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ROUNDOFF ERROR ANALYSIS

OF THE

FAST FOURIER TRANSFORM

Abstract. This paper presents an analysis of roundoff errors occurring

in the floating-point computation of the fast Fourier transform. UPPer

bounds are derived for the ratios of the root-mean-square (RMS) and

maximum roundoff errors in the output data to the RMS value of the

input data for both single and multidimensional transformations. These

bounds are compared experimentally with actual roundoff errors.
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L 1. Introduction. The fast Fourier transform (FFT) is a very

efficient algorithm for computing

i

where b(k) 3 is a given set of complex numbers and i = J-1 . Let

Y' = (d

of Y

Y(O) 9 l l VY(N-l)  >
and fl(y) be the floating-point representation

. In this paper we derive bounds for

N-l
y(j) = C e

i21rjk/N *(k)

k=O
(j = O,l,...,N-1) ,

b(Y) - YIIRMs / II x IIms and IlfUY) - Yll / II ,” lIms  2N ,m

where

II IIhMs= ((i iz(B)/2)/N)1’2  ad II_zllm =my lz(k>l .

These bounds include the effect of roundoff in computing sines and

L
cosines and are obtained for both single and multidimensional transformations.

Special consideration is given to cases when N is a multiple of 2 or 4 .

The subject of roundoff error in the FFT has been studied and

reported by others but with less generality or using a different approach.

By comparing upper bounds,Gentleman and Sande [l] show that accumulated

floating-point roundoff error is significantly less when one uses the

FFT than when one computes (l.l)directly.  In [2] Welch derives approximate

upper and lower bounds on the RMS error in a fixed-point power-of-two

algorithm. Weinstein [3] uses a statistical model for floating-point

roundoff errors to predict the output-noise variance. Liu and Kaneko [4]

also use a statistical approach to predict the roundoff error in a

floating-point transformation.

-
In the following sections, (1) the FFT algorithm is analyzed from the

point of view of matrix factorization, (2) error bounds are derivedand

(3) experimental  comparisons of actual errors with error bounds are presented.
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2. The Fast Fourier Transform. In 1965 Cooley and Tukey [5]

introduced the algorithm now known as the fast Fourier transform.

In this algorithm for computing (1.1) the number of operations required

is proportionalto N log N rather than N2 . A close look at (1.1)

shows that it is precisely the matrix-vector equation y = TX with

the Nth- order matrix T defined by T(j,k) = ei2njk/N-

(j,k = O,l,...,N-1) . Others have pointed out this fact and have observed

that the speedup of the fast Fouriertransform is due to the factorization

of T into a small number of sparse matrices [6], [7], 181, [PI.

The factorization of T is derived below and is shown to be that given

by the following theorem:

THEOREM 1. If T is a matrix of order N with complex exponential

elements T(j,k) = exp(i2njk/N) (j,k = O,l,...,N-1)  and if

N = NlN2 . . . NM> then

where Pp (I = 1,2,..., M+l) are permutation matrices,

DR (1 = 1,2,..., M-l) are diagonal matrices of complex exponential

elements, and T a (a = 1,2,..., M) are block-diagonal matrices whose

Silocks have elements exp(i2njlkL/NJ (jl,kl = O,l,...,NR-1)  .

Proof. Following Gentleman and Sande [l] we use the notation

E(Q) for exp(i2nQ) . Note that $Ql+ Q2) = $Ql)$Q2) and

e(Q) = 1 if Q is an integer.
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Let the indices in (1.1) be expressed as j = j, + j; Nl and
*

*k = kl+ klNl (jl,kl = O,l,...,Nl-1 ; jI,kI = O,l,...,NI-l),  where
*

Nl = N2 N3 . . . NM . Then one can write

where

Let xp(kl + k: Nl) = x(kI + kl NI) . Then ,zl = DITIPl~,where  Dl

is a diagonal matrix of complex eqonentials,  Tl is the block-diagonal

matrix with block elements "(jlkl/Nl) (jlJkl = 0,1,~~ dl-l), and

pl is the permutation matrix defined by xpY
= Pz .

