ROUNDOFF ERROR ANALYSIS OF THE

FAST FOURIER TRANSFORM

BY
GEORGE U. RAMOS

STAN-CS-70-146 FEBRUARY 1970

COMPUTER SCIENCE DEPARTMENT
 School of Humanities and Sciences STANFORD UNIVERSITY

ROUNDOFF ERROR ANALYSIS

OF THE

FAST FOURIFR TRANSFORM

by .

George U. Ramos

Reproduction in whole or in part is permitted for any purpose of the United States Government.

The preparation of this report was sponsored by the Office of Naval Research under grant number NOO13-67-A-0112-0029, the National. Science Foundation under grant number NSF GJ 408 and the Atomic Energy Commission under grant number AT (04-3) 326, PA 30.

ROUNDOFF ERROR ANALYSIS

OF THE

FAST FOURIER TRANSFORM

Abstract. This paper presents an analysis of roundoff errors occurring in the floating-point computation of the fast Fourier transform. Upper bounds are derived for the ratios of the root-mean-square (RMS) and maximum roundoff errors in the output data to the RMS value of the input data for both single and multidimensional transformations. These bounds are compared experimentally with actual roundoff errors.

1. Introduction. The fast Fourier transform (FFT) is a very efficient algorithm for computing
(1.1)

$$
y(j)=\sum_{k=0}^{N-1} e^{i 2 \pi j k / N} x(k) \quad(j=0,1, \ldots, N-1)
$$

where $\{x(k)\}$ is a given set of complex numbers and $i=\sqrt{-1}$. Let $\underset{\sim}{y}{ }^{\prime}=(y(0), \ldots, y(N-1))$ and $f l(y)$ be the floating-point representation of Y. In this paper we derive bounds for

$$
\|f I(y)-\underset{\sim}{y}\|_{\mathrm{RMS}} /\|x\|_{\mathrm{RMS}} \text { and }\|f I(\mathrm{y})-\mathrm{y}\|_{\sim} /_{\infty}\|\underset{\sim}{x}\|_{\mathrm{RMS}} \text {, }
$$

where

$$
\left\|_{z}\right\|_{\mathrm{RMS}}=\left(\left(\sum_{\mathrm{k}}|z(k)|^{2}\right) / \mathbb{N}\right)^{1 / 2} \text { and }\|\underset{\sim}{z}\|_{\infty}=\max _{k}|z(k)|
$$

These bounds include the effect of roundoff in computing sines and cosines and are obtained for both single and multidimensional transformations. Special consideration is given to cases when N is a multiple of 2 or 4 .

The subject of roundoff error in the FFT has been studied and reported by others but with less generality or using a different approach. By comparing upper bounds, Gentleman and Sande [1] show that accumulated floating-point roundoff error is significantly less when one uses the FFT than when one computes (1.1) directly. In [2] Welch derives approximate upper and lower bounds on the RMS error in a fixed-point power-of-two algorithm. Weinstein [3] uses a statistical model for floating-point roundoff errors to predict the output-noise variance. Liu and Kaneko [4] also use a statistical approach to predict the roundoff error in a floating-point transformation.

In the following sections, (1) the FFT algorithm is analyzed from the point of view of matrix factorization,
(2) error bounds are derived, and
(3) experimental comparisons of actual errors with error bounds are presented.
2. The Fast Fourier Transform. In 1965 Cooley and Tukey [5] introduced the algorithm now known as the fast Fourier transform. In this algorithm for computing (1.1) the number of operations required is proportionalto N log N rather than N^{2}. A close look at (1.1) shows that it is precisely the matrix-vector equation $y=T x$ with the Nth- order matrix T defined by $T(j, k)=e^{i 2 \pi j k / N^{\sim}}$ ($j, k=0, I, \ldots, N-I$) . Others have pointed out this fact and have observed that the speedup of the fast Fouriertransform is due to the factorization of T into a small number of sparse matrices [6], [7], [8], [9]. The factorization of T is derived below and is shown to be that given by the following theorem:

THEOREM 1. If T is a matrix of order N with complex exponential elerents $T(j, k)=\exp (i 2 \pi j k / N) \quad(j, k=0,1, \ldots, N-1)$ and if $\mathrm{N}=\mathrm{N}_{1} \mathrm{~N}_{2} \cdot \cdot \mathrm{~N}_{\mathrm{M}}$, then

$$
T=P_{M+1}\left(T_{M} P_{M}\right)\left(D_{M-1} T_{M-1} P_{M-1}\right) \ldots\left(D_{1} T_{1} P_{I}\right)
$$

where $P_{\ell}(I=1,2, \ldots, M+I)$ are permutation matrices, $D_{\ell}(\boldsymbol{\ell}=1,2, \ldots, M-1)$ are diagonal matrices of complex exponential elements, and $T_{\ell} \quad(\mathrm{a}=1,2, \ldots, \mathrm{M})$ are block-diagonal matrices whose Wocks have elements $\exp \left(i 2 \pi j_{\ell} k_{\ell} / N_{\ell}\right) \quad\left(j_{\ell}, k_{\ell}=0,1, \ldots, N_{\ell}-1\right)$.

Proof. Following Gentleman and Sande [1] we use the notation $\underline{e}(\theta)$ for $\exp (i 2 \pi \theta)$. Note that $\underline{e}\left(\theta_{1}+\theta_{2}\right)=\underline{e}\left(\theta_{1}\right) \underline{e}\left(\theta_{2}\right)$ and $e(Q)=1$ if θ is an integer.

