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PITFALLS IN COWUTATION, OR WHY A MATH BOOK | SN T ENOUGH

George E. Forsythe *

1. [ ntroduction

Wiy do students take mathematics in college and university?
I see two reasons: (i) To learn the structure of mathematics itself,
because they find it interesting. (ii) To apply mathenatics to the
solution of problenms they expect to encounter in their own fields,
whether it be engineering, physics, economcs, or whatever.

| am sure that (ii) notivates far nore students than (i). More-
over, nost solutions of major mathematical problenms involve the use of
automatic digital conputers. Hence we may justifiably ask what mathe-
ma-tics courses have to say about carrying out mathematical work on a
conputer.  This question notivates ny paper.

| amnot in a mathematics departnment, and tend to noralize about
them If the reader prefers not to be lectured to, | invite himto
ignore t he preaching and just pay attention to the nunerical phenonena
for their own sake.

| want to acknow edge the help of M. Mchael Mlcolmin criti'l'\zing
the manuscript and doing the conputations with a special floating decimal
arithmetic simulator he wote for Stanford' s hexadeci mal conputer.

*The preparation of this manuscript was supported in part by the Ofice

of Naval Research (NR Ok 211), the National Science Foundation (GJ798),
and the Atomic Energy Commission (Stanford PA #18). This material was
presented by invitation to the Mathematical Associ ati on of America in
Eugene, Oregon, 25 August 1969.

Reproduction in whole or in part is permtted
for any purpose of the United States Government.






2. Nature of conputers

An automatic digital conputer is a general-purpose machine. The
bits of information in its store can be used to represent any quanti-
fiable objects -- e.g., nusical notes, letters of the al phabet, elements
of a finite field, integers, rational nunbers, parts of a graph, etc.
Thus such a machine is a general abstract tool, and the generality of
conputing makes conputer science an inportant topic, just as mathematics
and natural |anguage are inportant.

In the use of conmputers to represent letters of the al phabet, ele-
nents of a finite field, integers, etc., there is no error in the repre-
sentation, nor in the processes that operate upon the quantities so
represented. The problens in dealing with integers (to select one
exanpl e) on 'conputers are of the follow ng types: I's there enough
storage to contain all the integers | need to deal with? Do | know a
process that is certain to acconplish ny Qoal on the integers stored in
the conputer? Have | renoved the logical errors ("bugs") from ny conputer
representation of this process? Is this the fastest possible process or,
if not, does it operate quickly enough for nme to get (and pay for) the
“answers | want?

The above problems are not trivial; there are surely pitfalls in
dealing with them and it is questionable whether math books suffice for
their treatment. But they are not the subject of this paper. This paper
is concerned with the sinulated solution on a digital conputer of the
probl ens of algebra and analysis dealing with real and conplex nunbers
Such problems occur everywhere in technology -- for exanple, whenever it
is required to solve a differential equation or a system of al gebraic
equations.

There are four properties of conputers that are relevant to their
use in the numerical solution of problens of algebra and analysis, and
are causes. of many pitfalls:

- 1) Conputers use not the real nunber system but instead a sinula-
tion of it called a "floating-point nunber system™ This introduces the
probl em of round-off.



ii) The speed of computer processing permts the solution of
very large problems. And frequently (but not always) |arge problens
have answersthat are nuch nore sensitive to perturbations of the data
than small problens are.

iii) The speed of conputer processing pernmts Nany nore opera-
tions to be carried out for a reasonable price than Were possible in
the pre-conputer era. As a result, the instability of many processes
i's conspicuously reveal ed.

iv) Normally the internediate results of a conputer computation
are hidden in the store of the machine, and never known to the pro-
grammer.  Consequently the programmer nust be able to detect errors in

his process without seeing the warning signals of possible error that
occur in desk conputation, where all intermediate results are in front

of the problemsolver. O, conversely, he nust be able to prove that
his process cannot fail in any way.



r

3. Floating-point nunber system

The badly naned real nunmber systemis one of the triunmphs of the

human mind. It underlies the calculus and higher analysis to such a
degree that we may forget how inpossible it is to deal with real nunbers
in the real world of finite conputers. But, however nmuch the real
nunber system sinplifies analysis, practical conputing nust do without
it.

O' all the possible ways of simulating real numbers on conputers,
one is nost widely used today -- the floating-point nunber systems. Here
a nunber base B is selected, usually 2,8, 10, or 16. A certain
integer s is selected as the nunber of significant digits (to base B )
in a conputer number. An integer exponent e is associated with each
nonzero conputer nunber, and e nust lie in a fixed range, say

m<e<M.
Finally, there is a sign + or - for each nonzero floating-point number,
Let F =F(B,s, my, M be the floating-point nunber system Each

nonzero X € F has the structure

— e
X =+. dldE"'ds . B,

where the integers d., s dg have the bounds

l?

1<d <81,

0 <d, <B-1 (i=2,...,s) ,
m<e<M

Finally, the nunber O belongs to F, and is represented by
+ .00 ... 0 " g"

Actual computer nunmber systens may differ in detail from the ideal
one discussed here, but the differences are only of secondary relevance
for the fundanental problems of round off.



Typi cal floating-point systenms in use correspond to the follow ng
val ues of the paraneters:

- 975 /o3
B =2 s = 48 m =2100% , M =lo2k (Control Data 6600)
B=2 , s =27 , m =-128 , ™M =127 (IBM 7090)
B=10 , s = 8, m= -50 , M=49 (18M 650)
B =8 , s=13 , m=-51 , M= 77 (Burroughs 5500)
B=16 , s=6 , m=-64 M= 63 (IBM System/260)
B=16 , s=1% , m=64 , M 63 (18M System/360)

Any one conputer may be able to store nunbers in nmore than one system
For exanple, the |BM System/360 uses the last two base-16 floating-point
systens for scientific work, and also a certain base-10 system for account-
i ng purposes.

F is not a continuum nor even an infinite set. It has exactly
2(3—1)as'l(M - m+ 1)+1 numbers in it. These are not equally spaced
throughout their range, but only between successive powers of g and
their negatives. The acconpanying figure, taken from[3], shows the
33-point set F for the small illustrative systemg =2, s =3,
m=-1, M=2.

Because F is a finite set, there is no possibility of representing

the continuum of real nunbers in any detail. |ndeed, real nunmbers in
absol ute value larger than the maxi mum menber of F cannot be said to be
represented at all. And, for many purposes, the sane is true of real

numbers smaller in magnitude than the snallest positive nunber in F
Moreover, each nunber in F has to represent a whole interval of rea
nunbers. If x and y are two real numbers in the range of F, they
will usually be represented by the same nunber in F whenever

lx-y |/ x| g_% 875 ; it is not inportant to be nore precise here.

