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Abstract

Consi der the system of linear equations AX = b where A is an
nxn real symetric, positive definite matrix and b is a known vector.

Suppose we are given an approximation to X , &, and we wish to

~

determine upper and |ower bounds forllx - &ll where |...|| i ndicates
the euclidean norm Gven the sequence of vectors (ri]};_o wher e
r, = Ar, and r = b-AE , it is shown how to construct a sequence

~i ~i-1 o ~ ~

of upper and lower bounds for |x-¢ | wusing the theory of nonents.
In addition, consider the Jacobi algorithm for solving the system

x=Mx+b viz. X.pp = Mx.+b . It is shown that by exanining

8, =X;4q - X it is possible to construct upper and |ower bounds

for ”fi',’f” .
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1. [ ntroduction

Consi der the system of linear algebraic equations
Ax=Db . (1.1)
where A is an nxn real symetric, positive definite matrix and b
is a given vector. Assune we have an approximation to x so that
X=£E+e (1.2)

where ¢ is the approximtion vector and € js the error vector. W

are concerned with determning upper and |ower bounds for |e| where
Il...II indicates the euclidean norm of the vector
In order to conpute bounds for the normof the error vector, it is

natural to conpute the residual vector,

r :b~ - At : (1.3)

~

Thus since r_= Ae ,

lz._|l

=0 < el < fa™H | : (1.4)

fla]
Here [lAl indicates the spectral normof the matrix A. Assuming that
IAIl = 1 (this can be acconplished via a sinple scaling of (1.1)), we see
that even though ”fo“i s "small", the bound for |lef can be quite
large when Jla"l| is very large

By conputing additional information, it js possible to obtain more

‘precise upper and | ower bounds on the euclidean Iength of the error

vector. In Section 2, we give an algorithm which depends upon conputing
an auxilliary sequence of vectors and an explicit know edge of all the
ei genval ues of the matrix A . The bounds are actually obtained as a

solution to a linear programing problem
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In Section 3, we use the sane sequence of vectors as described in
Section 2 but we assume that the only information that the investigator
has is an upper bound on the |argest eigenvalue of A and a non-trivia
| ower bound for the smallest eigenvalue. Using the theory of monents
an algorithmis given for determning upper and |ower bounds. Then in
Section L4, we consider the Jacobi iterative method for solving the system
of equations (1.1), and we show it is possible to establish bounds for
the error by examning the difference of successive iterates. Finally,

a nunerical exanple is given in Section 5. |n a future report, we shall
give nethod§>for i mproving the approximte solution using the techniques

described in this paper.



2. Bounds wusing |inear progranmm ng

Consi der the Krylov sequence [6],

£.+l = AE].- (l ; O,l’-oo,k-l <n)

wher e r is defined by (1.3). Thus

~

_ i ,
fi - ASO (l = O,l"'-,k) .
W define
n
(%5) = ¥ %v;
1=
so that

(psa.0,1, .. .,k) .

Since Ais symetric and positive definite, we have

Al.li = %'il.li (i = 1,2 ¢e.5n)

W th
0 for i #]
(ui,uj) =
e 1 for i =]
N

and

0 <a_<_>\.

SA < een SAZD

1 - - 'n

Now writing

we have



n
m 2 .m _
b, = (Br,r) = _Zlal. - (M= 0,1,...,2k) .
Since e = A’lro ,
.11
2 '2‘ 2 n " :
lell® = @ xr) = g:_lozi "L,

Equations (2.1) and (2.2) are equivalent to

b
b= af AN (\) (m= -2,0,1,...,2k)

where the weight function of the Stieltjes integral is determned as

fol | ows:
a(X):O for a <»<A
a(x)=af+a§+...+a5 N <A< Mg
a(x)=ai+a§+...+a§ N <MD

(2.1)

(2.2)

(2.3)

(t = 1,2)...,n-1) ,

The problem of determining an upper and lower bound for |le| is

equivalent to the fol | ow ng:

Gven the (2k+t1) moments Mo det erm ne upper and | ower

ittt

bounds for u_, .

The solution to this classical problem (cf. [7]) is dependent upon the

amount of information avail able.