Let the indices in (1.1) be expressed as $j=j_{I}+\stackrel{\ddot{j}_{1}}{I} N_{I}$ and $k=k_{1}^{*}+k_{1} N_{1}^{*} \quad\left(j_{1}, k_{1}=0,1, \ldots, N_{1}-1 ; j_{1}^{*}, k_{1}^{*}=0,1, \ldots, N_{1}^{*}-1\right)$, where $N_{1}^{*}=N_{2} N_{3} \ldots N_{M}$. Then one can write

$$
\begin{equation*}
\mathrm{y}\left(j_{1}+j_{1}^{*} \mathrm{~N}_{1}\right)=\sum_{k_{1}^{*}} \underline{e}\left(j_{1}^{*} k_{1}^{*} / \mathrm{N}_{1}^{*}\right) \mathrm{z}_{1}\left(j_{1}+\mathrm{k}_{1}^{*} \mathrm{~N}_{1}\right) \tag{2.1}
\end{equation*}
$$

where

$$
z_{1}\left(j_{1}+k_{1}^{*} N_{1}\right)=e\left(j_{1} k_{1}^{*} / N\right) \sum_{k_{1}} e^{-}\left(j_{1} k_{1} / N_{1}\right) x\left(k_{1}^{*}+k_{1} N_{1}^{*}\right)
$$

Let $x^{P}\left(k_{1}+k_{1}^{*} N_{1}\right)=x\left(k_{1}^{*}+k_{1} N_{1}^{*}\right)$. Then $\underset{\sim}{Z_{1}}=D_{1} T_{1} P_{1} x$, where D_{1} is a diagonal matrix of complex exponentials, T_{1} is the block-diagonal matrix with block elements $\underset{(}{e}\left(j_{1} k_{1} / N_{1}\right) \quad\left(j_{1}, k_{1}=0,1, \ldots, N_{1}-1\right)$, and P_{1} is the permutation matrix defined by $\underset{\sim}{x}{ }_{\sim}^{P}=P_{I_{\sim}}$.

$$
\text { Next let indices in (2.1) be expressed as } j_{1}^{*}=j_{2}+j_{2}^{*} N_{2}
$$

$$
\text { and } k_{1}^{*}=k_{2}^{*}+k_{2} N_{2}^{*} \quad\left(j_{2}, k_{2}=0,1, \ldots, N_{2}-1 ; j_{2}^{*}, k_{2}^{*}=0,1, \ldots, N_{2}^{*}-1\right) \text {, }
$$ where $N_{2}^{*}=N_{3} N_{4} \ldots N_{M}$. Then (2.1) becomes

$$
y\left(j_{1}+j_{2} N_{1}+j_{2}^{*} N_{1} N_{2}\right)=\sum_{k_{2}^{*}} e\left(j_{2}^{*} k_{2}^{*} / N_{2}^{*}\right) z_{2}\left(j_{2}+j_{1} N_{2}+k_{2}^{*} N_{1} N_{2}\right)
$$

where

$$
\begin{aligned}
& z_{2}\left(j_{2}+j_{1} N_{2}+k_{2}^{*} N_{1} N_{2}\right)= \\
& \underline{e}\left(k_{2}^{*}\left(j_{1}+j_{2} N_{1}\right) / \mathbb{N}\right) \sum_{k_{2}} \underline{e}\left(j_{2} k_{2} / N_{2}\right) z_{1}\left(j_{1}+k_{2}^{*} N_{1}+k_{2} N / N_{2}\right)
\end{aligned}
$$

Let $\mathbf{z}_{1}^{\mathrm{L}_{1}}\left(\mathrm{k}_{2}+\mathrm{j}_{1} \mathrm{~N}_{2}+\mathrm{k}_{2}^{*} \mathrm{~N}_{1} \mathrm{~N}_{2}\right)=\mathbf{z}_{1}\left(j_{1}+k_{2}^{*} N_{1}+k_{2} N / N_{2}\right)$. Then $\underset{\sim}{z_{2}}=D_{2} \mathrm{~T}_{2} \mathrm{P}_{2} \underset{\sim}{\mathbf{z}_{1}}$, where D_{2} and T_{2} satisfy the conditions of the theorem and P_{2} is defined by $\underset{\sim}{{\underset{\sim}{1}}^{P}}=P_{2}{\underset{\sim}{\underset{1}{1}}}^{\mathbf{z}_{1}}$.

Continuing in this manner one finally arrives at

$$
y\left(j_{1}+j_{2} N_{1}+\cdots j_{M} N_{1} N_{2} \cdot N_{M-1}\right)
$$

where'

$$
{\underset{\sim}{\mathrm{Z}}-1}={ }^{\mathrm{D}} \mathrm{M}_{1} \mathrm{~T}_{\mathrm{M}-1} \mathrm{P}_{\mathrm{M}-1 \text { EM -2 }}
$$

We define P_{M} and P_{M+1} by $\underset{\sim}{\underset{\sim}{P}} \underset{M-1}{P}=P_{M} \underset{\sim}{z}-1$ and $\underset{\sim}{y}=P_{M+1} \underset{\sim}{y}{ }^{P}$, where
and

$$
\mathrm{Nl}_{l_{1}+}+\mu_{1}+\ldots \text { 目: }
$$

Then

$$
\begin{aligned}
& z_{M-1}^{P}\left(k_{M}+j_{M-1} N_{M}+1\right. \text { Eq) } \\
& \text {. }{ }^{Z_{M-1}}\left(j_{M-1} j_{M-2} N_{M-1} \cdot . \cdot j_{1} N_{2} N_{3} \ldots N_{M-1}+k_{M} N_{1} N_{2} \ldots N_{M-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
y & =P_{M+1} T_{M} P_{M} \underset{\sim}{z} M-1 \\
& =P_{M+1}\left(T_{M} P_{M}\right)\left(D_{M-1} T_{M-1} P_{M-1}\right){\underset{\sim}{\sim}}_{M-2}, \\
& =\ldots, \\
& =P_{M+1}\left(T_{M} P_{M}\right)\left(D_{M-1} T_{M-1} P_{M-1}\right) \ldots\left(D_{I} T_{1} P_{1}\right)_{\sim}^{x}, \\
& =T x
\end{aligned}
$$

and the proof is complete.

