may be "called" from many
rlaces, and which returns to tne calling point when finished. To
illustrate this, suppose a one-pass ALGOL compiler is compiling a
program with the following structure:

BEGIN PROCEDURE B:
BEGIN PROCEDURE C;
BEGIN ... END;

END;
PROCEDURE D;
BEGIN ... END;

[,
2 s s
o

Code for the main program and for procedures B and C must be
generated into different CODEAREAS, while the code for procedure D
may not be in the same area as the main program code. One possible
configuration would be:

CCDEAREA
1 2 3

| MAIN |  |PROC B} | |

IPROGRAM|  |——=-=—] |PROC C|

J J |PROC D} | |

| S R D

The main reason for the above restriction is to keep the code for



14. CODE GENERATION SYSTEM (CGS) 68

each lojyical part of the source progyram in contiguous bytes. This
facilitates base reyister allocation and branching, which on the IBNM
360 are complicated tasks.

The icportant points to remember about CODEAREAS are:
1. A CODEAREA at compile time is read-only storage at runtinme.

2. The information is to be tilled into the CODEAREA at compile
time.

3. Each CODEAREA is a separate physical entity (a named section
in 0S 360 terminology)e.

4. At compile time, there is always one current CODEAREA into
which code is being generated.

S. All CODEAREAS are in core during runtime (cf Section 14.9
for multiple coreloads).

The offset of a byte in a CODEAREA is the address of that byte
in the CODEAREA. The first byte has otfset 0, the second has offset
1, etc. Within CGS the address ot any byte in a cocdearea is given by
the pair (CODEAREA number, offset). CGS takes care of addressability

rrotlenms when generating code.

14. 1.2 register descriptions

CGS maintains a set of reyister_descriptions for each CODEAREA.
These register descriptions describe (at compile time) the runtinme
contents of the IBM 360 rejisters after the currently last
instruction in the CODEAREA has been executed (at runtime). For
example, suppose the statement

CODE (6GREG (1) = D)

has Jjust been executed. Tais statement means "generate code to put
the value of the runtime variable described by the DESCRIPTOR D into
general register 1." The code tor this is generated and put into the
current CODEAREA. Then the register 1 description 1is changed to
indicate that this value is now in reyister 1.

Execution of the above statement might also cause other
descriptions to change. For example, if the runtime variable is not
directly addressable, code must tirst be generated to 1load a
register with the correct address (this 1is done by CGS
automatically). When this happens, the description of that register
is alsc changed.

A compiler writer may chanye and/or test register descriptions
himself. All operations on them are explained in Section 14.4.



r— r— r— r

14. CODE GENERATION SYSTEM (CGS) 69

14.1.3 system variables connected with CODEAREAS

variable type meaning

&CODENO BYTE contains the mumber identifying the current
CODEAREA.

6CODELOC BYTE3 contains tne offset of the next free byte
in the current CODEAREA, and thus the

number of bpytes in the CODEAREA so far.

14.1.4 creating and switching CODEAREAS.

Evaluation of the <specfunc)>

| 6CREATECODEAREA |
e . - 4

causes a new CODEAREA to be created. The register descriptions of
this new COLDEAREA all initially indicate that the registers are
enpty. The value of the function designator is a BYTE value - the
number assigned to the new CODEAREA. This number identifies the
CODEAREA and is used to communicate with CGS.

The <specfunc>

T S T > -V U S S S T S T Y > —— — — > A — —— ——

is evaluated as follows: the <expression> is evaluated, assigned to
an, internal BYTE variable I (say), and CODEAREA I (which must have
already been created) becomes the current CODEAREA. This means that
any code generated before the next USECODEAREA function designator
executed, will be added to this CODEAREA. The value of the function
designator is the BYTE value assiyned to the previous current

CODEAREA.

14.1.5 entering data into a CODEAREA

Code is entered into the current CODEAREA as code-bracketed
Statements are executed and code is produced. In addition,
<stecproc>s of the followiny form can be used:

T - .= T T T T T T T T T e T s e e R
| ENTER ( CODEAREA, [ <expressionid>, ] <expression2> ) |

Lo o e e s e s e e e e e = o o et i T e e ey

This statement is executed as follows:



~J
(<]

1. If <expressionl!> is missingy, then <expression2> is evaluated

and added to the current CODEAREA at the next free byte with

the proper alignment {(cf Section 11 for alignment factors for

different basic types). Variable §&CODELOC is changed to the
+ r-an

offset of the first fr byte atter the added bytes.

2. It <expression!)> is present, it is evaluated and assigned to
an internal BYTE3 variable I (say). Next <expression2> is
evaluated and the result is put in the CODEAREA at the offset
I-

If the ENTER instruction is used and the entered data is actually
code, it is the compiler writer’s responsibility for updating the
register descriptions.

Examgle. ENTER( CODEAREA, B)

14. 1.6 initiai“conditions

Initially, CODEAREA 1 is the current CODEAREA and is the only
one in existence. It may already coatain some information; CODELOC
may not initially be zero.

14.2 DATAAREAS

14.2.1 introduction

A DATAAREA is a runtime table for storing data - values
corresponding to source langjuage variables, temporary results, etc.
In. contrast to a CODEAREA which at runtime is read-only storage, a
DATAAREA is read-write storagye. Under certain circumstances, a
DATAAREA can be initialized at compile time.

Storage is allocated in a DATAAREA to runtime variables through
the allocate statements (cf Section 14. 2.4). The allocated storage
can be initialized at compile time by the &INIT or ENTER statements
(ct Section 14.2.4).

The offset of a byte in a DATAAHKEA is the address of that byte
within the DATAAREA. The first byte has offset 0, the second has
offset 1, etc. Within CGS the address of any byte in a DATAAREA is
given by the pair ( DATAAREA number, orfset within DATAAREA).

Actually, the BYTE numbers which identify DATAAREAS are
different from those identifyiny CODEAREAS. Therefore a pair

(ated number, otffset)

unijuely addresses a byte or an AKEA ( CODEAREA or DATAAREA).



—

{

rrm r— rm— r— e

=
)
@)
O
(o7}
¢
@«
t
3
o
>
3
b4
<
2
w
.
Ui
(=]
t
El

o
C
G
197

s
~4
-

yaciable type meaning

&EDATANO BYTE contains the number identifying the current
DATAAREA-

EDATALOC BYTE3 contains the offset of the next free byte
in the current DATAAREA, and thus the
number ot bpytes in the DATAAREA so far.

14. 2.3 creating and switcning DATAAREAS

The <specfunc>

- — - ———— —— S - —————— ———— —————————

r . 1
| ECREATEDATAAREA [ ( DYNAMIC )} ] |

creates a new, empty DATAAREA. The value of the function designator
is a BYTE value which identifies the DATAAREA and which is used to
communicate with CGS about the DATAAREA.

There are two types of DATAAREAS - STATIC and DYNAMIC.

1« If (DYNAMIC) 1is missing in the above function designator,
the DATAAREA is STATIC. This means that it is a named section
{(control section) of tne object module being generated; it
exists throughout runtime (cf Section 14.9 for multiple
ccreloads.) it may be initialized at compile time. CGS handles
all problems of addressing STATIC DATAAREAS.

2. If (DYNAMIC) is present, the DATAAREA is DYNAMIC. No named
section for it exists in the object module being created and it
cannot be initialized. Its fuaction is to describe the format
of a section of storage which may or may not exist at different
stages of runtime. It thus is like a "DSECT" in an 0S 360
assembly language progran.

One use of a DYNAMIC DATAAREA is for the variables and
temporary locations associated with a frocedure. At compile
time storage can be alloccated within the DATAAREA and code
generated which uses the DATAAREA (even though no storage
actually exists). At runtime, when the procedure is called, the
necessary storage corresponding to the DATAAREA must be taken
from free storage and used. Just before the procedure returns
to the calling point, the storage is released again.

Since DYNAMIC DATAAREAS are not always in core and may also
appear in different 1locations, CGS needs some help in
addressing variables in them. Briefly, the compiler writer must
indicate a variable or register which contains the address of
the DATAAREA. See Section 14.2.6 for full details.

The <specfunc>



14. CODE GENERATION SYSTEM (CGS) 72

| GUSEDATAAREA ( <expression> ) |
[ v . > s o, e e > T o o v 4

is evaluated as follows: the <expression> is evaluated, assigned to
an internal BYTE variable I (say), and DATAAREA I (which must have
already been created) becowes tne current DATAAREA. This means that
any storaye allocated or entered oy an allocate or ENTER statement
(ct Section 14.2.4) 1is entered into this DATAAREA until the next
USEDATAAREA function designator is executed. Also, all storage
needed for temporary results by CGS is allocated in the current

DATAAREA. The value of the USEDATAAREA function designator 1is the

— e s v

14.2.4 allocating and initiaiizing DATAAREA storagye
Before reading this section glance over Section 14.3.

14.2.4.1 The_<specproc> &ALLOCP allocates storage to one or
more runtime variables of tae same type.

Examples. To build a DESCRIPTOR for a halfword integer and allocate

o s e e e s

runtime stcrage for it, use
D = DESCRIPTOR (KIND=t6HWI) ; §ALLOCP (D).

To build a DESCRIPTOR for a POINTEK and allocate runtime storage in
CATAAREA 3 for six POINTERS, use

L = DESCRIPTOR (KIND=SPOINTER); SALLOCP(D,6,DATAAREA 3) .
The syntax of the EALLOCP <specproc> is

i EALLOCP ( <DESCHIPTOK destination> |
I L + <expressioni> ] |
| [ + DATAAREA <expression2> ] ) |

The default option tfor <expressioni> is 1. The default option for
DATAAREA <expression2> is DATAAREA S5DATANO (the current DATAAREA).

The statement accomplishes the tollowing:
1« The DESCRIPTOR <destination> is <checked. It nmust not
describe a label, procedure or be undefined. The address of the

variable must be completely undefined.

2. DATAAREA <expression?> becomes the current DATAAREA.



o

— r—

—

o

r— r— r—

I

~
(8]

14. CODE GENERATIUN SYSTEM (CGS)

3. G&DATALOC 1is increased, it necessary, to provide the proper
alignment for the runtime variable described by the DESCRIPTOR
<destination>.

AT LOC) becomes the basic address of

L
ue

c: ]

he
ESC

A

r
T

o ™
)] c»
hnH

ANO,
nat

(®] C'I
m

AT
14

b o,

ess
OR

b4

a
~n
(0931

[y~

< i
5. <expressionl> is evaluated and assigned to an internal HWI
variable I (say); the result must be nonnegative. &DATALOC is
then increased to provide room for I runtime variables of the
type specified by the DESCKIPTOR <destination> (If I = 0,
nothing happens).