Next let indices in (2.1) be expressed as .*
Jo = j, + j,*N2

and k*
*

*1 = k2 + k2 N2 (j2,k2 = 0,1,...,N2-1 ; j$kz = O,l,...,NE-1),

where NE = N3 N4 . . . NM . Then (2.1) becomes

djl + j, Nl + 3: 5N2) = c e($ k~/$)z2(j2 + jlN2 + k&N21 J
*-

k2

where

i
z2(j2 + jlN2 + kENlN2) =

$ki(jl + j2Nl)/N) 1 e(j2k2/N2)zl(jl  + k: Nl + k2N/N2>  l

k2

4
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Let zl(k2 + jlN2 + kiNlN2) = zl(jl+ k2 Nl + k2N/N2) . Then

2
= D2T2P2zl, where D2 and T2 satism the conditions of the

theorem and P2 Pis defined by ,zl = P2z1.

Continuing in this manner one finally arrives at

c

dj, + j2Nl + . . .
+ jMNlN2  l  * *  M-1N )

c.

i

i

c

i
L.

L

‘c-

= 1 $j&/NM)zM-l(jM-l+  jM-pMol+  �*  l  +  jlN2N3

%

where'

,zM-1 = DM-l TM-l 'M-1 EM-2
.

�NM-1+  GNlN2* � l NM-1 1 �

We define
pM

and PM+l by :Eol = PM ,zMol and ,y = PM+l zpJ where

PzMl-l ( s�jMolNM+ l +jlN2N3... MN) =

= �M-1
(☺

�M-1  + j,-2NMo,  + � l �

+ jlNg3...
NM-1+$$1N2*--NMml

>

and

Py(j,+ j2Nl+ e-0 + j&N2*  l NMol> = Y (ii,+ jMolNM+ l jlN2N3 . ..NM) .

Then

i
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Y = ‘~1 TM ‘M ‘M 1 3N -

= p+l(T$M)(DM-l  TM-1 pj&.l)& ’

= . . . Y

= pM+&T&,$  cDM-l TM-1  �M-1)  l  l  l  (DITlp+�  )

= TX

*and the proof is complete.

At this point it is easy to count the number of operations

required by the fast Fourier transform. Whereas direct computation

of Y = TX requires N2 complex multiplications and N(N-1) complex
N

additions, it is seen that computation of

.Y- = pM+l(T~&o(D&~  TM-l  pM-1>  l  l  l

(DITIPl)⌧ requires
-

N(M-1 + CMa 1 Nm) complex multiplications and N(xeZl= M (J$-l))

complex additions.

One further observation should be made before proceeding to the

error analysis. This regards a variation of the fast Fourier transform

known as the Sande-Tukey algorithm in difference to the Cooley-Tukey

algorithm derived above (see [l]). In a matrix factorization corresponding

to the Sande-Tukey algorithm, the theorem still holds but with different

diagonal matrices Dp (1 = 1,2,...,M-1) . Table 1 compares elements of

the diagonal matrices for the two versions.
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Table 1. FFT Diagonal Matrix Elements

Cooley-Tukey

Dl : E (k2j 1/N1N2 >

.

..
I
c

DM-2 : f&☺jl + j2Nl + 0.0 + jM-2NlN20�*NMo3)/NlN2*  l l NM-l)
i DM-l : eb& + j2Nl + l . . + j, lNiN2. ..NM- r

2)/N)

Sande-Tukey

t

I
L.

Dl : e( jl($  + S-lNM  + v l l + k$3IY)+*  l aNM)/N)
...
Df4-2 : 9M-2 $14 + !M-1M / M-2 NM-l M( N)N N)

7
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3. Roundoff Errors in the Fast Fourier Transform. In this

section we first explain the roundoff error models used and then state

and prove a theorem bounding the RMS and maximum errors.

It is assumed that the floating-point accumulator of the computer

on which the fast Fourier transform is implemented has at least one

digit of extra length (a guard digit). 'Then the floating-point sum

and floating-point product of two floating-point numbers a and b

are given by

(34 fl(a + b) = (a + b)(l+ QE)

and

(3.2) fl(ab) = ab(l+ Qs) ,

where s is a computer-dependent constant and Q is a generic variable

usually different in value at each occurrence but always within the

range -1 to 1 . (The relative error constant, E , is 0.5pl-t

for rounded operations or @
1-t for chopped operations on a computer,

where 6 is the floating-point computing system base and t is the

number of base-p digits in the mantissa of the floating-point number.
-

For example, s = 16 -5 in short-precision floating-point operations on

the IBM/360.)