At this point it is easy to count the number of operations required by the fast Fourier transform. Whereas direct computation of $\underset{\sim}{Y}=$ Tx requires N^{2} complex multiplications and $\mathbb{N}(N-1)$ complex additions, it is seen that computation of
$\underset{\sim}{y} . P_{M+1}\left(T_{M} P_{M}\right)\left(D_{M-1} T_{M-1} P_{M-1}\right) \ldots\left(D_{1} T_{1} P_{1}\right) \underset{\sim}{x}$ requires
$N\left(M-1+\sum_{\ell=1}^{M} N_{\ell}\right)$ complex multiplications and $\mathbb{N}\left(\sum_{\ell=1}^{M}\left(N_{\ell}-1\right)\right)$ complex additions.

One further observation should be made before proceeding to the error analysis. This regards a variation of the fast Fourier transform known as the Sande-Tukey algorithm in difference to the Cooley-Tukey algorithm derived above (see [1]). In a matrix factorization corresponding to the Sande-Tukey algorithm, the theorem still holds but with different diagonal matrices $D_{\ell}(\ell=1,2, \ldots, M-1)$. Table 1 compares elements of the diagonal matrices for the two versions.

Cooley-Tukey

$$
\begin{aligned}
& D_{1}: \quad \underline{e}\left(k_{2} j_{1} / N_{1} N_{2}\right) \\
& D_{M-2}: \quad \underset{-}{e}\left(k_{M-1}\left(j_{1} j_{2} N_{1} \ldots j_{M-2} N_{1} N_{2} \ldots N_{M-3}\right) / N_{1} N_{2} .\right. \\
& D_{M-1}: \quad \underline{e}\left(k_{M}\left(j_{I} j_{2} N_{1} \ldots j_{M} \quad N_{1}-N_{2} \cdots N_{M-2}\right) / N\right)
\end{aligned}
$$

L

$$
\begin{aligned}
& \text { Sande-Tukey } \\
& D_{1}: e_{-}\left(j _ { 1 } \left(k_{M}+k_{M-1} I_{M}+\ldots+k_{2} N_{3} N_{4} .\right.\right.
\end{aligned}
$$

3. Roundoff Errors in the Fast Fourier Transform. In this section we first explain the roundoff error models used and then state and prove a theorem bounding the RMS and maximum errors.

It is assumed that the floating-point accumulator of the computer on which the fast Fourier transform is implemented has at least one digit of extra length (a guard digit). Then the floating-point sum and floating-point product of two floating-point numbers a and b are given by

$$
\begin{equation*}
f l(a+b)=(a+b)(l+\theta \varepsilon) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f l(a b)=a b(I+\vartheta \varepsilon) \tag{3.2}
\end{equation*}
$$

where ε is a computer-dependent constant and θ is a generic variable usually different in value at each occurrence but always within the range -1 to 1 . (The relative error constant, ε, is $0.5 \beta^{\text {1-t }}$ for rounded operations or β^{1-t} for chopped operations on a computer, where B is the floating-point computing system base and t is the number of base-p digits in the mantissa of the floating-point number. For example, $\varepsilon=16^{-5}$ in short-precision floating-point operations on the IBM/360.)

To represent roundoff in computing sines and cosines we introduce an absolute error constant $y>0$ such that

$$
\mathrm{fl}(\sin (\mathrm{fl}(\mathrm{a})))=\sin (\mathrm{a})+\gamma \theta \varepsilon
$$

and

$$
f l(\cos (f l(a)))=\cos (a)+\gamma \theta \varepsilon,
$$

where θ and ε are above. This constant depends on how sines and cosines and their arguments are computed for a transformation of a given order, but it is independent of the input data.

Let $\mathrm{x}^{\prime}=(\mathrm{x}(0), \ldots, \mathrm{x}(\mathrm{N}-\mathrm{l})), \mathrm{y}^{\mathbf{\prime}}=(\mathrm{y}(0), \ldots, \mathrm{y}(\mathrm{N}-1))$ and fl (y) be the floating-point representation of y and let $\|\underset{\sim}{z}\|_{\text {RMS }}=\left(\left(\sum_{k}|z(k)|^{2}\right) / N\right)^{1 / 2}$ and $\left\|z_{\sim}\right\| \max _{k}|z(k)|$. Then we have the following:

THEOREM 2. If $\underset{\sim}{y}=T \underset{\sim}{x}$ is computed by a floating-point fast Fourier transform of order $N=\mathbb{N}_{1} \mathbb{N}_{2} \ldots \mathbb{N}_{M_{4 .}}$, then

$$
\text { a. } \quad\|f I(\underset{\sim}{y})-\underset{\sim}{y}\|_{\mathrm{RMS}} /\|\underset{\sim}{x}\|_{\mathrm{RMS}}<\sqrt{N K} K(N, \gamma) \varepsilon+O\left(\varepsilon^{2}\right)
$$

and

$$
\text { b. } \quad\|f i(\underset{\sim}{\mathrm{y}})-\underset{\sim}{y}\|_{\infty} /\|\underset{\sim}{x}\|_{\mathrm{RMS}}<\mathbb{N} K(\mathbb{N}, \gamma) \varepsilon+O\left(\varepsilon^{2}\right),
$$

where

$$
K(N, \gamma)=\sum_{\ell=1}^{M} \alpha\left(\mathrm{~N}_{\ell}\right)+(\mathrm{M}-1)(3+2 \gamma)
$$

and

$$
\alpha\left(N_{\ell}\right)= \begin{cases}\sqrt{2} & \left(\mathbb{N}_{\ell}=2\right) \\ 5 & \left(\mathbb{N}_{\ell}=4\right) \\ 2 \sqrt{N}_{\ell}\left(\mathbb{N}_{\ell}+\gamma\right) & \text { otherwise }\end{cases}
$$

