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Abstract

Let A be a real symmetric matrix of order n , B a real

symmetric positive definite matrix of order n , and C and nxp

matrix of rank r with r <p < n . We wish to determine vectors x

for which

Tx Ax / xT Bx
r.d. .

is stationary and TC x = 8 , the null vector. An algorithm is givenN

for generating a symmetric eigensystem whose eigenvalues are the
--.

stationary values and for determining the vectors x . Several Algol
N

procedures are included.
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1. Introduction and Theoretical Backaround

Let A be a real symmetric matrix of order n ) B a real

symmetric positive definite matrix of order n I and C an nxp

matrix of rank r with r <p < n -; We wish to determine vectors

X such that

T Tx Ax/x Bx

is stationary and T
C x = 0 , the null vector.

N cr

By rearranging the columns of C , we may write

-w. QC =

ir s

[It-l0 0

where "R
r

is an upper triangular matrix of order r , S is rx(p-r) ,

adi QTQ 71 . The matrix Q may be constructed as the product of r

Householder transformations (cf. [Yj).

Let

X = QT w =
YQTklZ

where y is a vector of the first r. components of w and z consists
u

of the last (n-r) components of w . Thus

CTx =

and hence

Y =0 .

2
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T T
w~QAQw  /w~QBQw
cv N w

Let

r

1

Gil G12
G =QAQT=

T
G12 G22

-.-.
where Gll,Hll are rxr matrices,

subject to w, = w, = . . . = wr = 0 .
1. L

9 H =QBQT= LHll

HT12

H12

H22

and G22,H22 are bdx (n-r)

matrices. The matrices H and G are symmetric; H is positive

definite, and H22 is positive definite. Indeed,

0 < ‘min(H)  5 ‘min(H22)  ,< ‘ma(1322)  ,� hrna⌧(H) l

Thus the stationary values we seek, are the eigenvalues of the matrix

equation

(1)
a G22 ,z = X H22 ,z

Since G22 and H22 are symmetric and H22 is positive definite, we

1 may solve (1) by using standard algorithms (cf. [6]). Finally, if

G22 zi = hi H22 zi ( i = 1,2,...,n-r) ,N

then

X .
-1

= QT

. * L

0
. . . . . .

In-rI wd 1 3. ' (2)

3
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When p "1, and B =I, a slightly different algorithm may be

used for computing the stationary values. We assume

T
cc=1 .
NN . .

Let

cp(x) = XT Ax - h xTx + 2 p xTc (4)
N NN NCY

where (hi4 are Lagrange multipliers. Differentiating (k), we are

led to the equation

Ax -h.x+/.~=Q . (5)N cy

Multiplying (5) on the left by cT and using (3)> we have
N

I-1 = - CT Axc . (6)

Thus substituting (6) into (5), we have

PAX=AX

where P = I-cc
T

. Note P2 = P so that
HN

mA) = h(P2A) = X(-PAP) .

The matrix PAP is. symmetric and consequently one of the standard

methods may be used for computing its'eigenvalues.

It is easy to construct the matrix PAP using a device of Wilkinson [g].

Let

II= PAP = (I - ccT)A(I - ccT)
NY NY

= A
T T T

- cw - WC +o!cc )HN NIY NN

where
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Q = cT AC and w=Ac .cr) u w N

Then if

a
U =-c-w

2, ru ’ -.

K = A + cuT + ucT .
-

Therefore if

KZi =G ,hiz.
-1

then

X .
-1 = PEi

=.

( i = l,&,.,n) .

The vector c is an eigenvector and the corresponding eigenvalue
w

is zero.

5



2. Applicability

2.1 Testing for serial correlations

Let X be a given nxp matrix of rank r and y be a known

vector. The vector b

vector so that

In many situations, it

T

is the least squares estimate of regression

= min.
2

is desirable to consider the statistic

, Tc d = z& A Z / z&z
rr NN

where z = y&b , the residual vector, and A is a given symmetric
N N N

matrix. For

A =

1 -1

-1 2
4 0. . .

-1 2 - 1

-1 1

the statistic d is the serial correlation of lag one. Note that

T_ Xz=Q. We wish to consider the distribution of d over all possible z .
.