To represent roundoff in computing sines and cosines we introduce

an absolute error constant y > 0 such that

fl(sin(fl(a)))  = sin(a) + y 8s

i
and

i



fl(cos(fl(a))) = cos(a) + yQe ,
f
L

1L
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i
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where Q and s are above. This constant depends on how sines and

cosines and their arguments are computed for a transformation of a

given order,but it is independent of the input data.

Let x* = (x(O),...,x(N-1)) , y* = (y(O),...,y(N-1)) and

fl(y) be the floating-point representation of y and let

II IIt m = (( 1 IZ(k)12)/N)1/2 and \I zI\ = max (z(k)1 . Then we
k N 02

k

have the following:

THEOREM 2. If y = TX is computed by a floating-point fast
N N

Fourier transform of order N' = N,N,...N,  , then

a.

and

b.

where

II RMs < JN X(N, y)E + ok2>

bfl(_Y) - _Yl\aD/  11 ,x IIRMs < N K(N,yb + O(c2> ,

K&Y) = CM
a=1

a(NQ)  + (M-1)  (3 + 27)

and

0 - 2)a -

(N I =4) .

1 2 a$ o$ + Y) otherwise'

i
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Proof of a. First consider computation of the inner

product v = c y=, a(!)u(a) by the algorithm: begin v := 41) @ u(l);

for d := 2 step 1 until n do v := v + a(!) @ u(l) end where it is- -

known that u is exactly representable in floating-point while a

satisfies fl(a(l)) = a(1) + y Qe (l. = 1,2,...,n) for y , Q and &

as above. By repeated application of (3.1) and (3.2),as  in Wilkinson [lo],

one finds that

fl(v) = (a(1) + yQs)u(l)(l+Q~)~i(a(2)+y  Qe)u(2)(1+Qe)n +

+ (a(3)+y Q&)u(3)(1+Q&)n-1+ . ..+a(n)(l+y Q s)u(n)(l+Qe)2 .

Expanding factors (l+QE)l and regrouping terms,this  becomes

i

fl(v) = v+ &[(a(l)nQ+yQ)u(l)+ (a(2)nQ+yQ)u(2) +

+ (a(3)(n-l)Q+yQ)u(3)+ . ..+ (a(n)2Q+yQ)u(n)l+O(&P) Y

where O(s2) includes all terms of order s2 . ThusJt follows that

floating-point computation of the matrix-vector product v = Au ,

where fl(A(j,I)) = A(j,I)+yQe- and fl(u(1))  = u(f) , is given

exactly by

t

10
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(3.3)

fib(l) >

fl(vP) 1

: -

.

.

.

flbb> 1

c

m

v(Q-

VW

v(n)

-

. rA(l,l)nQ+yQ A(1,2)nQ+yQ . ..A (l,n)2BtyQ

A(2,l)nBtyQ A(2,2)nQ+yQ  . ..A

+E .
..

(2, nPQ+7Q

LA(n,l)nQ+yQ A(n,2)nQ+yQ . ..A(n.n)2&HyQ"
Next consider computation of (1.1) without using the FFT.

write this complex computation as its real equivalent:

0 L

,YR
---

,YI
, -

where C and

c ’ -sII= ---L-w
I ms ; cI

5

[:

--c

,x1

U 0)

UP)

--

. +..

u(n)

We

L

m

o( E2,

o( E2>

.

.

.

( >E2 J0
w

S are real matrices with elements C(j,k) = cos(2n(j-l)(k-1)/N)

and S(j,k) = sin(&(j-l)(k-1)/N) (j,k = 1,2,...,N), and xR , :I ,

_ypc , 5
are the real and imaginary parts of x and y . Note that'

the RMS value of a complex vector is /2 times as large as the RMS

value of its real equivalent and that the RMS value of any vector is

a multiple of the Euclidean norm and therefore is consistent with the

same matrix norms as the Euclidean norm. [I.e., If v = Au , then
CI

VRJJs  ,< II A lll-$Jqs ’ where II A II is the Frobenius norm (the square root

of the sum of the squared-magnitudes of all elements) or the spectral

norm (the square root of the largest eigenvalue of A*A). See

Wilkinson [lo] or Isaacson and Keller [ll].] Therefore, by (3.3) and

the properties of norms,

11
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where M is the matrix of Figure 1. Using the fact that

IC(W) I2 + IS(j,k) 1
2
=1 , the Frobenius norm of M is bounded by

(3*5) IIMJI 5 fNwm 2+ (m)2+ (aY-1)2+  ...+32 + 22]j1i2 + my

when N is greater than 2 .