Proof of a. First consider computation of the inner product $v=\sum_{\ell=1}^{n} a(\ell) u(\ell)$ by the algorithm: begin $v:=a(1) \otimes u(1)$; for $\ell:=2$ step 1 until n do $v:=v+a(\ell) \otimes u(\ell)$ end where it is known that u is exactly representable in floating-point while a_{\sim} satisfies $f l(a(\ell))=a(1)+y \theta \varepsilon \quad(\ell=1,2, \ldots, n)$ for y, θ and ε as above. By repeated application of (3.1) and (3.2), as in Wilkinson [10], one finds that

$$
\begin{aligned}
f I(v)= & (a(1)+\gamma \theta \varepsilon) u(1)(1+\theta \varepsilon)^{n}+(a(2)+\gamma \theta \varepsilon) u(2)(1+\theta \varepsilon)^{n}+ \\
& +(a(3)+\gamma \theta \varepsilon) u(3)(1+\theta \varepsilon)^{n-1}+\ldots+a(n)(1+y \theta \varepsilon) u(n)(1+\theta \varepsilon)^{2}
\end{aligned}
$$

Expanding factors $(1+\theta \varepsilon)^{\ell}$ and regrouping terms, this becomes

$$
\begin{aligned}
f l(v)=v & +\varepsilon[(a(1) n \theta+\gamma \theta) u(1)+(a(2) n \theta+\gamma \theta) u(2)+ \\
& +(a(3)(n-1) \theta+\gamma \theta) u(3)+\ldots+(a(n) 2 \theta+\gamma \theta) u(n)]+0\left(\varepsilon^{2}\right)
\end{aligned}
$$

where $O\left(\varepsilon^{2}\right)$ includes all terms of order ε^{2}. Thus, it follows that floating-point computation of the matrix-vector product $v=A u$, where $f l(A(j, \ell))=A(j, \ell)+\gamma \theta \varepsilon$ and $f l(u(\ell))=u(\ell)$, is given exactly by

Next consider computation of (1.1) without using the FFT. We write this complex computation as its real equivalent:
where C and S are real matrices with elements $C(j, k)=\cos (2 \pi(j-1)(k-1) / \mathbb{N})$ and $S(j, k)=\sin (2 \pi(j-1)(k-1) / \mathbb{N}) \quad(j, k=1,2, \ldots, N)$, and $\underset{\sim}{x}, \underset{\sim}{x}{ }_{I}$, ${\underset{\sim}{X}}_{R},{\underset{\sim}{y}}_{\mathrm{I}}$ are the real and imaginary parts of x and y . Note that the RMS value of a complex vector is $\sqrt{2}$ times as large as the RMS value of its real equivalent and that the RMS value of any vector is a multiple of the Euclidean norm and therefore is consistent with the same matrix norms as the Euclidean norm. [I.e., If $v=A{ }_{\sim}$, then $\mathrm{v}_{\mathrm{RMS}} \leq\|\mathrm{A}\| \mathrm{u}_{\mathrm{RMS}}$, where $\|\mathrm{A}\|$ is the Frobenius norm (the square root of the sum of the squared-magnitudes of all elements) or the spectral norm (the square root of the largest eigenvalue of $A^{*} A$). See Wilkinson [10] or Isaacson and Keller [11].] Therefore, by (3.3) and the properties of norms,

$$
\begin{equation*}
\|f I(\underset{\sim}{y})-\underset{\sim}{y}\|_{\mathrm{RMS}} \leq \varepsilon\|\mathrm{M}\|\|\underset{\sim}{x}\|_{\mathrm{RMS}}+0\left(\varepsilon^{2}\right), \tag{3.4}
\end{equation*}
$$

where M is the matrix of Figure 1. Using the fact that $|C(j, k)|^{2}+|S(j, k)|^{2}=1$, the Frobenius norm of M is bounded by

$$
\begin{align*}
\|M\| & \leq\left\{N\left[(2 N)^{2}+(2 N)^{2}+(2 N-1)^{2}+\ldots+3^{2}+2^{2}\right]\right\}^{1 / 2}+2 N \gamma \tag{3.5}\\
& <2 N(\mathbb{N}+\gamma)
\end{align*}
$$

when N is greater than 2 .
Finally we analyze the fast Fourier transform. Let $\underset{\sim}{\underset{\sim}{Z}} \underset{1}{ }=D_{1} T_{1} P_{1} \underset{\sim}{x}$. Since the permutation matrix simply reorders vector values, it introduces no roundoff error. Assume $f(x)=\underset{\sim}{x}$. Then

$$
\begin{align*}
f 1\left({\underset{\sim}{z}}_{1}\right)-\underset{\sim}{\underset{\sim}{z}} & =f l\left(D_{1} f l\left(T_{1} P_{1} \underset{\sim}{x}\right)\right)-D_{1} T_{1} P_{1} \underset{\sim}{x} \tag{3.6}\\
& =f I\left(D_{1} f l(v)\right)-D_{1} f l(v)+D_{1}\left[f 1\left(T_{1} \underset{\sim}{u}\right)-T_{1} \underset{\sim}{u}\right]
\end{align*}
$$

where $u=P_{1} \underset{\sim}{x}$ and $\underset{\sim}{v}=T_{1} \underset{\sim}{u}$. To bound $f\left(T_{1} \underset{\sim}{u}\right)-T_{1} \underset{\sim}{u}$, recall that T_{1} is a block-diagonal matrix whose blocks are Fourier transform
 $\mathrm{N}_{\mathrm{\perp}}$-vectors such that

$$
\left.\underset{\sim}{u}=\left\lvert\, \begin{array}{l}
{\underset{\sim}{u}}_{1} \\
{\underset{\sim}{u}}_{2} \\
\vdots \\
{\underset{\sim}{u}}_{N /} / N_{1}
\end{array}\right.\right] \quad \text { and } \quad \underset{\sim}{v}=\left|\begin{array}{l}
{\underset{\sim}{v}}_{1} \\
{\underset{\sim}{v}}_{2} \\
\vdots \\
\underset{\sim}{v} N / N_{I}
\end{array}\right|
$$