As a nodel of the real nunber system R, the set F has the
arithmetic operations defined on it, as carried out by the digital com
puter. Suppose x and y are floating-point numbers. Then the true
sum x +y Wl frequently not be in F. (For exanple, take the
3%-point systemillustrated above, let x =54 andy = 3/8.) Thus
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the operation of addition, for exanple, nust itself be sinulated on the

conputer by an approximation called floating-point addition whose re-

sult will be denoted by ff(x +y) . ldeally, fI(x + y) should be
that menber of F which is closest to the true x +y , (and either one,
in case of atie). In nost conputers this ideal is alnobst, but not quite,

achieved. Thus in our toy 33-point set F we woul d expect that f££(5/4 + 3/8)
woul d be either 3/2 or 7/4% . The difference between fi(x + y) and
x +y is called the rounding error in addition.

The reason that 5/4 +3/8 is not in the %3-point set F is re-

lated to the spacing of the nenbers of F. On the other hand, a sum
like 7/2 + 7/2 is not in F because 7 is larger than the |argest
menber of F . The attenpt to form such a sum on nost machines wll

cause a so-called overflow signal, and often the conputation will be
curtly termnated, for it is considered inpossible to provide a useful
approxi mation to nunbers beyond the range of F .

Wile quite a number of the sums x +y (for =x,y in F ) are
themselves in F, it is quite rare for the true product x.y to belong
to F, since it will always involve 2s or 2s-1 significant digits.
Moreover, overflow is nuch nore probable in a product. Finally, the
phenonenon of underflow occurs in floating-point multiplication, when two
nonzero nunbers X, Yy have a nonzero product that is smaller in magnitude
than the smallest nonzero nunber in F. (Underflow is also possible,
though unusual, in addition.) Thus the sinulated nultiplication operation,
f2(x.y) , involves rounding even nore often than floating addition.

The operations of floating addition and nultiplication are conmutative,
but not associative, and the distributive law fails for themalso. Since
these algebraic laws are fundanental to mathematical analysis, working wth
fl oating-point operations is very difficult for mathematicians. One of the
greatest mathematicians of the century, John von Neumann, was able to carry
out sone large analyses with floating-point arithnetic (see [10]), but they
were extrenely ponderous. Even his genius failed to discover a method of
avoi di ng nonassociative analysis. Such a new nethod, called inverse error

anal ysis, owes its origins to Cornelius Lanczos and Wllace Gvens, and has
been heavily exploited by J. H.Wilkinson. A detailed study of inverse error
analysis is part of the subject of numerical analysis. W wll nention it
again in Section 5.



- L. Two exanples of round-off problenms

ne of the conmonest functions of analysis is the exponential function et
— Since it is so nuch used, it is essential to be able to have the value of
s readily available in a conputer program, for any floating-point nunber x .
There is nowhere near enough storage to file a table of all values of e*
so one nust instead have an algorithmfor reconputing eX \nenever it is
_ needed. (By an algorithmwe nean a process that is conpletely defined and
guaranteed to terminate by delivering the desired output .) There are, in
fact, a great many different methods such an algorithm could use, and nost
h scientific conputing systems have one programmed into it. Byt |et us assune
such an algorithmdid not exist on your conputer, and ask how you woul d
programit. This is a realistic model of the situation for a nore obscure
transcendental function of analysis.
Recal | that, for any real (or even conplex) value of x , e* can be
represented as the sum of the universally convergent infinite series

) X £ 2
€ = l+X+§!—+§!T+,,.

Since you |earned mathematics because it is useful, you will surely expect

: X . .
to use the series to compute e . Suppose that your floating-point nunber
- system F is characterized by p = 10 and s = 5. Let us use the
series for x = -5.5 | as proposed by Stegun and Abramowitz [13]. Here
. are the nunbers we get:

e = 1.0000
-5.5000
+15.125
-27.730
+38.129
-41.9k2
+38. 446
- 30. 208
+20.768
-12.692
+6.9803
- 3. 4902
+1.5997

+0.0026363
Q



The sumis termnated when the addition of further terms stops changing
it, and this turns out to be after 25 terms. |Is this a satisfactory
algorithn? It may seemso, but in fact e™2"0 = 0.00408677 , so that
the above series gets an answer correct to only about 26 percent! This
I's awful

What is wong? (bserve that there has been a lot of cancellation in
formng the sumof this alternating series. Indeed, the four |eading
(i.e., nost significant) digits of the eight terns that exceed 10 in
modul us have all been lost. Professor D. H Lehner calls this phenonenon
catastrophic cancellation, and it is fairly common in badly conceived

conputations. However, as Professor WIIliam Kahan has observed, this
great cancellation is not the cause of the error in the answer -- it nerely

reveals the error. The error had already been made in that the terns

like 38.129 , being linted to 5 decimal digits, can have only one digit
that contributes to the precision of the final answer. It would be
necessary for the term (-5.5)h/h! to be carried to 8 decimals (i.e.

10 leading digits) for it to include all 6 leading digits of the answer.
Moreover, an eleventh leading digit would be needed to make it likely that
the sixth significant digit would be correct in the sum The sane is true
of all terms over 10 in magnitude.

Wiile it is usually possible to carry extra digits in a conputation
it is always costly in tine and space. For this particular problem there
s a nuch better cure, namely, conpute the sumfor x = 5.5, and then
take the reciprocal of the answer:

00 1/e5‘5
= 1/(L+5.5 + 15.125 + . ..)
= 0.0040865 , with our 5-decimal arithmetic.

(The synbol ' =t means 'equals approximately' .) Wth this conputation,
the error is reduced to 0.007 percent.
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Note how much worse the problem would be if we wanted to compute e*

for x = -100 .

Actual conputer algorithms for calculating e~ often use a rational
function of x , for x on a fairly short interval |like L<x<=%. ce x|
If x is outside this interval, say

4
e® < x < &

" .

then well known properties of the exponential function are used to obtain 5
the answer fromthe rational approximation to ¢’ , where y = e S I~ 1

(’/’M

The creation of such algorithnms for special functions is a branch of )
e

nunerical analysis in which the general mathematician can hardly be an
expert. On the other hand, it is part of the author% contention that
mat hemati cs books ought to nmention the fact that a Taylor's series is
often a very poor way to conpute a function.
I will briefly state a second exanple. Recall fromthe cal culus that
(1) | P ax xl'p]lb 1 1-P 1-p
‘[';5=—|—Ta:|_p(b -a ) (p £1) .

a

10 and s = 6, let us
2, and p = 1.0001 .

