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ROUNDOFF ERROR ANALYSI S
OF THE
FAST FOURI ER TRANSFORM

Abstract. Thi s paper presents an analysis of roundoff errors occurring
in the floating-point conputation of the fast Fourier transform Upper
bounds are derived for the ratios of the root-mean-square (RVS) and
maxi mum roundoff errors in the output data to the RMS val ue of the
input data for both single and nultidinensional transformations. These

bounds are conpared experimentally with actual roundoff errors.



1. | ntroducti on. The fast Fourier transform (FFT) is a very

efficient algorithm for conputing

Nl L
(1.1) v = % AP/ (j = 0,1,...,N-1),

where {x(k)} is a given set of conplex nunbers and i = /-1 . Let
y' = (y(0),...,y(N-1)) and fi(y) be the floating-point representation

of Y . In this paper we derive bounds for

15200 - Pl / 1 2 g 208 11D = 3 L1 D

wher e

Izl =<<§ |z(k)|2>/1\r)l/2 and |z = max |z (x) |

These bounds include the effect of roundoff in conputing sines and
cosines and are obtained for both single and multidinensional transformations.
Speci al consideration is given to cases when Nis a multiple of 2 or k4 .
The subject of roundoff error in the FFT has been studied and
reported by others but with less generality or using a different approach.
By conparing upper bounds, Gentleman and Sande [1] show that accunul at ed
floating-point roundoff error is significantly |ess when one uses the
FFT than when one conputes (1.1) directly. In [2] Welch derives approxinate
upper and |ower bounds on the RVS error in a fixed-point power-of-tw
algorithm \Winstein [3] uses a statistical nodel for floating-point
roundoff errors to predict the output-noise variance. Liu and Kaneko [4]
al so use a statistical approach to predict the roundoff error in a
floating-point transformation.
In the following sections, (1) the FFT algorithmis analyzed from the
point of view of matrix factorization, (2) error bounds are derived,and
(3) experimental conparisons of actual errors with error bounds are presented.
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2. The Fast Fourier Transform I n 1965 Cool ey and Tukey [5]

introduced the algorithm now known as the fast Fourier transform
In this algorithm for conputing (1.1) the nunber of operations required
2

i's proportionalto N log N rather than N A close look at (1.1)

shows that it is precisely the matrix-vector equation y = Txwth
the Nth- order matrix T defined by T(j,k) = g L12nJk/N
(jk = 0,1,...,N=1) . Qthers have pointed out this fact and have observed
that the speedup of the fast Fouriertransformis due to the factorization
of Tinto a small nunber of sparse matrices [6], [7], [8], [9].

The factorization of T is derived below and is shown to be that given

by the follow ng theorem

THEOREM 1. If T is a matrix of order N with conplex exponenti al
eletents T(j, k) = exp(i2njk/N) (j,k = 0,1,...,N-1) and if

N:NlNg. .. NM,then

T = Py (TyPy) Oy Tyex Byen) o0 (01T1P)

wher e P, (I = 1,2,...,M+1) are pernutation matrices,
D, (¢ = 1,2,...,M1) are diagonal matrices of conplex exponential
el enents, and Tz (a = 1,2,...,M are block-diagonal matrices whose

Hocks have el enents exp(i2arjlk£/Nl) (3,0k, = 0,1,...,1\11-1) .

Proof . Fol l owi ng Gentlenman and Sande [1] we use the notation
e(0) for exp(i2ne) . Note that c_e(Ol+ 02) = g(@l)g(gg) and

e(Q =1if eis an integer.



¥-1\
Let the indices in (1.1) be expressed as | = gt N and
¥ * . R *
k=X +k N (jpk =01l...,N-1; ok = o,l,...,Nl-l), wher e
* .
N, =T, N5. N Then one can wite
* * %, ¥ *
(21) oyl W) = ) eliy k/N)z ()t g W)
Ky
wher e
1
P * _ * * :
Let x (kl * kg Nl) = x(kl + Ky Nl) . Then z, = D;T,P x, where D,
is a diagonal matrix of conplex exponentials, T, is the bl ock-diagonal
matrix with block elements g(jlkl/Nl) (‘jl’kl = 0,1,.. .,Nl-l), and
Py is the pernutation matrix defined by £ = PX .

