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Abstract

It is proved that in euclidean n-space the maximum M(P) and

minimum m(p) of a fixed positive definite quadratic polynomial Q

on spheres with fixed center are both convex functions of the radius p

of the sphere. In the proof, which uses elementary calculus and a

result of Forsythe and Golub, m" (p > and M?(p) are shown to exist

L
._ and lie in the interval [2A1,2AnI  , where  Ai are the eigenvalues of

t-he quadratic form of Q . Hence m"(p) > 0 and M"(p) > 0 .
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S,wv"ary

Let A be a given symmetric, nonsingular matrix of real elements

and order n . Let bV be a given column vector of n real elements.

For each real column n-vector x , the nonhomogeneous quadratic polynomial

Q(x) = (x-b)T A(x-b)

(T denotes transpose) is a real number. Let Al 5 A2 2 . . . 5 A, be

the (necessarily) real eigenvalues of A . Let m(p) be the minimum of

.- Q(x)
2on the sphere S = [x: xTx = p ] , and let M(P) be the maximum

P
of Q(x) on S .

P
M. 5. D. Powell asked the author whether m(p) is a

convex function of p when A is positive definite. An affirmative

answer is given by the theorem:

(1) Theorem. If A is positive definite i.e., if 0 < Al) , then both

m(p) and M(p)are convex functions of p , for all p > 0 .

Theorem (1) will follow from the following result:

(2) Theorem. Let A be any nonsingular matrix. Then for e > 0 ,

e the second derivatives m" (p > and W(p) both exist, and

(3) r-r-2  (p> > 2h, and M"(p) 2 2h, .

Equality occurs in (3) if and only if Ab = $b . Moreover,

(4) > 5 2h,

and equality occurs in (4) if and only if Ab = hnb .
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Review of Previous Work

., The proof of Theorem (2) is based on techniques developed in Forsythe

t and Golub [l], which dealt only with the case p = 1 . The relevant

I:

L
results of [l] are now summarized and extended to general p .

Let (u,,...,u,} be an orthonormal real set of eigenvectors of A ,
/

i
with Aui = A.u. (i = l,...,n) .1 1 Let b = c biui . For any vector x

i

in S
P

at which Q(x) is stationary with respect to S
P

, there is a real

number A with

i
.-

L

L

L

--. T 2
xx=p .

Letting x = c xiui , we find from (5) that

(7)

so that (6) becomes

L
(8)

A(x-b) = Ax

x.b.
Y

t
i

.
Ikm

For each given value of p > 0 , equation (8) determines from 2 to 2n

ireal values of A . For each h so determined, equation (5) determines one

or more vectors xh (if all bi f: 0 , then xh is unique). For any Xh Y

we have

L (9) Q(& = f(h) Y

where
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(10) f(h) = h2 E
i=l (h,-7J2

.

Now Q(x) is stationary with respect to S at any .Xh
P

For given p ,
. .

let AL = AL(p) and AR = AR(~) be the smallest resp. largest values

of A satisfying equation (8). Theorem (4.1) of [1] states that f(AL)

and f(A,) are the minimum resp. maximum values of Q(x) on S .
P

Much of [l] was devoted to the singular cases where some bi = 0 .

For the present investigation, where we are interested only in the

values of Q(x) , we simply omit from the sums (8) and (10) all terms

with bi = 0 , and reduce n , if necessary. Having done that, it is then

clear from (8)-'that, for any p ,

(11) AL C Al and A, < AR .

This concludes the necessary summary of [l].

As a digression, the author notes that the main theorems (2.7) and

(4.1) of [1] were proved in [l] by studying f(A) and g(A) for complex

values of h . In late 1965, Professor W. Kahan [unpublished] showed us

how to prove those theorems more simply, using only real values of h .

Proof of Theorem (2).

. With the above apparatus our problem is reduced to an exercise in the

differential calculus. For each p > 0 we determine a unique Lagrange

multiplier A = h(p) from (8) -- either the minimal AL
or maximal A

R'

For ease of exposition, suppose h(p) = AL . Then the function

(12) m(p) = f(h(p))
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is determined from (10). Since f(h) and g(A) are analytic for

h-1’ the function m(p) has derivatives of all order. We shall

determine m"(p) by calculus. To simplify some expressions, we

introduce the abbreviations

(13)

(14)

(P = 2, 3, 4) l

Differentiating (10) and simplifying, we find:

df
dh

= 2hCx
3 ;

(15)
d2f- = m3 + 6ha4
dh2

l

Now equation (8) states that, when A = A(p)  ,

(16)

(17)

1 (18)

(19)

(20)

2
a,=p .

Differentiating (8) twice with respect to p yields

3. =
dP 3 P ;

2
2 a3 + 3(q2 a4 .= 1 l

dP dP

Solving (17') and (18) in turn, we find

d2h - 1
-=G-
dP

2
3

;

3P2”4
2

a3
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and

(21)

Now, by the chain rule,

d2m d2f d7, 2 df d2h

dP2

z-e( >
dh

2 dP +dh*-dp2
l

We now substitute into (21) the expressions ( 4)1 J 15), (19>, and (20).

We find that._

2 2

(22) m"(p) A+
-i-. dP

(2~3 + 6~a4) % + ‘&~a

a3
3

Hence

2
$ m"(p) = A + 5 = $- (h":, + (X2)

3 3

Simplifying,

(hi-A)3 '
Or

9 by (16).

A;b:

(hi-h)3 l

.

Formula (23) is the end of our calculus exercise. In it, h

determined from solving (8). Note by (11) that the factors (A.-A1

have the same sign for i = 1, 2,..., n , whether A = AL or A =

is

I3 all

AR '

CA 3i'Hence is a weighted average with positive weights of the
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It follows that 3 m"(P) > A- I.?
with equality only when all hi in (23)

are equal to hl j i.e., if bi = 0 for hi > hl * This proves (3),

and (4) is proved analogously, This concbudes the proof of Theorem (2).

I-
It would be desirable to have a simple geometrical proQfq-.

What if A is singular?

If A is singular, that is, if some Ai = 0 I the situation is

somewhat more complicated, just as the case where some h.b. = 0 is1 1

i

.- complicated in [l]. Theorem (2) fails to hold for semidefinite matrices,

because m"(p) may not exist for some p 1 as the following example shows:

(24) Example.=' For n = 2 let

I Then

I
L

I

-

i
i

L
I
L
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1
L

SQ m'(1) does not exist.

Q(⌧)  is (⌧24)2 ,  w h e r e  ⌧ s (⌧l�⌧2)T  l

If Al = 0 , the Lagrange multiplier remains at h = 0 for all

- sufficiently large p .

Theorem (1) can easily be extended to semidefinite matrices by

continuity. We have

(25) Theorem. z A isositive semidefi

then both m(p) and M(p) are co. -Q

In proof, we note that m(p) and M(p) are continuous lTquM.ons  of

the elements of A . Xf A is semidefinite, it can be approximated by a

definite matrix Ae z for which mE and ME are convex, with llA-A& < E .

Letting e - 0 , we find that m SI lim me and M = lim MC are convex.
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