STATIONARY VALUES OF THE RATIO OF QUADRATIC FORMS SUBJECT TO LINEAR CONSTRAINTS

BY
GENE H. GOLUB
RICHARD UNDERWOOD

TECHNICAL REPORT NO. CS 142 NOVEMBER, 1969

COMPUTER SC IENCE DEPARTMENT. School of Humanities and Sciences STANFORD UN IVERS ITY

Gene H. Golub *
Richard Underwood

* This author was in part supported by Atomic Energy Commission.

```
    Let A be a real symmetric matrix of order n , B a real
symmetric positive definite matrix of order n , and C and nxp
matrix of rank r with r < p < n . We wish to determine vectors x
for which
\[
x^{T} A x / \underset{\sim}{x} B x
\]
is stationary and \(C^{T} \underset{\sim}{x}=\theta\), the null vector. An algorithm is given for generating a symmetric eigensystem whose eigenvalues are the stationary values and for determining the vectors x . Several Algol procedures are included.
```


1. Introduction and Theoretical Background

Let A be a real symmetric matrix of order n, B a real symmetric positive definite matrix of order n, and C an $n \times p$ matrix of rank r with $r<p<n:$ We wish to determine vectors x such that

$$
x^{T} A x / x^{T} B x
$$

is stationary and $C^{T} \underset{\sim}{x}=\underset{\sim}{\theta}$, the null vector.
By rearranging the columns of C, we may write

$$
Q Q C=\left[\begin{array}{c|c}
\tilde{R}_{r} & S \\
\hline 0 & 0
\end{array}\right]
$$

where \tilde{R}_{r} is an upper triangular matrix of order r, S is $r x(p-r)$, and $Q^{T} Q=I$. The matrix Q may be constructed as the product of r Householder transformations (cf. [3]).

Let

$$
x=Q^{T} w=Q^{T}\left[\frac{\underset{\sim}{y}}{\underset{\sim}{z}}\right]
$$

where y is a vector of the first r components of w and z consists of the last ($n-r$) components of w. Thus

$$
C^{T} \mathrm{x}=\left[\begin{array}{c|c}
\tilde{\mathrm{R}}_{r}^{T} & 0 \\
\hline \mathrm{~S}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\underset{\sim}{\mathrm{y}} \\
\underset{\sim}{z}
\end{array}\right]=\underset{\sim}{\theta}
$$

and hence

$$
\mathrm{Y}=\theta
$$

Let

$$
G=Q A Q^{T}=\left|\begin{array}{ll}
G_{11} & G_{12} \\
G_{12}^{T} & G_{22}
\end{array}\right|, \quad H=Q B Q^{T}=\left|\begin{array}{ll}
H_{11} & H_{12} \\
H_{12} & H_{22}
\end{array}\right|
$$

where G_{11}, H_{11} are exr matrices, and G_{22}, H_{22} are (n-r)x (nr) matrices. The matrices H and G are symmetric; H is positive definite, and H_{22} is positive definite. Indeed,

$$
0<\lambda_{\min }(H) \leq \lambda_{\min }\left(H_{22}\right) \leq \lambda_{\max }\left(\mathrm{H}_{22}\right) \leq \lambda_{\max }(H)
$$

Thus the stationary values we seek, are the eigenvalues of the matrix equation

$$
\begin{equation*}
\mathrm{G}_{22} \underset{\sim}{z}=\lambda \mathrm{H}_{22} \underset{\sim}{z} \tag{1}
\end{equation*}
$$

Since G_{22} and H_{22} are symmetric and H_{22} is positive definite, we may solve (1) by using standard algorithms (cf. [6]). Finally, if

$$
G_{22} \underset{\sim}{z}=\lambda_{i} H_{22} \underset{\sim}{z} \quad(i=1,2, \ldots, n-r)
$$

then

$$
{\underset{\sim}{x}}_{i}=Q^{T}\left|\begin{array}{c}
0 \tag{2}\\
\cdots \cdots \\
I_{n-r}
\end{array}\right| \underset{\sim}{z}
$$

 used for computing the stationary values. We assume

$$
\begin{equation*}
\underset{\sim}{c}{\underset{\sim}{c}}_{c}^{T}=1 \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\varphi(x)=x^{T} \underset{\sim}{A x}-\lambda \underset{\sim}{x} \underset{\sim}{x}+2 \mu \underset{\sim}{x} \underset{\sim}{T} \tag{4}
\end{equation*}
$$

where (λ, μ) are Lagrange multipliers. Differentiating (4), we are led to the equation

$$
\begin{equation*}
\underset{\sim}{A x}-\lambda x+\underset{\sim}{\mu}=\theta \text {. } \tag{5}
\end{equation*}
$$