Next let indices in (2.1) be expressed as Jp = dp + 3o N

*

and ky = k, + k, Ny (32,1:2 = 051,00 esNp-1 ) Gk, = O,l,...,NE-l),

2
*
where N, = N5 U Then (2.1) becomes
y(al + J, Ny + J2N.1N2) = z;ee(__g2 112/1\12)z2(32 *JN, + kENlNE) )
o
wher e

*
z25(Jp + Ny + KN, Np)

e(ly(3y + 3 N;)/N) kZ e(3gko/Np)zy (31 + Ky Ny + KN/Np).
2
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Let zl(k2 + 3N, + keNlNé) = zl(Jl *ky N+ kéN/Ne). Then
z, = D, TgPefl, wher e D, and T, satisfy the conditions of the
. . P _
theoremand P, is defined by Zy = P2

Continuing in this manner one finally arrives at

. . + .
y(Jl + JQNl ' . . JMN:LN2 . NM-l)

=

:g‘dg(jW/NM)ZM-l(jM—l+jM-ENM-1+"' I MpNge Byt il o 0 MDD

wher e'
Zv-1 = Pye1 Tve1 Pue1 EM2
Ve defi d by z£ . = P dv="P.. 7 uh
efine ®, and B, , by z, , = B =z, . and y = By, ¥, where

e 2oy .ty TS LA

c ZeaCyey IuegMeer cL o INNge e Ny g NNy Ty o)
and

Y(jl’f jgNl’r B jMNlNE' . %‘D.@ pr <jM+ jM-lNM+ 0 a’.%% “NM)'

Then



Y = Py Ty By Zva1

Py (TBa) Cpcy D1 o1 Zuen 2

o By (OB) Py Tyoq Byog) - - - (DT %

Tx

-and the proof is conplete.

At this point it is easy to count the number of operations
required by the fast Fourier transform \Wereas direct conputation
of Yy = Txrequires N° conplex nultiplications and N(N-1) conpl ex
additions, it is seen that conputation of

D.T.P requires
Y. P (TyB) Oyg Ty Pyt (D,T,P;)x req

o o e o~

NM1 + 1;‘[=1 N/z) conpl ex nultiplications and N( %:1 (Ng-l))
conpl ex addi tions.

One further observation should be made before proceeding to the
error analysis. This regards a variation of the fast Fourier transform
known as the Sande-Tukey algorithmin difference to the Cool ey- Tukey
al gorithm derived above (see [1]). In a matrix factorization corresponding
to the Sande-Tukey algorithm the theorem still holds but with different

di agonal matrices D, (¢ = 1,2,...,M-1) . Table 1 conpares elements of

the diagonal nmatrices for the two versions.
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Tabl e 1.

FFT Diagonal Matrix El enents

(ko 1/ MM, )

elly_1 {3y 3oy -

e(iy(3y 3Ny

ol Uy Py ot

Cooley-Tukey

.0 Léed

Iy 1NqNoe +Ny, p)/M)

v g - W) /M,

Sande~Tukey

an 0 GLE0BL0

e(dyp By + Xy 1M)/Npp 2 My 1 M)

e (31 59/ My 1)



3. Roundoff Errors in the Fast Fourier Transform In this

section we first explain the roundoff error nodels used and then state
and prove a theorem bounding the RMS and maxi num errors.

It is assumed that the floating-point accunmulator of the conputer
on which the fast Fourier transformis inplemented has at |east one
digit of extra length (a guard digit). Then the floating-point sum
and floating-point product of two floating-point nunbers a and b

are given by

(3.1) fl(a + b) = (a + b)(1 + o¢)
and
(3.2) fl(ab) = ab(l + e¢) ,

where ¢ s a conputer-dependent constant and 6 is a generic variable
usual ly different in value at each occurrence but always within the
range -1 to 1 . (The relative error constant, e, isS o.5sl’t
for rounded operations or 51't for chopped operations on a conputer
where g is the floating-point computing systembase and t is the
nunber of base-p digits in the mantissa of the floating-point nunber.
For exanple, ¢ = 167 in short-precision floating-point operations on
t he 1BM/360.)

