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Abstract

Let A be a real symretric matrix of order n , B a real

symetric positive definite matrix of order n, and C and nxp

matrix of rank r wwith r <p < n . W wish to deternine vectors x

for which

x| Ax / X BX

is stationary and CTx =6, the null vector. An algorithmis given
for generating a symetric eigensystem whose ei genval ues are the
stationary values and for determning the vectors x . ggyeral Algol

~

procedures are included.
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1. I ntroduction and Theoretical Backeround

Let A be a real symetric matrix of order n, B a real
symmetric positive definite matrix of order n , and C an nxp
matrix of rank r with r <p < n % \W wish to deternine vectors
x such that

xT Ax / x| Bx

is stationary and CJx =6, the null vector

By rearranging the colums of C, we may wite

wher e ir iIs an upper triangular matrix of order r, S is rx(p-r)
and QTQ =I . The matrix Q may be constructed as the product of =
Househol der transformations (cf. [3]).

Let

N

where y is a vector of the first r conponents of w and z consists

~

of the last (n-r) conponents of w. Thus

ﬁT,O y
T r ~
Cx = = 0
sT’o z
and hence
Y =60



whoQ A QTW / Wb QB QTW subject tow, =w,=. . . =w =0.

Let
T r‘Gll 1o T Fp Hpp
G=QAQ = , H=QBQ =
o q g, H
12 22 12 22
where G, ,H, are rxr matrices, and Go,Hy, are (m-rlx (n-r)

matrices. The matrices H and G are symmetric; His positive

definite, and H,, is positive definite. Indeed,

0< %'min(H) = >\'m:i.n(HE.’E) < %'max(HEQ) < }\'max(H>

Thus the stationary values we seek, are the eigenvalues of the matrix

equation

z (1)

Gop 2 = M Hyy Z

Since G,, and H,, are symretric and Hyp IS positive definite, we

2
“may solve (1) by using standard algorithns (cf. {6]). Finally, if

Gop 23 = N Hop g (i = 1,2,...,n-1) ,
t hen
: -
X4 T at | 25 ‘ (2)
|



Wen p =1, and B =I, a slightly different algorithm may be

used for conputing the stationary values. W assune

cIc =1 . (5)
Let

CP(X)=XTAX~NXTX+2LLXTC (%)

~ ~ o~ ~ o~

where (A,u) are Lagrange multipliers. Differentiating (4), we are

led to the equation
AX =« Ax + uc = 0 . (5)
Mul tiplying (5) on the left by "' and usi ng (3), we have

T
hoo i (6)

(
]
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Thus substituting (6) into (5), we have
P Ax = A\x
T 2 _
where P =1-cc’ . Note P~ = P so that
NPA) = x(PgA) = N(PAP)

The matrix PAP is symmetric and consequently one of the standard

-
met hods may be used for conputing its'eigenval ues.
It is easy to construct the matrix PAP using a device of WIKkinson [9].
Let
- K = PAP = (I - ceb)A(T - RﬁT)

=A—CWT--V\¢3T+ozccT s

~~ ~ew ~e

wher e




r~-

Then if

K

"
>
+
Q
b
+
o
[¢]

Therefore if

Kz. = N, 2. y
~l ~b L

t hen

X. = Pz, (i = 1,2,000,n) .

The vector ¢ is an eigenvector and the corresponding eigenval ue

~

is zero.
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2. Applicability

2.1 Testing for serial correlations

Let X be a given nxp matrix of rank r and y be a known
vector. The vector b is the least squares estimate of regression

vector so that

Iy - %, = nin

In many situations, it is desirable to consider the statistic

- T ‘T
d=2z" Az /z"z

~

where z = y-Xb , the residual vector, and Ais a given symetric

matri x. For

the statistic dis the serial correlation of |ag one. Note that

XIZ =0 . W wishto consider the distribution of d over all possible z .

Thus under a suitable transformation, we may wite



n-r _
wher e {%.i}_ N are the stationary val ues of 2T Az over sz =1
1= ~ o~

~

with XTz =6. The distribution of d is discussed in special cases

in[2].