6. The DATAAREA wvhich was current before this statement was
executed becomes the current DATAAREA.

-

14.2.4.2 The EALLOCF_<specfunc> builds a DESCRIPTOR and then

allocates runtime storage for it. The value of the function is the
DESCRIFTOR.

- Examples. To build and allocate storage for a halfword integer, use

D = GALLOCF (6HWI) .

To Ltuild a DESCRIPTOR for a PUINTER and allocate storage for 6 of
them in DATAAREA 3, use

D = &ALLOCF (6POINTER,6,DATAAREA 3) .

To just align &DATALOC (current DATAAREA offset) on a doubleword
boundary, use

&EALLOCF (6DWF,0) .
The syntax of the SALLOCF <specfunc> is
| EALLOCF ( <expression?9> |
] { , <expressionl> ] |

! L + DATAAREA <expression2> ] )|
Lo s s v o e S T S - S A A - ———— P D > T > S Y e S S e o

It is evaluated as follows.
1. <expression®> is evaluated and assigned to an internal BYTE
variable J (say). A new DESCRIPTOR D (say) is then generated
with KIND = J.

2. The statement

EALLOCP(D [ ,<expression!> | ,DATAAREA <expression2>])



14. CODE GENERATION SYSTEM (CGS) 74

is then executed.

3. The value of the function 1is the DESCRIPTOR D. If its
address is assigned to a POINTER variable, it is the
programmers respoasibility to release the storage for D when no
lcnger needed. Otherwise the system takes care of it.

14.2.4.3 The &INIT <specproc> initializes ruantime variables in
a STATIC DATAAREA.

Examples. Let D be a DESCRIPTUR of a HWI value. To initialize the
variartle it describes with 0, use

&INIT (D,0) .

To initialize it and three following halfword integers with the
current value of a compile time variapble I, use

SINIT(D,4,I) -

Let PD be a DESCRIPTOR of a POINTER. To initialize the variable to
point to itself, use

EINIT (PD, &ADD(PD)) (ct Section 14.3.4.5).
To initialize it to contain the address of CODEAREA 1, offset U, use

SINIT (PD, &DDRESS(1,4)) (cf Section M4.3.1.1).

The syntax of the SINIT <specproc> is

r

| EINIT ( <DESCRIPTOR destination>
\ L + <expressionl> ]

i , <expression2> )

| EINIT { <DESCRIPTOR destinationd>
| i » <expressioni> ]

{ s <EDDRESS exp> )
L

——— ——— - A —_— Ve _——— - — —— ———~ ———— — —— —— - " — -

The default option for <expressionl> is 1. The second form is used
if the runtime variable has type POINTER; the value to which it is
initialized 1is the value ot <tDDRESS exp> - cf Section 14.3.1.1).
The first form is used if the runtime variable is not a pointer.

The statement is executed as follows:

1« The address of the runtime variable defined by the
DESCRIPTOR <destination> is evaluated (at compiletime). It must



,
}
{
[,

rl; rﬁ«

r

— r— r— r—

r— r— r—

£
s
O
(]
(w]
]
@
t
2!
txi
=)
»
3
bt
(=}
=
v
<
UA
-
tx
o
-
r
[
.E
-l
un

yield an address of the form (area number, offset). (this means
for example that no indirect addressing may be specified.)

-4 1 A PR W SN
gative.
h

- e

2. <expression!> 1is evaluated and assig
variable I {sayj ; the r t b nonn

ned to an internal HWI
€

3. <expression2?2> (or <&DDRESS exp> in the second case) is
evaluated and assigned to an internmal variable J (say) whose
tyre is the same as that given by component KIND of the

DESCRIPTOR <destination>.

4. The value of J 1s stored in the DATAAREA at the offset
specified by the result of step 1, and in the following I - 1
Tuntime variables of the same KIND.

14.2.4.4 The _ENTER__DATAAREA_ _<specproc> can be used to enter
data into STATIC DATAAREAS. Its syntax is:

—— — - - - —————— — — ————— ———— — - ——

; -
| ENTER ( DATAAREA, [ <expressionl)>, ] <expression2> ) |

It is executed exactly like the ENTER CODEAREA statement (cf Section
14.1.5), except that a DATAAREA (vhich must be STATIC) is used
instead of a CODEAREA.

Example. ENTER( DATAAREA,C)

14.2.5 initial conditions

Initially, DATAAREA 2 is the current DATAAREA and is the only
one in existence. It 1is STATIC aad may already contain some
information.

14,2.6 addressing DYNAMIC DATAAREAS

since DYNAMIC DATAAREAS are not always in core - and since
several copies may exist at any one time - CGS needs help in
addressing them. There are two kinds of statements dealing with this
protlem; the first kind tells CGS that a DYNAMIC DATAAREA has been
created (at runtime) and gjives its location, the second kind tells
CGS that a DATAAREA is no longer available.

The following three
DATAAREA that can be

14.2.6.1 Addressing new DAT
<specfunc>s give CGS the address

——— . omin st e v




14. CODE GENERATION SYSTEM (CGS) 76

A - —— T — \— ———_———— N Y —— i ——— — —— - —_—_—_— — A —— N — — - — ——

| GDYNADD ( <DESCR exp> , <&DDRESS exp> ) ]

[ I OIS [
| EDYNADD ( <register no~» , <tDDRESS exp> ) ]

Lemom o e e om e e . > ——— T~ — — o s — o~ - - y ]

In the first case, the DESCRIPTOR must describe a SPOINTER constant;
the value of the pointer must be the address (in (area nunmber,
offset) form) of the DATAAREA which can now be refereaced. 1In the
second and third cases, the <&DDRESS exp> gives the address of the
CATAAREA, while the actual place where this value resides is either
at the address specified by the <DESCRIPTOR exp> or in register
<register no>.

In all three cases the vaiue of the <specfunc> is a pointer to

a DESCRIPTCR of a &POINTER constant whose value 1is the address
given. h

14.2.6.2 releasing the DATAAREA. The <specproc>

o e e ——————

| &RELDYNADD ( <POINTER expr>) |

tells CGS that the EPOINTER constant described by the DESCRIPTOR
pointed at by the <6POINTER expr> can no longer be used to reference
data while executing the current CODEAREA.

-

14.3. The DESCRIPTOR

DESCRIPTOR is a structured type which is declared implicitly by the
system. A variable of type DESCRIPTOR describes a runtime variable
or value in terms of the IBM 360 basic data types. CGS provides
several functions which alter, test and use DESCRIPTORS; the
compiler writer should use these rather than try to perform these
orerations himself.

We use the word DESCRIPTOR tfor the structured type and also for
a quantity of that structured type. When writing programs, the
identifier "&D" can be used in place of “DESCRIPTOR". .

During the code generation process, CGS maintains pointers to
DESCRIPTORS which are being used to yenerate code. For example, if a
DESCRIFTOR of a 1label has been used to generate a branch but the
address of that label is still undefined, CGS records this fact and
fixes the branch address later. Also, if a value is in a register,
the register description points to a DESCRIPTOR of that value. For



-

—

— r— r—

14. CODE GENERATION SYSTEM (CGS) 17

this reason CGS places the following restriction on the use of
DESCRIFTCRS:

A__DESCRIPTOR__being _used by CGS_should not be
changed_or_moved to_another location.

In order to be safe, a compiler writer should work with pointers to
DESCRIPTORS, instead of the DESCRIPTORS themselves.

T4.3.1 structure of the DESCRIPTOK

This section discusses the format of DESCRIPTORS and three

related structured types.

14.3. 1.1 STRUCTURE &DDRESS (BYTE AREA, BYTE3 OFFSET);

EDDRESS defines the basic_address (BA) of a runtime variable in
terms or a CODE or DATAAREA nuaber {AREA) and an offset of the
variaktle in the AREA (OFFSET). This is not the whole story on
addressing; the DESCRIPTOR also allows for subscripting and indirect
addressing.

14.3.1.2 STRUCTURE DESCRIPTOR (
BYTE KIND,
BYTE ADDRCONT,
BYTE CONTROLS,
BYTE REG ALT BYTE BYTELENG,
&DDRESS ADDR ALT POINTEER (&CONST) PC
ALT POINTER (&£SUBSCR) PS,
BYTEY4 THEIRS) ;

Component KIND describes the basic kind of the runtime variable
or quantity. The list below gives system identifiers of constants,
their hex value (which may change; use the identifiers only) and the
type of variable they describe:

identifier value meaniny - _tne_varjable is

GUNDEF 00 underined

EBYTE 01 one (8 bit) byte

EBYTEZ2 02 two contiguous (8 bit) bytes

EBYTE3 03 three coantiyuous (8 bit) bytes

&BYTEY ou four contiguous (8 bit) bytes

EHWI 05 HalfwWord Inteyger

SFWI 06 Fullword Integyer

GFWF 07 FullWord Floating point number

ECWF 08 DoubleWord Floating point number

ELEC 09 DECimal integer

EPCINTER 0A address ot something or 0

&BY1TES 0B 1 to 256 contigyuous bytes( components
BYTELENG, PS5, CONTROLS help describe how many
by tes)

& EROC 10 procedure



~J
(¢ <]

E§LABEL 20 label

Note that if you delete the first letter "&" from most of the systen

identifiers above, a CIL basic type is left (example - &HWI becomes
HWT) In these cases, all attrihuntes {ie_ Length. alignment

[ R - el LaaToT QST o S L Y S S A\~ ey iy QLeagiasmTas

crroperties) for the runtime variaple are the same as those for a
value of the basic type.

Component ADDRCONT gives more information about addressing the
runtime variable. It indicates whether the basic address (BA) is
undefined, whether it is given by component ADDR, or whether it is a
register. Subscripting and indirect addressing are also indicated.
See 14.3.1.5.

“Component _CONTROLS contains miscellaneous bits used for
difterent purposes. The followiny table gives system identifiers for
constants, their hex values, and the meaning when an identifier is
"anded" with component CONTROLS.

Systenm hex meaniny when identifier is
identifier value "anded" with CONTROLS

———— e —

&RL 01 for DESCRIPTORS of EBYTES only. If 0, number
of bytes minus 1 1is given in component
BYTELENG otherwise the number of bytes is
described by what PS points to.

&ENEG 02 if not 0, neyative of runtime value is
desired.

ENOSAV 04 if not 0, save DESCRIPTOR, if 0, can be
released atter one use in code generation.