Figure 1. Direct Transformation Error Matrix

Then by (3.4) and (3.5), $\left\|f 1(\underset{\sim}{v} \ell)-{\underset{\sim}{v}}_{\ell}\right\|_{R M S} \leq \varepsilon \quad 2 N_{1}\left(N_{1}+\gamma\right)\| \|_{\ell} \|_{R M S}+O\left(\varepsilon^{2}\right)$ $\left(\ell=1,2, \ldots, N / N_{1}\right)$ when N_{l} is greater than 2 . If $N_{I}=2$, this inequality still holds. In fact, we can do much better. Figures 2 and 3 show the block-diagonal factor matrices for the cases when N has factors 2 or 4 . By inspection, one can see that in these cases no sines and cosines are computed, no multiplications are required, and there are only N_{ℓ} elements to be summed as compared with $2 N_{\ell}-1$ in other cases. Thus, one can easily show that

$$
\|f 1(\underset{\sim}{v})-\underset{\sim}{v} \ell\|_{R M S} \leq \varepsilon \sqrt{N_{1}} \alpha\left(\mathbb{N}_{1}\right)\left\|{\underset{\sim}{l}}^{u}\right\|_{R M S}+O\left(\varepsilon^{2}\right) \quad\left(\ell=1,2, \ldots, N / N_{1}\right)
$$

where

$$
\alpha\left(N_{1}\right)= \begin{cases}\sqrt{2} & \left(N_{1}=2\right) \\ 5 & \left(N_{1}=4\right) \\ 2 \sqrt{N_{1}}\left(N_{1}+\gamma\right) & \text { otherwise }\end{cases}
$$

It immediately follows that

$$
\begin{equation*}
\left\|\mathrm{fl}\left(\mathrm{~T}_{1} \underset{\sim}{u}\right)-\mathrm{T}_{1} \underset{\sim}{u}\right\|_{\mathrm{RMS}} \leq \varepsilon \sqrt{\mathrm{N}_{1}} \alpha\left(\mathrm{~N}_{1}\right)\|\underset{\sim}{\operatorname{RMS}}\|_{\mathrm{RS}}+0\left(\varepsilon^{2}\right) \tag{3.7}
\end{equation*}
$$

for $\alpha\left(\mathbb{N}_{1}\right)$ as above.
In the same way we obtain a bound on the error in multiplication by the complex-diagonal matrix D_{1}. The bound is given by

$$
\begin{equation*}
\left\|f I\left(D_{1} f l(\underset{\sim}{v})\right)-D_{1} f l(\underset{\sim}{v})\right\|_{\mathrm{RMS}} \leq \varepsilon(2 \sqrt{2}+2 \gamma)\|f 1(\underset{\sim}{v})\|_{\mathrm{RMS}}+0\left(\varepsilon^{2}\right) \tag{3.8}
\end{equation*}
$$

Figure 2. The Block-Diagonal Factor Matrix with 2nd-Order Blocks.

Figure 3. The Block-Diagonal Factor Matrix with 4-th Order Blocks.

From (3.7) it follows that $\|f I(\underset{\sim}{v})\|_{\mathrm{RMS}}=\|\underset{\sim}{v}\|_{\mathrm{RMS}}+O(\varepsilon)$. Furthermore, the spectral norms of D_{1}, T_{1}, and P_{1} are $1, \sqrt{ } \mathbb{N}_{1}$, and 1 , respectively, since $D_{1}^{*} D_{1}=I, T_{1}^{*} T_{I}=N_{1} I$ and $P_{1}^{*} P_{1}=I$, where I is the N by N identity matrix. So from (3.6),(3.7) and (3.8) we get

$$
\left\|f 1\left(\underset{\sim}{z_{1}}\right)-\underset{\sim}{z}\right\|_{R M S} \leq \varepsilon \sqrt{\mathbb{N}_{1}}\left(\alpha\left(N_{1}\right)+3+2 \gamma\right)\|\underset{\sim}{x}\|_{R M S}+O\left(\varepsilon^{2}\right)
$$

where $\alpha\left(N_{l}\right)$ is given above.
The next step is to let $\underset{\sim}{\underset{\sim}{2}} \underset{2}{ }=D_{2} \mathbb{T}_{2} P_{2} \underset{\sim}{z}{ }_{1}$. Then

$$
f I\left(\underset{\sim}{z_{2}}\right)-\underset{\sim}{z}{ }_{2}=f l\left(D_{2} T_{2} P_{2} \underset{\sim}{f l}\left(\underset{\sim}{z_{1}}\right)\right)-D_{2} T_{2} P_{2} f I\left(\underset{\sim}{z_{1}}\right)+D_{2} T_{2} P_{2}\left[f I\left(\underset{\sim}{z_{1}}\right)-\underset{\sim}{z_{1}}\right]
$$

and

$$
\left\|f l\left(\underset{\sim}{z} z_{2}\right)-\underset{\sim}{z}\right\|_{R M S} \leq \varepsilon\left(\mathbb{N}_{1} \mathbb{N}_{2}\right)^{1 / 2}\left(\alpha\left(\mathbb{N}_{1}\right)+\alpha\left(\mathbb{N}_{2}\right)+2(3+2 \gamma)\right)\|\underset{\sim}{x}\|_{\mathrm{RMS}} 0\left(\varepsilon^{2}\right) .
$$

The proof of part a. is completed by continuing in this manner and using Theorem 1.