Suppose we know the eigenvalues of the matrix A . An exanple of

this is the usual five point approximation to Poisson's equation with

Dirichlet boundary conditions in a rectangular region. Thus to determ ne

an upper bound for \\e“z , We wish to maxin ze



n
IR (m=0,1,...,2k)
i=1
(2.4)
7; 20 (i =1,...n)

The nurerical solution to this problem can be obtained by the sinplex
algorithmof G Dantzig [3]. Special techniques may be used to take
advantage of the fact that a Vandermonde systemis solved at each
iteration of the sinplex algorithm A lower bound for ang may
be obtained by determning the mininum of }Elyixgz subject to the

constraints (2.4) by the sinplex algorithm
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3. Error bounds using the theory of nonents

In the more usual situation, one has the information that
0<a<h <b fori =1,..n.

This is a problemin the classical theory of monents which has been

solved by A A Mrkov. In order to give a numerical algorithm for

det erni ning bounds for |le] , we review sone facts fromthe theory

of Caussian quadrature.

Suppose we are given {“i}iio . and a function o(r) (a SA<P),

and we wish to deternine (L,U) so that

b
L < [o(Ma(z) <U

W can determne a quadrature rule such that

b m
b= [ Vap) @ ilAitli” = Qs 200 6L e S6EE0Le
1= hE

where f{A,,t;3; , and {Bj}j:l are unknown and {Zj}j=l i s specified-

Then

b m

e(Mda(n) = iA.cp(t.) + ) B.o(z.) + Rlo]
wher e

(2k+m)( ) b 5
’l9) = Ty | jﬁlm-zj) [iﬁlm-ti)] ao(n)
(3.1)
a<fn<b

Thus if o) = A" and m= 1,

b
RIN2) = _p(xr1)g (BEFD) [ vzl ﬁ (x-ti)]zda(k) )
s i=1
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Hence for z) = a, the Gauss-Radau type quadrature rule yields an upper
b
bound for [ x'zda(x) and if z, = b, we have a |ower bound. It
a *
can be shown (cf. [7, pg. 80]) that these bounds are attainable.

It is not necessary to solve-the equations for the quadrature rule.

Let us note that

k
r r _
b, = -ZlAiti + Byz) (r = 0,1,...,2k)
wher e z, Ay be a or b. Let us wite
- k = r = r
i o= }: E, Ei + Ba for all r and for z, = a (3.2)
i=1
so that ~
hoz 2 Mg
From (3.2), we see that ﬂr satisfies a (kﬁmﬁﬁg%rder di fference equation
8o by B Hp - & Frok 7 Mr-(k+1) © (3-3)
andti}té}..., § . and a are the roots of the characteristic polynom al
- ktl - .k -
= + -
p(¢) = gt g +. .. +gt-1

Since p(a) = 0, we nust have

z a7y g ek +ga-1

(o) l ot " gk = o . (5""’)

Thus using (3.3) and (3.4) and the fact that W, = ﬁr for r = 0,1,...,2k

k
i=0 -

by recurring tw ce backwards with

we have enough equations to deternne {éig Havi ng det erm ned

- k
18 50

equation (3.3).

, one can solve for ﬁ_z

To determine a lower bound for the error viz. u,

it is
necessary to solve for {@i3§=0 from equations sinmlar to (3.3) and

the additional equatioﬁ
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gobk+l+glbk+... g b-1 =0

Note to solve for {Si}};:o , it IS nacessary to change only one row in
the matrix and one can use the devices given in [2] for solving such a
nmodi fied system efficiently.

For large k , the system of |inear equations which one solves for
the coefficients of the difference equation may be quite ill-conditioned.
For that reason it is sonetimes preferable to solve explicitly for the
quadrature rule. As is well known, the.nodes of the quadrature rule are
the roots of orthogonal polynonials. Now the orthogonal polynonials

satisfy a three termrecurrence relationship viz.
2
p,(M) = 0, py(N) =1

o k k-1 , .
The coefficients {gj}j=l {"j}j=1 can be conputed directly using

the Lanczos al gorithm [8].

