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Consider the system of linear equations Ax = b where A is an

nxn real symmetric, positive definite matrix and

Suppose we are given an approximation to x , E ,
N N

b is a known vector.

and we wish to

determine upper and lower bounds for /x - 511 where Il...ll indicates
e.4

the euclidean norm. Given the sequence of vectors [~r]:~ where-

Tim -- Azi 1 and r = b-A! ,
,o N N it is shown how to construct a sequence

of upper and lower bounds for 11x-E II using the theory of moments.HN

In addition, consider the Jacobi algorithm for solving the system

x=Mx+b vi-L x = Mxi+b . It is shown that by examiningNN -i+l N

6-i
= x - x
-i+l ,i ' it is possible to construct upper and lower bounds

for ll_x,-xl1 .
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1. Introduction

Consider the system of linear algebraic equations

A x = b -.N N (14

where A is an nxn real symmetric , positive definite matrix and b

is a given vector. Assume we have an approximation to x so that

x = E+eN (1.2)

where E is the approximation vector and e is the error vector. We
N

are concerned with determining upper and lower bounds for II IIe where

II l l l II indicates the euclidean norm of the vector.

In order to compute bounds for the norm of the error vector, it is
-=

natural to compute the residual vector,

= b
:o N --Ak . (1*3)

L
L
1

(1*4)

Here AII II indicates the spectral norm of the matrix A . Assuming that

II IIA = 1 (this can be accomplished via a simple scaling of (l.l)), we see

-
that even though I[~,11 is "small", the bound for Ile/I can be quite

large when 11~ -1 II is very large.

By computing additional information, it is possible to obtain more

Iprecise upper and lower bounds on the euclidean length of the error

vector. In Section 2, we give an algorithm which depends upon computing

an auxilliary sequence of vectors and an explicit knowledge of all the

eigenvalues of the matrix A . The bounds are actually obtained as a

solution to a linear programming problem.
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In Section 3, we use the same sequence of vectors as described in

Section 2 but we assume that the only information that the investigator

has is an upper bound on the largest eigenvalue of A and a non-trivial. .

lower bound for the smallest eigenvalue. Using the theory of moments,

an algorithm is given for determining upper and lower bounds. Then in

Section 4, we consider the Jacobi iterative method for solving the system

of equations (l.l), and we show it is possible to establish bounds for

the error by examining the difference of successive iterates. Finally,

a numerical example is given in Section 5. In a future report, we shall

give methods for improving the approximate solution using the techniques
--.

described in this paper.
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2. Bounds using linear programming

Consider the Krylov sequence [6],

r,i+l = Ar
3 ( i = O,l,...,k-1 <n). .

where ,ro is defined by (1.3). Thus

5.
= Ai_ro ( i = O,l,...,k) .

We define

(x,Y> =

so that

i

-=.
( rpyrql = (Apro’A9ro)

= (APqrO'I‘O)

= vpq (P,q = W, l - 4) .

Since A is symmetric and positive definite, we have

A!ti = Lui ( i = 1,2,...,n)

with

0
(_Ui,_Uj)  =

for i + j

1 for i = j

and

O<ashl,<h2<...<hn--<b .

L

we have
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pm = (Amr,,r,) = cn a2 hrn
i=l

i i

Since e = A-'zo ,

(m = 0,1,...,2k) . (2.0

-. 111

II_//e2
-2= (A ,ro,,'o) = 1 a; "I" = pe2 .

i=l
(2.2)

follows:

-=.
a(h) = 0

i

Equations (2.1) and (2.2) are equivalent to

b
Pm = J J-mwd (m = -2,0,1,...,2k) (2.3)

a

where the weight function of the Stieltjes integral is determined as

for a < h 5 hl ,

a(h) = a1” + a; + . . . + a;
a(h) = a; + a; + . . . + cl;

ht < h 5 ht+l. (t = 1,2,...,n-1) ,

hn<h<b  l

The problem of determining an upper and lower bound for I\e\\ is

equivalent to the following:

Given the (2k+l) moments pi , determine upper and lower

bounds for ~1,~ .

The solution to ,this classical problem (cf. [7]) is dependent upon the

amount of information available.