Multiplying (5.) on the left by ${\underset{\sim}{c}}^{T}$ and using (3), we have

$$
\begin{equation*}
\mu=-{\underset{\sim}{c}}^{T} A x \tag{6}
\end{equation*}
$$

Thus substituting (6) into (5), we have

$$
\mathrm{PAx}=\lambda \mathrm{x}
$$

where $P=I-\underset{\sim}{c}{ }_{\sim}^{T}$, Note $P^{2}=P$ so that

$$
\lambda(P A)=\lambda\left(P^{2} A\right)=\lambda(P A P)
$$

The matrix PAP is symmetric and consequently one of the standard methods may be used for computing its'eigenvalues.

It is easy to construct the matrix PAP using a device of Wilkinson [9]. Let

$$
\begin{aligned}
K=P A P & =\left(I-c c^{T}\right) A\left(I-\underset{\sim}{c} c^{T}\right) \\
& =A-\underset{\sim}{C W}-\underset{\sim}{W} C^{T}+\alpha \underset{\sim}{c} c^{T}
\end{aligned}
$$

where

$$
\alpha=\underset{\sim}{c}{ }^{T} A c \quad \text { and } \quad \underset{\sim}{w}=\underset{\sim}{\mathrm{w}}
$$

Then if

$$
\begin{aligned}
& \mathrm{U}=\frac{\mathrm{a}}{2} \underset{\sim}{c}-\underset{\sim}{w} \\
& \mathrm{~K}=\mathrm{A}+\underset{\sim}{c u^{T}}+\underset{\sim \sim \sim}{u c^{T}}
\end{aligned}
$$

Therefore if

$$
\underset{\sim}{K} \underset{i}{ }=\underset{\sim}{\lambda} \underset{\sim}{z},
$$

then

$$
\underset{\sim}{x_{i}}={\underset{\sim}{x}}_{i} \quad(i=1,2, \ldots, n)
$$

The vector $\underset{\sim}{c}$ is an eigenvector and the corresponding eigenvalue is zero.

2. Applicability

2.1 Testing for serial correlations

Let X be a given $n x p$ matrix of rank r and y be a known vector. The vector b is the least squares estimate of regression vector so that

$$
\|\underset{\sim}{y}-\underset{\sim}{x b}\|_{2}=\min .
$$

In many situations, it is desirable to consider the statistic

$$
\text { - } \quad d=z^{T} \underset{\sim}{A} z / \underset{\sim}{z} \underset{\sim}{z}
$$

where $\underset{\sim}{z}=\underset{\sim}{y}-X_{\sim}^{D}$, the residual vector, and A is a given symmetric matrix. For

$$
\left.A=\left\lvert\, \begin{array}{cccccc}
1 & -1 & & & & \\
& & -1 & & \\
-1 & 2 & 1 & 1 & & \\
& 1 & 1 & & \\
& & & & & \\
& & & & & \\
& & & & 1 & 1
\end{array}\right.\right]
$$

the statistic d is the serial correlation of lag one. Note that $X^{T} z=\theta$. We wish to consider the distribution of d over all possible z. Thus under a suitable transformation, we may write

$$
d=\sum_{i=1}^{n-r} \lambda_{i} \xi_{i}^{2} / \sum_{i=1}^{n-r} \xi_{i}^{2}
$$

where $\left\{\lambda_{i}\right\}_{i=1}^{n-r}$ are the stationary values of $\underset{\sim}{\underset{\sim}{T}}$ (z over $\underset{\sim}{\underset{\sim}{z}} \underset{\sim}{\mathrm{~T}}=1$ with $X^{T} \underset{\sim}{z}=\underset{\sim}{\theta}$. The distribution of d is discussed in special cases in [2].