Now using a floating-point systemwth g
eval uate the above formula for a =1, b

V¢ have
2 ax 1 . p=+000L
(2) = lf T.0001 -~ 0.0001
X
If we use Gplace logarithms to evaluate 2=+ 0001 , We have

log,, 2 = 0.301030 |,

log,, 2% £ -0.0000301030 = -1 + 0.999969

whence, using our logarithm table again,

27" = 5.99993

10

o x



Thus, from(2), we get | = 0.7, an answer correct to only one digit.

The precise meaning of the restriction topg =SSO, s =6is not
so clear in the evaluation of 27°9%%L a5 it would have been in the
previous exanple. However, the exanple does illustrate the fact that
Brmula (1), which is precisely meaningful for real nunbers as long as
p#1l, isdifficult to use with finite-precision arithnetic for p
close to 1 . Thus practical conputation cannot adnit the precise
distinction between equality and inequality basic to pure mathematics.
There are degrees of uncertainty caused by approximate equality.

11



5. Solving quadratic equations

The two exanples of Section 4 were taken fromthe cal culus. But
we don't have to learn college mathematics to find algorithms. |n ninth
grade there is a famous algorithm for solving a quadratic equation,
implicit in the follow ng mathematical theorem

Theorem If a, b, c arereal and a # 0 , then the equation
7 A o
ax +bx+c=0 is satisfied by exactly two values of x , nanmely

(3) -b + d b2 - lLac

1 = 24

and

(u) x -b - dbz - lLac

2 = 24

Let us see how these fornulas work when used in a straightforward
manner to induce an algorithm for conputing X, and X, . This time we
shal | use a floating-point systemwithpg=10, s=8, m=-50,

M= 50; this has nore precision than many widely used conputing systens.

Casel: a=1, b=-10"?, c=1.

The true roots of the corresponding quadratic equation, correctly
rounded to 11 significant decinals, are:

X, = 99999.999990 (true)

%, = 0.000010000000001 (true)

If we use the expressions of the theorem we conpute

x, = 100000. 00 (very good)

(The reader is advised to be sure he sees how X, becomes 0 in this
floating-point conputation.)

12



Once again, in conputing x, We have been a victim of catastrophic
cancel [ ation, which, as before, nerely reveals the error we nmade in having
chosen this way of conputing Xy - There are various alternate ways of
conputing the roots of a quadratic equation that do not force such
cancel lation. One of them follows fromthe easily proved formulas,
true if abc £ 0 :

(5) X, _ ’

(6) X -
b b2 - lbac

Now, if b <0, there is cancellation in (4) and (5) but not in (3)

and (6). And, if b >0, there is cancellation in (3) and (6), but not
in (4) and (5). Special attention must be paid to cases where b or ¢
is O.

At this point | would like to propose the following criterion of
performance of a conputer algorithm for solving a quadratic equation.
This is stated rather loosely here, but a careful statement will be found
inf[2].

W define a conplex nunber z to be well within the range of F if
either z =0 or

e lRe(z)l < ¢%  and e <‘Im(z), < g-2

This means that the real and inmaginary parts of z are safely within the
magni t udes of nunbers that can be closely approximated by a menber of F .
The arbitrary factor 52 is included to yield a certain margin of safety.
Suppose a , b ,c are all nunbers in F that are -well within the
range of F . Then they nust be acceptable as input data to the quadratic
equation algorithm | f a=b=c=0, the algorithm should termnate

13



with a message signifying that all conplex nunbers satisfy the equation
ax2+bx+c:O. If a=b =0 and c¢ # 0, then the algorithm shoul d
termnate with an error nmessage that no conplex nunmber satisfies the
equati on.

QG herw se, |et zq and Z, be the exact roots of the equation, so
nunbered that |z | <|z,| . (If a =0, set z, = «».) Wenever =
is well within the range of F, the algorithm should determine an
10 in the sense of differing by not

nore than, say, pg+1 units in the least significant digit of the root.

1

approximation that is close to =z

The same should be done for Zy -

If either or both of the roots z; are not well within the range of F
then an appropriate message should be -given, and the root (if any) that is
well within the range of F should be determined to within a close
appr oxi mat i on.

That concludes the |oose specification of the desired performance of
a quadratic equation solving algorithm Let us return to a consideration
of some typical equations, to see how the quadratic formulas work with
them

Case 22 a=6, b=5, c=-b4,

There is no difficulty in conputing X, = 0. 50000000 and

X -1.3333333 , or nearly these values, by whatever formula is used

2 =

30

Case 33 a =6x 1000, b =5y 10" , ¢ = -4y 100 .

Since the coefficients in Case 3 are those of Case 2, all nultiplied
by 1030 , the roots are unchanged. However, application of any of the
formul as (3)-(6) causes overflow to occur very soon, since 2 > 10°°
out of the range of F. Probably this uniformlarge size of |a|, |b],
ey could be detected before entering the algorithm and all three
nunbers could be divided through by some scale factor |ike 109 to

reduce the problemto Case 2

14



Case L: a = 1009, v =10, c= 107

Here =z is near 1 , while 2z, 1s near 1060 Thus our
algorithm nust determne z, Very cl osely, even though Zy Is out of
the range of F. Cbviously any attenpt to bring the coefficients to

approximate equality in magnitude by sinply dividing them all by the same
nunber is doomed to failure, and mght itself cause an overflow or
underflow.  This equation is, in fact, a severe test for a quadratic
equation solver and even for the conputing systemin which the solver
i's run.

The reader may think that a quadratic equation with one root out of the
range of F and one root within the range of Fis a contrived exanple
of no practical use. If so, he is nistaken. In many iteration algorithns
which solve a quadratic equation as a subroutine, the quadratics do have
a singular behavior in which a - 0 as convergence occurs. One such exanple
IS Muller's method [9] for finding zeros of general smooth functions of z .

Case 5: a = 1.0000000 , b =-4.0000000, c , 3.9999999 .

Here the two roots are z, = 1.999683772 Zy = 2.000316228 .

But applying the quadratic fornulas (3), (&) gives

z, =2, = 2. 0000000 |,

with only the first four digits correct. These roots fail badly to meet

nmy criteria, but the difficulty here is different fromthat in the other
exanples.  The equation corresponding to Case 5is the first of our equations
in which a small relative change in a coefficient a, b, ¢ induces a

much larger relative change in the roots Z) 0 Zp - This is a form of
instability in the equation itself, and not in the nethod of solving it.

To see how unstable the problemis, the reader should show that the conputed

roots 2.0000000 are the exact roots of the equation

0.999999992% - 3-999999968x + 3-999999968 = O ,

in which the three coefficients differ, respectively, from the true
a, b, c of Case 5hy less than one unit in the last significant digit.
In this sense one can say that 2 , 2 are pretty good roots for Case 5.