Thus under a suitable transformation, we may write

d =

6
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where
i i=l

are the stationary values of zT AZ over zTz =l
h) - N

with TX z = 8 . The distribution of d is discussed in special cases
Fe ry

I
in [2].
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2.2 Exponential fitting

In many situations,

to determine parameters

m
we observe a sequence {z,] , and we wish

k=l

c 3a qi i=O ' c 1h q
i i=l

so that

(k = 1,2,...,m) .

From (7), we note that {zk)I-, satisfies a difference equation of

the form

"OZk + al%-l + � l ’ + ‘q+l ‘k-q-1 = ‘k (k = q+l,.,.,m)

s+l
where

ek is a random perturbation. The coefficients [a.)
1 i=o

determine the characteristic

p(h) = aoAq+l  + a,h9 + . . . + aq+l .

Note p(l) = 0 by (7).

One procedure which may be used to estimate the coefficients of the
. k
characteristic polynomial is the determine [a.] so that

1 i&)

m 2

c
ek = min.

k=q+l

subject to the constraints a2i = 1 and
cl9
c a. =o. In matrix1
i=O
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form, we have the problem of determining  a 80 that

with

where

w =

aT WT Wa = min.w Y

T T =-aa=l and es=0uw W"

?

1

1

-iI

e =
..

i

Thus the procedure outlined in Section lmay be used for determining a e A more
&

sophisticated  statistical  model for determining a is given in [8] by Osborne.
Y

2.3 Sloshing frequencies

In [5], Henrici & a& give a method for determining approximations

(with rigorous error bounds) ,for the sloshing frequencies of an ideal

fluid contained in a half-space with a circular or strip-like aperture.

The stationary values may be obtainednumerically by the method described

in Section 1.
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3.1 Input to Procedure REDUCE
a.

n number of rows of C.

P number of columns of C .

L to1 a machine dependent constant equal to

eta/macheps, where eta is the smallest

L
L

positive real number representabJ&e

on the ccmputer, and macheps is the

machine precision, the smallest E

such that l+e > 1 .

eps a tolerance used in determining the

rank of C .

c[l:n,l:p] contains the matrix C to be reduced.

Output of procedure REDUCE

c[l:n,l:r] together with

details of the

L

d[l:r] , contains the

transformations which

d[l:r]

.r

reduce C to upper triangular form.

see above;

column rank of C .

3.2 Input to procedure APPLY

n order of the matrix AB .

r number of similarity transformations to

be performed.

9
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d[l:r]

c[l:n,l:r]

ab[l:n,l:n]

n

r

d[l:r]

c[l:n,l:r]

see output of procedure REDUCE.

see output of procedure REDUCE.

contains in its upper triangle the

details--of the symmetric matrix AB .

gh[l:n-r,l:n-r] contains in its upper triangle the

details of the symmetric matrix GH ,

which is an n-r x n-r submatrix of

'the matrix obtained by applying the r

similarity transformations contained

in d and c to AB .

3.3 Input to‘-'procedure J3ACKTRANSFORM

number of rows in C .

number of backtransformations  to be

performed.

see output of procedure REDUCE.

see output of procedure REDUCE.

L
L
L
t

z[l:n-r,l:n-r] contains the matrix Z , the vectors to

be transformed.

Output of procedure BACKTRANSFORM

x[l:n,l:n-r] contains the matrix X obtained by

applying the r transformations

contained in d and c to the

n x(n-r) matrix, the first r rows

of which are zero, and the last n-r y Z .

L
L

10



4. Algol Programs

procedure reduce(n) data:(p,tol,eps)  data and result:(c) result:(r,d);

value n,p,tol,eps;  integer n,p,r;
. .

real tol, eps; array c,d;

comment This procedure computes the sequence of r Householder

transformations necessary to reduce the nxp matrix C (n >p > 0)

to upper triangular form. On input, c[i:n,l:p]  contains the

columns of c. On output, c[l:n,l:r] and d[l:r] contain the

details of the transformations. r is the column rank of C;

begin integer i,j,k,m;

real h,f,g;

array sumsq[l:p];

comment Compute the lengths of the columns of C to be used in

determining the necessary column interchanges in the reduction;

for j:=l step 1 until p do

begin h:=O;

for i:=l step 1 until n do h:=h+c[i,j]xc[i,j];- -
sumsq[j]:=h

end;

comment Now determine the transformations;

for j:=l step 1 until p do

begin r:=j;

h:=sumsq[j]; m:=j;

for k:=j+l step 1 until p do.

