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Abstract

It is proved that in euclidean n-space the maxinum M(p) and
mnimm nm(p) of a fixed positive definite quadratic polynomal Q
on spheres with fixed center are both convex functions of the radius g
of the sphere. In the proof, which uses elementary calculus and a
result of Forsythe and Golub, n'(p) and M'(p) are shown to exist
and lie in the interval [2}‘1’2)&1] , where ), are the eigenval ues of

the quadratic formof Q. Hence m"(p) > 0 and M'(p) > 0 .
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sSummary
Let A be a given symretric, nonsingular matrix of real elements

and order n . Let b be a given colum vector of n real elenents.

For each real columm n-vector x , the nonhonbgeneous quadratic polynom al
T
a(x) = (x-b)" A(x-b)

(T denotes transpose) is a real nunber. Let N<ShS. oo SN be
the (necessarily) real eigenvalues of A . Let m(p) be the m ni num of
Q(x) on the sphere g: {x: x = p?} , and let M(p) be the maxi mum
of Qx) on Sp. M J.D. Powel | asked the author whether nm(p) is a
convex function of p when Ais positive definite. An affirmative

answer is given by the theorem

(1) Theorem |f Ais positive definitei.e., if O <)\l), t hen both

m(p) ___ and areM{pivex functions of p, for all p >0 .

Theorem (1) will follow fromthe followng result:

(2) Theorem Let A be_any nonsingular matrix. Then for p >0,

the second derivatives n'(p) and M'(p) both exist, and

(3) m' (p) > 2, and M'(p) > 2x, .

Equal ity occurs in (3) if and only if Ab = Ab . Moreover,

(4) m'(p) <@n, and M'(p) < A

and equality occurs in (4) if and only if Ab = AD -
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Revi ew of Previous Wrk

The proof of Theorem (2) is based on techniques devel oped in Forsythe

. and Golub [1], which dealt only with the case p =1 . The relevant
‘ results of [1] are now summarized and extended to general p .
-
Let {ul,...,un} be an orthonormal real set of eigenvectors of A,
L with Au, = 7\.11.1(i =1l,...,n) . Let b= Zbiui . For any vector x
. in Sp at which Qx) is stationary with respect to Sp , there is a real
1
— nunber A with
E
o (5) A(x-b) = Ax

(6) Kx = pl

(7) x, =

so that (6) becones

i
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For each given value of p >0, equation (8) deternines from2 to 2n

~ real values of A . For each A so deternmined, equation (5)determines one
i or more vectors (if all b, #0 , then X i's uni que). For any o B
[
we have
L A
(9) ox™) = £\
E
- wher e
L
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s & b
= (10) f(hy = "y —=
1=1 (A -N)
. 1
-
Now Q(x) is stationary with respect to Sp at anyx7\. For given p ,

i | et A= AL(p> and Ay = AR(p) be the smallest resp. largest val ues
( of A satisfying equation (8). Theorem (4.1) of [1] states that f(AL)
L and f(AR) are the minimumresp. maxi mum val ues of Qx) on Sp
4 Mich of [1] was devoted to the singular cases where sone b, = 0 .

For the present investigation, where we are interested only in the
|
o values of Qx) , we sinply omt fromthe sums (8)and (10) all terms

W th b, =0, and reduce n, if necessary. Having done that, it is then

clear from (8) that, for any p ,

(11) AL <N and A < AR )

r— r—— r

Thi s concludes the necessary summary of [1].

As a digression, the author notes that the main theorems (2.7) and

—

(4.1) of [1] were proved in [1] by studying £(a) and g(A) for conplex
g values of A . In late 1965, Professor W Kahan [unpublished] showed us
- how to prove those theorens more sinply, using only real values of \.
C

Proof of Theorem (2).
— . Wth the above apparatus our problemis reduced to an exercise in the

differential calculus. For each p > 0 we deternmine a unique Lagrange
- miltiplier » = A(p) from (8)-- either the minimal A_ or mximl A .
. For ease of exposition, suppose A(p) = A . Then the function

(12) n(p) = £(p))
-
L

3



is determined from (10). Since £(3\) and g(A) are analytic for

A< A the function m(p) has derivatives of all order. W shall

l J
determine nf'(p) by calculus. To sinplify some expressions, we

introduce the abbreviations

2.2
n )\ibi

(13) o = ) 5 (> = 2,3 1),
i=1 (xi—x)

Differentiating (10) and sinplifying, we find:

df  _ .
(l)-l-) EX = 27\&3 5
- >
d°f
(15) — =20, + 6K\
d}\e 3 i

Now equation (8)states that, when A =n(p),

(16) o, = p’

Differentiating (8)twice with respect to p yields

dA
(17) 3 % P
2 2
: d A d)
- (18) -———dp2 o+ d?p(—-—’,_) @ =1 .

Sol ving (17) and (18) in turn, we find

(19) 4 . e
dp 065
2
(20) d27\ - 1 P %
S5 s - ——
dp 3 a5
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Now, by the chain rule,

dm _ df | dA
dp T da dp ’
and
&“n aer Ay 2 df dgx
(21) =2 -2 52
dp dn P dp

Ve now substitute into (21) the expressions (14), 15), (19), and (20).

Ve find that
2
2 2 3p @
1" dm n 9_ 1 )-{-
(22) m(p)=—§=(¢a + 66 ) + 2, =— -
3 L 3\
Hence
1 2 1
: m'(p) = A + g‘_g = & (7\045 + ae) , by (16).
"3
Si npl i fying,
3
n A.b
1 1 i1
_..m"(p) = = or
2 % {5 (xi-x)5
1 n
(23)  Fu'(p) = Y
i=1
Formula (23) is the end of our calculus exercise. Init, A is

deternined from solving (8). Note by (11) that the factors (A.l-A>5 al |

have the sane sign for i =1, 2,..., n, whether A=A or A= Ap e

Hence —é—m"(p) is a weighted average with positive weights of the {%i% .
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It follows that %m"(p)?_)\l , With equality only when all A in (23)

are equal to A, ,i.e., if bi =o0for a, >n . This proves (3),
and (4) is proved anal ogously, This concludes the proof of Theorem (2).

It would be desirable to have a simple geonetrical proof.

What if Ais singular?

If Ais singular, that is, if sone xizo,the situation is
sonewhat nore conplicated, just as the case where sone A.p. =0 is
conplicated in [1]. Theorem (2) fails to hold for semdefinite matrices,

because m"(p) may not exist for some p, as the following exanple shows:

(24) Exanple.=" For n=2let @Q(x)= (x2-1)2 .. X = (Xl’XQ)T .
Then

m(p) =

sq M (1) does not exist.

| Ap =0, the Lagrange multiplier remains at A = 0 for all

sufficiently large p .

Theorem (1) can easily be extended to semidefinite matrices by

continuity. W have

(25) Theorem If A is positive semidefinite (i.e., if 0 <N ),

then both n(p) and Mp) are convex functions of p for p >0 .

In proof, we note that m(p) and Mp) are continuous functions of
the elements of A . If Ais semdefinite, it can be approxinated by a
definite matrix Ag , for which m, and M, are convex, with |a-a,|
Letting € -~ 0, we find that m= lim m, and M= lim M, are convex.

|<e.
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