&0RD 08 if not 0, a saved register descriptiom points
to DESCKIPTOR,

&ECURS 10 if not VU, CGS created DESCRIPTOR

3 W/ - 20 (orly when KIND is BYTES (1,2 or 3) or

. EPOINTER and the value is in a register). If

not 0, leadiny bytes of the register are 0.

Component REG indicates whether the value is in a register or
not (cf Section 14.4.1):

0 = not in a register
1 through F mean general regyister 1 through 15
10 denotes general register 0
11 denotes floating register
12 denotes floating reyister
13 denotes floating reyister
14 denotes floating register

SDENO

‘Comgogggt BYTELENG is used only if the KIND is &BYTES. It can
contain the number of bytes minus 1 (if constant and less than 257).
See component CONTROLS .

Component ADDR usually defines the basic address of the runtime
variable. In certain cases, however, the basic address is defined by
component ADDR of the quantity pointed at by component PC or PS (see




{
t
-

r— - r r—

—

r—

S e

Component PC is used if the value is a constant. It points at a

quantity of structured type &5UBSCR which gives the coanstant itself

nd its address.

[T}

1. If the runtime variable is subscripted (cf component
ADDBCONT), PS points at a yuantity of structured type ESUBSCR
which contains the basic address and a pointer to the subscript
DESCRIPTOR.

2. If the runtime variable is of type BYTES and if component
control "anded"™ with &BL is not 0, then PS points at a quantity
of structured type &€SUBSCR which contains the basic address and
a pointer to a DESCRIPTOR or the number of bytes minus 1. Such
DESCRIPTORS may not indicate subscripting.

14.3.1.3 STRUCTURE &CONST (
BYTE4 VALUE ALT LDDRESS ADDRVAL,
&DDRESS ADDR) ;

A quantity of type ECONST is used to help describe constants. The
constant is held in component VALUE or ADDRVAL (if the constant is a
relocateable address). The address of the constant is contained in

ADDR. If ADDR.AREA and ADDR.OFFSET are both =zero, the address 1is
undefined.

14.3. 1.4 STRUCTURE &SUBSCR (
POINTER {DESCRIPTOR) SUBDCR, &DDRESS ADDR) ;

a guantity of type &SUBSCR 1is used to help describe runtime
variables which are subscripted or of type EBYTES (see below).
Component ADDR <contains the base address of the variable. If
subscripting, &SUBSCR points to a DESCRIPTOR of the subscript. If
not subscripting and the runtime variable is of type &BYTES, &SUBSCR
Foints to a DESCRIPTOR of the number ot Ekytes minus 1.

14.3.1.5 address description and format of DESCRIPTORS. This
section describes Jjust how the etfective address is to be obtained
from the basic address. Component ADDRCONT plays the key role here.

In the tables below, BA specities that the basic address is
given Lty component ADDR, while R indicates that the basic address is
the register given by the number in ADDR.AREA. X specifies a
subscript - 1its value is gjiven by the DESCRIPTOR pointed at by the
pointer PS.SUBDCR. "*" indicates iadirect addressing. The format



numnber refers to the format of the DESCRIPTOR when ADDRCONT has
given value. The possible formats are given after the tables.

G IF.KIND IS NOT &BYTES

(3]

_ (undefined)
BA (and the value is a constant)
EA

*BA

*%BA

R

*R

x %R

BA+X

* (BA+X)

(*BA) +X

* ((*BA) +X)
(*R) +X

* ((*R) +X)

]
TOM» OONOUME WN O
DN DNNDNN = el e d W

VALUE OF ADDRCONT AND MEANING IF¥ KIND IS &BYTES

value format effective address_is

0 4 _ (undefined)

1 1 BA (value is a constant)
2 4 OR 5 BA

3 4 OR 5 *BA

y 4 OR 5 **BA

5 4 OR 5 R

6 4 OR 5 *R

7 4 OR 5 *%XR

-

<o
<O

the

Format 4 is used if the number of bytes minus 1 is contained in

component BYTELENG ; otherwise format 5 is used.



r—

14. CODE GENERATION SYSTEM (CGS) 81

Fossible formats of a DESCRIPTOK

7
11
L-d

e e e e e ————————

r
|KINC |ADDRCONT ]CONEROLS | REG |

| —mmmmm s m—mmm—mso oo |

| ADDR |
| —mmmmm s —m oo |

| THEIRS I

[ - —_—— - o o e e e e 4

LT TTTTmT ST e e e 1 type &SUBSCR

IKIND |ADDRCONT |CONTROLS] REG | O pm—————— 1
o e e e e | | ISUBDCR -|--->

| BS St e R 1
|======= i [ | ADDR i

| THEIRS I P

L At i 4 describes subscript
S type ECONST

{KIND |ADDRCONT |CONTROLS| REG | (> pm—————— .
i [ | |ADDRVAL |

| PC SRS R J PR |
|- s e e e | | ADDR !

| THEIRS | TSR, 4

L v v e v o e o > . e v e T o > > > > -

r k|
|KINLC IADDRCONT JCONTROLS IBYTELENG 1
P !
|ADDR 1
|=== mmmmmmmmmmmm oo !
JTIHEIRS !

L o o o 0 o e . v ]

r ———————————— e ————— 1 type ESUBSCR
JKIND |ADDRCONT |CONTROLS | | O e
i - ———————————] | {SUBDCR =j=-—=>
1PS ptl Rt S Eatad
| ———————— e ——— - e - | | ADDR |
| THEIRS | e 4

lee e e e e e e e == ==—=-==~J {Jescribes number of bytes



14. CODE GENERATION SYSTEM (CGS) 82

14.3.2 generating DESCRIPTORS

The DESCRIPTOR is a structured type, and a new quantity of that
type can be yenerated and initialized in the usual manner. However
it is easier and safer to initialize only component KIND and use the
CGS operations to manipulate the rest. To aid in this, the systen
sets all components to 0 before initializing a new DESCRIPTOR, since
zero is the natural initial state for its components. For exanmple,
if T is a table of DESCRIPTORS, thean

T(2) = DESCRIPTOR (KIND=&LABEL)

Futs in the second element a DESCRIPTORK of a label with an undefined
address. If P is a POINTER variaonle, then

P = 6D(KLIND = &HWI)

allocates space for a new DESCRIPTO&® of kind SHWI, sets all other
components to zero, and puts tae address ot the DESCRIPTOR in P.

DESCRIPTORS may also be yenerated using the <specfunc> &ALLOCF
(cf Section 14.2.4.2).

14.3.3 defining the basic address (BA)

Once component KIND is detined, there are several ways of
tilling in the basic address. Below, we assume that D is a
DESCRIFETOR.

1. If the DESCRIPTOR defines a label or procedure, use it in
code brackets (cf Sections 14.6.4 and 14.6.7). Example:

CODE (Dz) .

2. If the runtime variable is to be in a DATAAREA, use the
<specproc> &EALLOCP or the <specfunc> &ALLOCF. Example:

§ALLOCP (D) .

3. If the runtime variable is external to the program being
compiled, wuse the EEXTERN <specproc> (cf Section 14.3.6).
Example: &EXTERN (D).

4. If the address to be used 1is already known, use the

<{specproc> &ASSIGNAD (ct Section 14.3.4.3). Example:
&§ASSIGNAD(D,&DDRESS (1,0)) (address of CODEAREA 1).

14.3.4 defining the effective address_(EA)

Besides the basic address, the DESCRIPTOR can indicate indirect
addressing and subscripting. The final address is <called the
effective_address_(FA). This section describes ways of indicating




rmow

r— r— c— r

14. CODE GENERATION SYSTEM (CGS) 83

effective addresses.

It is important to realize that the operations described here
may generate code. For example, if amn operation asks for
subscripting for a DESCRIPTOR ot a &BYTES variable, code must be
generated to calculate the effective address because DESCRIPTORS of
&BYTES variables do not allow subscripting. In general, CGS tries to
postprone code generation as much as possible, since this usually
rroduces better code.

Section 14.3.1.5 indicates, for each type of runtime variable,
what kind of addressing the DESCRIPTOR can describe.

14.3.4.1

m

pecifying subscripting

DESCR expl!> ( <DESCR exp2> )

<DESCR exp> ::
DESCR expl> ( <expression> )

- i
AN

Ao TDIMAD o o g = A~ E- R S Nt R T el e g

Semantics: A new DESCRIPTOR is yenerated. All of its components
except those which help define tne etfective address are identical
to those of <DESCR exp!>. If EA is the effective address of <DESCR
expl>, then the effective address of the new DESCRIPTOR is found as
followus:

Case 1: <DESCR exp2?> is present. The effective address is
EA + (runtime value descripbed by <DESCR exp2>)

Case 2: <expr> is present. <expr> is evaluated and assigned to
an internal FWI variable I (say). Then the effective address is

EA + I .

This wmay cause code to be jenerated. This depends on whether or not
the new effective address can be described in a DESCRIPTOR. If
<DESCR exp!> 1is a CGS DESCRIPTOR, it will be released if possible
(cf Section 14.8).

Examples. D1(D2) - D1(1) . D1(2) {6*I) is equivalent to D1(2+6%*I).

14.3.4.2 specifying indirect addressing. The following
<specfunc> is used to specity indirect addressing.

L e e i e i e e i S > e 2 o T o T e e S o 3

The value of this function desiynator is a structured value of type
DESCRIPTOR. All components, except those which have to do with
addressing, are the same as those of <DESCR exp>. If EA is the
effective address of <descr exp>, the effective address of the new

DESCRIETOR is

CONTENT (EA) «



14. CODE GENERATION SYSTEM (CGS) 84

If <expression> is present, it is assigned to component KIND of the
new DESCRIFPFTOR.

This may cause code to pne yenerated. This depends on whether or
not the new effective address can be-described in a DESCRIPTOR.

If <Kdescr exp> 1is a CG3 DESCHERIPTOR, it will be released if
possible (cf Section 14.8).

Examples. EINDIR (D).

EINDIR(D) (5) (indirect addressiny rollowed by subscripting).
SINDIR(D(5)) (subscripting followed by indirect addressing).

. s . et e s e e e e > e o — o —

| GASSIGNAD ( <destination> , <DESCR exp> ) |

L e e e e o e e e i e e e e e i e )

puts the effective address of the DESCRIPTOR <DESCR exp> into the
DESCRIPTOR <destinationd. Onl; the address-describing components of
<destination> are changed. Examples: &ASSIGNAD (D1,D2) .
&EASSIGNAD (D1, &INDIR(D2) (1)) .