if sumsq[k]Sh  then

in h:=sumsqG

m:=k

end;

begin

comment Interchange columns m and j;

sumsq[m]:=sumsq[j];

for i:=j step 1 until n do- -

11
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begin g:=c[i,j];

c[i,j]:=c[i,m];

c[i,m]:=g

end

end;
. .

comment Compute the Householder transformation necessary to

reduce the jth column of c;

h:=O;

for i:=j+l step 1 until n do- w
h:=h+c[i,j]Xc[i,j];

comment If the jth column of c is already essentially reduced,

the transformation is skipped;

if h <to1 then

begin d$j]:=o;go to skip end;- -
f:=c[j,j]; h:=h+fXf;

g:=g f 2 0 then sqrt(h) else -sqrt(h);

d[j]:=h:=h+fXg;

c[j,j]:=f+g;

for i:=j+l steg 1 until p g

begin g:=O;

for k:=j step 1 until n do

g:=g+~~kyJlxdkyil;

g:=g/h;

for k:=j step 1 until n do- v
c[k,i]:=c[k,i]-gXc[k,j]  .

end i;

skip:

h:=O;

comment Update the values in sumsq and determine the modulus of

the largest element in the remaining matrix;

for i:=j+l step 1 until p do

begin sumsq[i]:=sumsq[i]-c[j,i]XC[j,i];

for k:=j+l stee 1 until n do

ifabs(c[k,i]) > h= h:zbs(c[k,i])

end i; s

12
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if h < eps then g-to exit

end j;

exit:

end reduce;
-.

procedure apply(n) data:(r,d,c,ab) result:(gh);

value n,r; integer n,r;

array d,c,ab,gh;

comment This procedure applies r orthogonal similarity transformations

to the symmetric matrix AB. GH is the(n-r) x(n-rj submatrix in the

lower right hand corner of the resulting matrix. On input,

ab[l:n,l:n] contains the upper triangle of AB, and c[1:n,l:r] and

d[l:r], the details of the transformations. On output,

gh[l:n-r&n-r]  contains the upper triangle of GH. The strict

lower triangles of ab and gh are not used. The actual parameters

corresponding to ab and gh may be the same;

begin integer i,j,k; real f,g,h;

w[l:n];array

for j:=l step 1 until r do- s
begin h:=d[j];

if h f: 0 then

begin f:=O;

for i:=j step 1 untiI n do- -
begin g:=O;

for k:=j step 1 until i do g:=g+ab[k,i]x c[k,j];

for k:=i+l step 1 until n& g:=g+ab[i,k]x c[k,j];

w[i]:=g:=g/h;

f:=f+c[i,jl x g

end i;

f:=f/(h+h);

for i:=j+l step 1 until n do

begin w[i]:=w[i]-f x c[i,j];

for k:=j+l step 1 until i do

ab[k,i]:=ab[k,i]-c=  x zk]-c[k,j] x w[i]

end i

L
13
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end conditional

end j;

for i:=l step 1 until n-r do.

for j :=i step luntiln-r do

gh[i,j]:=ab[i+r,j+r] . .

end apply;

L
L
L
L
I
L

L
L
i

i *

i

L

procedure backtransform data:(r,d,c,z) result:(x);

value n,r; integer n,r; array d,c,z,x;

comment This procedure applies r orthogonal transformations to the

n x n-r matrix, the first r rows of which are zero, and the last

n-r, the matrix Z, to produce the matrix X. On input,

z[l:n-r,l:n-r]  contains Z, and d[l:r] and c[l:n,l:r], the details

of the transformations. On output, x[l:n,l:n-r] contains X. The
--.

actual parameters corresponding to x and z may be the same;

begin real h,s;- -
integer i,j,k;

for j:=l step 1 u.n-ti+L n-r do

for i:=n step_ -1 until r+l do

x[i,j]:=z[i-r,j];

for k:=r step -1 until 1 do

begin h:=d[k];

for j:=l step 1 until n-r do

begin s:=O;

for i:=k+l step lun-til n do'- v
s:=s+c[i,k]xx[i,j];

s:=s/h

x[k,j]:=O;

for i:=k step 1 until n do- -
x[i,j]:=x[i,j]-s xc[i,k]

end j

end k

end back-transform;

14
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5* Organizational and Notational Details

The matrix Q defined in Section 1 is constructed in REDUCE as

the produce of r Householder transformations. Using the notation in-.