To represent roundoff in conputing sines and cosines we introduce

an absolute error constant y > 0 such that
fi(sin(fl(a))) = sin(a) + 7y o¢

and
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f1(cos(fl(a))) = cos(a) + 70¢€ |

where © and e are above. This constant depends on how sines and
cosines and their argunents are conputed for a transformation of a
given order,but it is independent of the input data.

Let x' = (x(0),...,x(N-1)) , y' = (y(0),...,y(N-1)) and

f1(y) be the floating-point representation of y and |et
12 g = (C L 120 [B/MY2 ana | 2] = ma [2()] . Then ve

have the follow ng:

THEOREM 2. If y = Txis conputed by a floating-point fast

~

Fourier transform of order N = N:LNQ"‘NM-L’ A t hen

a. Hfl(g) - Z”RMS/“ x HRMS < /NK(N, 7)e + 0(52)

and
b 1) -yl /| % s < T KM2)e + 0(2)
wher e
KWM,7) = T a(,) + (4-1) (3 + 27)
and
/2 (Nl = 2)
am,) = { 5 (¥, = b)
1 2 ‘/Nt (Nt + y) ot herwi se'



Proof of a. First consider conputation of the inner
product v = Zr;:l a(£)u(4) by the algorithm begin v :=a(l) ® u(l);

for £ :=2 step 1 until ndov:=v +a(2)® u(f) end where it is

known that u is exactly representable in floating-point while a
satisfies fl(a(Z)) =a(l) +y 6e (£ = 1,2,...,n) for y , © and ¢

as above. By repeated application of (3.1) and (3.2),as in WIkinson [10],
one finds that

f1(v) = (a(1) + yee)u(1)(1+ QE)n'+ (a(2)+y ee)u(2)(1+ Os)n +

+@(3)+y oe)u(3)(1+0e)™ e | xa(n)(I+y 6 e)u(n)(1+0e)?
Expanding factors (1+ @s)l and regroupi ng terms,this becones

fi(v) = v+ e[ (a(l)ne+y0)u(l) + (a(2)ne+ye)u(2) +
+ (a(3)(n-1)0+70)u(3) + . ..+ (a(n)20+70)u(n)]+0(e7)
wher e 0(52) includes all terns of order :»:2 . Thus,it fol |l ows that
floating-point computation of the matrix-vector product v = Au ,

where  £1(A(3,2)) = A(3,2)+yee and fl(u(4)) = u(L), is given

exactly by

10
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(3.3)

—~ -

£1(v(1))

£1(v(2))

£1(v(n))

— -

v(n)

-

r-\

A(1,1)ne+ye A(1,2)ne+y0 .

A(2,1)n6+ye A(2,2)n6+y6 .

A(n,1)n6+y6 A(n,2)ne+yo .

.A(1,n)20+76

.A(2, n)2e+ye

.. A(n,n)26+y6

-

Next consider conputation of (1.1) wthout using the FFT.

wite this conplex conputation as its rea

where C and S are real

YR- FC

V1 S

!
i
|
== e du v Gun =
!

-3

C

J

and S(j,k) = sin(2n(j-1)(k-1)/N)

YR, U1

are the real

and inmaginary parts of x and y .

(J,k =

equi val ent :

1,2,...,N), and Xp

Ve

X

Not e that:

the rRMS val ue of a conplex vector is /2 times as large as the RMS

value of its rea

a multiple of the Euclidean norm and therefore is consistent with the

same matri x norms as the Euclidean norm

Veug < I A [[ugyyg » where || 4]]

of the sum of the squared-magnitudes of al

[l.e.,

equivalent and that the RVS value of any vector is

If v = Au, then

i's the Frobenius norm (the square root

el ements) or the spectral

*
norm (the square root of the l|argest eigenvalue of AA), See

W ki nson [10] or Isaacson and Keller [11].] Therefore, by (3.3) and

the properties of norns,

11

matrices with elenments ¢(j,k) = cos(2n(j-1)(k-1)/N)
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(3.6) £1(