15



This last way of looking at rounding errors is called the inverse
error approach and has been nuch exploited by J. H WIkinson. In general

it is characterized by asking how little change in the data of a problem
woul d be necessary to cause the conputed answers to be the exact solution
of the changed problem The nore classical way of |ooking at round off,
the direct error approach, sinply asks how wong the answers are as
solutions of the problemwth its given data. Wile both nethods are
useful, the inportant feature of inverse error analysis is that in nmany
large matrix or polynomal problems, it can permt us easily to continue
to use associative operations, and this is often very difficult wth direct
error analysis.

Despite the elenmentary character of the quadratic equation, it is
probably still safe to say that not more than five computer algorithns
exi st anywhere that neet the author's criteria for such an algorithm
Creating such an algorithmis not a very deep problem but it does
require attention to the goal and to the details of attaining the goal
It illustrates the sort of place that an undergraduate mathematics or
conmputer science mgjor can make a substantial contribution to conputer
l'ibraries.

| wish to acknow edge that the present section owes a great deal to
| ectures by Professor WIliam Kahan of the University of California

Berkel ey, given at Stanford in the Spring of 1966.

16






6. Solving linear systems of equations

As the high school student noves from ninth grade on to tenth or
el eventh, he will encounter the solution of systems of l|inear algebraic

equations by Gauss* method of eliminating unknowns. Wth a little

systematization, it beconmes another algorithm for general use. | would
like to examne it in the sinple case of two equations in two unknowns

carried out on a conputer with g =10, s = 3 .
Let the equation systembe one treated by Forsythe and Ml er [3]:

0.000100x + 1.00y = 1.00
(1)
1.00x + 1.00y = 2.00

The true solution, rounded correctly to the nunber of decimals shown, is

x = 1.00010 , v = 0-99990 (truly rounded).

The Gauss elimnation algorithm uses the first equation (if possible)
to elimnate the first variable, x , fromthe second equation. This is
done by multiplying the first equation by 10000 , and subtracting it

from the second equation. Wen we work to three significant digits, the
resulting system takes the form

0.000100x + 1.00y = 1.00 (the old first equation)
- 10000 'y = -10000 .

For just two equations, this conpletes the elinination of unknowns
Now commences the back solution. (ne solves the new second equation for y ,
finding that y = 1.00 . This value is substituted into the first equation,

which is then solved for X .  (One then finds x = 0.00 . In summary, we
have found

y = 1.00

x = 0.00 .

17



O course, this is awful! What went wong? There was certainly no |ong
accunul ation of round-off errors, such as mght be feared in a |arge problem.
Nor was the original problemunstable of itself, as it would be if the lines
represented by the two equations (7)were nearly parallel.

There is one case in which it is impossible to elimnate x from
the second equation -- when the coefficient of x in the first equation
is exactly 0 . Wre such an exact 0 to occur, the algorithmis preceded
by interchanging the equations. Now, once again, if an exact zero makes a
mat hematical al gorithm inpossible, we shoul d expect that a near zero will

give a floating-point algoritim sone kind of difficulty. That is a cort
of philosophical principle behind what went wong. And, in fact, the
division by the nearly zero nunber 0.000L introduced some numbere (10000)
that sinply swanped the much smaller, but essential data of the second
equation.  That is what went W ong.

How coul d this be avoi ded? The answer is sinple, in this case. If it
Is essential to interchange equations when a divisor is actually zero, one
may suspect that it would be inportant, or at least safer, to interchange
t hem when the coefficient of x in the first equation is nuch smaller in
magni t ude than the coefficient of x in the second equation. A careful
round-of f analysis given by J. H WIkinson [14] proves this to be the
case, and good linear equation solvers wll nake the interchange whenever
necessary to insure that the largest coefficient of x (in nmagnitude) is
used as the divisor. Thus the elimnation yields the system

[1.007, + 1.00y = 2.00
{ 1.00v = 1.00 .

~

After the back solution we find

@]

a very fine result.

18



This algorithm wth its interchanges, can be extended to n equations
in n unknowns, and is a basic algorithmfound in all good conputing
centers.

The follow ng exanple shows that there remains a bit nmore to the
construction of a good l|inear equation solver. Consider the system

10.0 x + 100000 y 100000

(8)

1.00x + 1.00y 2.00

If we follow the above elimnation procedure, we see that
i nterchanging the equations is not called for, since 10.0 > 1.00 .
Thus one nultiplies the first equation by 0.100 and subtracts it from
the second. One finds afterwards, still working with g =10, s =3,
t hat

10.0x + 100000y = 100000

- 10000y = -10000
Back solving, one finds
y = 1.00

0.00 !

>
1

This is just as bad as before, for system (8) has the sane sol ution
as (7). Indeed, system (8)is easily seen to be identical with (7), except
that the first equation has been multiplied through by 100000 .

So, the advice to divide by the largest elenment in the colum of
coefficients of x is not satisfactory for an arbitrary system of equations.
Wiat seens to be wong with the system (8)is that the first equation has
coefficients that are too large for the problem Before entering the
Gaussian elimnation algorithmwth interchanges, it is necessary to scale
the equations so that the coefficients are roughly of the same size in al
equations. This concept of scaling is not conpletely understood as vyet,
al though in most practical problems we are able to do it well enough
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If you were faced with having to solve a nonsingular system of
linear al gebraic equations of order 26, for exanple, you mght wonder
how to proceed. Some mathematics books express the solution by Craner's
rule, in which each of the 26 conponents is the quotient of a different

numerator determinant by a common denominator determinant. |f you looked
el sewhere, you night find that a determinant of order 26 is the sum of
26t terms, each of which is the product of 26 factors. If you decide to

proceed in this manner, you are going to have to perform about 25 x 261
mul tiplications, not to mention a simlar number of additions. On a fast
contenporary machine, because of the tine required to do preparatory
conputations, you would hardly perform nmore than 100,000 multiplications
per second. And so the nultiplications alone would require about 107
years, if all went well. The round-off error would usually be astrononical.

In fact, the solution can be found otherwise in about (1/3) x 265%
5859 nultiplications and a |ike number of additions, and should be
entirely finished in under half a second, with very little round-off
error. So it can pay to know how to solve a problem

| wish to leave you with the feeling that there is more to solving
linear equations than you may have thought.
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7. \Wen do we have a good solution?

Anot her exanple of a linear algebraic systemhas been furnished by
Mol er [8]:

0.780x + 0.563y - 0.217 = 0

(9)
0.913x + 0.659y - 0.254 =0
Sone one proposes two different solutions to (9), nanely
(xl) yl) = (0‘999) _l'OOl)
and

(x5 ¥,) = (0.341, -0.087).