14.3.4.4 forcing code_to_pe_ jenerated. The functions described
in Sections 14.3.4.1 - 14.3.4.3 may cause code to be generated. The
following <specfunc> indicates that code mnmust be generated (if
possible ) to calculate the etrective address.

The resulting value is a DESCRIPTOR which has all the
characteristics of <DESCR exp> except that the EA specifies no
subscripting and at most one level of indirect addressing (the
address is in a register or in memory).

14.3.4.5 using an__effective address_as_a_value. Execution of
the <specfunc>

r——--——----_- - - - —— ————_—. -

.
| EEAVAL ( <DESCR expr> ) |
4

yields a DESCRIPTOR with KIND &POINTER. The value it describes is
the eiffective address of the <DESCR exp>. This may cause code to be
generated.



¢
¥
i
-

— r— r oo

- r—

— r— r rrCor

r— r—

" 14. CODE GENERATION SYSTEM (CGS) 85

The <specfunc>

—— - ——— -

yields an &DDRESS value which is tne address contained in the
PESCRIPTOR <DESCR exp>.

14.3.5 the length of &BYTES variables

The <specfunc> ELENGTH is used to indicate the number of bytes

‘(minus 1) in a &BYTES runtime variable. Its syntax is

| &LENGTH ( <DESCR expl>, <DESCR exp2> ) i

| GLENGTH ( <DESCR expl>, <expression> ) i

It ptoduces a DESCRIPTOR with KIND = &BYTES. The number of bytes
minus 1 1is given by the runtime variable described by <DESCR exp2>
or by the current value of <expression>. All other components are
the sare as those of <DESCR expi .

Examples: &LENGTH(D1,5) .
&length( &indir(d1), 42) .

14.3.6 runtime entry points and external references

When an 0S 360 object module is being generated, one can
specify entry points - bytes witnin this object module which may be
referenced by other object modules - and external references -
references to names which are not in this object “module but which
wlll te resolved by the 0S linkaye editor just before runtime.

14.3.6.1 The LENTRY <specproc> is used to indicate an entry
point. Its syntax is:

[ T o o e o ot i o . s e e e i i . . e e e s . e o

L - e o i e e o o . . i e . e o i o o . 2 s o J

It 1is executed as follows: The DESCRIPTOR destination must have an
effective address of the form (AREA number, offset). The STRING
expression is evaluated and assiyned to an internal variable S (say)
of tyre STRING(8). The value of S then becomes the name of the entry
Foint.

Example: ENTRY{(D1,'SIN') .



-
&
.
(@]
(»)
le]
ty
7]
t
:ﬂ
ty
[-+]
o
3
4
(@]
=
[ 9]
e
Vi
]
t=
=
—
(o)
(7]
w
e’
Q
[+))

It is executed as follows: The address in the DESCRIPTOR destination
must be undefined. Space is allocated for a POINTER variable in the
current DATAAREA, if STATIC, or DATAAREA 2 if DYNAMIC. At runtime
this POINTER will contain the address of the external reference, the
address of this POINTER becomes the BA of the DESCRIPTOR and
indirect addressing is also indicated. The STRING expression is
evaluated and assigned to a variable S (say) with type STRING(8).
The value of S is then the name of the external address.

rd

14.3.7 generating DESCRIPTORS for constants

CGS keeps a table of DESCRiPTURS for constants. All constants
are stored in DATAAREA 2 - and only if they are actually needed at
runtime. The following <spectunc>s all yield a value which is a
EOINTER to a DESCRIPTOR for a constant:

i &ECON ( [<expro%>, ] <expri> ) |

e v — ——————— T ————— A '

] [ U v — —

| 6CON ({ [ <expr®>, ] <exprt>,<expr2>,<expr3> ) |

i &ECON { <&DDRESS exp> ) ]

[ _ o s o e e o e S e, ot e e

The default option for <expr9> in the first two cases is §UNDEF. In
these two cases, <epxr9> is evaluated and assigned to an internal
BYTE variable I (say). The value of 1 then becomes the KIND of the
DESCRIETOR being created. The constant itself is then evaluated. 1In
the first case it 1is <expri>; in the second case, <exprl> is the
integer part, <expr2> the fraction, and <expr3> the exponent. (all
three must be integer-valued and the signs of <exprt> and <expr2>
must be the same). The constant is then converted to the KIND of the
new DESCRIPTOK and inserted in it (if KIND = SUNDEPF, the KIND is
changed to tkhe KIND of the constant.)

In the third case, a PCINTEk to a DESCHKIPTOR of a SPOINTER constant
is generated; the value of the constant is the value of the <&EDDRESS

€X[PYe
Examgples: to create a DESCRIPTOR of the constant 1.23x10-6 use
ECON (1.23#%.000001) or &CON(1,23,-6).

To create a doubleword constant for it, use



L
L

e

14. CODE GENERATION SYSTEM {CGS) 87

To create a constant whose value is the address of the next free
Lyte in the current CODEAREA, use

&CON (6DDRESS (6CODENO, &¢CODELOC) ) .

CGS maintains descriptions of the contents of the runtime registers
as code is being generated. The description of a register consists
mainly of a pointer to the DESCRIPTOR of the value in the register
and some status bits which indicate how the register is being used.

For example, if the statement P = CODE (D+5) is executed, code
is generated to add 5 to the value described by the DESCRIPTOR D, a
hew DESCRIPTOR D1 ({say) is jenerated to describe the resulting
value, and the address of D1 is stored in P. Suppose the resulting
runtime value is in in general register 5. Then the description for
register 5 will be changed to point to D1.

The compiler writer can leave most of the register handling to
CGS, or he can make full use of the facilities described in this
section to do his own register allocation.

14.4.1 register numbers and names. .

Syntax:
<register no> ::= <BYTE expression>
<register name> ::= §GREG | 6FREG | &EREG( <expression)> )

- Semantics: The registers are numbered as follovs:

= gyeneral register 1
= general register 2

- . - . . - - - »

1
2
F

LN Y]

-— . - - . L3 » » -
- - - . - - - -

~ general register 15
10~ general register 0
11- floating register 0
12- floating register 2
13- floating register 4
14~ floating register 6

In certain contexts, the system names SGREG and EFREG demote a
general register and a floating register, respectively. The precise
register to use is picked by -C6S. Also, the construct EREG{I), where
I is a BYTE expression, is used to denote register I in certain
contexts.

14.4.2 general runtime register usage



14. CODE GENERATION SYSTEM (CGS) 88

CGS uses the usual 0S 360 supbroutine 1linkage conventions. A
compiler writer need not tollow them, but it is better if
ccnventions are followed. When not actually linking, these linkage
regjisters can bpe used for other purposes. The table below gives a
brief explanation; a more complete description may be found in the
IBM__System/360__Operating System_ _-_Supervisor and Data Management

Services_(Form C28-6646), pajes 9 - 16.

In addition, CGS reguires two to three additional registers to
te used as base regyisters at runtime. These contain the address of
DATAAREA 2, the address of tne current DATAAREA (if not 2 and if
register 13 does not hold it), and the address of the «current
sutroutine (or main program).

Legister use
0 temporary or linkaye: parameter. Not restored.
1 temporary or linkaje: parameter or address of a
parameter list. Not restored.
2-7 temporary. Restored.
temporary or used to provide addressability for
instructions (see below). Restored.

9 address of a subproyram being executed (usually) the
address of a CODEAREA). EKestored.

10 temporary. kestored.

11 temporary, if current DATAARERA is 2 or its address is
in register 13; otherwise address of current DATAAREA.
Restored.

12 address of DATAAREA 2. Restored.

13 linkage: address or a SAVE AREA. This may also be the
address of a DATAAREA if the SAVE AREA is part of it.
Restored.

14 temporary or linkage: return address. Restoregd,

15 temporary or linkaye: entry point when calling a

. program. Not restored.
Floating registers are not restored.

Those registers marked temporary may be used for any purpose. Upon
return from a subprogram, those registers marked restored (reg 2-14)
contain the same values they contained just before the subprogranm

was called.

The problem of addressiny more than 4096 bytes of instructions
is solved as follows. Register 9 always contains the base address of
the subprogram being executed. If the code being executed does not
lie within 4096 bytes of this address, register 8 contains the base
address of the subprogram plus the multiple of 4096 bytes which
gives the executed instructions addressability. Each branch is a
single instruction. If the instruction being branched to is not
addressakle, then an indirect branch will occur. For example, the
diagram kelow shows a branch to label C;



1
L
L
L

L et}

14. CODE GENERATION SYSTEM (CGS) 89

CODEAREA an always-addressable AREA
| e I==== 1 |
| i | | 1
§ 4096 BYTES | -====>] LA 8,CODEAREA+4096 |
| l | B C ——= |
I } { | )
| | | |

=>C: i i |

i | 4096 BYTES | i

| | i |

l } i ]

[ . |

! |

Low o o em - . > > 4

It is best to use registers 0 and 1 on a short-tern temporary basis,
since these reygisters are used orten for parameters to subprogranms.

4. 4.3 register descriptions

At any time during code jeneration there is a set of current
register descriptions which describe the runtime state of the
registers after the last instruction entered in the current CODEAREA
has been executed. As new instructions are generated, these register
descriptions are changed to retlect the change in the runtime
machine. There may be several sets of register descriptions at any
time; when talking about register descriptions in general, we mean
the current register descriptions unless otherwise stated.

. A register description coasists essentially of a pointer to a
DESCRIPTOR of the value in the register and some "status" bits.
These status bits are explained in tae following table.

Status  meaning

0 The register is GEMPTY (nothing in it).

1 The reyister is §USED, This means that it was
formerly &NEW (see below) and the value in the
register was used at least once since being put in
the register. A USED value may be discarded (not
saved) if a reyister is needed.

2 §SAVE the value in the register until further
notice. If the reyister is needed for something
else, the value must be saved; if its DESCRIPTOR
contains an address, this location will be used,
otherwise CGS assiygns it a temporary location.

3 The value is YNEW. Once it is used to generate code
it will be switched to &USED. When CGS generates a
new value and its DESCRIPTOR, the register
containing tne value is set to ENEW.

4 The register is being used as a &FAST location for
a variable or just contains a value which is not to

be disturbed until further notice. Fa~ --



14. CODE GENERATION SYSTEM (CGS) 90

registers 12 and 13 are &FAST registers (cf Section
14. 4.4 testing register status.