(3.4) le1(y) - ylae < Ml Bl + o(c®)

where Mis the matrix of Figure 1. Using the fact that

|c(3,k) |2 + |8(3,k) 12 =1, the Frobenius normof Mis bounded by
(3.5)  |u|| < (N((mZ+ ()24 (an-1)2+...+32 + PN/R L oy
< 2N(N+7y)

when N is greater than 2 .
Finally we analyze the fast Fourier transform Let z, = D,T,P, X.
Since the pernutation matrix sinply reorders vector values, it introduces

no roundoff error. Assume fl(x) = x . Then

fl(Dl fl(TlP x)) - D,T.P, X

z) - 2g 1°171 5

fl(:Dl f1(v)) -D; fl(z)+Dl[fl(Tll1) -TlE],

1 X u) 1% recal |

t hat T, is a block-diagonal matrix whose blocks are Fourier transform

matrices of order N’;' Let u, , v

A

where u = P,x and v = Tlu . To bound f1(T,u) -T

(¢ = 1,2,...,N/N,) be

0
A

N -vectors such that

o] ~1
u v
2
u = ~2 and VvV =
V.
El\r/N]LJ N/,

12



[C(1,1)2N0+ 76 C(1,2)2N0 + 76 .

. C(1,N)(WH1)0+ 76 [-S(1,1)N0+76 ...

-S(1,N)20+ 70

c(2,1)2N0 + 70 l -5(2,N)20+ 70
[

C(N,1)2Ne + 70 I -S(N,N)20+ 76

S(1,1)2Ne + yo ‘ C(1,N)20+ 76

s(2,1)2N6 + y6 i .

S(N,1)2Ne + 76

C (N,N)26 +76

Figure 1. Direct Transformation Error Matrix
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Then by (3.4) and (3.5), || £1(v ;) = vj|loye < € 2N (N, +7)||u +0(e)

%l
(1 = 1,2,...,N/Nl) when N, is greater than 2 . If N =2, this
inequality still holds. In fact, we can do nuch better. Figures 2
and 3 show the bl ock-diagonal factor matrices for the cases when N
has factors 2 or L. By inspection, one can see that in these cases
no sines and cosines are conputed, no multiplications are required,
and there are only N, elements to be summed as conpared with n,-1

in other cases. Thus,one can easily show that

L) -Vl < & ) a0y e * O (2 = L2y o o, W/ )
wher e
-
/2 (1\11 = 2)
o) ={ 5 (W =)
\2/1\1:L (Nl+7) ot her wi se

It inmediately follows that

1) Ty ) - T w (g < & VN 00 gy + 0CE%)

for a(N,) as above.

1)
In the sane way we obtain a bound on the error in nultiplication

by the conpl ex-diagonal matrix D, . The bound is given by

(3.8)  [|f1(d; £1(v)) - Dy F1(W||gs S €(2/2+27) £1(v )|l + O(e%)

1h



Figure 2.

The Bl ock- Di agonal

L =

1 1 1
-1 -
-11 -1
-1 -1

Figure 3.

The Bl ock- Di agonal

Factor Matrix wth 2nd-Order Bl ocks.

0

1 1 1 1
11 -1 -i
1 -1 1 -1
1 -i -1 i

Factor Matrix with 4th Order Bl ocks.
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From (3.7) it follows that |[f1(v )gys = IV llgyg* ©(¢) . Furthernore,

the spectral norns of Dy, Ty, and P, are 1, /'Nl, and 1,

*. —
, - - = NI and PxP, = | ,where
respectively,since DD, =1,

*
TiTy 1 11
| is the Nby Nidentity matrix. So from (3.6),(3.7) and (3.8)

we get

1£2(21) = 29| gy < €/ (@) + 5+ 29)|| x gy + O(B) 2

wher e oc(Nl) is given above.

The next step is to let Z, = DT Py 2y - Then

f‘l(Eg) - zp = £1(D TP, fl(fl) ) - DTSR, fl(fl) + D2T2P2[ fl(El) - ‘Z‘i]

and
| £2(2p) - 2y < et 2attty) )+ 25+ 2 gy o(%) .

The proof of part a. |S completed by continuing in this nmanner and

using Theorem 1.

Then

2 N-1
nax [e()]% < Ty Je@))?
d

fromwhich it follows that

16

Proof of b. The proof is extrenely sinple. Let e(j) = fl(y(j)) -vy(j) .



mex |e(3)| < /N |
J

el

Substituting the bound of part a for | e[« conpletes the proof.
It is not necessary to obtain a bound on the maxinmum error by

using part a. Instead one can use matrix infinity norns in the same

fashion that matrix spectral norns were used above. But the infinity

norns of the factor matrices, T, , are proportional-to N, rather

I}
than /N, , and so a higher bound results.

