## cs 144

(,$~ . \quad$.

THE MAXIMUM AND MINIMUM OF A POSITIVE DEFINITE QUADRATIC POLYNOMIAL ON A SPHERE ARE CONVEX FUNCTIONS OF THE RADIUS

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT NO. CS 144 JULY 1969

## COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences STANFORD UNIVERSITY

THE MAXIMUM AND MINIMUM OF A POSITIVE DEFINITE
QUADRATIC POLYNOMIAL ON A SPHERE ARE
CONVEX FUNCTIONS OF THE RADIUS

by

George E. Forsythe

$$
\text { July } 1969
$$

Reporduction in whole or in part is permitted for any purpose of the United States Government.

## Abstract

It is proved that in euclidean $n$-space the maximum $M(\rho)$ and minimum $m(p)$ of a fixed positive definite quadratic polynomial $Q$ on spheres with fixed center are both convex functions of the radius $\rho$ of the sphere. In the proof, which uses elementary calculus and a result of Forsythe and Golub, $m^{\prime \prime}(\rho)$ and $M^{\prime \prime}(\rho)$ are shown to exist .. and lie in the interval $\left[2 \lambda_{1}, 2 \lambda_{n}\right]$, where $\lambda_{i}$ are the eigenvalues of the quadratic form of $Q$. Hence $m^{\prime \prime}(\rho)>0$ and $M^{\prime \prime}(\rho)>0$.

## Summary

Let $A$ be a given symmetric, nonsingular matrix of real elements and order $n$. Let $b$ be $a$ given column vector of $n$ real elements. For each real column n-vector $x$, the nonhomogeneous quadratic polynomial

$$
Q(x)=(x-b)^{T} A(x-b)
$$

(T denotes transpose) is a real number. Let $\lambda_{1} \leq \lambda_{2} \leq . . \leq \lambda_{n}$ be the (necessarily) real eigenvalues of $A$. Let $m(p)$ be the minimum of $Q(x)$ on the sphere $\underset{\rho}{S}=\left\{x: x^{T} x=\rho^{2}\right\}$, and let $M(\rho)$ be the maximum of $Q(x)$ on $S_{\rho}$. M. J. D. Powell asked the author whether $m(p)$ is a convex function of $\rho$ when $A$ is positive definite. An affirmative answer is given by the theorem:
(1) Theorem. If $A$ is positive definite i.e., if $0<\lambda_{l}$ ), then both $m(\rho)$ and areM\&pldvex functions of $\rho$, for all $\rho>0$.

Theorem (1) will follow from the following result:
(2) Theorem. Let $A$ be any nonsingular matrix. Then for $\rho>0$, the second derivatives $m^{\prime \prime}(\rho)$ and $M^{\prime \prime}(\rho)$ both exist, and

$$
\begin{equation*}
m^{\prime \prime}(\rho) \geq 2 \lambda_{1} \quad \text { and } M^{1 t}(\rho) \geq 2 \lambda_{1} \tag{3}
\end{equation*}
$$

Equality occurs in (3) if and only if $\mathrm{Ab}=\lambda_{1} \mathrm{~b}$. $\underline{\text { Moreover, }}$

$$
\begin{equation*}
m^{\prime \prime}(p) \leq 2 \lambda_{n} \text { and } M^{\prime \prime}(p) \leq 2 \lambda_{n} \tag{4}
\end{equation*}
$$

and equality occurs in (4) if and only if $A b=\lambda_{n} b$.

The proof of Theorem (2) is based on techniques developed in Forsythe and Golub [1], which dealt only with the case $p=1$. The relevant results of [1] are now summarized and extended to general $\rho$.

Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be an orthonormal real set of eigenvectors of $A$, with $A u_{i}=\lambda \cdot u_{1}(i=1, \ldots, n)$. Let $b=\sum b_{i} u_{i}$. For any vector $x$ in $S_{\rho}$ at which $Q(x)$ is stationary with respect to $S_{\rho}$, there is a real number $\lambda$ with

$$
\begin{align*}
& A(x-b)=\lambda x  \tag{5}\\
& x^{T} x=\rho^{2}
\end{align*}
$$

Letting $x=\sum x_{i} u_{i}$, we find from (5) that
(7)

$$
x_{i}=\frac{x_{i} b_{i}}{\lambda_{i}-\lambda}
$$

so that (6) becomes

$$
\begin{equation*}
g(\lambda) \equiv \sum_{i=1}^{n} \frac{\lambda_{i}^{2} b_{i}^{2}}{\left(\lambda_{i}-\lambda\right)^{2}}=p^{2} \tag{8}
\end{equation*}
$$