Suppose we know the eigenvalues of the matrix A . An example of

this is the usual five point approximation to Poisson's equation with

Dirichlet boundary conditions in a rectangular region. Thus to determine

an upper bound for 1\e/12 , we wish to maximize

4
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subject to the constraints
. .

n

c yi ~~ = clln
i=l

Yi ,> O

(m = 0,1,...,2k)

( i =l,*..,n) .

(2.4)

The numerical solution to this problm can be obtained by the simplex
i

algorithm of G. Dantzig [3]. Special techniques may be used to takeiIL
1.
i

advantage of the fact that a Vandermonde system is solved at each--.

iteration of the simplex algorithm. A lower bound for

be obtained by determining the minimum of
n

c
i=l

Yih12

constraints (2.4) by the simplex algorithm.

Il_lle2 may

subject to the

L

L
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3. Error bounds using the theory of moments

In the more usual situation, one has the information that

O<a<hi_<b for i = l,...,n .

This is a problem in the classical theory of moments which has been

solved by A. A. Markov. In order to give a numerical algorithm for

determining bounds for \\e\\ , we review some facts from the theory

of Gaussian quadrature.

2k
Suppose we are given [IJ-$.~ , and a function q(h) (a 5 h <b) ,

and we wish to determine WJ) so that

L < sbrp(h)d&)  LU l

-=.
a

We can determine a quadrature rule such that

I-$ = T I&(A) = &Ai-ti + ,Djz; for r = WY l 4☺k+m-l
a

where {A.,ti]kVl and {Bj]mzl are unknown and CZj35,, is specified-
1

Then

a
&(h)&(h) = $AiT(ti) + $Bj'p(zj) + RETI

1= 3=

where

Rtcpl = (h-z ) tj J..(h-ti) I’~(‘)

. a<q<b .

Thus if v(h) = LB2 and m = 1 ,

R[?L-~] = -2(k+l)q -(2k+3)

a

(3.1)

L
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Hence for z1 = a , the Gauss-Radau type quadrature rule yields an upper

bound for and if z, = b , we have a lower bound. It
a"

can be shown (cf. [7, pg. 801) that these bounds are attainable.

It is not necessary to solve-the equations for the quadrature rule.

Let us note that

k

'r = C Ait; + Blz; (r = 0,1,...,2k)
i=l

where z1
may be a or b . Let us write

k
CLr = c iii 5: + Blar for all r and for z1 = a (3.2) '

i=l

so that -=.

th
From (3.2), we see that ir satisfies a (k+l)- order difference equation

go ir + �1 ir,l + l l � + t$ E&k - Er-(k+l) = ' (3-3)

- -
and tli$f*-*, k ,-E and a are the roots of the characteristic polynomial

P(5) = Eokk+l+ &Sk + . . . + gkE - 1 .

L
Since 564 = 0 Y we must have

f
L - cio"

k+l + &ak + . . . + gka - 1

Thus using (3.3) and (3.4) and the fact

= 0 . (3.4)

that pr = ir for r = 0,1,...,2k  ,

t
I
L

i

f
L

we have enough equations to determine
- k

cg 3
i i=() l

Having determined

- k
cg 3i i=O ' one can solve for F-2 by recurring twice backwards with

equation (3.3).

To determine a lower bound for the error viz. E-2 , it is

necessary to solve for cg 3-i tCo from equations similar to (3.3) and
r

the additional equations
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i?o b
Ml + ~~ bk + . . . -gkb-l= 0 l

Note to solve for (&~k=, , it is naeessary to change only one row in

the matrix and one can use the devices given in [2] for solving such a

modified system efficiently.

For large k , the system of linear equations which one solves for

the coefficients of the difference equation may be quite ill-conditioned.

For that reason it is sometimes preferable to solve explicitly for the

quadrature rule. As is well known, the.nodes of the quadrature rule are

the roots of orthogonal polynomials. Now the orthogonal polynomials
-=.

satisfy a three term recurrence relationship viz.

P_l(h) = 0 Y PO(A) = 1 '

The coefficients (E.1
k

Jj=l ,

the Lanczos algorithm [8].

can be computed directly using

Again, let

r = b -A[ .
,o u N

k+l
We generate a sequence of vectors (ziji, such that

{

0 for i f j
("iY,"j> =

1 for i = j .