Finally we analyze the fast Fourier transform. Let ,zl = DITIPlx.

Since the permutation matrix simply reorders vector values, it introduces

no roundoff error. Assume fl(x) = x . Then
N

J3.6) fU_“l> - ,zl = fl(Dl fl(TIPlx)) - DITIPl~N

= fl(Dl fl(v)) -Dl fl(v)+Dl[fl(Tlu)-Tlu],
u Y

where u = P x
1,

and v = T u .
u 1, To bound fl(Tlu) -Tlu , recallN N

that Tl is a block-diagonal matrix whose blocks are Fourier transform

matrices of order N, . Let u, , v, (I = 1,2,...,N/N,) be

N,-vectors such that

u=N

-
,ul

:2
...
WN 1

and v =
N

12

,

:1

12
...

J!N/N~

.



:(1,1)2NQ+yQ C(l,2)2NQtyQ  . ..C(l.N)(N+l)Q+yQ (-S(l,l)NQ+yQ...-S(l,N)2Q+yQ- 1
C(2,1)2NQ+yQ

...

C(N,1)2NQ+yQ

S;;,lkQ+rQ
-

S(2,1)2NQ+yQ

.

.

.
.
.
.

.

.

.

S(N,1)2NQ+yQ
m

Figure 1.

. -S(2,N)2Q+ YQ

.

.

.
.
.
.

. -S(N,N)zQ+ YQ

- - - - ---

. C(l,N)2Q'-yQ

.

.

.

.

Direct Transformation Error Matrix

. C (N,N)2Q + yQ
.

13
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Then by (3.4) and (305),  11 fl$) - ,"alImS _< E ~N~(N~+Y)II~P(I~+O(E~)

(1 = 1,2,...,N/Nl)  when Nl is greater than 2 . If Nl = 2 , this

inequality still holds. In fact, we can do much better. Figures 2

and 3 show the block-diagonal factor matrices for the cases when N

has factors 2 or 4. By inspection, one can see that in these cases

no sines and cosines are computed, no multiplications are required,

and there are only N! elements to be summed as compared with 2Ng-1

in other cases. Thus,one can easily show that

where

(N1
= 2)

(N1 = 4)

otherwise

It immediately follows that

(3-7) IlfUy4 - T1y l)m 5 & dyV1)(ljlRMS + e2>

(1 = 1,2,...,N&) >

for a(Nl) as above.

In the same way we obtain a bound on the error in multiplication
c-

by the complex-diagonal matrix Dl . The bound is given by

14
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.

0
.

1 1

1 -1

Figure 2. The Block-Diagonal Factor Matrix with 2nd-Order Blocks.

m

1 1 1 1

1 i -1 -i

1 -1 1 -1

1 -i -1 i
.

0.

I .

0
.

.

1 1 1 1

1 i -1 -i

1 -1 1 -1

1 -i -1 i

Figure 3. The Block-Diagonal Factor Matrix with 4-th Order Blocks.
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From (3.7) it follows that IIfl(v )IIms = 111 IImS+O(~) . Furthermore,w

the spectral norms of Dl , Tl, and Pl are 1 , filJ and 1,
* *

respectively,since DIDl = I , TITl
= NII and P*P1 1

= I >where

I is the N by N identity matrix. So from (3.6), (34’) and (3.8)

we get

\lfl(_zl) -$Ms I “Jm; (a(N1) + 3+ Wl\ c lIms + O(E2) 1,

where a(Nl) is given above.

The next step is to let z2 = D2T2P2z1. Then

fl(_z2)  - 3 = fl(D2T2P2 fl(_zl)  > - D2T2P2  fl(_zl) + D2T2P2[ fl$> - El1

and

II fl(_zZ) -&Jvg3 I E (N N1 2 )li2(cx(N1 ) +a (N2)+ 2(3+2~))\\~11~  + Ob2) l

The proof of part a. is completed by continuing in this manner and

using Theorem 1.

Proof of b. The proof is extremely simple. Let e(j) = fl(y(j)) -y(j) .

Then

max 14j)12 5 Zyri le(j)12 ,
j

from which it follows that

16



Substituting the bound of part a for II - IIe RMs completes the proof.

It is not necessary to obtain a bound on the maximum error by

using part a. Instead one can use matrix infinity norms in the same

fashion that matrix spectral norms were used above. But the infinity

norms of the factor matrices, Tl! ' are proportional-to N1 rather

than fl, J and so a higher bound results.