[31, we have

c =c (1)

and
._

where

c @+l) ~p(~)c(~) , k=l1 . . ..r ,

,

04u.
1 =o , i<k,

04U. =C 041 ik Y

.We have, then, that

Q = pb)p(r-1) 0). . P ..

i > k .

L To recover the P04 for use in the procedures APPLY and RACKTRANSFORM,

L
it is necessary merely to retain the vectors u 04 and the values pk .
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This is done in REDUCE by storing u04 in the k&h column of the

array c , and by retaining pil, in the array element d☯kl l

In APPLY, it is necessary to form the matrix

WQT

or

p(dpb4 . . . p(l)Apo . . . p(~-l)p(T)

( since (P(k))T = P(k) ) This is done in r. stepsl

A (1) = A

-’ Ah-> = p(k)A(k)p(k) f k = 1, ..,,r .

These similarity transformations are accomplished in the manner outlined

at the end of Section 1.

The procedure RACKTBA.NSFORM  performs the transformation of the

eigenvectors of the eigenproblem (1) according to (2).

The use of the parameter to1 in REDUCE is discussed in [7].

The problem of determining a good value for the parameter eps

in REDWE for the purpose of determining rank is rather difficult,

(cf C41).

16



.’ :I.
t

>I(.

I

L

L
L

YI
L
L
I
L
L
L
L
L
L
L
L
L
L

6. Numerical Properties

The stability of the eigensystem of a matrix with respect to

similarity transformations by elementary Hermitian matrices is

_discussed by Wilkinson in [lo].

*
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79 Test Results

These procedures were programmed and tested on the IBM System %0/67

at the Stanford Computation Center, Stanford, California.

lhng floating point arithmetiE  was used (14 hexadecimal-digit

fraction). Inner products were not acaumulated  in double precision.

To provide an example of the results produced by these procedures,

the following matrices were used:

A =
--.

B =

c =

m
1

-1

0

0

0

0

m

6

5
4

3
2

1

w

1

1

1

1

1

1

-1

2

-1

0

0

0

5

5
4

3

2

1

1

-1

1

-1

1

-1

0

-1

2

-1

0

0

1

18
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0

-1

2

-1

0

3

3

3

3
2

1

5
1

5
1

5

1

0

0

0

-1

2

-1

2

2
2

2

2

1

!

0

0

0

0

-1

2

~

1

1

1

1

1

1

I

t
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With eps = 310-14, REDUCE correctly determined that the

rank of C was 2 .

The following stationary values and vectors were then determined

by finding the eigensystem of the resulting generalized eigenproblem  (1):

Stationary values:\ 1.70039264847579,,-01

l.2378820232808010+oo

4.917601192610021,+00

9.27447751926161,,+00
.

Vectors: ='2.860853824845071,-01

2.8212428870531210-ol

1.55676307221979,,-02

-~.0968641815040610-o~

-3.0165301320670510-ol

-1.72437870554907,,-01

-4.9502265985641110-ol

3.9529211293239010-01

7.6842~01~1038981,-01

-8.92878392907869,,-01

-2.7340635324748710-ol

4*9758627997547810-01

-4.8964470076602910'01

2.21020'7491021'7410-02

5.72549998363964,,-01

4.49859712956573,,-01

-8~29052975979350,,-02

-4.71961787866790,,-01

4.83069132908663,,-01

-9.81662635257467,,-01

5.30528981364161,,-01

4.3400841444634310-Ol

In addition, for each vector x above,N
the vector fC was ccxnputed.

In each case, the value of the maximum element in this vector was less

in modulus than l.llo-15 .

19
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The eigensystems of the generalized eigenproblems arising in our

work were found using the procedures reducl and rebaka WI,

tred2 [7], and tq12 [l].
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