Let :o = ,ro x (ll~oll  )-I-  l

Then for j = O,l,...,k  ,



\ E

i

j+l = (fjYA;"j)  Y

I Yj+l -j=Az -6
j+l "j -7jZj-l ' h

! 0
= 0)

i

i
71j+l = IIWj+llI  ’

i
-1

,"j+l = Ilj+l ' yj+l

For numerical stability, one must re-orthogonalize z<,, with respect

!
L to all the previous z/s . Let

NJ’L

c

t
f

L

I

I

5 %

'11 l l 0
. . .. . .

0 . .
"k

Vk %X+1

.

It is well known (cf. [5]) that the eigenvalues of J are the roots

of the polynomial plrtl(h) . In order to compute the upper bound for

IIJIe , we need to compute the Gauss-Radau quadrature rule with the fixed

node a . This can be accomplished by the following algorithm suggested

. by Mr. David Galant [4]. Let

C =J-a1

so c is a real symmetric positive definite or semi-definite matrix. Let

C =FFT ,

where F is the lower triangular Choleski factor of C . Now let

9
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c

i3 = FTF =

Then the eigenvalues of

0
.

Vk-l

'k-1 'k 0

0 0
3

:k

51,,1
. (k+l)x(k+l)

:k+l)x(k+l)

(E + a1) yield the nodes of Gauss-Radau rule.

By using a variant of the algorithm described in [5], it is possible to

e compute the quadrature rule. In order to campute the Gauss-Radau rule

with the fixed node b , one performs similar operations to those

Idescribed above on the matrix C = bI-J .

10



4. Error bounds for the Jacobi method

L

Consider the system of equations,

. .
cy = f

N

i where C is a real, symmetric positive definite matrix of order n .

(4.1)

Let D = did (cll>
-l/2, . . ., (c,)-l/"] . We may write (4.1) in the form

DCDD
-1
y = Df (4.2)ry N

i
i

.
or equivalently,

Ax =b . (4-3)N
i --.

Note the diagonal elements of the matrix A are all equal to one. Hence

E
L A = I - M

where the diagonal elements of M are zero. We shall assume that M

tt
L

is convergent viz.
1�,�,  l�iC�)  1 < � l The Jacobi method viz..
- -

X

,i+l --Mxx+b ( i = Oyl,... )N

L is frequently used to solve (4.3).

.
= x - x.Zi - -i = M1 we0

i

i

.a n d

6
-i

= x -x-i+l -i
= Mi f.

The vector 6
,i is the difference vector. Since zi = x+l - x. =

-1
Mxx+b-,Xi=b-Ax., the difference vector is the residual vector' N .ul

associated with x
,i l

Note

L 11



Thus

fi = (I-M)'1 fi = (I-M)-lMi 6
-0

.

Given {S lk
. .

,i i=. , we compute

(6,6)=(8 MPq6)zv
-p -q -0" 0 ??+q

Y or+S = 0,...,2k).

lifl,clija = (zk+l,ek+l) = ((14&ak+' 6 (I-M)'1 Mk+' 6 )
3'

,o l

Since M is symmetric, we have

i

i

and we assume

-l<c-<C,_<S,~*a._<S  <d<l .
n-

Thus

--.

Mzi = 5. ,Ui ) (i = 1,2y...,n)
1

{

0
(,Ui,,Uj) =

for i f j

1 for i = j

. and

(m = 0,1,...,2k)

( 2k+2
:k+l':k+l  => s

d E
- WE> .

C (W2

We wish to determine upper and lower bounds for

problem was first discussed by H. Weinberger [9] for
kk+lil  l This

k =1. .

12



Again, if the eigenvalues of M are known then one can use linear

programming for determining upper and lower bounds of I/_ek+l/12 . Thus

to determine an upper bound for Sll~k+li12, we wish to maximize

n

c

SF2

i=l

subject to the constraints

(m = o,l,...,Zk)

L

i

L
L
L
L e

--.

uJi > 0 ( i = 1,2,...,n) .