17



4. Roundoff Errors in Multidimensional Transformations. The

L

L

efficiency of the fast Fourier transform has made it economically

feasible to compute higher dimensional Fourier transformations in

applications such as picture processing and x-ray diffraction studies.

In this section,bounds

are derived.

The problem is to

(4.1) y(t1,t2,  l 9 4m 1

= c c . . .
s1 s2

on roundoff errors in multidimensional FFTs

bound roundoff errors in computing

1 f+ltl/Nl+s2t2/N2+  •..+s~~~/N,)~(s ,s
S 1 2v-,s,>
m

(sl,te = O,l,...,N1-1;  L = 1,2,...,m) .

i

Let

E(tl,t2,e..,tm) = fl(Y(tl'tg,*=*,t,)) - Y(tl>t2>..*,tm) >

[fl(Y)  -Ylm = c 1 .1.x IE(tl'tg,...,tm)12

tm

and

WY) -YIMAx  = max I (E tl’t2’-.,tmll l

549 tm. . .,
i

Then we have:

18



THEOREM 3. The RMS and maximum error due to roundoff in a

multidimensional fast Fourier transform are bounded by

a. [fl(Y) -Ylms/~s 5 “(NlN2...N,> 112 XT_, K&J) + O(E2)

and

b. [fl(Y) -YIW/XMs 5 E NlR2..JJ CII, K(+Y) +O(e2),m -

where K&Y) (1 = L2, l ,m> is the error constant given in

Theorem 2.

Proof. Let (4.1) be rewritten as the system of equations

(I = 1,2,...,m)

with Z. = Y and Zm = X, and describe this system of equations by

the notation

zl-l = TBZp (l = 1,2,...,m) .

i
Then by adding and subtracting identical terms to the equation

fl(Y) -Y = fl(Tl fl(T2... fl(TmX)...)) -TlT2 . ..T.X

19



one gets

fl(Y) -Y = fl(Tl fl(Zl)) -Tl fl(Zl)

+ Tl fl(T2 fl(Z2)) -TlT2 fl(Z2)

+ TlT2 fl(rj fl(Z3)) -TlT2T3 fl(Z3)

+ . . .

+ T T1 2*"Tm-l fl(TmX)-TlT2...TmX .

Now take the RMS value of both sides and use the Cauchy-Schwartz

inequality to get

(4.2) ImY) -Ylms ,< [fl(Tl fl(Z$) - Tl fl(Zl) lRMs

+ [T+ fl(T2 fl(Ze)) - T2 fl(Z2) 1 IN

+ . . . +

+ [T~T~...T~ 1_ [fl(Tmx) -Tmx]lms .

Using Theorem 2 it is not difficult to prove that

(4.3) [fl(ZQol) -Za,llRMs’[Z~lRMs  5 wjj K(NpY) +oP2)

Nor is it difficult to prove

(44 [Zn-AMS = 0, [Z&s l

20
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Therefore, by (4.2),  (4.3) and (4.4)

[fl(Y) -ylRMs 5 EC (Nl)1’2 K&d [fl$) I,,

+ $N~)"~ mpYml(z2)  I,, + l . .

+ (NlN2.. .N,> l/2 K(Nm,rmr(X)  lRMs)  + O(E2) l

But by (4.3) Lfl(zp) lRMs = Dr lRMs + O(E) (1 = 1,2,...,m-l),  and

by (4.4) ☯Za lRMs = (Np+l  Nl+2  l l l N
m?I2 ☯⌧lms . Assumipg that

Tfl(X)  I,, = [XJMs , or at least [fl(X)]
RMS = [X&&O(E) t the

proof of part a. is complete.

Part b is proved by arguments identical to those used in the

proof of part b of Theorem 2.

21



50 Experimental Results. Roundoff error bounds are always

pessimistic -- sometimes so much so that they give no indication of

the true error, To find out how pessimistic the error bounds ofSection 3

are, the following'experiment  was performed. Using two different .

FORTRAN programs, one by N. M. Brenner 1121 and the other by

R. C. Singleton [13], a mixed radix fast Fourier transform of Gaussian

data with mean 0 and variance 2 was computed in both short and long

precision on the Stanford IBM 360'67. The actual error was computed

as the difference between the short precision results and the truncated

long precision results. The constant y used in determining the error

bound was computed by taking the difference between short precision and

truncated long precision numbers representing sines and cosines. The

results of this experiment are given in Table 2. Note that the RMS

error bound is roughly 20 times larger than the RMS error and the MAX

error bound is roughly 2 orders of magnitude larger than the MAX error.