2.2 Exponential fitting

: : m :
In many situations, we observe a sequence {zk} , and we wi sh
k=
: q 4
to determne parameters {aig, o’ {hi}, so that
1= =
z~a+ia7\.k (K = 1,2,...,m) (7)
k 7 o y 11 2
i=1
From(7), we note that {zk}i_l satisfies a difference equation of

the form

8%y 8% q .+t 8041 Zqo1 = Sk (k = g+1,...,m)

: : . qtl
wher e & 1s a random perturbation. The coefficients [a.l)_ 0
1=

determne the characteristic polynomial:

+1
A) = aQ q
p(N) = a N + a,h oo ta

Note p(1) = 0 by (7).

One procedure which may be used to estimate the coefficients of the

. oL . . . k
characteristic polynomal is the determ ne {ai}_ o so that
1=

m 2 .
€ = mn
k=g+1
+1 5 gtl
subject to the constraints & ay =1 and Z a, =0. In matrix
i= i=0



form we have the problem of determining a so that

W th

wher e

Thus the proEedure outlined in Section 1 may be used for determining a . A nore

sophisticated statistical model for determmining a is given in [8] by Osborne.

aTWTV\a = min.
a.Ta=l and e

'/
m-1’

’ ...,zl,zo

,...,22,21

.
*
L]

coey Zm-q_l

2.3 Sloshing frequencies

(with rigorous error bounds) for the sloshing frequencies of an ideal
fluid contained in a half-space with a circular or strip-like aperture.

The stationary values may be obtainednunerically by the method descri bed

I'n [5), Henrici et al. give a method for determning approxinations

in Section 1.

-

L
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3. Formal Paraneter List

3.1 Input to Procedure REDUCE

n nunber of rows of C

P number of colums of C .
tol a machi ne dependent constant equal to

eta/macheps, Wwhere eta is the smallest
positive real nunber representable
on the computer, and macheps is the
machi ne precision, the smallest ¢
such that 1+e > 1 .

eps a tolerance used in determning the
rank of C .
c[l:n,1:p] contains the matrix C to be reduced.

Qut put of procedure REDUCE

cl[l:n,l:r] together with a[l:r], contains the
details of the transformations which
reduce C to upper triangular form

d[1:r] see above;

T colum rank of C .

3.2 Input to procedure APPLY

n order of the matrix AB .

r nunber of simlarity transformations to
be perforned.
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df1l:r]
cll:n,1:7]

ab[l:n,1:n]

gh(l:n-r,l:n-r]

see output of procedure REDUCE.
see output of procedure REDUCE.

contains in its upper triangle the
details--of the symretric matrix AB .

contains in its upper triangle the
details of the synmetric matrix GH,
which is an n-r x n-r submatrix of
"the matrix obtained by applying the r
simlarity transformations contained
in dand c to AB .

3.3 Input to'-'procedure BACKTRANSFORM

af1:r]
cliin,1l:r]

z[1l:n-r,1:n-r]

nunber of rows in C.

nunmber of backtransformations to be
per f or med.

see output of procedure REDUCE.
see output of procedure REDUCE.

contains the matrix Z , the vectors to
be transforned.

Qut put of procedure BACKTRANSFORM

x[1:n,1l:n-r]

contains the matrix X obtained by
applying the r transfornations
contained in d and ¢ to the

n x(n-r) mtrix, the first r rows

of which are zero, and the last n-r , Z .

10
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L.  Algol Prograns

procedure reduce(n) data:(p,tol,eps) data and result:(c) result:(r,d);
val ue n,p,tol,eps; i nteger n,p,r;
real tol, eps; array c,d;

comment This procedure conputes the sequence of r Househol der

transformations necessary to reduce the nxp matrix C (n >p > 0)

to upper triangular form On input, c[l:n,1:p] contains the

colums of ¢. On output, c[l:n,l:r] and a[l:r] contain the

details of the transformations. r is the colum rank of C
begin integer i,j,k,m;

real h,f,g;

array sumsq[l:p];

comment Conpute the |lengths of the colums of Cto be used in
determning the necessary colum interchanges in the reduction;