If the eigenvalues are unknown, then we are unable to use the

arguments associated with the residual vector since the (Ek+l)G

derivative of v(t) = E2H2/(l-k)2 is not of constant sign in the

interval
(CYd) l

Now, if we can determine a polynomial pZk(E) such that

p,(E) = co + cl! + l . . + c

2kE

=

for cLS_<d

then this will determine an upper bound for l~_ek+J2 since .
L

d

,cf P&)dB(e) =c v + . . . + c d 6
2k+2

0 0 2kv2k 2 s - W5) l

c' (l-F;)2

The polynomial p,(E) is not unique and consequently we desire that .

polynomial for which

13



-

., .

L
L
t

!

cv +...+c
00 2kv2k = min.

Unfortunately, there does not seem to be any numerical algorithms which

will satisfactorily solve this problem in general.

where

Let 7~ = (l-5) so that

d E 2k+2
s - w(5) =

c (l-G2 a'*

= I-Lm2 - Z(k+l)p
-1

a G'l-d , b = l-c

c1, = Jb Aa ( S
a

= -2,.l,...,Zk) .

It is easy to verify that

%
= (-l)s AS v

0

where

AU
0 =v -vlo

ASV
0

= A(@- vo)

_ and hence r-1 s = (so, (ws~o) l Our problem now is to determine upper

and lower bounds for

P-2 - 2(k+l)clm1

In order that there exist a distribution function a(h)
in the

interval (a,b) associated with (p }2k
s s=-2 ' it is necessary and sufficient

that

14



M =

i

and

G =

where

.

.

.

'k-2

yO

l

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

'k-1

.

.

.

.

'Zk-2
.

z)x(k+z)

(k+l)x(k+l)

'j

= -cab 1-1
j - (a+b)llj+l  + I-L

j+2 I (4.4)

.be positive semi-definite (cf. cl]). It is easy to see why G must be

ypositive.semi-definite.  Note from (4.4)

b .
Y. = -
’ a

S(abhJ - (a+b)hj+l + hj+2)dol(hj

= lb A'@-a)(b-A)&@
a

Hence,

15



L zTGz = ix Jr 7i+j zi z j
N N . =I

b k-l
= JYC zihi)2(La)(b-a)d&)  ,> 0 l

a i=-1

L A similar argument shows that M must be positive semi-definite.

Observe that there are two elements which are unknown in G and two
I
L

elements which are unknown in M and they occur in either the first

I row or column of the matrix.

i
i

i

I

L

L

Figure1

Since M and G are positive semi-definite, it is necessary and

sufficient that de-t(M) > 0 and det(G) > 0 in order for the values

po2,p 1 be consistent with some distribution a(h) with moments

~O'~1' ""~2k ' The positive semi-definite property of M and G is

equivalent to the non-negativity of the sub-determinants indicated in
.

L Figure I.

We partition the Hankel matrix M as follows:

i

IL

i
n
L
i
IL

M =

I
.

““l.lk-1

cI-o 5
. .. .. .

122) l -,~k+l
...

=-

.
A

BT
*

B

C I
16
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i From equation (4.5), we see that

L

Since M is positive semi-definite
.

de-t(M) = de-t(C) det(A-BC-1  BT) 2 0-.

so that

det
P-2!P-l

--
where

. r

rl r2
-b.

r2 r3
I

+r
1

+r
2

CL,1 + 3

po + r3 I

I
= o&- BT .

lrn

> 0 (4.5)

The matrix -BC? BL can easily be computed by applying the Choleski

algorithm to the matrix

0 B'

H-
BT C

.

.