Proof of b. The proof is extremely simple. Let $e(j)=f l(y(j))-y(j)$. Then

$$
\max _{j}|e(j)|^{2} \leq \sum_{j=0}^{N-1}|e(j)|^{2}
$$

from which it follows that

$$
\max _{j}|e(j)| \leq \sqrt{N}\|\underset{\sim}{e}\|_{\mathrm{RMS}}
$$

Substituting the bound of part a for $\|\underset{\sim}{e}\|_{\text {RMS }}$ completes the proof. It is not necessary to obtain a bound on the maximum error by using part a. Instead one can use matrix infinity norms in the same fashion that matrix spectral norms were used above. But the infinity norms of the factor matrices, T_{ℓ}, are proportional-to \mathbb{N}_{ℓ} rather than $\sqrt{ } \mathbb{N}_{\ell}$, and so a higher bound results.
4. Roundoff Errors in Multidimensional Transformations. The efficiency of the fast Fourier transform has made it economically feasible to compute higher dimensional Fourier transformations in applications such as picture processing and x-ray diffraction studies.

In this section, bounds on roundoff errors in multidimensional EFTs are derived.

The problem is to bound roundoff errors in computing
(4.1) $Y\left(t_{1}, t_{2}, \ldots, t_{m}\right)=$
$=\sum_{s_{1}} \sum_{s_{2}} \cdots \sum_{s_{m}} e\left(s_{1} t_{1} / N_{1}+s_{2} t_{2} / N_{2}+\ldots+s_{m} t_{m} / N_{m}\right) X\left(s_{1}, s_{2}, \ldots, s_{m}\right)$

$$
\left(s_{\ell}, t_{\ell}=0,1, \ldots, N_{\ell}-1 ; \ell=1,2, \ldots, m\right)
$$

Let

$$
\begin{aligned}
& E\left(t_{1}, t_{2}, \ldots, t_{m}\right)=f I\left(Y\left(t_{1}, t_{2}, \ldots, t_{m}\right)\right)-Y\left(t_{1}, t_{2}, \ldots, t_{m}\right) \\
& {[f I(Y)-Y]_{R M S}=\left\{\left(\sum_{t_{1}} \sum_{t_{2}} \cdots \sum_{t_{m}}\left|E\left(t_{1}, t_{2}, \ldots, t_{m}\right)\right|^{2}\right) / N_{1} N_{2} \ldots N_{m}\right\}^{1 / 2}}
\end{aligned}
$$

and

$$
[f l(Y)-Y]_{M A X}=\max _{t_{1}, t_{2}, \ldots, t_{m}}\left|E\left(t_{1}, t_{2}, \ldots, t_{m}\right)\right|
$$

Then we have:

THEOREM 3. The RMS and maximum error due to roundoff in a multidimensional fast Fourier transform are bounded by
a. $[f I(Y)-Y]_{R M S} / X_{R M S} \leq \varepsilon\left(N_{1} N_{2} \cdots N_{m}\right)^{I / 2} \sum_{\ell=1}^{m} K\left(N_{\ell}, \gamma\right)+O\left(\varepsilon^{2}\right)$
and
b. $\quad[f I(Y)-Y]_{M A X} / X_{R M S} \leq \varepsilon N_{1} N_{2} \cdots N_{m} \sum_{\ell=1}^{m} K\left(N_{\ell}, \gamma\right)+O\left(\varepsilon^{2}\right)$,
where $K\left(N_{\ell}, \gamma\right)$ (1,2, 00 is the error constant given in Theorem 2.

Proof. Let (4.1) be rewritten as the system of equations
$z_{\ell-1}\left(s_{1}, \ldots, s_{\ell-1}, t_{\ell}, \ldots, t_{m}\right)=\sum_{s_{\ell}} \underline{e}\left(s_{\ell} t_{\ell} / \mathbb{N}_{\ell}\right) z_{\ell}\left(s_{1}, \ldots, s_{\ell}, t_{\ell+1}, \ldots, t_{m}\right)$

$$
(\ell=1,2, \ldots, m)
$$

with $Z_{0}=Y$ and $Z_{m}=X$, and describe this system of equations by the notation

$$
Z_{\ell-1}=T_{\ell} Z_{\ell} \quad(\ell=1,2, \ldots, m)
$$

Then by adding and subtracting identical terms to the equation

$$
f l(Y)-Y=f I\left(T_{1} f l\left(T_{2} \ldots f l\left(T_{m} X\right) \ldots\right)\right)-T_{1} T_{2} \ldots T_{m} X
$$

one gets

$$
\begin{aligned}
f l(Y)-Y & =f l\left(T_{1} f l\left(Z_{1}\right)\right)-T_{1} f l\left(Z_{1}\right) \\
& +T_{1} f l\left(T_{2} f l\left(Z_{2}\right)\right)-T_{1} T_{2} f l\left(Z_{2}\right) \\
& +T_{1} T_{2} f l\left(T_{3} f l\left(Z_{3}\right)\right)-T_{1} T_{2} T_{3} f l\left(Z_{3}\right) \\
& +\ldots \\
& +T_{1} T_{2} \cdots T_{m-1} f l\left(T_{m} X\right)-T_{1} T_{2} \ldots T_{m} X
\end{aligned}
$$