Again, |let
%o :b.. - At
W generate a sequence of vectors {Ei}.‘;l such that
0 for i #]j
Zrzy) - 1 for i =]

-1
ez -z x(s)

Then for | = 0,1,...,k ,
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gj""l = (EJ)AZ'j) 2

W1 =AZ5 -t b Zp gz 0 (67 0)

M5+1 = ”Yj+l“ ?

W.

Zi+1 T Ngr1 X ¥se1

For nunerical stability, one must re-orthogonalize z, with respect

Jtl
to all the previous zj's. Let

O . . T]k
g

T k+1

-

It is well khovvn (cf. [5]) that the eigenvalues of J are the roots

of the pol ynoni al pk_'_l()\.) . In order to conmpute the upper bound for
llell , we need to compute the CGauss-Radau quadrature rule with the fixed
node a . This can be acconplished by the followi ng algorithm suggested
by M. David Galant [L4]. Let

C=J-aI

so c is a real symetric positive definite or sem-definite matrix. Let

where F is the |ower triangular Choleski factor of C. Now | et



and

Then the eigenval ues of

(@2

4 (1) x (1)

T 1) x(k+1)

(C + aI) yield the nodes of Gauss-Radau rule.

By using a variant of the algorithmdescribed in [5], it is possible to

conpute the quadrature rule.

with the fixed node b

‘described above on the matrix C = bI-J .

10

In order to compute the Gauss-Radau rule

one perforns simlar operations to those
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L, Error bounds for the Jacobi nethod

Consi der the system of equations,
cy = i ‘ (k.1)

where Cis a real, symetric positive definite matrix of order n .

Let D = diag[(cll)_l/z, . ..,(cnnfd/zl. Ve may wite (4.1) in the form
peop™ Yy = of (4.2)
or equivalently,
Ax =b . (4.3)

Note the diagonal elements of the matrix A are all equal to one. Hence

where the diagonal elenents of Mare zero. W shall assune that M

i S covergent Viz. max |xi(M) | <1 . The Jacobi method viz.
1<
RIS (=020

is frequently used to solve (4.3).

Let
e. = X-X., = Ml e
~1 ~ ~1 ~0
and
5 = -x =M 8
Oy TXiyg ~ %X =M B
The vect or 5, is the difference vector. Since d, = x. . - X. =
~1 i ~1tl ~1
Mxi * b - X, = b - Axi 5 the difference vector is the residual vector
associated with

X, Not e

~

11
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& = (I-M)7" 8, = (zam)™ ot 5,

. k ‘
5.}
G ven {;i }i=o , We conpute

- prq
(ép,a%)q_ (EO’M 60) = v > Pra = 0,...,2k).
Thus

2 1 )
legeall® = (epprepey) = ((T20)7F Mk+l,%,(I—M) Iu*ls)
~ ~0

Since Mis synmetric, we have

MEi=§1' u, (i = 1,2)..05n)
0 for i #]
(Ei";‘j) -
1 for i =]

and we assune

-l<C§§l_<_§2_<_...5gnid<l
Thus
a
Vo= cf £ dp(e) (m = 0,1,...,2k)
. and
d ,2k+2
(o1 Bery) = d 0l dp (&)

V& wish to determ ne upper and |ower bounds for .
”Sk+l” _ This

probl em was first discussed by H Weinberger [9] for c

12



Again, if the eigenvalues of M are known then one can use |inear

programmng for deternmning upper and |ower bounds of “ek+1”2' Thus

~

to determne an upper bound for "Hekﬂ}}% we wish to naxinize

2kt 2
gi
w

1-e,)?

™~

subject to the constraints

Yow, =y (m= 0,1 "
e I e S =01, 2k)
w, >0 (i = 1,2,..05n) .

1

If the eigenvalues are unknown, then we are unable to use the
argunents associated with the residual vector since the (2k+1)-“°£
derivative of @(¢) = §2k+2/(1_§)2 is not of constant sign in the
interval (c,q) .

