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Abst ract

The problem of deternmining a zero of a given polynomal wth guaranteed
error bounds, using an amount of work that can be estimated a priori, is
attacked hereby neans of a class of algorithns based on the idea of systematic
search. Lehmer's "machine nethod" for solving polynomal equations is a
special case. The use of the Schur-Cohn algorithmin Lehmer's nethod is

replaced by a nore general proximty test which reacts positively ifapplied

at a point close to a zero of a polynomial. Various such tests are described,
and the work involved in their use is estimated. The optimality and non-
optimality of certain nethods, both on a determnistic and on a probabilistic

basis, are established.
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1. Introduction

In 1961 D. H Lehmer [6] proposed a "machine method" for solving poly-
nomal equations. H's algorithmwas guaranteed to approximate a zero of any
given conplex polynonmial with an arbitrarily small error. The anount of
work necessary to compute a zero to a given precision could be estinmated a
priori

In the present paper we shall describe a class of algorithns for poly-
nom al zerofinding which contains Lehner's method as a special case. Qur
algorithms borrow from Lehmer's nethod the basic idea of enclosing zeros
in disks of decreasing radius, and of covering disks containing a zero by
smal ler disks,. However, instead of using a special procedure to determ ne
whether or not a given disk contains a zero of a polynonmial, the algorithns
di scussed here nerely require a "proximty test" ($2) which reacts positively
if applied at a point close to a zero of the given polynomal. Very sinple
such proxinmty tests exist, and as a consequence sonme of our algorithns are
arithmetically sinpler than Lehner's nethod ($3).

The convergence of the general search algorithmis established (§),
and the maxi mum amount of work necessary to determine a zero to a preassigned
accuracy is estimated ($5).

Among the class of all proxinmity tests, we then identify a subclass for

. which the convergence of the resulting algorithms is linear. Among these
tests, the classical Schur-Cohn test (which fornms the basis for Lehner's
met hod) is shown to enjoy a certain property of optinality ($6). W finally
discuss the best covering strategy if coverings by disks of constant radius ,
are used. From a determnistic point of view, the best strategy consists

in covering a disk of radius r by eight disks of radius qor . Where



9y = (1 + 2 cos 2n/7Yq'é 0.44504 . From a probabilistic point of view
if coverings by disks of variable radius are permtted, Lehmer's origina
covering is slightly better, although not optimnal

Besi des Lehmer's paper, the present study was inspired by the nethods
of search used in the constructive proofs of the fundanental theorem of

al gebra due to Brouwer [3, 4] and Rosenbl oom [10].

2. Proximty tests

For positive integers N, let Py denote the class of all monic

pol ynom als of degree N with conplex coefficients

N N-1
p(z) =2 +ag 2  +...+ag,

H

whose zeros 6, » & » ... » Gy satisfy ICi\ <1, i=1, 2

N. It is our objective to study a class of algorithnms for solving the

follow ng problem G ven any PePy and any ¢ > 0, to construct a disk

D of radius ¢ which contains a zero of p . The algorithms to be

di scussed are uniformly convergent on PN,

amount of work necessary to construct D is bounded by a quantity which

in the follow ng sense: The

depends on ¢ and N , but not on the individual polynomal p .

The basic tool of the algorithms to be described is a proximty test

“T =T(r) , which can be applied to any polynom al PPy at any point z

such that |z <1, and which the polynomal either passes or fails. The
test nust be such that it is_passed at all points z sufficiently close to
a zero, and failed at all points sufficiently far away. (There may be an

i n-between region where the test may' be passed or failed.) The parameter

r regulates the difficulty of the test. The smaller r is, the nore
difficult it becomes to pass the test.
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Speaking formally, a test T(r) is called a proximity test if there

exist two positive functions ¢ and y , defined on sone interval

O<r<r, and having the followng properties:. 1f p is any polynom al

0

NE and if ¢ is any zero of -p, then for all re(O,rO]

(i) p passes T(r) at all points z such that |z |< 1 and

in P

|z - ¢l < §(r) :

(i) p fails T(r) at all points z such that |Z|§1 and

~ |z - ¢ > ¢(r) .