Now take the RMS value of both sides and use the Cauchy-Schwartz inequality to get

$$
\text { (4.2) } \begin{aligned}
{[f l(Y)-Y]_{R M S} \leq } & {\left[f 1\left(T_{1} f l\left(Z_{1}\right)\right)-T_{1} f l\left(Z_{1}\right)\right]_{R M S} } \\
& +\left[T_{1}\left[f l\left(T_{2} f l\left(Z_{2}\right)\right)-T_{2} f l\left(Z_{2}\right)\right]\right]_{R M S} \\
& +\ldots+ \\
& +\left[T_{1} T_{2} \cdots T_{m-1}\left[f 1\left(T_{m} X\right)-T_{m} X\right]\right]_{R M S}
\end{aligned}
$$

Using Theorem 2 it is not difficult to prove that
(4.3) $\left[f 1\left(\mathrm{Z}_{\ell-1}\right)-\mathrm{Z}_{\ell-1}\right]_{\mathrm{RMS}} /\left[\mathrm{Z}_{\ell}\right]_{\mathrm{RMS}} \leq \varepsilon \sqrt{N}_{\ell} \quad \mathrm{K}\left(\mathrm{N}_{\ell}, \gamma\right)+\mathrm{O}\left(\varepsilon^{2}\right)$

Nor is it difficult to prove
(4.4)

$$
\left[z_{\ell-1}\right]_{\mathrm{RMS}}=\sqrt{\mathbb{N}_{\ell}}\left[z_{\ell}\right]_{\mathrm{RMS}} .
$$

Therefore, by (4.2),(4.3) and (4.4)

$$
\begin{aligned}
{[f I(Y)-Y]_{R M S} } & \leq \varepsilon\left\{\left(N_{1}\right)^{I / 2} K\left(N_{1}, \gamma\right)\left[f l\left(Z_{1}\right)\right]_{R M S}\right. \\
& +\left(N_{1} N_{2}\right)^{1 / 2} K\left(N_{2}, \gamma\right)\left[f I\left(Z_{2}\right) I,,+\ldots\right. \\
& \left.+\left(N_{1} N_{2} \cdots \cdot N_{m}\right)^{1 / 2} K\left(N_{m}, \gamma\right)[f l(X)]_{R M S}\right\}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

But by (4.3) $\left[f 1\left(Z_{\ell}\right)\right]_{R M S}=\left[Z_{\ell}\right]_{\mathrm{RMS}}+0(\varepsilon) \quad(\ell=1,2, \ldots, \mathrm{~m}-1)$, and by (4.4) $\left[\mathrm{Z}_{\ell}\right]_{\text {RMS }}:\left(\mathrm{N}_{\ell+1} \mathrm{~N}_{\ell+2} \ldots \bullet \stackrel{\otimes}{m}\right)^{i / 2}[\mathrm{X}]_{\text {RMS }}$. Assuming that $[f l(X)]_{\text {RMS }}=[X]_{\text {RMS }}$, or at least $[f l(X)]_{R M S}=[X]_{R M S}+O(\varepsilon)$, the proof of part a. is complete.

Part b is proved by arguments identical to those used in the proof of part b of Theorem 2.
5. Experimental Results. Roundoff error bounds are always pessimistic -- sometimes so much so that they give no indication of the true error, To find out how pessimistic the error bounds of Section 3 are, the following experiment was performed. Using two different FORTRAN programs, one by N. M. Brenner [12] and the other by R. C. Singleton [13], a mixed radix fast Fourier transform of Gaussian data with mean 0 and variance 2 was computed in both short and long precision on the Stanford IBM 360/67. The actual error was computed as the difference between the short precision results and the truncated long precision results. The constant γ used in determining the error bound was computed by taking the difference between short precision and truncated long precision numbers representing sines and cosines. The results of this experiment are given in Table 2. Note that the RMS error bound is roughly 20 times larger than the RMS error and the MAX error bound is roughly 2 orders of magnitude larger than the MAX error. Also note the relative size of the error bounds with respect to values of the transformed data. Even though the bounds are pessimistic they might be used as a threshold for deciding what confidence to place in transformed data of relatively small magnitude.

Trible?
Comparison of Actual Errors with Error Bounds

Order of Transform. and Factorization					Values of Transformed Data				Errors in Transformed Data		A Priori Bounds on Errors	
					MIN	RMS	MAX	Y	RMS	MAX	RMS	MAX
$128=4$	4	4	2	*	0.9543	16.54	36.13	3.1	0.000032	0.000082	0.000698	0.007897
$128=4$	2	2	2		0.9543	16.54	36.13	1.7	0.000026	0.000064		0.007138
$256=4$	4	4	4		1.4436	21.78	53.48	3.1	0.000047	0.000153	0.000992	0.015875
$256=4$	4	4	4		1.4436	21.78	53.48	4.7	0.000070	0.000216	0.001187	0.018992
$512=4$	4	4	4		1.4158	31.20	81.04	4.2	0.000101	0.000306	0.001994	0.045121
$512=4$	4	2	4		1.4158	31.20	81.04	4.6	0.000106	0.000307	0.002083	0.047141
$1024=4$	4	4	4		2.2109	44.38	130.41	9.3	0.000202	0.000648	0.004720	0.151041
$1024=4$	4	4	4		2.2110	44.38	130.41	8.9	0.000291	0.001163	0.004572	0.146301
$100=4$	5	5		*	1.5535	14.98	29.17	5.2	0.000129	0.000491	0.001755	0.017554
$100=5$	4	5		**	1.5534	14.98	29.17	7.7	0.000043	0.000122	0.002218	0.022176
$200=4$	2	5	5	*	1.3670	19.50	45.60	6.8	0.000175	0.000560	0.003014	0.042628
$200=5$	2	2	2	5**	1.3670	19.50	45.60	3.4	0.000046	0.000109	0.002223	0.031432
$300=4$	3	5	5		0.6539	23.64	54.42	8.1	0.000239	0.000663	0.004905	0.084952
$300=5$	2	3	2		0.6539	23.64	54.42	7.0	0.000098	0.000301	0.004802	0.083172
$400=4$	4	5	5	*	2.8367	27.50	66.63	7.1	0.000243	0.000743	0.004440	0.088793
$400=4$	5	5	4	**	2.8368	27.50	66.63	7.7	0.000120	0.000430	0.004685	0.093692