Five functions, each with a single BYTE parameter which is a
register number, test the status of the register specified:

<specfunc> value is FALSE
unless status is
T T T T T T T e T T s s e e — ey

| §ISEMPTY ({ <register no> ) &EMPTY |
= m——e— e |
| 6ISUSED ( <register no> ) §&USED |
o e e |
| 8ISSAVE ( <register no> ) §&SAVE |

| === It |
| EISNEW _ ( <register no> ) &NEW ]
l -== ittt i
|

&EISFAST ( <register no> ) EFAST |

14.4.5 generating code to dump registers

When CGS needs a nev rejister to hold a runtime value, it looks
at the «current register descriptions and uses one with the lowest
status. (This is complicated somewhat by the fact that at times an
even—odd register pair is needed, but we won't go into that here).
The- following table indicates what happens to the value in the
register chosen.

register chosen disposition of the old

has_status value_ in_the register

0. (6EMPTY)

1 (SUSED) the old value is lost

2 (&SAVE) if the DESCRIPTOR associated with the

register value has an undefined address,
assija it an address. Then if the value is
not a constant, generate instructions to
store the value.

3 (6USED) v same as for &SAVE.

4 (&FAST) never dumped in this manner. A &§FAST
rejister can be wused for a different
purpose only if its status is changed.

when a register is dumped, tae register description status is set to
EEMPIYaS

The compiler writer may explicitly ask that code be generated



14. CODE GENERATION SYSTEM (CGS) 91

to store a register. The <specproc>

T A — — — —————— - ——_— - Vot - -

does this for the register specitied. The statement is executed as
given in the above table. Note that SFAST registers may not be
dumped.

14. 4.6 generating code to load and use registers

The register names &PXEG, &GREG and &REG (<expression>) may
appear on the lefthand side ot an assignment statement within code
brackets. For example,

) CODE (6BEG = D )
is valid. The purpose of this statement is to generate code to 1load
a value into a register. The execution of this statement is
explained in detail in Section 14.6.2.

A reyister name EREG(<rejister nod) may also appear in a

runtime expression within code brackets, to indicate that the

contents of that reyister is to be used. See Section 14.5.

14.4.7 altering register descriptions

It is sometimes necessary to alter a register description
withcut generating code. For example, after generating code for a
tunction call, it may be necessary to tell CGS that the value of the
tuncticn is in register 1.

-

14.4.7.1 changing the status_to SEMETY. The <specfunc>

[ mtekathabatbatahatdiesiaatdeiashedesinsbeidbe e h ]
| EEMPTY ( <register nod>) |

changes the description of the register specified to &EMPTY. The
DESCRIFTOR of the value in the register is changed to reflect the
fact that it is no longer there and is then released if possible.
The value of the function is a POINTER to the DESCRIPTOR of the
value (0 if destroyed or there was none.)

14.4.7.2 changing the status_to_other than GEMPTY. Execution of
The <sfpecproc>s

r-——--——-.‘-—---- - v

| SUSED( <register no>) |



()
C
-4
L
s
v
[
t
3
-
o)
9]
W
g
(Vo]
N

| ENEW ( <register no>) |

change the status of the regyister to the desired status. The

rrevious status must not have been LEMPTY.

14.4.7.3 indicating that a_value_is_in_a_register. Execution of
the <specirocdis ‘

] 6USED( <register no», <DESCR exp>) |
| &SAVE({ <rejister no>, <DESCR exp>)|
| &NEW ( <reyister no>, <DESCR exp>)|

| 6FAST( <regjister no>, <DESCR exp>) |

L o o o e e e e e e e e o e e o S o o . St e o )

performs the following. The statement &EMPTY (<register no>) is
exectued, emrtyiny register <register nc¢>. The status of the
register 1is then changed to the desired status (procedure name),
with <DESCR exp> being the DESCKIPTOK of the value in the register.

Notice that absolutely no code is gJenerated by any of the
procedures or functions describea in this Section 14.4.7. The only
purpose is to change a register description.

14.4.8 saving and restoring rejister descriptions

- It is often advantageous to save a set of register descriptions
for later use. For example, fewer instructions may be generated for
a conditional statement if one indicates that the contents of the
registers are the same at tne begyinning of the THEN statement and
the ELSE statement. The followiny <specproc>s are used to manipulate
the set of register descriptions. In all cases, the parameters P and
P1 are <destinationd>s of type PUINTER.

le &SAVEREGS (P). Storaje is allocated for a set of register
descriptions. The current register descriptions are
copied into the allocated storage. The address of the
allocated storagye is put in P.

2. BUSEREGS (P). The set of register descriptions pointed at by
P are «copied into the current register description
area.

3. ERESTREGS (P). Same as &USEREGS, but in addition, the storage
pointed at by P is released and P is set to zero.

4. EJOINREGS (P). The set ot reyister descriptions pointed at by



r

r— r— r

u 4
[
W
=3
hd
=t
LY
@]
@
o
el
(V8]

P are joined with the current register descriptions -
for each register, it both descriptions are the same,

the description remains; if the two descriptions are
different tne curremt register description is set to
SEMPTY. The storaye pointed at by P is released and P
is set to zero.

5. &JOINREGS (P,P1). Join the reyister descriptions pointed at
by P to those of P1 (as in U4.). Release the storage
pointed at by P and set P to zero. Note: this does
not change the current register descriptions.

6. SEXCHREGS (P). The rejister descriptions pointed at by P
become the current register descriptions, while P is
changed to point to the previous current ones.

When the current register descriptions are changed, CGS alwvays
checks to make sure that all regyister values are consistent with
normal usage (cf Section 14.4.2). For example, register 8 and 9 are
continually updated by CGS if necessary.

14.5. Code_expressions

14.5.1 syntax

<runprimary> ::= <comnstant> | <DESCR exp>
} <run variable>
| 6REG ( <register nod> )
| ( <runexp> )

<runfactor> 2:= <runprimary>
] <runprimary> ** <runfactor>
| <unar; op> <runfactor>

<runexp> ::= <runtactor>
] <runexp> <mult op> <runexp>
| <runexp> <add op> <runexp>
| <runexp> <bit op> <runexp>
| <runexp> <relational op> <runexp>
| <runexp> AND <runexp>
| <runexp> OR <runexp>

14.5.2 senantics

14.5.2.1 runtime_ _primaries. A runtime primary yields a
DESCRIPTOR of a runtime value. There are several types of runtinme
Frimaries:

<constant>. The DESCRIPTOR 1is a DESCRIPTOR for the constant.

—— —— o

This does not necessarily mean that the constant occupies a

Flace in storage at runtime. It will only appear in the ob
program if actually necessary.

<CESCR exp>. These have been discussed in Sections 14.3

ject

and



[
C
-4
v
o]
v
1
t
oie

—
(‘\
(2]
172}

0
&

14.3.4. 1.

<run__variable>. A <run variable> is a variable declared to be
valid at runtime. If a primary is both a <rum variable> and a
N -

.
<DESCR exp>, its use as a <DESCR exp> kes precedence.

3
<

EREG( _<register_ _no>). The register specified contains the
value; its KIND is the KIND of the DESCRIPTOR associated with
the register. If no DESCRIPTOR is associated with it currently,
the KIND is assumed to be &FWi.

14.5.2.2 the__operators. The operators available to operate on
runtime values are exactly the same as those available to operate on
compile time values. The precedence of the operators {(cf Section
8+.2.2) and the conversion ot operands {(cf Section 8.2.3) are also
the same. The only difference 1is that evaluation of a <runexp>
causes code to be yenerated for it. This code, when executed at
runtime, will perform the desired evaluation. After the code is
generated, a DESCRIPTOR is built to describe the runtime result.

14.5.3.3 using _code_brackets_around_expressions.

Syntax:
<DESCR exp> ::= CODE ( <runexp> )

Semantics: Execution of this expression causes code to be
generated to evaluate the <runexp> (if necessary). The result is the
DESCRIPFTOR for the runtime result of the <runexpl.

14.6. Code statements

Execution of a code statement causes code to be generated for the
runtime statements appearin;j between the code brackets "CODE (" and
")". In the nonterminals detined below, the term "runstate" stands
tor M"runtime statement". In general, a statement within code
trackets has the same meaniny as a similar statement outside, except
that it indicates a runtime statement.

Syntax:
<code statement> ::

1

CODE ( | <<runstate> ;list> ] )

<open runstate> | <closed runstate>

<runstate> sz

<runlabel definition> <open runstate>

<open runstate> 2
<open cond runstate>

—

= | <runlabel definition> ]
[ <closed runstate> ]
] <compound runstate>

<closed runstate> ::



?
-
L

—

- c- r— o

f

r— r— r—

r—

14. CODE GENERATION SYSTEM (CGS)

<assigynment runstated>
<closed cond runstate)>
{procedure run call>
<control runstate>
<procedure control>

14.6.1 compound runtime statements

Syntax: :
<compound runstate> ::= BEGIN <<runstate> ;list> END

95

Semantics: A compound runtime statement is used to group
several runtime statements into a single unit, just as a compound

" statement is used (cf Section 9.1).

14.6.2 assignment runtime statements

Syntax:

<assignment runstate> ::= <DESCR exp> = <runexp>
| <run variable> = <runexp>
| <

rejister name> = <runexp>

Semantics: code 1is jenerated to evaluate the <runexp> and a
DESCRIFPTOR for the result is puilt. Code is then generated to store

the result, depending on which of the above forms are used:

1« <DESCR exp> = <runexp>. Code is generated to convert

the

<runexp> to the KIND of the <DESCR exp> and to store the result
in the location descripved by it (the address must be defined).

2. <rumn variable> = <runexp>. Code is generated to comvert and

store the <runexp> in the <run variable>.

3. <register name> ( &GREG or &FREG) = <runexp>. An empty
register is found; if necessary one is dumped. Code is then
generated to store the <runexp> in this register. Its status is
changed to ENEW. Code may be yenerated to convert the <runexp>
to floating point (integyer) if necessary, depending on which

register name is used.

4. <register name> ( SREG(<reyister no> ) = <runexp>. If the

register status is EEMPTY, we proceed as in (3) above. If

not,

code 1is generated to convert the <runexp> to the KIND of the
DESCRIPTOR associated with the register and to store the value

in it. The register status is not changed.

14.6.3 conditional runtime statements

Syntax:

<open cond rumstate> ::= IF <runexp> THEN <closed runstated>
ELSE <open runstate>
| IF <runexp> THEN <runstate>



14. CODE GENEBATION SYSTEM (CGS) 96

<closed cond runstate>::= IF <runexp> THEN <closed runstate>
ELSE <closed runstate>

Semantics: Execution of a conditional runtime statement causes
code to ke generated for it. Execution of this code at runtime will
perform the orerations in tne usual manner (cf Section 8.2).