Wiich one is better? The usual check would be to substitute them both
into (9). W obtain

0.780xl + O.563yl -0.217 = -0.001243

0.913x; +o.659yl -0.254 = -0.001572
and

a7&m2 + o56ab - 0.217

-0.000001
0.912%x, + o.659y2 - 0.254 =0

It seems clear that (x,, y,) is a better solution than (X5 ¥,) s
since it makes the residuals far smaller

However, in fact the true solution is (1, -1) , as the reader can
verify easily. Hence (xl, yl) is far closer to the true solution than
(255 Y2)

A persistent person may ask again: which solution is really better?
Cearly the answer nust depend on one's criterion of goodness: 5 gyl
residual, closeness to the true solution, or perhaps something else. Surely
one will want different criteria for different problems. The pitfall to be
avoided here is the belief that all such criteria are necessarily satisfied

if one of themis.
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8. Sensitivity of certain problens

W now show that certain conputational problens are surprisingly
sensitive to the data. This aspect of numerical analysis is independent
of the floating-point nunber system

W first consider the zeros of polynomals in their dependence on
the coefficients. In Case 5 of Section 4 above, we noted that, while
t he pol ynom al . 4x + 4 has the double zero 2 , 2, the rounded
roots of the polynomal equation

(10) X - bx . 3.9999999 - o

are 1.999683772 and 2.000316228 . Thus the change of just one
coefficient fromk to 3.9999999 causes both roots to nove a di stance
of .000316228 . The displacenent in the root is 3162 tines as great
as the displacement in the coefficient.

The instability just described is a common one, and results from
the fact that the square root of e is far larger than € . For the
roots of (10) are the roots of

(x- 2)"= € , € = .0000001 ,

and these are clearly 2 + /e . For equations of higher degree, a still
more startling instability woul d have been possi bl e.

However, it is not only for polynomals with nearly multiple zeros
that instability can be observed. The following exanple is due to
W kinson [1k]. Let

p(x) = (x+ 1)(x +2)...(x + 19)(x 4 20)

= x204— 210}{19 ...

The zeros of p(x) are +1, +2, . . . . +19, +20 , and are wel| separated.
This exanple evolved at a place where the floating-point nunber system

had g =2, s =230 . To enter a typical coefficient into the conputer,
it is necessary to round it to 30 significant base-2 digits. Suppose
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that a change in the 30-th nost significant base-2 digit is made in
only one of the twenty coefficients. Infact, suppose that the coefficient
of x2 s changed from"210 to—2@i) + 2'23). How nuch effect does this
smal | change have on the zeros of the pol ynom al ?

To answer this, WIkinson carefully conputed (g = 2, s = 90)
the roots of the equation p(x)= 2'23xl9 =0 . These are now listed,

correctly rounded to the nunber of digits shown.

1. 00000 0000 10. 09526 6145 + 0.64350 090hi
2.00000 0000 11.79363 3881 + 1.65232 97281
3.00000 0000 13.99235 8137 + 2.51883 00701
4.00000 0000 16.73073 Th66 + 2.81262 489Li
4.99999 9928  19.50243 9400 + 1.94033 0347i
6.00000 694k
6.99969 7234
8.00726 7603
8.91725 0249

20.84600 8101

| +

|+

Note that the small change in the coefficient 210 has caused ten
of the zeros to becone conplex,' and that two have nmoved nore than 2.81
units off the real axis! O course, to enter p(x) conpletely into the
computer would require many nore roundings, and actually conputing the
zeros could not fail to cause still more errors. The above table of
zeros was produced by a very accurate conputation, and does not suffer
appreci ably from round-off errors. The reason these zeros moved so far
is not a round-off problem-- it is a matter of sensitivity. Cearly
zeros of polynomals of degree 20 with well separated zeros can be nuch
nmore sensitive to changes in the coefficients' than you mght have thought.

To notivate a second exanple, let me quote a standard theorem of

algebra: In the ring of square matrices of fixed order n, if AX = |
where | is the identity matrix of order n , then XA =

It follows fromthis theorem and continuity considerations that, if
Ais a fixed mtrix and X a variable one, and if AX -1 -6, the
zero matrix, then also xA - | - 6. Hence, if AX -1 is small in sone
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sense, then XA - | is also small. However, as with polynonm als, one's
intuition may not be very good at guessing how small these smallnesses
are. Here is an exanple: Fix

9999 9998
A =
10000 9999
Let
9999.9999 -9997-0001_]
X =

-10001 9998

Then a computation without round-off shows that

.001 .0001

0 0 .

From the last equality the reader may conclude that X is close, though

not equal, to the unique inverse A'1 However, another calcul ation
. without round off shows that
19997.0001 19995.0003
XA -1 =
| -19999 -19995 J
Thus the quantities AX -1 and XA - | , which nust vanish together,

can be of enornmously differing magnitudes in a sensitive situation, even
for matrices of order 2 .
The true inverse matrix is given by

-1 9999.  -999%8.

-100000 9999

and-this is hardly close to X .
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9. A least-squares problem of Hlbert

The fol lowing |east-squares problem was discussed by the great
mat hematician David Hlbert [6], and | eads to some interesting matrices.

Fix n>1. et f(t) be given and continuous for 0 <t < 1 .\
wish to approximate f(t) as well as we can by a pol ynomial
Ko TEmE T ERAET A Xn_|4°n—l of degree n -1 . To be nore precise,
we wish to determne N so t hat
1
o(x) = OI [(f(t) - Xg = Xt = Xn_ltn‘l]2 dt

is as small as possible. |t js not difficult to show that the nininizing
vector of coefficients x exists, is unique and can be deternined by
solving the systemof n sinultaneous equat i ons

30
(11) . — 0 (i =01 ....nl)

If you carry out the algebra, you find that (11) is equivalent to
the systemof n |jnear algebraic equations

(12) Ax = b ’
wher e
(13) a J’; tl-l J-—l — l .
i,J - o t dt - i+j-l (l) zj = 11 21 n)
and
1 . 1
_ i- -
(1) b, = OI tTTTR(t)at (i=12 .., n)

The matrix A of coefficients in (12) is now called the Hlbert
matri x (of order n ), and is denoted by Hn : -
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a 1 1 1
13 3 n
O L
2 3 I n+l
H =
n
11 1 1
n n+l e . . en-1 |

The equations (12) with matrix A = Hoare called the normal equations
for the problem It appears that all one has to do is to find and use
a quadrature rule for approximating the b.l in (14), and then solve
the system (12). This is certainly the standard advice in books on
practical statistics.

However, what is observed is that for n bigger than 8 or 9 (the
threshol d depends on the system used), |inear equations solvers in ordinary
floating-point precision will sinply refuse to solve (12). Mreover, for
probl ens that can be solved (say n =6 ), there are enornous differences

in the solution vectors x for apparently identical problems on slightly
different machines. Wy all this trouble?