1

$$
\begin{gathered}
\text { Order of Transform } \\
\text { and Factorization } \\
125: 5 \quad 5 \quad 3 \\
125=5 \\
2
\end{gathered}
$$

$$
\begin{array}{cc}
\text { of Transformed } \\
\text { Data } & \\
\text { RMS } & \text { MAX } \\
& \\
16.42 & 37.31 \\
16.42 & 37.31 \\
& \\
21.24 & 53.30 \\
21.24 & 53.30 \\
& \\
25.67 & 60.21 \\
25.67 & 60.21
\end{array}
$$

Errors in Transformed	
Data	
RMS	MAX
0.000161	0.000558
0.000037	0.000085
0.000171	0.000424
0.000089	0.000323
0.000160	0.000536
0.000123	0.000384

6. Conclusion. In the preceding sections roundoff errors in the floating-point fast Fourier transform have been analyzed. Bounds on RMS and maximum errors in transformed data were determined for both single and multidimensional transforms, and in the case of a one-dimensional transform results of a computational experiment show how close these bounds are to the actual roundoff errors. The bounds include the effect of roundoff in computing sines and cosines and, if contributions to the ætual errors are in the same proportion as to the error bounds, a close look at the error bounds shows that the effect of roundoff in computing sines and cosines is not negligible but in fact contributes the same order of magnitude to the total error as the roundoff in additions and multiplications.

So far nothing has been said about floating-point representation of input data. It was assumed that these numbers were exactly representable in machine precision. If not, an additional term must be added to the roundoff error to account for rounding input data. Suppose $f(x)=\underset{\sim}{x+6} \underset{\sim}{x}$. Then the additional term is $\|T \delta\|_{R M S} \leq \sqrt{N}\|\underset{\sim}{\delta}\|_{R M S} \quad$.

On the-other hand, suppose that the input data is known to a number of significant digits fewer than that of machine precision. For example, the data might have come from an analog device of limited accuracy. Then the bounds on roundoff error can be used in reverse as suggested by the following: Let the roundoff error be given exactly by the complex N -vector e . This vector can be considered the exact solution of the
equation $e=T \underset{\sim}{\mathcal{D}}$ for some fictional δ bounded by

$$
\begin{aligned}
\left\|_{\sim}^{\prime}\right\|_{\mathrm{RMS}} & =\underset{\sim}{\| e} \|_{\mathrm{RMS}} / \sqrt{N} \\
& \leq \varepsilon K(\mathbb{N}, \gamma)\left\|_{\sim}^{x}\right\|_{\mathrm{RMS}}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\left.\|\underset{\sim}{\delta}\|_{\infty} \leq \varepsilon \sqrt{N} K(\mathbb{N}, \gamma)\|x\|_{\text {RMS }} \ldots \varepsilon^{2}\right) .
$$

If it should turn out that $\varepsilon \sqrt{ } \mathbb{N} K(\mathbb{N}, \gamma)\|\underset{\sim}{x}\|_{R M S}$ is smaller than the least significant digit of the input data, the roundoff error is negligible.

Acknowledgments. The author wishes to thank Professor Gene Golub of Stanford University for his advice and encouragement during the research for this paper. Special thanks also go to Sylvania Electronic Systems, Western Division, for support received while the author was at Stanford. This research was done in partial fulfillment of the requirements for a doctoral degree in Computer Science.
[1] W. M. Gentleman and G. Sande, "Fast Fourier transforms -- for fun and profit," 1966 Fall Joint Computer Conference, AFIPS Proc., vol. 29, Washington, D.C.: Spartan, 1966, pp. 563-578.
[2] P. D. Welch, "A fixed-point fast Fourier transform error analysis," IEEE Trans. Audio and Electroacoustics, vol. AU-17, pp. 151-157, June 1969.
[3] C. J. Weinstein, "Roundoff noise in floating point fast Fourier transform computation," IEEE Trans. Audio and Electroacoustics, vol. AU-17, pp. 209-215, September 1969.
[4] B. Liu and T. Kaneko, personal communication.
[5] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Computation, vol. 19, pp. 297-301, April 1965.
[6] W. M. Gentleman, "Matrix multiplication and fast Fourier transforms," Bell Sys. Tech. J., vol. 47, pp. 1099-1103, July-August 1968.
[7] R. C. Singleton, "On computing the fast Fourier transform," Commun. ACM, vol. 10, pp. 647-654, October 1967.
[8 3 F. Theilheimer, "A matrix version of the fast Fourier transform," IEEE Trans. Audio and Electroacoustics, vol. AU-17, pp. 158-161, June 1969.
[9] D. K. Kahaner, "Matrix Description of the Fast Fourier Transform," Los Alamos Scientific Laboratory Report LA-4275-MS, December 1969.
[10] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, New Jersey, 1963.
[II] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.
[12] N. M. Brenner, "Three FORTRAN programs that perform the Cooley-Tukey Fourier transform," M.I.T. Lincoln Lab., Lexington, Mass., Technical Note 1967-2, July 1967.
[13] R. C. Singleton, "An algorithm for computing the mixed radix fast Fourier transform," IEEE Trans. Audio and Electroacoustics, vol. AU-17, pp. 93-103, June 1969.