For each given value of $\rho>0$, equation (8) determines from 2 to $2 n$ .real values of $\lambda$. For each $\lambda$ so determined, equation (5) determines one or more vectors $x^{\lambda}$ (if all $b_{i} \neq 0$, then $x^{\lambda}$ is unique). For any $x^{\lambda}$, we have

$$
\begin{equation*}
Q\left(x^{\lambda}\right)=f(\lambda) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
f(h)=\lambda^{2} \sum_{i=1}^{n} \frac{\lambda_{i} b_{i}^{2}}{\left(\lambda_{i}-\lambda\right)^{2}} \tag{10}
\end{equation*}
$$

Now $Q(x)$ is stationary with respect to $S_{\rho}$ at anyx ${ }^{\lambda}$. For given $\rho$, let $\Lambda_{L}=\Lambda_{L}(\rho)$ and $\Lambda_{R}=\Lambda_{R}(\rho)$ be the smallest resp. largest values of $\lambda$ satisfying equation (8). Theorem (4.1) of [1] states that $f\left(\Lambda_{L}\right)$ and $f\left(\Lambda_{R}\right)$ are the minimum resp. maximum values of $Q(x)$ on $S_{\rho}$.

Much of [I] was devoted to the singular cases where some $b_{i}=0$. For the present investigation, where we are interested only in the values of $Q(x)$, we simply omit from the sums (8) and (10) all terms with $b_{i}=0$, and reduce $n$, if necessary. Having done that, it is then clear from (8) that, for any $\rho$,

$$
\begin{equation*}
\Lambda_{\mathrm{I}}<\lambda_{\mathrm{I}} \text { and } \mathrm{A},<\Lambda_{\mathrm{R}} . \tag{11}
\end{equation*}
$$

This concludes the necessary summary of [1].
As a digression, the author notes that the main theorems (2.7) and (4.1) of [1] were proved in [1] by studying $f(\lambda)$ and $g(A)$ for complex values of $\lambda$. In late 1965, Professor W. Kahan [unpublished] showed us how to prove those theorems more simply, using only real values of $\lambda$.

Proof of Theorem (2).
With the above apparatus our problem is reduced to an exercise in the differential calculus. For each $\rho>0$ we determine a unique Lagrange multiplier $\lambda=\lambda(\rho)$ from (8) -- either the minimal $A_{L}$ or maximal $A_{R}$ • For ease of exposition, suppose $\lambda(\rho)=\Lambda_{L}$. Then the function

$$
\begin{equation*}
m(p)=f(\lambda(p)) \tag{12}
\end{equation*}
$$

is determined from (10). Since $f(\lambda)$ and $g(A)$ are analytic for $\lambda<\lambda_{1}$, the function $m(\rho)$ has derivatives of all order. We shall determine $m^{\prime \prime}(p)$ by calculus. To simplify some expressions, we introduce the abbreviations
(13)

$$
\alpha_{p}=\sum_{i=1}^{n} \frac{\lambda_{i}^{2} b_{i}^{2}}{\left(\lambda_{i}-\lambda\right)^{2}} \quad(p=2,3,4)
$$

Differentiating (10) and simplifying, we find:
(14)

$$
\frac{\mathrm{df}}{\mathrm{~d} \lambda}=2 \lambda \alpha_{3} ;
$$

(15)

$$
\frac{d^{2} f}{d \lambda^{2}}=2 \alpha_{3}+6 \lambda \alpha_{4}
$$

Now equation
(8) states that, when $\lambda=\lambda(\rho)$,

$$
\begin{equation*}
\alpha_{2}=\rho^{2} \tag{16}
\end{equation*}
$$

Differentiating (8) twice with respect to $\rho$ yields

$$
\begin{equation*}
\frac{d \lambda}{d \rho} \alpha_{3}=\rho ; \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} \lambda}{d p^{2}} \alpha_{3}+\frac{d p}{\left(\frac{d \lambda}{\lambda-}\right)^{2}} \alpha_{4}=1 \tag{18}
\end{equation*}
$$

Solving (17) and (18) in turn, we find

$$
\begin{equation*}
\frac{d \lambda}{d \rho}=\frac{\rho}{\alpha_{3}} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} \lambda}{d p^{2}}=\frac{1}{\alpha_{3}}-\frac{3 p^{2} \alpha_{4}}{\alpha_{3}^{2}} \tag{20}
\end{equation*}
$$

Now, by the chain rule,

$$
\frac{d m}{d \rho}=\frac{d f}{d \lambda} \cdot \frac{d \lambda}{d \rho}
$$

and
(21)

$$
\frac{d^{2} m}{d p^{2}}=\frac{d^{2} f}{d \lambda^{2}}\left(\frac{d \lambda}{d p}\right)^{2}+\frac{d f}{d \lambda} \cdot \frac{d^{2} \lambda}{d p^{2}}
$$