Let ne try to explain the sensitivity of the problemfirst. Let
T = H;l . Then it can be proved that

n
36 - 630 3360 7560 7560 -2772
-630 14700 -88200 211680 -220500 82160
3360 -88200 564480 -1411200 1512000 -582120
Te = | -7560 211680  -1411200 3628800  -3969000 1552320
7560  -220500 1512000 -3969000 4410000 -1746360
-2772 8 3160 -582120 1552320 -1746360 6O854L
This neans that a change of 10'6 in just the one el enent bg wi |l produce

changes in the solution vector x of

(.00756, -.2205, 1.512, -3.969, L.k1, _1.7h636)T .

26



SRES

Such changes are unavoidable in a systemwth g =10 and s = 7.
This nmeans that sonme of the coefficients of the best fitting polynom a
of degree 5 will have unavoi dabl e uncertainties of the order of L units.
This may give sone explanation of the instability in the answers. Mre
details are in Section 19 of [3].

Here are approximate values of t , the maximumelenents in T
for n <10 : B -

n t
n

2 1.20 x lol

5 1.92 x 10°

L 6.48 x 10°

5  1.79x 10°

6 L1y 10°
7 1.33y 10°

8  4.25 y 10°

9  1.22 y 10

10 3.48 y 10%°

It cannot be denonstrated here, but if t, > 35 , you just cannot
sol ve the systen1an = b with s-digit arithnetic to base g .

The conclusion of this exanple is that one should not follow a
Statistics book blindly here. It is nuch better to arrange things so
that matrices-of Hilbert type do not arise, even approxi mately. And
when they do, one nust be sure to use enough precision so that b << BS.
There are other ways of attacking |east-squares problenms which are |ess
sensitive'to the data
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10. Instability in solving ordinary differential equations

The standard initial-value problemfor a single ordinary differential
equation dy/dx = f(x, y) is to determne y(x) as accurately as possible
for x>0, given y(0). In one very commn class of methods (the
mul ti step methods) of solving this problem approximately, one picks a
fixed interval h > 0, and determ nes ¥, to approximte y(nh) for
n=1 2 ... . One highly recomended multistep method in desk-conputing
days was the M| ne-Sinpson nethod. Here one |et Vo = y(0) , the given
initial value, and determ ned ¥, by some nethod not mentioned here.

Let ' . f(nh, y ) . The idea was to deternine Yp4p from y, ; end
v.. (n=1,2, . ..) by the integral

n
(n+1)h

(15) Yoe1 = Vo1 [t y(x))ax
(n-1)h

Since the integral in (15) can not usually be evaluated exactly, Milne's
idea was to approximate it by Sinpson's formula, and so |et

h 1 1
(16) Y1 = Vpaat 3 (gt At Y+

At the tine we seek to find Vo1 from (16) we know Yy 1 and Yy and
hence y! , and y; ; but Xll is not known. For general f |,
Milne [7] determi ned the solution of (16) by an iterative process that

is irrelevant to the present discussion. Let us nerely assune that Vien
has been found so that (16) holds, where Yooy = f((n+l)h, yn+l) , and
that this has been done for n =1, 2, . . . , as far as we wish to go.
This nethod was highly recomended by MlIne for solution of ordinary
differential equations at a desk calculator, and it seemed to work very
wel | indeed. Mbst problens were probably solved within 30 steps or |ess.
As soon as automatic digital conputers arrived on the scene, users
of the MIne-Sinpson nethod started to find extraordinary behavior in
certain problens. To illustrate what happened, let us take the very

sinple test problem
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dy/dx = f(x,y) = -y , wth y(0)=1.

The true solution, of course, isy = e ®

Take h = 0.1, and carry out the MIne-Sinpson process with
and y, = 0.90483742 , an 8-decimal correctly rounded val ue o
e %Y Thi is not sonething you can do in your head, and so | wll. give
you the results, as conputed on a systemwth g =10, & =28.

vy = 1

- e —X

X J computed

.2 .8187 3069 .8187 3075

L 74081817 . 74081822
8.0 .000335109912 .00033546263
8.1 .00030380960 ® (0030353914
13.2 .00000036689301 .0000018506012
13.3 . 0000032084360 .0000016744932

13.4 -.000000070769248 .0000015151441

& see that by x = 8.0 a noticeable oscillation has set in,
wher eby successive val ues of Y, alternate in being too low and too high.
By x = 13.4 this oscillation has grown so violent that it has (for the
first time) actually thrown the sign of y negative, which is unforgiveable
in anything simulating a real exponential function

The MIne-Sinpson nethod is very accurate, in that the Sinpson formula
is an accurate approximation to the above integral. Wat can be the matter?

Since f(x,y) = -y , we can explicitly wite down the formula (i6)
in-the form
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Thus the conputed [yi} satisfy the 3-term recurrence relation

Ln

h h
(a7) (1+ g)ym-l = In " (- E)Yn-l =0

n

We know that the general solution of (17)takes the form

/

(18) v, = Al 7\. + A2>~.2 s

wher e )‘1' 7‘2 are the roots of

(19) l+—))~ +-lﬂl>\-(1-_) =0

Sone al gebra and el enentary anal ysis show that

K:1-h+0(h2) , @ h -0

&
I

h
o -(l+-3-)+0(h2) ;, as h =0

Putting the values of A, A, into (18), and using the relation nh =x,
we find that, for smll h,

. n n h\n
Y, T 84,1 -1h) +(-1) A2(1+g
1 3. X
- h heE © 3
= A(1 - 1) + (-1)" Ay(1 + 3
toae™ 4 (1) ae™d
D A 2 .

The first termis the desired solution, and the second is an unwel come
extra solution of the difference equation (17) of the Milne-Simpson Nethod.
Now the initial conditions mght have been chosen exactly so that Al = 1
end A2 =0. (They were roughly of this nature.) Had they been so
chosen, and if the solution could have proceeded without round-off error,
t he unwanted term in A, would never have appeared. But, in fact, a

smal | amount of this solution was adnmitted by the initial condition, and
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some more of it crept in as the result of round-off. Then, after enough
steps, the size of ex/5 caused the unwanted termto dom nate the
solution, with its oscillating sign.

This disaster never occurred in desk computation, so far as we know,
because at a desk one just doesn't carry out enough steps. However,
Prof essor Milne tells me that he did occasionally observe harniess
oscillations in the |oworder digits.

The noral of this exanple is that not only are math books not
enough, but even old nunerical analysis books are not enough to keep you

out of some pitfalls!
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11.  Instability in solving a partial differential equation

The following is a sinple problemfor the heat equation. Suppose a
honogeneous insulated rod of length 1 is kept at temperature (g at one

end, and at tenperature 1 at the other end. |f the entire rod is
initially at tenperature 0 , how does it warm up?