Also note the relative size of the error bounds with respect to values

of the transformed data. Even though the bounds are pessimistic they

might be used as a threshold for deciding what confidence to place in

transformed data of relatively small magnitude.

22
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G

r -- r .- r- -

Order of Transform.
and Factorization

128 = 4442 *

128 = 4 2 2 2 4~

256 = 4444 * 1.4436 21.78 53.48 3.1 0.000047 0.000153 0.000992 0.015875

256 = 4444 H i.4436 21.78 53.48 4.7 0.000070 0.000216 0.001187 0.018992

512 = 4 4 4 4 2* 1.4158 31.20 81.04 4.2 0.000101 o.000306 0.001994 0.045121

512 = 4 4 2 4 4* '1.4158 31.20 81.04 4.6 0.000106 0.000307 0.002083 0.047141

lo24 = 4 4 4 4 4* 2.2109 44.38 130.41 9.3 0.000202 o.000648 0.004720 0.151041

1024 = 4 4 4 4 4- 2.2110 44.38 130.41 8.9 0.000291 0.001163 OeOObyj’2 0.146301

100 = 4 5 5 * 1.5535 14.98 29.17 5e2 0.000129 0.000491 0.001755 0.017554
100 = 5 4 5 H 1.5534 14.98 29.17 7.7 0.000043 o.ooo122 oeoo2218 0.022176

200= 4 2 5 5 * 1.3670 19.50 45.60 6.8 0.000175 0.000560 0.003014 0.042628

200= 5 2 2 2 5H 1.3670 19*5o 45.60 3.4 o.oooo46 0.000109 0.002223 0.031432

300=4 3 5 5 * 0.6539 23.64 54.42 8.1 0.000239

300 = 5 2 3 2 5'Mt 0.6539 23.64 54.42 7.0 0.000098

400=4 4 5 5 * 2.8367 27.50 66.63 7.1 0.000243

400=4 5 5 4 = 2.8368 27.50 66.63 7.7 0.000120

‘Ilp>i)le ‘2

Comparisorl of Actual Errors with Error Bounds -

Values of Transformed

MIN

0.9543

0.9543

Data

RMS

16.54

16.54

36.13

36.13

Y RMS

3.1 0.000032

1.7 0.000026

0.000082

oeoooo64

0.000663

0.000301

0.000743

0.000430

Errors in Transformed A Priori Bounds on
Data Errors

RMS

0.000698

o l ooo631
0.007897

oeoo7138

0.004905 0.084952

0.004802 0.083172

0.004440 0.088793

0.004685 0.093692
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6. Conclusion.

the floating-point fast

In the preceding sections roundoff errors in

Fourier transform have been analyzed. Bounds

on RMS and maximum errors in transformed data were determined for both

single and multidimensionaltransforms,and  in the case of a one-dimensional

transform results of a computational experiment show how close these

bounds are to the actual roundoff errors. The bounds include the effect

of roundoff in computing sines and cosines and, if contributions to the

stual errors are in the same proportion as to the error bounds, a close

look at the error bounds shows that the effect of roundoff in computing

sines and cosines is not negligible but in fact contributes the same

order of magnitude to the total error as the roundoff in additions and

multiplications.

So far nothing has been said about floating-point representation

of input data. It was assumed that these numbers were exactly

representable in machine precision. If not, an additional term must

be added to the roundoff error to account for rounding input data.

Suppose fl(x) = x+6 . Then the additional term is
N N

i

L

4

On the-other hand, suppose that the input data is known to a number

of significant digits fewer than that of machine precision. For exanrple,

the data might have come from an analog device of limited accuracy.

Then the bounds on roundoff error can be used in reverse as suggested by

the following: Let the roundoff error be given exactly by the complex

N-vector e . This vector can be considered the exact solution of the

25



equation e = TZ for some fictional 6 bounded by
N

II II%Ms ,e= II ll,,‘a

and

11  6 lloD  5 Efi K(N, y)  11 ⌧ IIm +  0 (  e2) l

N

If it should turn out that E ,/NK(N,y)II x II= is smaller than the least
N

significant digit of the input data, the roundoff error is negligible.
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