The above evidently inplies that $(r) < ¢(r) ; we do not require that
$=1¢ , W postulate that T(r) beconmes arbitrarily difficult to pass for

r -0, i.e.,

(i) limy(r) =0 .

r =0

W furthernore require
(iv) ¢ iscontinuous and strictly monotonically increasing.
The functions ¢ and ¢ are called, respectively, the inner and

outer convergence function of the test T(r)'.

The following test, to be denoted by T, My serve.as a first exanple
of a proximty test:

1"

" p passes Tl(r) at z " <==.|p(z)]| <r

3
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To show that th'is test has the required properties for 0 <r <1, ot

=2

(z) =1 (z -¢).
(z) R

il

If" pfails the test at z , then

N
lp(z)|=m |z - ¢ |>r
i=1

Hence for every i
N -1
lz - ¢ | >rnfe-g |7
J=1
A
Since ’CJ-| <1, |zl <1, every factor of the product on the right is

at least 1/2, and we find that
,z~§il<2_N+lr, i =1, . . ., N.

Hence T,(r) cannot be failed if |z - ¢ | < 2L for some i . and (i)

is true for
Cf(r) =2-N+lr.

[f, on the other hand‘ p passes Tl(r) at z . then

N
iI=Il ,Z-Cilgr’
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r—

r—

and it follows that

1/N
IZ'Cilfr/
for at least one index i . . Thus the test cannot be passed if
|z-gil>rl/Nfor all i , and we find that (ii) is true for
w(r)zrl/N.

(By considering a polynomial with a single zero of nultiplicity N, we
see that (ii) #s not true for any smaller function ¢ .) It is clear
that ¢ has the properties (iii) and (iv).

Two tests are called equivalent if they are defined on the same domain
of r and if they produce identical results for all polynomals p at
all points z and for all values r

Exanple: The test Ty s equivalent to a test which is declared
passed if and only if [p(z)[2 < 2

Two proximty tests T and T™* are called simlar if there exists
an increasing function r* mapping [0,r;] onto an interval [0,rf] such
that the test T(r) is equivalent to T*(r) = T(r*(r)) . Simlar tests
thus differ only in the choice of the paraneter. It is clear that the
simlarity of tests, too, is an equivalence relation.

Exanple: The test T, is simlar to the test T')f(r) whi ch is passed
if and only if |p(z)| < N Convergence functions for ™ are ¢(r) =
2 LN and yx)=r .

By (iv), every proximty test is simlar to a test with outer con-

vergence function ¢(r) = r .



3. The search algorithm

We require the notion of an s-covering. If ¢ is any positive nunber,
and if Sis any set in the conpl ex pl ane, an e-covering of S is any
system of closed disks of radius_<e whose union contains S. The covering
is said to be centered_in S if the mdpoints of the covering disks belong
to s . The construction of a mniml s-covering of a given bounded set
(i.e., a covering containing the least nunber of disks) can raise intricate
questions of elenentary geometry. O course, one can always use coverings
whose centers form a square or hexagonal grid.

Let peP,. , let T be a proximity test, and |et {qk} be a nono-
toni c sequence of positive numbers converging to zero such that q, = 1.
W shall describe an algorithm for constructing a sequence of points {Zk}

such that each of the disks

b, =f{zi lz-z|<q],
k=0, 1, 2, ..., contains'at |east one zero of p .
Let z, = 0 . Then D, certainly contains a zero, for it contains

~all zeros. The al gorithm now proceeds by induction. Suppose we have

found a point such that Dk 1 contains a zero. To construct z |,

Ze-1 K

we cover the set De.| ND, Wth an e -covering centered in it and

k
apply a test T(rk) at the center of each covering disk. The paraneters
£ and r, are chosen such that the following two conditions are mnet:
(A) The test is passed at the center of each disk of the covering
whi ch contains a zero.
(B) Any point at which the test is passed is at a distance < q

froma zero.



Condition (A) is satisfied if €k§4(rk) . Condition (B) is satisfied

if qx(rk) < 9 - Thus both conditions are fulfilled if

e = ‘l’-l(qk) s
(1)
o = $n) = $y 7T (x))

wher e q:'l denotes the inverse function of ¢ .