2.2 Exponential fitting

In many situations, we observe a sequence $\left\{z_{k}\right\}_{k=1}^{m}$, and we wish to determine parameters $\left\{a_{i} 3_{i=0}^{q},\left\{\lambda_{i}\right\}_{i=1}^{q}\right.$ so that

$$
\begin{equation*}
z_{k} \approx \alpha_{0}+\sum_{i=1}^{q} \alpha_{i} \lambda_{i}^{k} \quad(k=1,2, \ldots, m) \tag{7}
\end{equation*}
$$

From (7), we note that $\left\{\mathrm{z}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\mathrm{m}}$ satisfies a difference equation of the form

$$
a_{0} z_{k} \quad a_{1} z_{k-1} \quad . \cdot+a_{q+1} z_{k-q-1}=\epsilon_{k} \quad(k=q+1, \ldots, m)
$$

where ϵ_{k} is a random perturbation. The coefficients $\left[a_{i}\right)_{i=0}^{q+1}$ determine the characteristic polynomial:

$$
p(\lambda)=a_{0} \lambda^{q+1}+a_{1} \lambda^{q}+\ldots+a_{q+1}
$$

Note $p(1)=0$ by (7).
One procedure which may be used to estimate the coefficients of the characteristic polynomial is the determine $\left\{a_{i}\right\}_{i=0}^{k}$ so that

$$
\sum_{k=q+1}^{m} \epsilon_{k}^{2}=\min .
$$

subject to the constraints $\sum_{i=0}^{q+1} a_{i}^{2}=1$ and $\sum_{i=0}^{q+1} a_{1}=0$. In matrix
form, we have the problem of determining a so that

$$
{\underset{\sim}{a}}^{T} W^{T} W a=\min
$$

with

$$
{\underset{\sim}{a}}^{T} \underset{\sim}{a}=1 \quad \text { and } \quad{\underset{\sim}{e}}^{T} \underset{\sim}{a}=0
$$

where

$$
w=\left[\left.\begin{array}{cc}
z_{q+1} & , \ldots, z_{1}, z_{0} \\
z_{q+2} & , \ldots, z_{2}, z_{1} \\
\vdots & \vdots \\
z_{m}, z_{m-1}, \ldots, z_{m-q-1}
\end{array} \right\rvert\,, \underset{\sim}{a}=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{q+1}
\end{array}\right], \underset{\sim}{e}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
i
\end{array}\right]\right.
$$

Thus the procedure outlined in Section 1 may be used for determining a . A more sophisticated statistical model for determining a is given in [8] by Osborne.
2.3 Sloshing frequencies

In [5], Henrici et al. give a method for determining approximations (with rigorous error bounds) for the sloshing frequencies of an ideal fluid contained in a half-space with a circular or strip-like aperture. The stationary values may be obtainednumerically by the method described in Section 1.

3. Formal Parameter List

3.1 Input to Procedure REDUCE

number of rows of C.

P number of columns of C .
tol a machine dependent constant equal to eta/macheps, where eta is the smallest positive real number representable on the computer, and macheps is the machine precision, the smallest ϵ such that $I+\epsilon>1$.
eps
$c[1: n, 1: p]$ contains the matrix C to be reduced. Output of procedure REDUCE
$c[1: n, 1: r] \quad$ together with $d[1: r]$, contains the details of the transformations which reduce C to upper triangular form. see above; column rank of C .
3.2 Input to procedure APPLY
order of the matrix $A B$.
number of similarity transformations to be performed.

```
d[1:r] see output of procedure REDUCE.
c[I:n,I:\mathbf{r}] see output of procedure REDUCE.
ab[I:n,I:n] contains in its upper triangle the
details--of the symmetric matrix AB .
gh[l:n-r,l:n-r] contains in its upper triangle the
details of the symmetric matrix GH ,
which is an n-r x n-r submatrix of
'the matrix obtained by applying the r
similarity transformations contained
in d and c to AB.
```