17



4.,  Roundoff Errors in Miltidinensional Transformations. The

efficiency of the fast Fourier transform has made it economcally
feasible to conpute higher dinensional Fourier transformations in
applications such as picture processing and x-ray diffraction studies.
In this section,bounds on roundoff errors in nultidimensional FFTs
are derived.

The problemis to bound roundoff errors in computing

(1) Y(t,y . v ot ) =

= Z Z .. SZ g(sltl/Nl+ Sgtg/N2+ ...+smtm/Nm)X(sl,sz,...,sm)
1 "2 m

(sl,tl = 0,100 0Ny-15 1 = 1,2, .0.,m) .

Let
E(tl,t2,...,tm) = fl(Y(tl,te,...,tm)) - Y(tl,te,...,tm) »
l’,‘ 1/2
: 2
[£1(Y) -V = {[ L L oo 1 Bt tp - nnt )] NNp.ooN \
t. 0t t
1 2 m
and
[fl(Y)-Y]MAX: max |E(tl,t2,...,tm)| .
tl,t2, . -O,tm

Then we have:

18



THEOREM 3. The RMB and nmaxi num error due to roundoff in a

mul tidi mensional fast Fourier transform are bounded by

a. [f1(Y) -3{]ms/xmS < :—:(1\111\12...l\rm)l/2 }:I]’;_l K(N£,7)+O(82)

and

b < & NN n 2

- URY) -Ylyy/fpg S F NN N T K(NG,) 0(e%),
where K(N,,7) (0 H 12 0 @0® is the error constant given in
Theorem 2.

Proof. Let (4.1) be rewitten as the system of equations

Zl-l(sl’""Sﬁ-l’tﬂ"”’tm) = ; e_a(sltz/Nl)Zz(sl,...,sz,‘t“l,...,tm)
4

(£ = 1,2,...,m)

with Zoy = Y and z, = X, and describe this system of equations by

the notation

Z, 1 = 1,2, (£ = 1,2,...,m) .

Then by adding and subtracting identical terms to the equation

f1(Y) -Y = fl(Tl fl(TE... fl(TmX)...)) -1y . T X

19



one gets
f1(Y) -Y = £1(T, fl(Zl)) -7, fl(Zl)
+ Ty fl(T2 fl(ZQ)) -T,T, fl(ZE)

+ T,T, fl(T £1( 5))-TTT fl(z5)

+ T1T2. ..T

oy TH(T X) =Ty T,. . T X

12

Now take the RVB value of both sides and use the Cauchy-Schwartz

inequality to get

(4.2) [f1(Yy) -Y] < [fl(Tl fl(Zl)) - T, fl(Zl) ]

RMS RMS

+ [Tl[ fl(T2 f‘l(Zg)) -T, fl(Zg) ] ]RMS

+ [TlTE...Tm_l[fl(TmX) -me]]RMS

Using Theorem 2 it is not difficult to prove that

2
(4.3) [£1(Z, 1) -2, 1 )oue/ 12, Jps < VI, K(M,57) +0(e%)
Nor is it difficult to prove
(b1 2y 1daus = /My (24 )pyg

20
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Therefore, by (4.2),(k.3) and (4.4)

1/2

[£1(Y) -Ylpyg < e{ ()™ T KN ,7) [£1(21) 1

+ ) Y2 ki) 1, + .. |

+ (NN, -Nm)l/2 KN, 7) [£1(X) 1o} + 0(e®)

But by (%.3)  [£1(Z,) lpye = (2, g + 0(€) (£ = 1,2,...,m-1), and
by (5.%) (2, de. (0, Ny @ 2 Y2 [x] . Acsuning that
[£1(X) ]gys = [Xlpg » OF at |east [£1(X) I = [X]
proof of part a. is conplete.

RMS+o(z»:) s the

Part b is proved by argunents identical to those used in the

proof of part b of Theorem 2.