for j:=1 step 1 until p do

begin h:=Q
for i:=1 step 1 until n_do h:=htc[i,jlxeli,il;
sumsq[j]:=h
end,
comment Now determne the transfornations;
for j:=1 step 1 until p do
begin r:=j;
hi=sumsq[jl; m=j;
for k:=j+1 step 1 until p do
if sumsq[k]>h t hen

begi N h:=sumsq[k];
m =k

end,

Af m £ § then

begin
comment | nterchange colums m and j;
sumsq[m]:=sumsq[j];

for i:=] step 1 until n do

11



begin g:=cli,jl;
cli,jle=cl[i,m];

cli,m]:=g

l

end
end;
comment Conpute the Househol der transformation necessary to
- reduce the jth colum of c;
h:=0;
for i:=j+1 step 1 until n do

>

h:=hteli, jlxeli,§];

comment If the jth colum of ¢ is already essentially reduced,
the transformation is skipped,

if h <tol then

begin atjl:=0; go to. skip end;

f:=c[j,j]; hi=h+fxT;

L g:=if £ > 0 then sqrt(h) else -sqrt(h);
d[j]:=h: =h+f Xg;

= clj,jl:=f+g;
for i:=j+1 step 1 until p do

| begin g: =0

for ki=j step 1 until n do
g:=g+clk, jIxelk,1];
g:=g/h;

for ki=j step 1 until n do

- clk,i]:=clk,i]-gxelk,j]
end i

L ski p:
h:=0;

comment Update the values in sunmsq and determ ne the nmodul us of
the largest element in the remaining matrix;

for i:=j+1 step 1 until p do

begi n sumsq[i}:=sumsq[il-c[j,ilxcl],1];
for k:=j+1 step 1 until n do

- if abs(c[k,i]) > h then h:=abs(c[k,i])

end i;

12




if h <eps then go to exit
end j;
exit:
end reduce;

procedure apply(n) data:(r,d,c,ab) result:(gh);
val ue n,r; integer n,r;
array d,c,ab,gh;
comment This procedure applies r orthogonal simlarity transformations
to the symmetric matrix AB. (His the (-1 x (-1 submatrix in the
| ower right hand corner of the resulting matrix. On input,
ab[1l:n,1:n] contains the upper triangle of AB, and c[l:n,1:r] and
d[l:r], the details of the transformations. On output,
gh[l:n-r,1:n-r] contains the upper triangle of GH The strict
| ower triangles of ab and gh are not used. The actual parameters
corresponding to ab and gh may be the same;
begin integer i,j,k; real f,g,h;
aflay];
for j:=1 step 1 until r do
begin h:=d[j];
if h £#0 then
begin f:=0

for i:= step 1 until n do

begin g:=0;
for ki=j step 1 until i do g:=g+ablk,ilx clk,jl;
for k:=i+l step 1 until n do g:=g+abli,k]x clk,jl;
wWi]:=g:=glh;
fi=f+eli,jl X @

end i

f:=f/(h+h);

for i:=j+1 step 1 until n do

begin wlil:=w[il-f x c[i,]];

for k:=j+1 step 1 until i do
ablk,i]:=ablk,i]-c[i,j] x wlk]-c[k,j] x wl[i]
end i

13
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end conditional

end |;
for i:=1 step 1 until n-r do.
for j =i step 1 until n-r do

ghli, jl:=ab[i+r, j+r]
end apply;

procedur e backtransform(n) data:(r,d,c,z) result:(x);
value n,r; integer n,r; array d,c,z,x;
comment This procedure applies r orthogonal transformations to the
nxn-r mtrix, the first r rons of which are zero, and the |ast
n-r, the matrix Z, to produce the matrix X On input,
z[1l:n-r,1l:n-r] contains Z, and d[l:r] and c[l:n,l:r], the details
of the transformations. On output, x[1l:n,l:n-r] contains X The
act ual paférret ers corresponding to x and z may be the sane;
begin real h,s;
i nteger 1i,J,k;
for j:=1 step 1 wntil n-r do
for i:=n step_ -1 until r+l do
x[i,j]:=zli-r,j];
for k:=r step -1 until 1 do
begin h:=d[k];
if h£0 then
for j:=1 step 1 until n-r do
begin s:=0;
for i:=k+tl step 1 until n do'

s:=stcli, k] xx[i,3];
s:=s/h

x[k,3]:=0;

for i:=k step 1 until n do

x[1,3]:=x[4,3]-s xcli,k]
end |
end k
end back-transform

1k



5. (Oganizational and Notational Details

The matrix Q defined in Section 1 is constructed in REDUCE as

the produce of

[3], we have

and

wher e

.\ have, then,

To recover the P(k) for use in the procedures APPLY and RACKTRANSFORM

r Househol der transformations. Using the notation in

c = (1)