3.3 Input to'-'procedure BACKTRANSFORM

```
n number of rows in \(C\).
r number of backtransformations to be
performed.
d[I:r] see output of procedure REDUCE.
c[l:n,l:r] see output of procedure REDUCE.
z[l:n-r,l:n-r] contains the matrix Z , the vectors to
be transformed.
Output of procedure BACKTRANSFORM
\(x[1: n, I: n-r] \quad\) contains the matrix \(X\) obtained by applying the \(r\) transformations contained in \(d\) and \(c\) to the \(n \times(n-r)\) matrix, the first \(r\) rows of which are zero, and the last \(n-r\), \(Z\).
```

```
procedure reduce(n) data:(p,tol,eps) data and result:(c) result:(r,d);
value n,p,tol, eps; integer n,p,r;
real tol, eps; array c,d;
comment This procedure computes the sequence of r Householder
    transformations necessary to reduce the nxp matrix C (n > p > 0)
    to upper triangular form. On input, c[1:n,1:p] contains the
    columns of c. On output, c[I:n,I:r] and d[I:r] contain the
    details of the transformations. r is the column rank of C;
begin integer i,j,k,m;
    real h,f,g;
    array sumsq[l:p];
    comment Compute the lengths of the columns of C to be used in
        determining the necessary column interchanges in the reduction;
    for j:=1 step 1 until p do
    begin h:=0;
    for i:=1 step 1 until n do h:=h+c[i,j]xc[i,j];
    sumsq[j]:=h
    end;
    comment Now determine the transformations;
    for j:=1 step 1 until p do
    begin r:=j;
    h:=sumsq[j]; m:=j;
    for k:=j+1 step 1 until p do
        if sumsq[k]>h then
        begin h:=sumsq[k];
        m:=k
    end;
    if m }=j\mathrm{ then 
        begin
        comment Interchange columns m and j;
        sumsq[m]:=sumsq[j];
        for i:=j step 1 until n do
```

```
    begin g:=c[i,j];
        c[i,j]:=c[i,m];
        c[i,m]:=g
    end
end;
comment Compute the Householder transformation necessary to
    reduce the jth column of c;
h:=0;
for i:=j+l step 1 until n do
h:=h+c[i,j] xc[i,j];
comment If the jth column of c is already essentially reduced,
    the transformation is skipped;
if h < tol then
begin d[j]:=0; go to_skip end;
f:=c[j,j]; h:=h+fxf;
g:=if f \geq0 then sqrt(h) else -sqrt(h);
d[j]:=h:=h+fXg;
c[j,j]:=f+g;
for i:=j+1 step 1 until p do
begin g:=0;
    for k:=j step 1 until n do
    g:=g+c[k,j]xc[k,i];
    g:=g/h;
    for k:=j step l until n do
    c[k,i]:=c[k,i]-gxc[k,j] .
end i;
skip:
h:=0;
comment Update the values in sumsq and determine the modulus of
    the largest element in the remaining matrix;
for i:=j+l step 1 until p do
begin sumsq[i]:=sumsq[i]-c[j,i]xc[j,i];
    for k:=j+l step 1 until n do
    if abs(c[k,i]) > h then h:=abs(c[k,i])
end i;
```

```
        if h < eps then go to exit
    end j;
exit:
end reduce;
procedure apply(n) data:(r,d,c,ab) result:(gh);
value n,r; integer n,r;
array d,c,ab,gh;
comment This procedure applies r orthogonal similarity transformations
    to the symmetric matrix AB. GH is the (n-r) \times (n-r) submatrix in the
    lower right hand corner of the resulting matrix. On input,
    ab[1:n,1:n] contains the upper triangle of AB, and c[1:n,I:r] and
    d[l:r], the details of the transformations. On output,
    gh[l:n-r,l:n-r] contains the upper triangle of GH. The strict
    lower triangles of ab and gh are not used. The actual parameters
    corresponding to ab and gh may be the same;
begin integer i,j,k; real f,g,h;
W[五aq];
for j:=1 step l until r do
begin h:=d[j];
    if h }=0\mathrm{ then
    begin f:=0;
        for i:=j step 1 until n do
        begin g:=0;
            for k:=j step 1 until i do g:=g+ab[k,i]\timesc[k,j];
                for k:=i+1 step 1 until n do g:=g+ab[i,k]\timesc[k,j];
                w[i]:=g:=g/h;
                f:=f+c[i,j] x g
            end i;
        f:=f/(h+h);
        for i:=j+l step 1 until n do
        begin w[i]:=w[i]-f x c[i,j];
            for k:=j+1 step 1 until i do
            ab[k,i]:=ab[k,i]-c[i,j] x w[k]-c[k,j] x w[i]
            end i
```

```
        end conditional
    end j;
    for i:=1 step 1 until n-r do.
    for j :=i step l until n-r do
    gh[i,j]:=ab[i+r,j+r]
end apply;
procedure backtransform(n) data:(r,d,c,z) result:(x);
value n,r; integer n,r; array d,c,z,x;
comment This procedure applies r orthogonal transformations to the
    n X n-r matrix, the first r rows of which are zero, and the last
    n-r, the matrix Z, to produce the matrix X. On input,
    z[l:n-r,l:n-r] contains Z, and d[l:r] and c[l:n,l:r], the details
    of the transformations. On output, x[1:n,l:n-r] contains X. The
    actual parameters corresponding to x and z may be the same;
begin real h,s;
    integer i,j,k;
    for j:=1 step 1 until n-r do
    for i:=n step_ -1 until r+1 do
    x[i,j]:=z[i-r,j];
    for k:=r step -1 until 1 do
    begin h:=d[k];
        if h}=0\mathrm{ then
        for j:=1 step l until n-r do
        begin s:=0;
            for i:=k+1 step l until n do'
            s:=s+c[i,k]\timesx[i,j];
            s:=s/h
            x[k,j]:=0;
            for i:=k step 1 until n do
            x[i,j]:=x[i,j]-s xc[i,k]
        end j
    end k
end back-transform;
```