21



5.  Experinental Results. Roundoff error bounds are always

pessimstic -- sonetimes so much so that they give no indication of
the true error, To find out how pessimstic the error bounds of Section 3
are, the following experiment was performed. Using two different
FORTRAN prograns, one by N. M Brenner [12] and the other by

R. C. Singleton [13], a nmixed radix fast Fourier transform of Gaussian
data with nmean O and variance 2 was conputed in both short and |ong
precision on the Stanford IBM360/67. The actual error was conputed
as the difference between the short precision results and the truncated
long precision results. The constant y used in determning the error
bound was conputed by taking the difference between short precision and
truncated |ong precision nunbers representing sines and cosines. The
results of this experinment are given in Table 2. Note that the R\VB
error bound is roughly 20 times larger than the RVS error and the MAX
error bound is roughly 2 orders of magnitude larger than the MAX error.
Al'so note the relative size of the error bounds with respect to values
of the transforned data. Even though the bounds are pessimistic they
mght be used as a threshold for deciding what confidence to place in

transformed data of relatively small magnitude.

22
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O der of Transform
and Factorization

Loy b2
L2 2 2 lxx

128
128

256
256

512
512

102k
102k

100
100

200
200

300
3500

400
400

L
N

L
i

N
L

I
L

*

5**

59(—)6

Compariscn of Act ual

Val ues of Transfornmed

MN

0.9543
0.9543

1.4436
1.4436

1.4158

1.4158

2.2109
2.2110

1.5535
1.5534

1.3670
1.3670

0.6539
0.6539

2.8367
2.8368

Dat a
RVS

16.54
16.5k4

21.78
21.78

31.20
31.20

4,38
4L, 28

14.98
14,98

19.50
19.50

23,64
23.64

27.50
27.50

MAX
36.13
36.13

53.48
5%.48

81.0L
81.0k

130.41
130.41

29.17
29.17

45.60
45,60

5k, 42
s5h.h2

66.63
66.63

Y

3.1
1.7

@ O
W

RVB
0. 000032
0.000026

0000047
0.000070

o

. 000101
.000106

O

o O

.000291

O

.000129
.000043

o

O

.000175
. 000046

O

o

. 000239
.000098

O

O

.000243
. 000120

o

.000202

Errors with Error Bounds

Errors in Transformed
Dat a

MAX
0.000082
0.00006L

0.000153
0.000216

0.000306
0.000307

0.000648
0.001163

0.000491
0.000122

0.000560
0.000109

0.000663%
0.000301

0.000743
0.000430

A Priori Bounds on
Errors
RVB MAX

0.000698  0.007897
00002  o.007138
0.000992  0.015875
0.001187  0.018992
0.001994  0.045121
0.002083  0.04714k1
0.004720 0.1510k1
0.00k572  0.146301
0.001755 0.01755k4
0.002218  0.022176
0.00301%  0.042628
0.002223  0.031432
0.004905  0.084952
0.004802  0.083172
0.004440  0.088793
0.004685  0.093692
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6.  Concl usion. In the preceding sections roundoff errors in
the floating-point fast Fourier transform have been anal yzed. Bounds
on RVMS and nmaxinum errors in transformed data were determned for both
singl e and multidimensional transforms, and i N the case of a one-di nensional
transform results of a conputational experiment show how close these
bounds are to the actual roundoff errors. The bounds include the effect
of roundoff in conputing sines and cosines and, if contributions to the
@tual errors are in the same proportion as to the error bounds, a close
| ook at the error bounds shows that the effect of roundoff in conputing
sines and cosines is not negligible but in fact contributes the same
order of magnitude to the total error as the roundoff in additions and
mul tiplications.

So far nothing has been said about floating-point representation
of input data. It was assumed that these nunbers were exactly
representable in machine precision. If not, an additional term nust
be added to the roundoff error to account for rounding input data.

Suppose fl(x) = x+6 . Then the additional termis

ool < v ol -

On the-other hand, suppose that the input data is known to a number
of significant digits fewer than that of machine precision. For example,
the data might have conme from an anal og device of limted accuracy.

Then the bounds on roundoff error can be used in reverse as suggested by
the followi ng: Let the roundoff error be given exactly by the conplex

N-vector e . This vector can be considered the exact solution of the
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equation e = Ts for some fictional & bounded by
8l = e oy /X
< e KON lxlge + 0%
and

el < e, ) el &)

If it should turn out that e /NK(N,7)|l x ||RMS is smaller than the |east

significant digit of the input data, the roundoff error is negligible.
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