At |east one of the covering disks contains a zero, since D, contains

one, and since all disks are contained in p Thus by (A), the test

T(r,) is passed & least once. W |et z, be the first center at which

the test is passed. There is no assurance that the disk of radius &

surroundi ng zy

The whole algorithm thus may be summarized as follows: | g 2,=0 .

actual ly contains a zero, but by (B), the disk Dk does.

Having constructed z , , cover the set Dy N Dy by an g -covering

centered in it, and apply T(r,) at the center of each covering disk, where,

& and r, are given by (1). Let 7, be the first center which passes
the test.

Provided that identical systens of converings are used, the above
al gorithmrenmains unchanged if the test T is replaced by a "similar"

test T*

L. Convergence

By construction, the centers z of successive disks D, satisfy

|71 - 2 | S » where q 0. This initself does not inply the

convergence of the sequence f{z } . Nevertheless, there holds

THEOREM 1. The sequence {zk} converges, and its linmt is a zero of p .



Proof. Let

8§ = min |, —§.|
A

be the m ni num di stance between distinct zeros of p . Let mbe an integer
such that 2q, <8 . Let n > m. The disk Dk contains a zero, say g -

The disk D, | i kewi se contains a zero, say gJ. From

1
|Zn—gi|§qn’ |Zn+l-gj|§qn+l’

-

it follows by the nonotonicity of the sequence {qn} that

lgi_gjlgqn-l-qn+1§2qn<6

and hence that G: = gj. Thus for all n m, lzn-gilgqn , proving

t hat

limz = ¢..
n
n— e

5. Amunt of work

W neasure the anount of work required to approximate a zero with an
error < e by estimating the nunber of applications of the test T required
to construct the first disk Dy such that its radius Qe is less than ¢ .
For reasons of sinplicity we assume until further notice that the centers

of the covering disks awas fOorma square grid.
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The area of b, is m , . [In asquare k-covering, the centers
of the covering disks nust be not nore than /?em apart. Neglecting
boundary effects, approximately
2

-1

m———

2
m

i3

€

di sks of radius g, are thus required to cover D (Working with a

m |
hexagonal grid, the constant g coul d be replaced by %—% .) Wthin
the sane degree of approximation, this also is the maxi mum nunber of appli-

to =z

cations of the test to proceed from z
m | m .

For the given sequence {qk} and for >0, let k(e) denote the
smal | est k such that 4 St By the above, the total nunber of appli-

cations of the test necessary to approxinate a zero with an error < ¢ does

not exceed a quantity of the order of

(e) o,

t————

(2) w(z, {a.dre) =

=A%) b= -y

z
=1

Em n

W axionmatically define the above function W 3as the work function of the

search algorithm based on the proximty test T and the sequence {qk3,
The work function does not change if the test T is replaced by a sinilar
test T* .

From the fact that w does not depend on p it already follows that
the search algorithns described earlier are uniforniy convergent in the

sense described earlier.
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Exanple. For the test T, , choosing a geometric node of subdivision

(qk = qk , 0<g<1, k=0, 1, 2
oL §(z) = r1/1\1

= $0 7)) = 2T
hence

k(e)
k - D
W(Tl’ {a ), ¢) = _;_T o2N-2 5 q2m 2 -2mN _ CN q-(2N-2)k( e)

m=]

(e - 0) , where

- 22N-2
Cp = 5 5= (N >2) .

N~ 2 2 2 -
Q'QN
For the determnation of a zero of a polynomal of degree 10 with an error
-6 . . 1 . . ;
<107 . working with g = 5 (which requires k = 20 ) the function w
yields an upper bound of approximtely 259’7TT £ 1020 applications of the
test. Since on the average we can't expect to do nuch better than use one

hal f of the maxi num nunber of tests, a search algorithm based on i)

certainly is not practical

6. Proximty tests with Iinear convergence functions

Suppose the convergence functions of a proximty test T are linear,

(3) $(r) =ar, ¢(r) = br

(0 <a<b) . Then by (1), -

10

» - . . ) we have in view of d(r) =




=

-

oo

e = P T(@)) =2a

and the work function (2) becones

. 5
2 k(e)
b -1
(&) w(T, {g, 1, e) . g"g T 5
a m=1 gm
In particular, if q = qk ,
k 1-rb2
(5 W(T: {q }: E) = > 5 k( 8) ’
2a q

and the work necessary to conpute a zero to a given accuracy is proportional
to the nunber of decimals required. This convergence behavior is known

as |inear convergence.