(1) _ (k) (k)

2 _ (1 - Bku<k>u<k>T>

J

B = (s,(s, + 1))y

P S scx,

ol = (e (e + 1B
u%k) = ci(lko s i >k .

t hat

o - p(p(r-1) | (1)

it is necessary nerely to retain the vectors u(k)

15
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This is done in REDUCE by storing u(k) in the k-th colum of the
array ¢ , and by retaining 3}';1_ in the array element dlk] .

In APPLY, it is necessary to formthe matrix

oAt

or
p(T)p(r-1)  L(1),p(1) | plr-1)p(x)

(since (P(k))T - p®) ) This is done in r steps
AL = A

=) (), (k)

These simlarity transformations are acconplished in the nmanner outlined
at the end of Section 1.
The procedure BACKTRANSFORM performs the transfornmation of the
ei genvectors of the eigenproblem (1) according to (2).
The use of the paraneter tol in REDUCE is discussed in [7].
The problem of determning a good value for the paraneter eps
in REDUCE for the purpose of determining rank is rather difficult,

(cf [4]).

16



6.  Nunerical Properties

The stability of the eigensystemof a matrix with respect to
simlarity transformations by elenentary Hermtian matrices is

di scussed by WIkinson in [10].

17



7. Test Results

These procedures were programmed and tested on the |BM System 360/67
at the Stanford Conputation Center, Stanford, California.

Tong floating point arithmetic was used (14 hexadeci mal - di git
fraction). Inner products were not accumlated in double precision.

To provide an example of the results produced by these procedures,

the following matrices were used:

— -
1 -1 0 o 0 0
A2 -1 0 0 0
0 -1 2 -1 0 0

ATl 0 0 1 2 a1 o ’

o 0o 0 -1 2 -1
o o 0 0 -1 2

) -

B a
6 5 h 3 2 1
5 5 4 3 2 1
4 4 b 3 2 1

B=13 3 3 3 2 1 |°
2 92 2 2 2 1
1 1 1 1 1 1
i 1 8 5
1 -1 2 1
1 1 8 5
c={ 1 1 2 1

1 1 8
1 -1 2 1

18
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Wth eps = 510

rank of C was 2 .

-14%, REDUCE correctly deternined that the

The followi ng stationary values and vectors were then determ ned

by finding the eigensystem of the resulting generalized eigenproblem (1):

Stationary val ues:

1.700592648&757910-01

1. 2378820252808010+OO

u.9176011926100210+oo

9.27&#775192616110+oo

Vect or s: 2:86085582h8h507lo-01
2.8212&28870551210-01
1.5567650722197910-02

-1.09686h1815ouo6lo-01
-5.0165501520670510-01

-1.72&3787055&90710-01

_A.95022659856h1110-01
5.95292112932590, ,-01
7.68&2901310589810-01

-8.9287859290786910-01

-2.75uo65552u7u87lo-01
4.97586279975478, ,-01

-u.896hh7oo76602910-01
2.210207&910217&10-02
5.7254999836596k, -01
4.49859712956573, ,-OL

-8.29052975979350, ,=02

_h.7196178786679010-01

4.8506915290866510-01
-9.81662655257u6710-01
5.3052898136&16110-01
k. 340084 14LLE3Y3) (-0L
_1.01559811h2728210+oo

5.&765&22081112310-01

L T
In addition, for each vector x above, the vector 3£C was computed.

In each case, the value of the maximum elenment in this vector was |ess

i n nodul us than 1.110-15 )

19
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The eigensystens of the generalized eigenproblenms arising in our
work were found using the procedures reducl and rebaka [6],

tred2 [7], and tq£2 [1].
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