We now substitute into (21) the expressions (14), 15), (19), and (20).
We find that

$$
\begin{equation*}
m^{\prime \prime}(p)=\frac{d^{2} m}{d p^{2}}=\left(2 \alpha_{3}+6 \lambda \alpha_{4}\right) \frac{\rho^{2}}{\alpha_{3}^{2}}+2 \lambda \alpha_{3}\left(\frac{1}{\alpha_{3}}-\frac{3 p^{2} \alpha_{4}}{\alpha_{3}^{3}}\right) \tag{ฉ2}
\end{equation*}
$$

Hence

$$
\frac{1}{2} m^{\prime \prime}(\rho)=\lambda+\frac{\rho^{2}}{\alpha_{3}}=\frac{1}{\alpha_{-}}\left(\lambda \alpha_{3}+\alpha_{2}\right) \quad, \quad \text { by }(16)
$$

Simplifying,

$$
\frac{1}{2} m^{\prime \prime}(\rho)=\frac{1}{\alpha_{3}} \sum_{i=1}^{n} \frac{\lambda_{i}^{3} b_{i}^{2}}{\left(\lambda_{i}-\lambda\right)^{3}} \quad, \text { or }
$$

$$
\begin{equation*}
\frac{1}{2} m^{\prime \prime}(\rho)=\sum_{i=1}^{n} \frac{\lambda_{i}^{3} b_{i}^{2}}{\left(\lambda_{i}-\lambda\right)^{3}} / \sum_{i=1}^{n} \frac{\lambda_{i}^{2} b_{i}^{2}}{\left(\lambda_{i}-\lambda\right)^{3}} \tag{23}
\end{equation*}
$$

Formula (23) is the end of our calculus exercise. In it, $\lambda$ is determined from solving (8). Note by (11) that the factors (A. -A$)^{3}$ all have the same sign for $i=1,2, \ldots, n$, whether $\lambda=\Lambda_{L}$ or $A=\Lambda_{R}$. Hence $\frac{1}{2} m^{\prime \prime}(\rho)$ is a weighted average with positive weights of the $\left\{\lambda_{i}\right\}$ •

It follows that $\frac{l}{2} m^{\prime \prime}(p) \geq \lambda_{1}$, with equality only when all $\lambda_{i}$ in (23) are equal to $\lambda_{1}$, i.e., if bi $=0$ for $\lambda_{i}>\lambda_{I}$. This proves (3), and (4) is proved analogously, This concludes the proof of Theorem (2).

It would be desirable to have a simple geometrical proof.

What if A is singular?
If $A$ is singular, that is, if some $\lambda_{i}=0$, the situation is somewhat more complicated, just as the case where some $\lambda_{1}{ }_{1}^{b}=0$ is complicated in [1]. Theorem (2) fails to hold for semidefinite matrices, because $\mathrm{m}^{\prime \prime}(\rho)$ may not exist for some $\rho$, as the following example shows: (24) Example. $=$ ' For $n=2$ let $Q(x)=\left(x_{2}-1\right)^{2} \ldots=\ldots x=\left(x_{1}, x_{2}\right)^{T}$. Then

$$
m(p)= \begin{cases}1-p & , \quad 0 \leq p \leq 1 \\ 0 & , \quad 1 \leq p<\infty\end{cases}
$$

sQ m'(1) does not exist.

If $\lambda_{1}=0$, the Lagrange multiplier remains at $\lambda=0$ for all sufficiently large $\rho$.

Theorem (1) can easily be extended to semidefinite matrices by continuity. We have
(25) Theorem. If $A$ is positive semidefinite (i.e., if $0 \leq \lambda_{I}$ ), then both $m(p)$ and $M(p)$ are convex functions of $\rho$ for $\rho>0$.

In proof, we note that $m(p)$ and $M(p)$ are continuous functions of the elements of $A$. If $A$ is semidefinite, it can be approximated by a definite matrix $A_{\mathcal{E}}$, for which $m_{\mathcal{E}}$ and $M_{\mathcal{E}}$ are convex, with $\left\|A-A_{\mathcal{E}}\right\|<\boldsymbol{\varepsilon}$. Letting $\mathcal{E} \rightarrow 0$, we find that $m=\lim m_{\varepsilon}$ and $M=\lim M_{\mathcal{E}}$ are convex.

## Reference


#### Abstract

[1] George E. Forsythe and Gene H. Golub, "On the stationary values of a second-degree -polynomial on the unit sphere", J. Soc. Indust. Appl. Math., vol. 13 (1965), pp. 1050-1068.