Let u = u(x, t) denote the tenperature at time t at that part of
the rod that is x units fromthe cold end. Then, if the units were
chosen to make the conductivity 1 , the tenperature u gatisfies the
differential equation

(20) - 5 (0<x<1; t>0) ,

3% du
Bxe

with end and initial conditions

uo, t) = 0 t > 0
(1) u(l, t) = 1 (t >0)
u(x, 0) = 0 (0 <x<1).

This problem can perhaps best be solved by separation of variables
and trigonometric series. But let us apply the method of finite differences,
which might in any case be needed for a nore difficult problem 14 4o
this, we divide the length of the rod into equal intervals, each of length h .

And we divide the tinme interval [0, =) jinto equal intervals of length k

Instead of trying to determne u(x, t) for all x and t+, we will limt
ourselves to conputing u(x, t) on the discrete net of points of type
(mh, nk) , for integers m n . The heat equation (20) can then be

simulated by a nunber of finite-difference equations, of which we pick one

u(x-h, t) - 2u(x, t) + u(x+h, t) _ulx, t+k) - u(x, t)

(22) % .

Equation (22) can be used to determne u(x, t) for all net points
in the infinite strip of the problem as follows: spjve (22) for
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u(x, t+k)in terms of u(x-h, t), u(x, t), u(x+h, t) . Thus conpute
u(x, k) for x =h, 2h,. . . . (n-1)h in terms of the given initial
conditions on the line t =o0. The given end conditions give u(0, k)
and u(1, k) . Wth this set of values of u at all points of the net
with £+ =k, we can continue and conpute all values on the net for t = 2k .
Etc. The conputation is very attractive, because each new val ue of

u(x, t+k) is determned explicitly from (22) -- there is no need to solve
a large nunber of sinultaneous equations.

How does the sol ution behave? To try a case, we pick h = 0.1 and
k=0.01. Thus the rod is represented by 9 interior points and two
endpoints, and we get a solution at time steps 0.01 apart. Just to show
the behavior of the solution of (22), we give the value of the tenperature
u(0.5, t) at the midpoint of the rod, conputed withg=10, s =28,
for selected tines:

t u(0.5, t) conputed fromk = 0.01
0 0

0.05 1

0.06 -4

0.07 16

0.15 132276

0.20 - 28157050

0.99 +1.0196022 x 10k

1.00 -2.9590007 y 10 Lk

The values in the table are ridiculous, of course. It is a classical
exanple of instability. Common sense and mathematics both tell us that
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the real tenperature can never get outside the range 0 < u(x, t) <1.
Qur difference-equation problemis a disastrous nodel of the continuous
probl em even though both difference expressions in (22) are reasonable
model s of the derivatives in (20).

This terrible pitfall has been known for at |east 20 years, and
yet new probl em solvers keep on rediscovering it.

It is interesting to note that if one selects a tine step only
half as long, the conputation proceeds very nicely. Here is the
corresponding table of values of u(0.5,t) for a conputation (g = 10,
s =8 wthh=01, k=0.005:

t u(0.5, t) computed for k = 0.005
0 0
0.05 .10937500
0. 06 .14599609
0.07 .17956543
0.15 . 35637261
. . ces
0.20 41304382
- ©1.00 -49997173
L The val ues of the midpoint tenperature are converging to 0.5, as
they obviously should in the physical problem
. VWat is the reason for the great difference in behavior between
k = 0.005 and k = 0.01 ? The matter can be anal yzed in nany ways, and
here is one sinple approach. Let A = k./h2 . Then, from (22),
;L (23) u(x, t+k) = Au(x-h, t) + (1-2\)u(x, t) + Mu(x+h, t)

Hence, if o0 <A < % , the formula (23) represents u(k, t+k) as a

wei ghted average with non-negative weights of u(x-h, t), u(x, t),

-

r—
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and u(x+h, t) . Hence u(x, t+k) will always be between the maxi num
and m ni mum val ues of wu(x, t) . But, if A >%, the weights alternate
in sign and thus permit a solution in which

lu(x, t+k)| = Mu(x-h, t)] + (2n - 1) |u(x, t)| + Mulx+n, )] .

Here the sum of the weights is -1 > 1. This pernits an exponential
growh of a solution with an alternating sign pattern.
Thus the condition O <A = k/hg < -32: is essential to keep the

solution bounded. A deeper discussion found, for exanmple, in Forsythe
and Wasow [4] proves that the solution of (22) converges to the solution
of (20) uniformy for all (x, t)withO<x<1, O0<t<T<eo,

as h -0, k- 0in such a way that k/h2<1/2.

The proof of convergence and an analysis of the stability of (22) can
be carried out by means of Fourier analysis. The stability can be exam ned
in nmore detail by studying the eigenvalues and ei genvectors of the |inear
transformation (23) that maps each line of solutions onto the next line.

Note that in our two tables we had » = 1 and N = 1/2 , respectively.
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12.  Round-off errors in polynomal deflation

Qur final exanple, due to WIkinson [14], shows a nore subtle
effect of round-off error that arises in the course of finding polynon a
zeros. The quartic pol ynom al

Ph(x) = xL+ - 6.7980x3 + 2.99&8;\:2 - 0.043686x + 0.000089248
has zeros that, correctly rounded, are as follows:
0. 0024532 , o.012576‘ ,  0.h45732 6‘.32565

l Suppose first that we conpute the zero 0.0024532 , and then
defl ate P, toa cubi ¢ by dividing Pu(x) by x-0.0024532 , using
g =10, s=5. If we do, the resulting cubic has zeros

0.012576 , 0.457315 , 6.32561

so that the main error introduced by this deflation is a change of the
| argest zero by L units inits last place.

[l. Suppose, on the other hand, that we first conpute the zero
6.3256 , 'and then deflate P, to a cubic by dividing Il(x) by
X -0.3256 , again using 5-place decimal arithmetic. |f so, the resulting
cubi ¢ has the zeros

0.0026261 + 0.064339 i ,

0.467148 .

W have perturbed two of the remaining zeros beyond recognition, and
have changed the second significant digit of the third.

Thus it appears to matter a great deal which zero of P, we | ocat e
first. For the present case we can get a feeling for what is happening
by exam ning the process of division of Pu(x) by the linear factors.
V¢ use detached coefficients:
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First, the division by x-0.0024532 :

1 - 6.7980 + 2.9948 - 0.043686 + 0.000089248
- 0.0024532 + 0.166707206 - 0.00730587492 + 0.000089247416

1l - 6.7955 + 2.9781 - 0.036380

Thus the cubic that results fromthe first deflation is
is(x) = x° -6.7955x2 +2.9781x - 0.036380 . Mbreover, a careful

exam nation of the division shows that is(x) Is exactly (i.e., wthout
round off) equal to the quotient of

IDA(X) = X - 6.7979532:(5 + 2.99&7707206;;2 - 0.04368587492x + 0.000089247416

by x-0.0024532 . Hence the zeros of ?S are exactly the zeros of B,
except for 0.0024532 . Note that all the coefficients of P, and P,
are quite close, so it is reasonable to expect that the zeros of Py, and
Py, shoul d be close (as they are).