5. Organizational and Notational Details

The matrix Q defined in Section 1 is constructed in REDUCE as the produce of r Householder transformations. Using the notation in [3], we have

$$
\begin{aligned}
& c=C^{(1)} \\
& C^{(k+1)}=P^{(k)_{C}(k)} \quad, \quad k=1, \ldots, r
\end{aligned}
$$

and

$$
p^{(k)}=\left(I-\beta_{k} u^{(k)} u^{(k)^{T}}\right)
$$

where

$$
\begin{aligned}
& s_{k}^{2}=\sum_{i=k}^{n}\left(c_{i k}^{(k)}\right)^{2} \\
& \beta_{k}=\left(s_{k}\left(s_{k}+\left|c_{k k}^{(k)}\right|\right)\right), \\
& u_{1}^{(k)}=0 \quad, \quad i<k, \\
& u_{k}^{(k)}=\operatorname{sgn}_{k}^{\left(c_{k k}^{(k)}\right)\left(s_{k}+\left|c_{k k}^{(k)}\right|\right)} \\
& u_{i}^{(k)}=c_{i k}^{(k)}, \quad i>k
\end{aligned}
$$

.We have, then, that

$$
Q=P^{(r)_{P}(r-1)} \ldots P^{(I)}
$$

To recover the $P^{(k)}$ for use in the procedures APPLY and RACKTRANSFORM, it is necessary merely to retain the vectors $u(k)$ and the values β_{k}.

This is done in REDUCE by storing $u^{(k)}$ in the k-th column of the array c, and by retaining β_{k}^{-1} in the array element $d[k]$. In APPLY, it is necessary to form the matrix

$$
Q A Q^{T}
$$

or

$$
P^{(r)_{P}(r-1)} \ldots P^{(1)} A P P^{(1)} \ldots P^{(r-1)_{P}(r)}
$$

(since $\left.\left(P^{(k)}\right)^{T}=P^{(k)}\right)$. This is done in r steps

$$
\begin{aligned}
& { }_{A}^{(1)}=A \\
& A^{(k+1)}=P^{(k)_{A}(k)_{P}(k) \quad, \quad k=1, \ldots, r .}
\end{aligned}
$$

These similarity transformations are accomplished in the manner outlined at the end of Section 1 .

The procedure BACKTRANSFORM performs the transformation of the eigenvectors of the eigenproblem (1) according to (2).

The use of the parameter tol in REDUCE is discussed in [7].
The problem of determining a good value for the parameter eps in REDUCE for the purpose of determining rank is rather difficult, (cf [4]).

6. Numerical Properties

The stability of the eigensystem of a matrix with respect to similarity transformations by elementary Hermitian matrices is discussed by Wilkinson in [10].

7. Test Results

These procedures were programmed and tested on the IBM System 360/67 at the Stanford Computation Center, Stanford, California.

Iong floating point arithmetic was used (14 hexadecimal-digit fraction). Inner products were not accumulated in double precision.

To provide an example of the results produced by these procedures, the following matrices were used:

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrrr}
1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right] \\
& B=\left[\begin{array}{rrrrrr}
6 & 5 & 4 & 3 & 2 & 1 \\
5 & 5 & 4 & 3 & 2 & 1 \\
4 & 4 & 4 & 3 & 2 & 1 \\
3 & 3 & 3 & 3 & 2 & 1 \\
2 & 2 & 2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \\
& C=\left[\begin{array}{rrr}
1 & 1 & 8 \\
1 & -1 & 2 \\
1 & 1 & 8 \\
1 & -1 & 2 \\
1 & 1 & 1 \\
1 & -1 & 2 \\
1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

With eps $=3_{10}-14$, REDUCE correctly determined that the rank of C was 2 .