V¥ now shall give some exanples of proximty tests with linear con-

vergence functions. For arbitrary z and h , et
(z + h) =b. *bh+bn+ + b n
Rz + h) =pFhp By b
(bN =1) . It will be convenient to suppress the argunment z in the Taylor

coefficients bi .

6.1. The test T2' Let

1/x

O‘IOO"

B = B(z) =

[
3.

A5

w

[
1]

The polynomial p is said to pass the test T2(r) at z if and'only if
B(z) <r . To determne the convergence functions of this test, let

11
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(6)

The relations of Vieta inply, as is well known,

p <

1/k
Since (g) <N,

1/k
(N>5°—/
kbk

this inplies p < MB(z) . Hence if o> N, then

B(z) >r, and p fails T2(r) at z . It follows that

is outer convergence

the test at z . The

2k
bO

If p(z + h) = 0 and

and hence t hat §> L

1 .
[} 5 r, |.e.,

uA

is inner. convergence function for T

2 .

y(r) = Nr
function for I, . On the other hand, let p fail

n B >r and hence

<I‘—k k=1

,2,---,N.

] = o, the Taylor expansion shows that

2
B+ B4 ..+
r 2

r

HZP =
1AV
}..J

It follows that the test cannot he failed if

.r

$(r) =

-

2 .

12
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Thus T, has convergence functions of the form (3); we note that

=2N . In the nunerical exanple considered earlier (N = 10,

106, O = 2”k) v (4) now furnishes an upper bound of sone 50, 000

o

i

€

applications of the test,

6.2. The test T5 . The polynomal is said to pass T5(r) at z

if and only if
2
I L L e A

Let p be defined by (6). Then for some h such that || _ , ye have

p(z + h) = 0 , Hence
2 N
’bol§|b1|p+[b2 o™ + oov * Jogle >

and p passes T5(p) . Thus (b(r) =r is inner convergence function for
this test. On the other hand, a theoremof G D. Birkhoff [2] inplies

that the test cannot be passed if p > (21/N - l)'lr  Thus

(r>=7——1 r
\ ElNl

is outer convergence function. For this pair of convergence functions,

b _ 1 N
a  ,1/N_, “log 2 (N> o) .
For a given sequence {g,} . and for linear convergence functions (3),

the value of the work function for a given ¢ "is proportional to b2/a2 .

13



For both tests T, and Té this ratio is O(NE) as N oo . This

situation is typical for any test that depends only on the absolute val ues

b,y » for it is known [9, 1] that the maxinmum of the ratio of the |argest

il

1

and smal | est absolute value which the snallest zero of a polynonmial of degree

N can have if the absolute values of the coefficients are fixed is precisely
1 - .

(2 /N 1) 1 It follows that smaller values of b/a can be achieved only

with tests that do not merely use the absolute values of the Taylor coeffi-

cients.

6.3. The test T, - This test makes use of the suns

N
(7) 8, = Z(g

-k
z) , k=1, 2,
ki=l

.
It is easily shown by neans of a generating function argunment that these
quantities can be conputed fromthe Taylor coefficients at z by means

of the follow ng recurrence relation:

-1
S = -bo (kbk+slbk~l+ SQbk-2+"'+sk-lbl)’
) k=1, 2, ..
Let o bedefinedby(6). Then [s |<me™ ,k=1,2. . . and
= ? ?
it follows that
1/x
N

(8) pS -s.l: ’ k=l’ 2|

14
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Sk

W say that p passes the test Tu(r) at z if and only if S<r. It

follows from (8) that

$(r) =

is outer convergence function for this test. Noreover, a rather deep result
of Buckholtz [5} states that 8§ < (2 + 2/2)p , where the numerical constant

I's best possible. It follows that

Hr) = (2 +2/2)7

i's inner convergence function. For this pair of convergence functions, the

ratio b/a = 2 + 2/Z=4,8284 is independent of N .