Example: IF D1 <= D2 THEN D1 = D2 ELSE GOIF D1

14.6.4 runtime label definitions

Syntax:

<runlabel definition> ::= <DESCH exp> :

- | <DESCR exp> (0):

| <DESCK exp> (<KPOINTER destination>)

Semantics: The <DESCR exp> must yield a DESCRIPTOR with KIND
&LABEL and with a completely undetined address. It 1is given the
address (6CODENO,&CODELOC) =~ tnat is, the address of the next free
byte in the current CODEAREA. Any already-generated references to
this label will be fixed up - the address will be inserted in the
tranch instruction. (cf Section 14.6.5). The current register
descrirtions are changed as follows.

1 If the form <DESCR exp> : is wused, the current register
descriptions are changed as follows.

§USED registers are set to SEMETY.

ESAVE and &FAST registers remain unchanged. It is up to
the compiler writer to make sure that these registers are
correctly loaded at all pranches to this label. CGS takes care
of registers 9 and 8.

If a register is &ENEW an error message is printed. This is
because the value has not been used and it is probably a
mistake. Translation continues.

2.. If the form <DESCR exp> ( <POINTER destination>) : is used,
the PCINTER must point at a set ot register descriptions. These
become the current register descriptions and the <destination>
is set to 0. The previously current register descriptions are
releasede.

3. If the form <KDESCR exp> (0): is wused, the register
descriptions remain unchanyed. It is the <compiler writer's
responsibility to make sure that the descriptions are correct.

14. 6.5 Tuntime control statements
Syntax:

<control runstate> ::= <yoto op> <DESCR exp>
} GOIF <runexp> TO <DESCR exp>



— r—

; "

w0
~J

14. CODE GENERATION SYSTEM {CGS)

¥ 4

| GOIFNOT <runexp> TO <DESCR exp>

Semantics: Execution of a ruantime control statement causes an
unconditicnal or conditional branca to be generated. The <DESCR exp>
indicates where to branch to. If it has KIND SLABEL, its address
need not yet be defined - CGS will automatically fix up the address
when it becomes defined (cf Section 14.6.6). The <DESCR exp> may
have KIND &POINTER, in which case its value is the address to branch
to. In any case the address beiny branched to must lie in the
CCDEAREA where the branch occurs.

With the conditional branches GOIF and GOIFNOT, at runtime the
branch will occur if the value of the <runexp> is not zero (TRUE) or
zero (FALSE), respectively.

See Section 14.4.2 for a discussion of the instructions
actually generated. CGS recognizes and produces better code in case
the <runexp> has the form <runrelation> (cf Section 14.5) .

14.6.6 runtime procedure calls

Syntax:
<procedure run call>::= <DESCR exp>

Semantics: The <DESCR exp> must yield a DESCRIPTOR with KIND
6PROC. Execution proceeds as follows:

1. Code is generated to dump registers 14 and 15 if necessary.

2. Code is generated to load register 15 with the address defined by
the <DESCR exp> (see below), it necessary. A DESCRIPTOR for it is
built and associated witna register 15 and the register status is
changed to EUSED.

3. A BALR 14,15 or a BAL 14,i(15) instruction is generated (see
telow) .

If the address in the <DESCR exp> is not yet defined, the BALR
instruction will be generated. When it becomes defined, the
effective address can only be the basic address itself (no indirect
addressing or subscripting).

If the address is already defined, and has the form A+X, (*A)+X
or (*#*A) +X {(cf Section 14.3.1) where X is a constant, the address A
(*A or **A) will be loaded into register 15 and the instruction
BAL 14,value of X (15)

will be generated. Otherwise code is BALR 14,15 is generated.

14.6.7 runtime procedure entries and exits



’ .

14. CODE GENEBATION SYSTEM (CGS) 98

Syntax:
<{procedure control> ::= <{procedure entry>
} <procedure exit>

<procedure entry> :

<DESCR exp> :
<procedure exit> R

ETURN

=
.
o=
.

Semantics: A <procedure entry> defines the address of a
procedure entry point. The <DESCR exp> KIND must be &PROC. &CODELOC
is increased until it is a multiple of 8 (on a doubleword boundary)
Then the address (6CODENO, ECODELOC) is assigned to the DESCRIPTOR

In addition, the register descriptions are set as follows:

registers 0-11 §EMPTY

-fegister 12 &FAST - contains address of DATAAREA 2
register 114 GEHPTY

register 15 &FAST contains address of the entry point.

Before executing a <procedure entry>, the compiler writer must do
the follcwvwinge. -

1. If this is not a multiple entry point in a procedure, switch
to a CODEAREA which at thnis point is not being used.

2. If this is a multiple entry point in a procedure, generate
the correct branch around this entry point.

After executing a <procedute entry>, the compiler vwriter must do the
followinge.

1. Generate instructions to store the registers in the ol1d
SAVEAREA and to get a new SAVEAREA.

2. Generate instructions to move register 15 to register 9.

3. Change the register descriptions to reflect the proper
register contents (especially registers 0,1,9,13, and 15.)

4. Generate instructions to take care of the procedure
parameters.

5. Indicate the nev current DATAAREA, if applicatble.

Execution of a <procedure exit> causes the following code to be
generated (conventional 0S subprogram return).

L 13,4(13) ' restore save area address

L 14,12(13) return address in register 14
1M 2,12,28(13) reload registers 2-12

BR 14 return

If this is the 1last instruction to be generated in this
procedure the compiler writer should switch to another CODEAREA and
perhaps DATAAREA. This CODEAREA can now be used for another



- — o o

~—— | g

14. CODE GENERATION SYSTEM (CGS) 99

frocedure.

14.7. Iemporary runtime_storage

At times CGS must temporarily store values {for example, if a
register must be dumped). When this occurs, CGS allocates storage in
the current DATAAREA, with the aid of the EALLOCP statement (cf
Section 14.2.4). This storaje remains in existence for this purpose
as long as the DESCRIPTOR of the value does. When the DESCRIPTOR is
released, CGS will use the storage assigned to it for other
temporary values.

14.8. When_CGS_releases DESCRIPTORS

CGS is continually generating DESCRIPTORS. TIf these are
allocated new space, bit EOURS is set to 1, as soon as such a
DESCRIPTOR is used in the code generation process, it can be
released. Should the compiler writer wish to save it, he should set
bit &NOSAV to 1. It is then nis responsibility to release it.

A more detailed explanation will appear in a later version.

14.9. specifyiny_multiple coreloads

This Section will be completed at a later date.






— r— r—

| R

APPENDIX A. TABLES OF PERMISSIBLE OPERANDS A1

This agppendix gives the types ot permissable operands for the binary
and wunary operators.e In the tables below, B1, B2, B3, B4 and BS
stand for BYTE, BYTE2, BYTE3, BYTE4 anad BYTES (I) (for some 1I),
respectively. P stands for POINTER.

Each row represents a left-nand operand, each column a right-
hand operand of the operator. The corresponding table element is
either blank - which means that that particular left-right pair is
not valid - or is some type. In the latter case, before the
operation is performed the two operands are converted to this type
(as explained in Section 8.2.3). 1In addition, the result of the
operation has that type. .

+ Bl B2 B3 B4 BS HWI FWI FWF DWF DEC P
| -
Bl {HWI FWI FWI FWI FWl HWI PWI FPWF DNF DEC P
B2 |FWI FWI FWI FWI FWI FWdI FWI FWF DWF DEC P
B3 {FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC P
B4 |FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC P
BS |FWI FWI FWI FWI FWI FWI FWI FWF DWNF DEC P
HWI |HWI FWI FWI FWLI FWI HWI FWI FWF DWF DEC P
FWI [FWI FWI FWI FWI FWl FWI FWI FWF DWF DEC P

FWF | FWF FWF FWF FWF FWF FWF FWI F4F DWF DEC
DWF |DWF DWF DWF DWF¥ DWF DWF DWF FWF DWF DEC
DEC |DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
P {F P p P P 14 p

UNARY + E1 B2 B3 B4 BS HWI FWI FWF DWF DEC P
J -
{B1 B2 B3 B4 8BS HWI FWI FWF DWF DEC P
- B1 B2 B3 B4 BS HWI FWI FWF DWF DEC P
Y e
B1 |HWI FWI FWI FWI FWI HWI FWI FWF DWF DEC
B2 |FWI FWI FWI FWI FWI FWI FWwI FWF DWF DEC
B3 |FWI FWI FWI FWI FWI FWAI FWI FWF DWF DEC
B4 | FWI FWI FWI FWI FWwl FWI FwI FWF DWF DEC
BS |FWI FWI FWI FWI FWI FWI FWI FWF DWFP DEC
HWI |HWI FWI FWI FWI FWl HWI FNI FWF DWF DEC
FWI |FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC
FWF | FWF FWF FWF FWF FWF FWF FWI FWF OWF DEC
DWF |DWF DWF DWF DWF DWF DWF DWF FWF DWF DEC
CEC JLCEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
p | P P P P P 4
UNARY - B1 B2 B3 B4 BS HWI ¥WI FWF DWF DEC P

|HW¥I FWI FWI FWI FWI HWI FWI FWF Duw no~



P |

APPENDIX A. TABLES OF PERMISSIBLE OPERANDS
* B1 B2 B3 B4 BS HWi FWI FWF DWF DEC
i - —————
BE1 |HWI FWI FWI FWl FWwI HWAI FWI FWF DW®&F DEC
B2 | FWI FWI FWI FWI FWl FWI ¥YWI FWF LCWF DEC
B3 |FWI FWI FWI FWI FWI Fdl FWI FWF DWF DEC
B4 |FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC
BS |[FWI FWI FWI FWI FWI FWI FWI FWF DWF DEC
HWI |HWI FWI FWI FWLI FwI HWI FWI FWF DWF DEC
FWI |FWI FWI FWI FWi FWl FWI FWI FWF DWF DEC
FWF | FWF FWF FWF FWF FWF FWF FWI FWF DWF DEC
DWF JDKF D&F DWF DWF DWF DWF DWF FWF DWF DEC
CEC |DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
E |
/ B1 B2 B3 B4 Bs HWI FWI FWF DWF DEC
|
B1 | FWF FWF FWF FWF FWF FWF FWF FWF DWF DEC
B2 | FWF FWF FWF FWF FWF FWF PWF FWF DWF DEC
B3 | EWF FWF FWF FWF PWF FWF FWF FWF DWF DEC
B4 | FWF FWF FWF FWF FWF FWF FWF FWF DWF DEC
BS | FWF FWF FWF TWF FAdF FWF FWF FWF DWF DEC
HWI |FWF FWF FWF FWF FWF FWF FWF FWF DWF DEC
FWI |FWF FAF FWF FWF FWF FWF FWF FWF DWF DEC
FWF | FWF FWF FWF FWF FWF FWF FWF FWF DWF DEC
DWF |DWF DWF DWF DWF DWF DWF DWF DWF DWF DEC
DEC |DEC DEC DEC DEC DEC DiC DEC DEC DEC DEC
P y
bits operators BITAND, BITOR, BITEXOR.
B1 B2 B3 B4 BS HWI FWNI FWF DWF DEC
[ «
B1 |B1 B2 B3 B4 BS B2 B4 B4 BS BS
B2 |E2 B2 B3 B4 BS B2 B4 B4 BS BS
B3 B3 B3 B3 B4 BS B3 B4 BU BS BS
B4 |JB4 B4 B4 B4 B4 B3 B4 B4 BS BS
BS |{BS BS BS BS BS BS BS BS BS BS
HYI §B2 B2 B3 B4 Bs B2 B4 B4 BS BS
FWI |B4 B4 B4 B4 BS B4 B4 B4 BS BS
FWF| B4 B4 B4 B4 BS B4 B4 B4 BS BS
DWF |BS BS BS BS BS BS BS BS BS BS
DEC |BS BS BS BS BS 8BS BS BS BS BS

N



rw. r . r rﬁ.‘_..