One must begin the pivoting operation, however, from the bottom diagonal

element and after k eliminations, the upper 2x2 matrix will contain

-BC-1 BT . In a similar fashion,

det

-abp-2 +

-abp-1 +
.

b+bh-1 - PO + s1

(a+b>Po - I-l1 + s2

f -aNl + (a+b)vo - i-y +
-aNo + (a+b)pl - p2 + s

(5 + rl)bo + r31 - (II_, + r2)’ > 0

2 o. (4.6)

17
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and hence since IJo + r3 > 0 by the positive semi-definiteness of M

P-2
>

(P-1+ q2

po + r3

From (4.6), we have

de-t

where

Q3 + s1
Ct1 + s2

5
=-

(cl -1+ q2

po + R3 - Rl

> 0

-b.

abpo - (a+b)pl+ 1-1 - s
s3 = ab 2 3<o

since ab > 0 ,

and hence

Therefore

Rl <

- sl

P-2
<

.

kl
+ s2j2

s3  -

sl

i

i

18
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level lines of

Figure II

Thus to determine the maximum of

P-2 - Zb+l>JJl  9

it is simply necessary to examine the boundary of the shaded region in

Figure II.
e A short calculation yields (Q,,Q,) for which

Ql I I-L-1 I Q
2 l

Then pm2 - Z(k+l)p
-1 = maximum subject to (4.7) if

d (r-l

dcL_1

-1 + s2)2

s3
- s1 = *d

dp-l
2(lrtl)lJl

with ~1Ub-1 =
OS2 + @%

and



L

1

,f

-L

L

-- uotherwise the maximum occurs at p-I = Ql or p"-1 = Q2 according to

lJ"-1 = m=(Ql, mbf-SZ + b+1)S3,Q2]j

l

Similarly, the minimum occurs at

. . ML-1 = m=(Qly mi$-R2 + (~l)RjyQ2]] .

Thus, it is possible to determine upper. and lower bounds for Il:wli/ ,

and these bounds are attainable.

L

20



5- A numerical example

Consider the system

Ax = b

of equations

. .

where A is a tri-diagonal matrix with elements (-1,2,-l) and

b=Q, the null vector. It is well known that

.
'j CA) = 2+ 2 cos $ii- , j'=l,Z, . . ., n' .

The Jacobi matrix M is also tri-diagonal and has elements WY  0, 1!2)  '

Here --.

'j (M) jfi= cos -
n+l J j = l,Z,...,n .

The Jacobi method was used for solving the system for n = 20 and

IL; = (1,1,...,1) . In Tables I, II, and III, we give the error bounds

associated with the error vector of x-10 l

To use the methods of

Section 3, we must compute in addition Fzp3 for P = OYlY . . ., k .

In Tables II and III, we give bounds for the error using the difference

vectors (S,_,) for p = O,l,...,k . Note that the bound using the

residual vector is slightly better than those camputed using the difference

vectors but it requires additional work to compute [r )
k

-p p=o
whereas

the difference vectors are camputed in the natural sequence of events.

In addition, note that the lower bounds are less influenced by the

interval of the eigenvalues than are the upper bounds. Furthermore, we

see that in this case that a knowledge of all the eigenvalues does not

provide much smaller intervals for the error.

21
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Error bounds after 10 iterations

i Lower bounds Upper bounds

;!
I

I
!L

1
i

I
L

II ,e II2 = 2.700138

Table--I

Error bounds computed from residual vector using Gauss-Radau quadrature rule

k
a=l. 116g1?10-  2

b=l. 988831

1.35

1.55
x.

1.66

1.81

1.89

a=10 -2

b=l.gg

1.35 3.40,,1

1.54 2.05101

1.66 9.40

1.81 6.89

1.89 4.84

a=l.11691710-~

b=l. 989831

a=10-2

b=l.gg '

4.21,,1

2.52101

l.12101

8.08

5.50

I

Table II

Error bounds computed from difference vectors using determinantal ineaualities

k

c
. a-

l

2

3

4

5

Lower bounds Upper bounds

a = 1.11691~,,-2

b = 1.988831

1.35 1.35

1.43 1.43

1.48 1.48

1.56 1.56

1.59 I*59

a = loo2

b =l.gg

a =1.116917,,-2

b = 1.988831

5.29,,1

3.88,,1

2.05,,1

1.70101

1.29,,1

a =lO-'

b =1.gg

6*59,,1

4.8~~~1

2.51101

2.08~~1

1*57,,1

23
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Table III

Error bounds computed from-difference vectors using

k

1

2

3

4

-5

linear programming

Lower bounds Upper bounds

1.35 5.&,,1

1.45 3.86,,1

1.55 1*73,,1

1.61 1.50,,1

1.62 l.d+lol

24
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