Now, if we can determ ne a pol ynom al pZK(g) such t hat

oK §2k+2

pzk(g) a CO . Clg « . czkg 2 (l-g)z

for c<tE<d

o . 2
then this will determne an upper bound for Hekﬂ_” si nce

~

d 2k+
g 2

(1-¢)°

d
cj\ Pa(8)3B(E) =cyq . . Fopuy 2 ap(t)

The polynomial p, (&) is not unique and consequently we desire that

pol ynom al for which

15
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Cc v + oo t C =-m
0’0o 2kv2k mn.

Unfortunately, there does not seem to be any nunerical algorithns which

will satisfactorily solve this problem in general.

Let A = (1-¢) so that

d 2k+2 b ok+2
£ _ (1-2)
J s [ S e

2k
=n , - 2(k+tl + -1)8 etz
2 7 Ay Y () 2

wher e
a=1-4d , b =|.c
b S
s = a\f A da(h) (s = =2,-1,...,2k)
It is easy to verify that

By = ("l)s L%
0

wher e

S s-1
A =
Vo A(A \)O)

~and hence (3, (I-M)S§O) . Qur problemnow is to deternmine upper

and | ower bounds for

B - 2(k+1)u 1

-2

In order that there exist a distribution function a(\) ' the

nterval - (a,0) associated with {p's}s=-,2 » it is necessary and sufficient

t hat

1k



]

.be positive sem-definite (cf.

M1
My
M= .
K vl . . .
k-1 Mg "
~ 2k 2)x (ke
_J(k+ )x (k+2)
and
A
) I7-2 7-2_, Ty |
’ 7’_1 ’ [e} '
G=
k-2 ' | " Tokep
(k+1)x (k+1)
wher e
7J~ = -[ab “-(a*'b)uj_‘_l + Hj+2| (4.4)

[1]). Tt is easy to see why G nust be
‘positive semi-definite. NOLE from (4.4)

b
= J 41 .
Y. = - - J
3 af (abA? - (at+b)A + ,\J+2)da(x)

b .
= [ MOa)eyan

Hence,

15
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T k-1 k-1
Eq“:i2£j££ ESEENE
b k-] . 5
G z, M) “(A-a) (b-a)da(h) > - .
© i=-1

A simlar argument shows that M nust be positive semi-definite.
(oserve that there are two elements which are unknown in G and two
el enents which are unknown in M and they occur in either the first

row or colum of the matrix.

VIS4

A}

NNNN\N \

Fi gurel

Since Mand G are positive senm-definite, it is necessary and
sufficient that de-t(M > 0 and det(G) > 0 in order for the val ues

M_psH be consistent with some distribution a(h) with nonents

Hosbys v eesblny The positive sem-definite property of Mand Gis

equivalent to the non-negativity of the sub-determnants indicated in

Figure I.

W partition the Hankel matrix M as follows:

u_2 2 “‘_l “’o) e p‘k_l . -
A B
u_l J u'o “’l’ e p‘k
M= = .
IJ'Q “':;_ ug} . . '}uk_‘_l
| ! | BT c
M P | Moo obex

16
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Since Mis positive sem-definite

det(M) = det(C) det(a-Bc™t BT) > 0

so that
M pg®t Ty Mg *r,
det > 0 (4.5)
u-l * r2 I'lO * r5
wher e
r r
1 2
N ! BT
I'z I‘3
-1 .7

The matrix -BC ~ B~ can easily be conputed by applying the Chol eski

algorithmto the matrix

One nust begin the pivoting operation, however, from the bottom di agonal

el ement and after k eliminations, the upper 2x2 matrix will contain

-Bc':L BT . In a simlar fashion,

-abi_, (a+b)u_l - Mg t 8] 5 -abu gt (a+b)uO -yt S,

det > 0.(4.6)

fab“-l N (a+b)uO - My s, 5 -abuy o+ (a+b)ul - B, + S5
From equation (%.5), we see that

by * )y +r5) - (ng + rz)2 > 0

17
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r

and hence since p, + r, > 0 by the positive seni-definiteness of M

3
(n_y + r,)? (h_q + R)?
83 > f rl = -—+R - Rl .
atz Mo T T3 Mo T Rs
From (4.6), we have
Hopt By Hg* 8,
det > 0
H_q +Sz 35
wher e
5 = a‘buo - (a‘+b)p'l + |“"2 - 85 < 0
3 ab
since ab > 0 ,
and hence
(b +8,)°
H < 3 - Sl
2 3
Therefore
2
(u_y *+ BYZ by 8, .
R S kp < g8 (4.7)