—

Exponentiation A**B, If A is
positive integer «constant,
is DWF. A and B can have anjy

(]
€]
S
W

HWI, FWI, or a bits type. And B 1is a
the result is FWI. Othervwise the result
type except POINTER and STRING.

REM and // are explained in section 8.2. 4.
CAT B2 STRING
|
B2 I|STRING STRING

STRING |STRING STRING

“With the CAT operator, a BYTE2 operand is assumed to be an atom, and

the string of characters it represents is used.






=

r—

— O r— o

r—r- O r— rr r— r—

-

)
GO

ATCM
BEGINPASS
CALLEASS

CHAERMODE
COMPLETE.
DESCRIETOR
FALSE

L0

L1

L2

13

L4

EO

R1

R2
NOEMODE
SCAN
SCANSYNM
TRUE
&ADD
SALLOCY
&ALLOCP
&EASSIGNAD
&EBINT
&BL
EBYTE
&BYTEZ2
§BYTE3
EBYTEY
&EBYTES
SCLINE
ECODELCC
&ECODENC
&ECON
&5CONST

ECREATECODEAREA
"SCREATEDATAAREA

.&D

"&DDRESS
&DATALOC
&EDATANC
EDYNADD
&EDEC
&EDECT
EDUMEREG
GDWF
EEACALC
SEAVAL
GEMPTY
SENTRY
EEXCHREGS
SEXTEEN
&EFAST

(=]
&

F— ]

3.1.2

SR

D OONNNSNNN NN VNN O OO
:
We OO dedadcdd cdd WS VDO S
-

5. :
14.3.4.5
14. 2. 4.
14.2.4.1
14.3.4.3
9.9.3
14.3. 1.2
14.3.1.2
14. 3. 1.2
14.3.1.2
14.3.1.2
14.3.1.2
12.6
14.1.3
14.1.3
14.3.7
14.3.1.3
14.1. 4
14.2.3
14.3
14. 3. 1.1
14.2.2
14.2.2
14.2.6.1
14.3. 1.2
9.9.3
14.4.5
14.3.1.2

T4.4.7.2

&IN
GINDIR
GINIT
GINLINE
HINTDIC
SISEMPTY
&ISFAST
EISNEW
LISSAVE
SISUSED
&JOINREGS
GLABEL
HLENGTH
&LZ

GNEG
GNEW
GNLINE
&ENOSAV
$OCTT
&ORD
&tOURS
&0UT
SOUTDESCR
&EPOINTER
&PROC
SREG

LRELDYNADD

SRELEASE
&RESTREGS
&SAVEREGS
ESAVE
&§SCLINE
tSUBSCR
&ETBIN
&TDEC
&§TEXT
&THEX
&TOCT
STYPE
&SUNDEF

SUSECODEAREA

&6USED

GUSEDATAAREA

SUSEREGS

The following identifiers
are used to name components of

9.9.3
4. 4.1
14.3.1.2
14.3.1.2
14.4.1
9.9.3
14.3.1.2
9.9.1
14.3.4.2
14.2.4.3
12. 6
10. 4
14.4.4
14.4. 4
14. 4. 4
T4.4. 4
14. 4.4
14. 4.8
14.3.1.2
14.3.5
14.3. 1.2
14.3.1.2
14.4.7.2
12. 6
14.3.1.2
9.9.3
14.3.1.2
14.3.1.2
9.9.2
9.9.2
14.3.1.2
14.3.1.2
14. 4.1
14.2.6.2
9.10
14.4.8
14.4.8
14.4.7.2
12.6
14.3. 1.4

14. 4.8

>
&=



APPENDIX B.

system structured types.

ADDR
ADDR
ADDR
ADDRCONT
ADDRVAL
AREA
BYTELENG
CCNTROLS
KIND
CFFSET
BC

PS

REG
SUBDCR
THEIRS
VALUE

14.3.1
14. 3.1

WNENNMNGO@NNNNLWN & WD

SYSTEM IDENTIFIERS



L {

r c— r—

APPENDIX C. PROGRAM EXAMPLES A6

APPENDIX C. PROGRAM EXAMPLES

Example 1. This example illustrates basic declarations, assignment
statements and iterative statements. It computes and prints
factorial N,for N=1,...,10.

BEGIN FWI I,N; /¥ I and N are FPullword Integers ¥/
I=1;
FOR N = 1 UNTIL 10 DO
BEGIN I = I*N;
€0UT ( *FACTORIAL', N, I)
END;
END;



APPENDIX C. PROGRAM EXAMPLES A7

Example 2. This example is a direct translation from ALGOL into CIL
ot Knuth's algorithm for calculatiny the day and month of Easter,
given the year (cf Comm. ACM 5 (April 62), 209).

EROCEDURE EASTER( HWI YEAR, /¥input */
MONTH, /¥output */
DAY) ; /¥output */

BEGIN HWI GOLDENNUMBER, CENTURY, GREGORIANCORRECTION,
CLAVIAN CORRECTION, EXTRADAYS, EPACT;

GCLDENNUMBER = YEAR REM 19 + 1;
IF YEAR > 1582
THEN BEGIN CENTURY = YEAR // 100 + 1;

GREGORIANCORRECTION = (3 * CENTURY) // 4 - 12;

CLAVIANCORRECTION = (CENTURY-16- (CENTURY-18),//25) // 3;

EXTRADAYS = (5%YEAR) // 4 - GREGORIANCORRECTION -~ 10;
EPACT = (11*GOLDENNUMBER ¢ 20 + CLAVIANCORRECTION
-~ GREGORIAN CORRECTION) REM 30;

IF EPACT <= 0 THEN EPACT = EPACT + 30;

IF (EPACT = 25 AND GOLDENNUMBER > 11) OR EPACT = 24

THEN EPACT = EPACT + 1;

END
ELSE BEGIN EXTRADAYS = (5*YEAR) / 4;

EPACT = (11*GOLDENNUMBER - 4) REM 30 + 1;

END;
DAY = 4 - EPACT;
IF CAY < 27 THEN DAY = DAY + 30;
DAY = DAY + 7 - (EXTRADAYS+DAY) REM 7;
IF TAY > 31 THEN BEGIN MONTH = 4; DAY = DAY - 31 END

END;



i
C

—

r—

r r— r— r— r— r— r— ¢t

— r—

APPENDIX C. PROGRAM EXAMPLES A8

Example 3. This example illustrates one use of tables, BYTES
variatles and SUBBYTE designators. In JACM January 1962, Stephan
Warshall gave the following aljorithm for computing M* = MEM%___ %M
if M is a n by n Boolean matrix:

1. Set 1 = 1.

2. For all j such that M(j,i) = 1
set M(j,k) = M(j,k) OR M(i,k) for all k.

3. Increzent i by 1.
4. If i <= n, go to step 2; otherwise stop.

- We give to ways of implementinyg this in CIL.

PROCEDURE MSTAR( BYTES TABLE M; FWI N);
/*¥ M is a table of records, eacah of type BYTES(N) (a
sequence of N B8-bit bytes). N is between 1 and 256.
For I,J = 1,...,N, SUBBYTE(M(J) ,I-1,1)
is the matrix element M(J,I) and will take on
only the values 0 or 1. */

BEGIN
Ful I1,3J; /*1,J are FullWord Integers.*/
FOR I = 0 OUNTIL N-1 DO /*¥loop on 1 */
FOR J = 1 UNTIL N DO /¥loop on J %/
IF SUBBYTE(M (J),I,1) = 1
THEN M(J) = M{(J) BITOR M (I+1);
END

EROCEDURE MSTAR1( BYTES TABLE M; FWI N);
/% this is as in the above case. However this time each of the
8 bits in a byte of a record M({I) represents a matrix
element. Thus the matrix represented can be 256%8 by 256%8.
For I,J = 1ye.e,N, if K = (J-1) BREM 8 + 1
then bit K of the byte SUBBYTE(M(I), (J-1) // 8,1)
represents the matrix element M(I,J). */

BEGIN
FWI 1,J,K,L;
BYTES (8) MASK; /7% MASK is a sequence of 8 bytes */
MASK = X'8040201008040201?; /* which is used. to isolate a
single bit of an 8-bit byte. Thus
SUBBYTE (MASK,K, 1) BITAND B
yields the value (0 or not zero)
ot the K+1th bit of the BYTE
variable B for K=0,eea,7. */

FOR I = 1 UNTIL N DO



APPENDIX C. PROGRAM EXAMPLES

(I-1) REM 8;

(-1 // 8;

FOR J = 1 UNTIL N DO

IF SUBBYTE(M(J),L,1) BITAND SUBBYTE(MASK,K,1)
THEN M(J) = M(J) BITOR M(I);

v}
=
@
-
=
=
non

END
END



(
-

r"“-?“

-

— r— r—

r O mr -

[4/]
u>
-l
(=}

Example 4. This example illustrates the use of tables, structures
and gfpointer variables. We wish to describe the symbol tables
necessary to implement ALGOL block structure. Blocks will be
numbered, starting with 1, in the order of their BEGINS. When a

r1ock is open its identifiers will be stored in table SYMOP., When a

oAV N A WSy - el LAUTI VAL ALV eF Wk il - A

block is closed, the records tor identifiers in it will be moved

from SYMOP to table SYMCL. All records for a block are contiguous. A
takle BLOCK helps to indicate where the records for each block are.