6.4. Sharp tests. For a given sequence {qu, and for linear con-
vergence functions 4: and ¢ , the value of the work function (4) for
given eis amninumfor a test such that b = a . Wthout |oss of
generality it may be assumed that b = a =1 . Atest with convergence
functions ¢(r) = y(r) = r will be called sharp. A sharp test reacts
positively if and only if the closed disk of radius r about the testing

point z contains a zero. Thus all sharp tests belong to the same class

of equivalent tests.

15
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There exist several realizations of sharp tests. They are based either
on a conformal nmapping of the disk onto the left half-plane, followed by the
Routh-Hurwitz al gorithm or (nore directly and efficiently) on the well-
known Schur - Cohn al gorithm ([8], p. 195) for counting the number of zeros
ina given disk. ILehmer's method [6, 7], the first search algorithmof the
type considered here, was based on the Schur-Cohn algorithm

In our numerical exanple (N =10, g = ok .- 10-6), (5) now

yields a maxinumof a nere 129 tests in an algorithmbased on a sharp test.

- Due to neglect of boundary effects, the true maxinum is somewhat higher;

see bel ow.

The nmere fact that the work function is smallest for the Schur-Cohn
test does not in itself inply that this test defines the conputationally
nmost efficient algorithm since the work function does not take into account
the work required to carry out the test. In the absence of rigorous results
concerning the mninum nunber of arithmetic operations required to admnister
the various tests, precise results are difficult. Suffice it to say that
all tests described in this section require, among other things, all Taylor
coefficients at z . If performed by the Horner algorithm their conputation
requires %Ne + QN multiplications. The Schur-Cohn algorithm if programed
in the superior fashion recommended by Stewart [|I], requires another
%Nz + o(n) multiplications and divisions, roughly the same as the conputation

‘of the sums s, required for T, Thus the Schur-Cohn test requires only

k

about tw ce as nmuch work as T, or T3 , and about the sane as T, -

7. Qptinum choice of{qu

Suppose the search algorithmis based on a test with |inear convergence
functions (3). If ¢ is given, for what choice of the sequence {qu is
the work function w(T,{qk'},s) a m ni nun®

16
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(4) assunes its snallest value for the geometric sequence, m/k
; q = ¢

We first answer this question when k(e) is prescribed. Let ¢ >0,

Let k be a given positive integer, and |et &m} be any decreasing

sequence such that g, =1, g =¢. Then by the inequality of the

arithnetic and geometric mean,

2
: k
w(T,{q },e) =¢c 3 E—m--e'l-l- (c = -@..22_)
m=1 O, 2a,
K o2 1/k
m=1 q,
= cx.2/k

w(r, (V%))

and we have proved:

monot oni ¢ sequences _ .
g ﬁ%n} such that g, =1 ang q = ¢, the work function

2

m=0, 1,2 , .,
On the basis of this result, we nowrestrict our attention to geometric

‘ m
sequences, q =gq (0 <q<1), and ask for the optimal value of g to
achieve a given accuracy ¢ . As a function of g and K(e) is now
€ » €

the smallest integer such that & < ¢ or

- - _lo‘
k(e) = [R-g-—qg

17



where [x] denotes the largest integer < x . Neglecting a fractional part,
we thus have approxi mately

k . log
w(T,{qg },e) & 05—

q log g

(C defined as above). By differentiation we easily find that the minimum

“1/2 +0.60655 , and that the

of the above expression is attained for q = e
value of the mnimumis 2e Clog %
Unfortunately, the above result does not indicate accurately the
maxi mum nunber of tests to be applied, because the nethod of counting the
covering disks underlying (2) becones increasingly inaccurate (due to the
negl ect of boundary effects) if the ratio of the radii of the covering disks
and of the disk to covered approaches 1 . To deternine the exact maxinmum
let, for 0<x<1, f(x) denote the mninmum nunber of disks of radius
x that are required to cover the unit disk. The function f is non-
increasing, piecew se constant, and continuous fromthe right; no sinple
anal ytical expression for it exists. To proceed fromz toz . ina
search algorithm based on a test with |inear convergence functions and on a
geometric sequence {q'3 requires covering a disk of radius g by disks
of radius bgqm+1 . Hence, if an optimal covering is used, at nost f(% a)
-applications of the test are necessary. The actual naximum nunber of

tests to attain an error < e thus equals

a 10
W(a:b:an) s f(sﬂ)[ 132—5

18



We shall determne the mnimmof Was a function of q for the Schur-

Cohn test (a=b=1) .