Now we show the deflation by x -6.3256 :

1 - 6.7980 + 2.9948 - 0.043686 + 0.000089248
- 6.3256 + 2.9882134L - 0.04174896 + 0.0122526872

1 - 04724 + 0.0066 - 0.001397

Thus the result of this deflation is a cubic %(X) - x° . 0-472%!2
+ 0.0066x - 0.001397 - Agai n, f’s(x) is exactly the quotient of

B,(x) = x* - 6.7980x> + 2. 994813kkx> - 0.04368596x + 0. 0122526872

by x-6.3256 . Note that P, and P, differ very much in their
constant ternms. Hence the product of the roots of %’h must be very
different from that for Py - This is an explanation for the great

A

shift of the zeros of P3.



Further analysis shows that the shift in zeros during this kind of
deflation is generally small when deflation is nade with zeros of snall
modul us, and is generally large when deflation is based on zeros of |arge
nmodulus.  Thus it is better to get zeros of small nodulus first in using a
pol ynom al solver with deflation in the above nanner.

O course, any zero of a deflated polynom al can be refined by use
of the original polynomal, and that is normally done. But, zeros that

change as nuch as those above are difficult to refine, since the refinement

process nay converge to the wrong zero.
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13.  Concl usi ons

Around ten-years ago, when | last read a nunber of them nost
mat hemati cs books that dealt with numerical methods at all were fromten
to fifty years out of date. In the past ten years, many excellent new
met hods have been devised for nost of the elementary problens -- nethods
that are well adapted to automatic computers, and work well. Let me cite
a few exanples of inportant algorithms hardly known ten years ago:

1. For getting eigenval ues of stored square matrices, there is an
excel lent method that starts with the transformation of Househol der (1958),
and follows it with the &-al gorithm of Francis (2961-62) and
Kubl anovskaja (1961). It is the nethod of choice for nost problens.

For references, see Wilkinson[15].

2. For solving ordinary differential equations, special nethods
have been devel oped by Gear [5], Gsborne [11], and ot hers which can deal
with so-called stiff equations. (Roughly speaking, a stiff equation is
one whose sol utions contain very rapidly decaying transients which
contribute nothing to the long-term solution, but which interfere
drastically with mst nunerical methods of solving the equation.)

3. For evaluating the definite integral of a snooth function of
one real variable, the nethod of Romberg (see Vol. 2 of Ralston and WIf [12])
has proved to be very useful.

4. For mnimzing a snmooth real-valued function of n real
variables, a variant by Fletcher and Powel| [1] of a nethod of Davidon
is far superior to anything used in the 1950's. And there are still nore

recent nethods.

Many ot her exanpl es coul d be given. |ndeed, the 1960's have proved
al nost explosive in the nunber of newy invented algorithms that have
suppl anted those known earlier. O the methods known years ago for common
nunerical problenms, only Gauss' systematic elimnation nethod for solving

|inear al gebraic equation systens with dense, stored matrices remains
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supreme today, and even it nust be augmented with scaling and pivoting
decisions, as we noted in Section 6 above. Newton's nmethod for solving
a nonlinear systemof equations is still nuch used today, though it has
strong conpetition from newer nethods.

Because of ny know edge of mathematics texts ten years ago, and ny
know edge of the explosive increase in numerical nethods in the 1960's,
| am confident that today's mathematics courses cannot be trusted to
include inportant know edge about conputer methods. As we noted in
Section 10 above, you can't trust early nunerical analysis textbooks

ei t her
On the other hand, there are experts in numerical analysis. They

have societies in which nethods are presented and di scussed. The

Society for Industrial and Applied Mathematics (SIAM and the Special,
Interest Group on Nurerical Mathematics (SIGNUM of the Association for
Conputing Machinery (ACM are the nost active in this country. There are
a nunber of journals with inmportant information. For a start, you m ght
consult the keyword-in-context index of Computing Reviews, the review
journal published by ACM as well as the algorithnms in the Conmmunications
of ACM and in Numerische Mat hemati k. Mbdern nonographs and textbooks in
nurerical analysis are slowy appearing, and the beginner m ght

profitably consult Ralston and WIf [12].
It mght be noted as a digression that, just as mathematics departments

mainly ignore nodern nunerical analysis, so also the newy created conputer
science departments often give the subject little attention, since they
are so busy with a variety of inportant nonnumerical fields. Thus numerica
anal ysts remain a small corps of specialists whose greatest appreciation
probably conmes fromthe users of mathematical prograns.

Students of mathematics are well equipped to read about numerica
methods.  Why shoul d they repeat the classical blunders of generations
past? Wiy aren't they informed of the existence of good numerica

met hods, and roughly where to find thenf
Remenbering that nost students take mathematics in order to apply it

on conputers, | ask why mathenmatics courses shouldn't reflect a true
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awar eness of how computing is done? Wy shouldn't students demand in
their mathematics courses a greater awareness of the points of contact
of pure mathematics and its practice on a conputer?

O course, a mathematics instructor can shrug his shoul ders and
say that actual computing problens don't interest him and suggest that
his students contact a numerical analyst sonmetine. |f the instructor
actually says this out loud, it at |east has the virtue that the students
may realize imediately that the mathematics is not applicable directly,
instead of having to discover it for thenselves. It still sounds
irresponsible to nme. After all, 'Society has been supporting mathematicians
pretty well for the past 25 years -- not because mithematics i s a beautiful
art form, which it is -- but because mathematics is useful, which it also
is. But this would seemto inply that a mathematician shoul d convey sone
awar eness of the main ways in which his subject is used.

On the other hand, a mathematics course cannot really include very
nuch numerical analysis. WIkinson's treatise [15] on conputing
ei genvalues is 700 pages long, and can hardly be summarized in every
course on linear algebral As a practical matter, then, the mathenatics
instructorts main responsibility is to be aware of the main features of
practical computing in the areas of his mathenmatics courses, and mention
occasional points of contact, while giving his students inportant
references to inportant algorithmc materials in other books.

If one just ignores the relations between mathematics and its
important applications, | fear that an instructor is running the risk
of being exposed by some technol ogi cal chapter of the Students for
Dermocratic Society for not being relevant, and that is a very nasty
accusation nowadays. Wy risk it?






——
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