For example, if we have so far parsed
BEGIN COMMENT block 1;

BEGIN COMMENT block 2;
END;
BEGIN COMMENT block 3;

the tables wiil look 1like

SYMCL BLOCK SYMop

F tatntttindetat B Sttt | rTTTTT T T s Dpm———= it 3
Jidents for) | | block j-—-12 Jidents for}
} block 2 | | | 1 1==1 | block 1 |
| <= | |mm—===] to—===-- > |
L —————— 4 | t=—{=block } |=——————— |
e = 2 { gr=————-—>]idents for]
= [ } block 3 |
| block |--4 —=>1 {
| 3 | === 4 L 4

L e e e e e 3

The declarations necessary are:

STRUCTURE SYMSTR ( /¥structure of SYMOLD, SYMNEW record*/
BYTE2 AT, s¥ator for idemtifier*/
BYTE TYPE, /*type of identitier*/

BYTE BLOCKNO) ; /*block number in which declared#*/

DYNAMIC SYMSTR TABLE 50 SYMOP; /*tablé for identifiers in open
blocks*/

DYNAMIC SYMSTR TABLE 99 SYMCL; /*table for ids in closed blocks*/
STRUCTURE BLKSTR ( /*structure of BLOCK table record.*/

BYTE BLOCKNO, /*block number¥*/
BYTE BLOCKSU, /*surrounding block number*/

POINTER PF, /*to first record for block*/
POINTER PL, /*to last record for block (0 if none)*/
BYTIE TAB); /*¥0= block in SYMOP, 1 = SYMCL.*/

DINAMIC BLKSTR 50 BLOCK; /*table to control block structure#*/



APPENDIX C. PROGRAM EXAMPLES All

BYTE BLKCUR, BLKLAST; /*current block number and last block
number assigned. Both are initially 0%/

POINTER (BLKSTR) B; /¥pointer to records of type BLKSTR.*/
PFOINTEB (SYMSTR) P1,P; /*pointer ;o“records of type SYMSTR*/

BYTE AT, TYPE; /*¥jlobal variables.*/

The following should perhaps be explained. If P is a pointer
variable pointing to some structured type record, and if X is the
name of some component of that structured type, then

- P-X

is a reference to the component X of the record pointed at by P. 1In
addition, we assume there is a stack operating in the usual manner.
L0 and L1 refer to the top and second stack records before the last
matching of the Stack with a production began. RO and R1 refer to
the current top and second stack records.

Two semantic routines are used to open nev blocks and close
blocks when entirely parsed:

SOPEN: /*this routine is called when a new BEGIN for a block

is scanned. It adds a new record for the new block in

table BLOCK and fixes current block number. */
BLKLAST= BLKLAST+1; /*fix up the last block number - */
ENTER (BLOCK, BLKSTR (BLKCUR,RO.BLKNO,0,0,0);

s/*¥add the record for the new block*/

BLKCUR = BLKLAST; /¥fix up curreant block number. */
SYNTAX; /¥return to productions¥*/

SCLOSE: /*this semantic routine is called when BEGIN END is
on the stack. It moves the records for this block from
table SYMOP to SYMCL and fixes everything up. */
B = a BLOCK(BLKCUR), /*save the address of BLOCK record
for current block in B.*/
IF B.PF /*if this pointer is non-zero, vwe have sonme
THEN BEGIN /*¥record to move to SYNMNCL. */
P1 = TALLY(SYMCL,0,BACK); /*save address of current last*/
/¥record of SYMCL.*/
FOR P IN SYMOP FROM B.PF TO B.PL DO /*move the necessary¥*/

ENTER (SYNCL,8C(P) ) ; /¥records from
SYMOP to SYMCL*/
DELETE {SYMOP,B.PF) ; /¥delete the moved records*/
B.PL = TALLY(SYMCL,P1); /*¥now fix up the block record*/
B.PF = TALLY(SYMCL,0,BACK); to point to the new records
IN symcl.*/
end; ’
E.TAB = 1; /*the records are now in SYMCL. ¥/

BLKCUR = BLOCK (BLKCUR).BLOCKSU; /*new current block is the */
SYNTAX; /*¥previous surrounding one. */



—

- - ro

e

APPENDIX C. PROGRAM EXAMPLES A12

Two procedures are used to enter records into the symbol tables and
to look for records for ideatifiers:

PROCEDURE DEC; /*this procedure -enters a record for identifier
AT with type TYPE for block number
BLKCUR.*/
begin pointer p;
P = ENTER{SYMOP, SYMSTR (AT,TYPE,BLKCUR)); /*enter the record,
put its address in P.*/
IF P=0 THEN BLOCK(BLKCUR) .PF=P; /*tix up the block structure*/
BLOCK (BLKCUR) - PL=P; /*table record for this block.*/
END;

PROCEDURE FIND; /*this routine looks in block BLKCUR and
surroundiny blocks tor an identifier named AT.
- If found, P = address of its record; otherwise
P=0. BLKCUR, AT and P are global.*/
BEGIN BYTE K;
POINTER{BLKSTR) B;
P = 0; K = BLKCUR; /*¥assume we can't find AT (P=0) and
initialize K to current block number*/
WHILE K DO /*ve try current block and each
surroundingy block, in succession%*/
BEGIN B = ® BLOCK (K); /*save address of block record*/
IF B.TAB /*¥ve look tor the identifier in the records
records for the block - in SYMCL if block
is closed, or SYMOP if open.*/

THEN P = LOOK(SYMCL.AT, AT FROM B.PF TO B.PL)

ELSE P = LOOK (SYMOP.AT, AT FROM B.PF TO B.PL);

IF P /¥1f P=0, AT wvasn't in block, so*/

THEN K = 0 /¥set K to surrounding block number¥*/

ELSE K = B.BLOCKSU /*otherwise we are done - set K to¥/
END; /7*¥0 to end the WHILE statemnts/



APPENDIX C. PROGBAM EXAMPLES A3

Example 5. This example illustrates the use of <code brackets to
generate code for conditional statements of the usual form. We
assume that IF, THEN and ELSE are reserved words, that BE and S are
INTS for Boolean expressioan and statement respectively, and that
ENDIF is a class name for symbols which can end a conditional
statement. The productions used here (we only 1list the ones
necessary for illustration) are

IF BE THEN > THEN . EXEC SBE SCAN GO BEGINSTATEMENT
THEN S ELSE > ELSE EXEC STHELSE SCAN GO BEGINSTATEMENT
THEN S ENDIF > S ENDIF EXEC SIFEND GO ENDSTATEMENT
~“ELSE S ENDIF > S ENDIF EXEC SIFEND ' GO ENDSTATEMENT

The following semantic routines gyenerate c¢ode for conditional
statements, without cariny about the contents of the runtinme
registers. We assume the main stack has a component D which can be a
pointer to a DESCRIPTOR.

SBE: /*stack contained IF BE THEN and L1.D contains a
pointer to a DESCRIPTOR for BE. */ :
R0.D = /*jenerate a new label to jump to*/
DESCRIPTOR (KIND=§5LABEL) ; /¥if BE is false and stack it.*/
COCE (GOIFNOT L1.D TO RO.D); /*¥generate a branch-on-BE-false*/
/*¥to the label.*/
SYNTAX; /¥return to productions.*/

STHELSE: /*stack contained THEN S ELSE and we assume that the
code for statement S has already been generated. */

RO.D = /¥jenerate a new label to jump to*/
DESCRIPTOR (KIND=&LABEL) ; /*¥after S is executed, stack it.*/

CODE (GO R0.D); /*¥jenerate the branch to it.*/

CODE (L2.Ds3) ; /*define the address of the label*/

/¥to branch to if BE is false.*/
/*¥CGS sets register descrptions*/
/*¥to YEMPTY and fixes any*/
/¥previous branches to the label.*/
RELEASE (L2.D) ; /*¥label is no longer needed-relese*/
SYNTAX; /*¥it, return to productions.*/

SIFEND: /* stack contained THEN S ENDIF or ELSE S ENDIF
and we assume code for statement S has been generated.
L2.D contains a pointer to a DESCRIPTOR for an
internal label for statement following ENDIF. */

CODE {12.D:) ; /*¥define the address of the label to
branch to if BE is false {or after
the THEN statement has been
executed) . Rey descriptions set to
&EMPTY and previous branches to
lapel are fixed up. */

&ERELEASE(L2.D) ; /¥release the DESCRIPTOR.*¥/



—

r—

—

r—

— r— r— r— r

—

pury
b~

o>

SYNTAX; /¥return to productions.*/

ow sepantic routines can be used in place of those above.

y illustrate the use of the register descriptions to generate
btetter code. In addition to component D, we assume that the main
stack contains a pointer component which will point to register

descrirtions.

1

v
{

{
:
:
(
'
{
’
[

SBE: /*stack is as previous case¥/
R0.D = DESCRIPTOR (KIND=§LABEL); /*as in previous case#*/
CCDE (GOIFNOT L1.D TO R0.D); /*as in previous case*/
~“&ESAVEREGS (RO.P) ; /*save the current register descrip
tions for later use.¥*/
SYNTAX;

STHELSE: /*as in previous case, but LZ.P contains a pointer
to register descriptions as they were at the beginning of
the THEN statement.*/
RO.D = DESCKIPTOR (KIND=&LABEL); /*as in previous casex*x/
CCDE (GO RO.D) ; /¥as in previous case*/
&EEXCHREGS(L2.P) ; /*save the current register descrip
tions for later use and make the
current ones the same as they were
for the THEN statement.*/

KO0.P=12.P; /¥make sure its stacked right.x/
CODE(1L2.D (0) 2) /*def ine label - but leave register
RELEASE (L2.D); /*¥descriptions alone.*/

SYNTAX;

SIFEND: /#*as in previous case, but 1l2.p contains pointer to descrip
tions of registers as they were upon the branch-on-false
or the branch after the THEN statement.*/

S§JOINREGS (L2.P) ; /*¥join the register descriptions

with current ones, since these
describe the only places that brnch

) to here.*/

CGDE (L2.D (0) =) ; /¥ as before, but leave register

ERELEASE (L2.D); descriptions alone.*/
SYNTAX;



e