THEOREM 3. For sufficiently small fixed values of ¢, the function

F(q,e) = W(1,1,q,¢) assumes its minimmat q = q, = (1 4 5 ¢os %’_11)-1 .

The value of the mnimumis

- lo N o
F(%:E)-‘B[—ﬁ]:-s [_é_.g&] )

Proof. W first deternmine the nininmum of the function

_ 10
Gla) = £(q) 7B

Let the points of discontinuity of f be, in decreasing order, 1 _ % S

0
Xy > X, > - and let the constant value of f in the interval
Xm§X<Xm_I be denoted by fm (m= 1, 2, . ) . Then G(q) i's increasi ng
points x (m=1 2. ..) _ |t thus is smallest where
= f 0
G(xm) mllog xmg
/

is smallest. |t can be shown that

X = (2 n)-l £ =

m COS “m4p N m—m+2 for m=1,2, 3

2 -
= (1 +2 o1 -1
M ( cos ) |

fm=m+3 for m=h4 > 25 6.

19
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From these values and fromthe trivial estimte f(x) _>_x'2 it foll ows
by conputation that the minimumis assumed only at g, = x_ =

5
(1 + 2 cos %—E)-l %0.44504, and that it has the value

1 . -
G(g,) = 8 Tfﬁ.g % 9.882 log ¢

The function F has the formF(q) = f(q)h(q) , Where

1
hg) = - [— -l-g-g—ﬂ

The function h ~is piecew se constant, nondecreasing, and continuous
fromthe left. W denote its points of discontinuity by 0 <hy <h <
hy <. Evidently, F(q) >=G(q) , Wwithequality holding if and only
i f q:hn for some n . Let n* be the snallest index n such that
hng 9y - For sufficiently small values of ¢, the points hn are

arbitrarily dense, hence hn* <z, , and furthernore

F(h) <G(x),m# 5 .

It follows that F(hn*) is the smallest value of F. 1r by = 9 s

the Theoremis established. rf h x > gy , the Theorem follows from the

fact that F(g) is constant for Gsa<h, .

The optimal covering of the unit disk by 8disks of radius 9y consists

of a disk centered at the origin, surrounded by 7disks centered at the

poi nts
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wher e

2 cos
R = = 0.80194 .
1+ 2 cos

[~

R

8. Non- uni f or m converings

So far in this study, it was assuned that the covering of each disk

Dk consi sts of disks of constant radius. |t is a trivial matter to

~modify the definition of the basic search algorithmto pernit coverings

of variable radius and to extend the convergence theoremto this case
Al'so the upper bounds for the anount of work are easily adapted to extend
to such non-uniform coverings.

However, the optimality considerations of section 7 strongly depend
on the constancy of the radii of the covering disks, and it is far from
obvious how they should be nodified for non-uniform coverings. |{ appears
certain, however, that the nethods using uniform coverings are not optinal
in the class of nethods using arbitrary coverings

The efficiency of an algorithm can also be judged from a probabilistic
point of view, for instance by conputing the average number Z of appli-
cations of the test required to inprove the accuracy of a zero by one
decimal digit. Here again the nethods using uniform coverings are not
optinmal.  For the optimal nethod using uniform coverings deternined in

Theorem 3, it can be shown that

Z =11.168 .
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. . . . . 1
Lehner's nethod covers the unit disk by a disk of radius 5 centered at

O, and by 8 disks of radius 5 centered on a circle of radius %.

For this covering, if the sequence of surrounding disks is chosen optimally

as suggested in [6],

z =11.143 .

It can be shown that Lehmer's coverings is again not optimal, if only by

-- the trivial reason that it has some built-in slack to counteract rounding

r

The detailed investigation of optimal non-uniform coverings nust, however

wait for anot her-paper.
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