The following stationary values and vectors were then determined by finding the eigensystem of the resulting generalized eigenproblem (1):

$$
\begin{array}{ll}
\text { Stationary values: } & 1.70039264847579_{10}-01 \\
& 1.23788202328080_{10}+00 \\
& 4.91760119261002_{10}+00 \\
& 9.27447751926161_{10}+00
\end{array}
$$

$$
\begin{array}{rll}
\text { Vectors: } & 2.86085382484507_{10^{-01}} & -4.89644700766029_{10^{-01}} \\
& 2.82124288705312_{10^{-01}} & 2.2102074910217_{14_{10}}-02 \\
& 1.55676307221979_{10^{-02}} & 5.72549998363964_{10^{-01}} \\
& -1.09686418150406_{10^{-01}} & 4.49859712956573_{10^{-01}} \\
& -3.01653013206705_{10^{-01}} & -8.29052975979350_{10^{-02}} \\
& -1.72437870554907_{10^{-01}} & -4.71961787866790_{10^{-01}}
\end{array}
$$

$$
-4.95022659856411_{10^{-01}} \quad 4.83069132908663_{10^{-01}}
$$

$$
3.95292112932390_{10}-01 \quad-9.81662635257467_{10^{-01}}
$$

$$
7.68429013103898_{10^{-01}} \quad 5.30528981364161_{10^{-01}}
$$

$$
-8.92878392907869_{10^{-01}} \quad 4.3400841444634310^{-01}
$$

$$
-2.73406353247487_{10^{-01}}-1.01359811427282_{10}+00
$$

$$
4.97586279975478_{10^{-01}} \quad 5.47654220811123_{10^{-01}}
$$

In addition, for each vector $\underset{\sim}{x}$ above, the vector $x^{T} C$ was computed. In each case, the value of the maximum element in this vector was less in modulus than $1.1_{10^{-15}}$.

The eigensystems of the generalized eigenproblems arising in our work were found using the procedures reducl and rebaka [6], tred2 [7], and tql2 [1].

Acknowledgement

The authors are very pleased to acknowledge the very helpful comments of Professors P. Henrici, W. Kahan, and I. Olkin.
[I] H. Bowdler, R. S. Martin, C. Reinsch, and J. H. Wilkinson, "The Q,R and QL algorithms for symmetric matrices", Numerische Mathematik 11, pp. 293-306 (1968).
[2] J. Durbin and G. S. Watson, "Testing for serial correlation in least squares regression. $I^{\prime \prime}$, Biometrika, vol. 37 (1950), pp. h-09-428.
[3] G. H. Golub, "Numericalmethods for solving linear least squares problems", Numerische Mathematik 7, pp. 206-216 (1965).
[4] G. H. Golub and W. Kahan, "Calculating the singular values and pseudoinverse of a matrix", J. SIAM. Numer. Anal., Ser. B, pp. 205-224.
[5] P. Henrici, B. A. Troesch and L. Wuytack, "Sloshing frequencies for a half-space with circular or strip-like aperture", ZAMP (to appear).
[6] R. S. Martin and J. H. Wilkinson, "Reduction of the symmetric eigenproblem $A x=\lambda B x$ and related problems to standard form", Numerische Mathematik 11, pp.'99-110 (1968).
[7] R. S. Martin, C. Reinsch, and J. H. Wilkinson, "Householder\% tridiagonalization of a symmetric matrix", Numerische Mathematik 11, pp. 181-195 (1968).
[8] M. R. Osborne, "A method for fitting exponentials to data", Technical Report No. 31, May, 1969, The Australian National University, Canberra, A. C. T.
[9] J. H. Wilkinson, "Householder\% method for the solution of the algebraic eigenproblem", Computer J., vol. 3 (1960), 'pp. 23-27.
[10] J. H. Wilkinson, "Error analysis of transformations based on the use of matrices of the form I- $2 w{ }^{H}$ ", Error in Digital Computation, vol. ii, L. B. Rall, ed., John Wiley and Sons, Inc., New York, 1965, pp. 77-101.

stationary values

eigenvalues
(Householder -trensformations)
matrices