18
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| evel lines of

e
b_pme(r L) \

Figure 11

Thus to determine the maxi num of

U‘_Z - E(ki-l)u_l b}
it is sinply necessary to exanm ne the boundary of the shaded region in

Figure I1. A short calculation yields (Q,l,QZ) for which

@ S B, SQZ
Then Moo~ 2(k+l)“_1 = maxi mum subject to (L,7) if

———— - = & _ d
dl—l_l S5 sl = aq 2(1&"‘1)!.1,_1
. U
with Wy = -5, * (1&1)33

and

19



L case B e o

= Y

U
Q‘lsu-lSQz H

U

. . U = .
ot herwi se the maximum occurs at Wy = Q Of u-l =q, according to

U
h_y = max{Q,, min{-S, . (k+1)8,,Q,}}

Simlarly, the mninum occurs at

L .
W = ma.x{Q,l, m:Ln{--R2 + (k"'l)Rsz}}

Thus, it is possible to determne upper. and |ower bounds for “em“ :

and these bounds are attainable.

20
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5. A nunerical exanple

Consi der the system of equations

Ax =b

where A is a tri-diagonal matrix with elenents (-1,2,-1) and

b =06, the null vector. It is well known that

A (8) :2+Zcong“l, i=1,2,. . ,0

The Jacobi matrix Mis also tri-diagonal and has elements (1/2,0, 1/2).

Her e -

}\.J.(M) = COS ;1'_|'I k] J = 1,2,---,1’1 .

The Jacobi method was used for solving the systemfor n = 20 and
T

X = (1,1,...,1) . In Tables I, Il, and Ill, we give the error bounds
associated with the error vector of 10 To use the nethods of

Section 3, we nust conpute in addition {fp} for p = 0,1,..,Kk.

In Tables Il and I, we give bounds for the error using the difference
vectors {§9_P} for p = 0,1,...,k . Note that the bound using the
residual vector is slightly better than those computed using the difference
vectors but it requires additional work to conpute {fp}g:o
the difference vectors are computed in the natural sequence of events.

wher eas

In addition, note that the |lower bounds are less influenced by the
interval of the eigenvalues than are the upper bounds. Furthernore, we
see that in this case that a know edge of all the eigenval ues does not_

provide much smaller intervals for the error.

21
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Error bounds after 10 iterations

| e ||? = 2.700138

Table~T

Error bounds conputed from residual vector using Gauss-Radau quadrature rule

Lower bounds Upper bounds
1072 } 1072
) a=1.116917lo-2 a=10 a_1.116917lo-2 a=10
b=1. 988831 b=1.99 b=1. 988831 b=1.99
1 1.35 1.35 5.40101 h.zllol
2 1.55 1.5k 2.05, 51 2.52 51
3 1.66 1.66 9.40 1.12,1
L 1.81 1.81 6.89 8.08
5 1.89 1.89 L .84 5.50
Table 11
Error bounds conputed from difference vectors using determinantal inequalities
Lower bounds Upper bounds
— Y _ _aA—2
) a-1.11691710-2 a =10 a-1.116917lo-z a =10
b =1.988831 b =1.99 b = 1.988831 b =1.99
I 1.35 1.35 5.29, 1 6.59101
2 1.43 1.43 3.88101 u.82101
3 1.48 1.48 2.05, 41 2.51, 51
L 1.56 1.56 1.70, 41 2.08101
5 1.59 1.59 1.29, % 1.57, %

23
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Table 111

Error bounds conputed fromdifference vectors using

|'i near progranm ng
k Lower bounds Upper
1 .

1.35 S.Ohlol
2 .

1.45 5.86, 1
3 1.55 1.73, 0t
L .

1.61 l.SOlOl
5 1.62 1.0&101

24
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