
PITFALLS IN COMPUTATION, OR WHYAMATH BOOK ISN'T ENOUGH

BY

GEORGEE. FORSYTHE

TECHNICALREPORT NO. CS 147

JANUARY1970

I.

/ COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
I

STANFORD UNIVERSITY

c.

i

ERRATA

TO REPORT CS 147

be George E. Forsythe

entitled

PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T.ENOUGH

Page 1,

Page 5,

Pa.ge 10,

line -3: "criticizing" is misspelled.

Page 13,

Page 22,

line 3: For the Control Data 6600, m = -975, M = 1071 .

The first and second sentences of the second paragraph should read:

"Actual computer programs for calculating ex usually use a rational

function of x, for x on an interval like 0 < x < 1 . For x outside

this interval, well known properties of the exponential function are

used to obtain the answer from the rational approximation to eY, where

y = [xl - x .

(5) and (6) assume abc # 0 .

Re(z) and Im(z) should be replaced by IRe(and IIm(z) 1 .

line -10: Change "starting" to "sta.rtling".

lines -6, -5, -4: The polynomial should read:

p(x) = (x - 1)(x - 2) . . . (x - 19)(x - 20)

= x20 - 210x19 + . . .

Page 23,

Page 24,

Page 30,

and its zeros should be 1, 2, 19, 20 .

line 3: Should say: the coefficient of x19 is changed from -210

to -210 - 2-23 .

The twenty listed roots are of the equation p(x) - 2-23x19 = 0 .

last matrix: Change the element -100000 to -10000 .

line -7: After "desired solution" add "if Al = 1," .

c

---7

PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

*
George E. Forsythe

1. Introduction

Why do students take mathematics in college and university?

I see two reasons: (i) To learn the structure of mathematics itself,

because they find it interesting. (ii) To apply mathematics to the

solution of problems they expect to encounter in their own fields,

whether it be engineering, physics, economics, or whatever.

I am sure that (ii) motivates far more students than (i). More-

over, most solutions of major mathematical problems involve the use of

automatic digital computers. Hence we may justifiably ask what mathe-

ma-tics courses have to say about carrying out mathematical work on a

computer. This question motivates my paper.

I am not in a mathematics department, and tend to moralize about

them. If the reader prefers not to be lectured to, I invite him to

ignore the preaching and just pay attention to the numerical phenomena

for their own sake.
.

L-

I want to acknowledge the help of Mr. Michael Malcolm in crit$ing

the manuscript and doing the computations with a special floating decimal

arithmetic simulator he wrote for Stanford's hexadecimal computer.

*
The preparation of this manuscript was supported in part by the Office
of Naval Research (NR 044 211), the National Science Foundation (GJ 798),
and the Atomic Energy Commission (Stanford PA 818). This material was
presented by invitation to the Mathematical Association of America in

L Eugene, Oregon, 25 August 1969.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

2. Nature of computers

An automatic digital computer is a general-purpose machine. The

bits of information in its store can be used to represent any quanti-

fiable objects -- e.g., musical notes, letters of the alphabet, elements

of a finite field, integers, rational numbers, parts of a graph, etc.

Thus such a machine is a general abstract tool, and the generality of

computing makes computer science an important topic, just as mathematics

and natural language are important.

In the use of computers to represent letters of the alphabet, ele-

ments of a finite field, integers, etc., there is no error in the repre-

sentation, nor in the processes that operate upon the quantities so

represented. The problems in dealing w_ith integers (to select one

example) on 'computers are of the following types: Is there enough

storage to contain all the integers I need to deal with? Do I know a
I

process that is certain to accomplish my goal on the integers stored in

the computer? Have I removed the logical errors ("bugs") from my computer

representation of this process? Is this the fastest possible process or,

i
if not, does it operate quickly enough for me to get (and pay for) the

- answers I want?

The above problems are not trivial; there are surely pitfalls in

i dealing with them; and it is questionable whether math books suffice for

their treatment. But they are not the subject of this paper. This paper

i is concerned with the simulated solution on a digital computer of the

problems of algebra and analysis dealing with real and complex numbers.

Such problems occur everywhere in technology -- for example, whenever it -
L

$"
is required to solve a differential equation or a system of algebraic

equations.

There are four properties of computers that are relevant to their

use in the numerical solution of problems of algebra and analysis, and

are causes. of many pitfalls:

- i) Computers use not the real number system, but instead a simula-

L-. tion of it called a "floating-point number system." This introduces the

problem of round-off.

ii) The speed of computer processing permits the solution of

very large problems. And frequently (but not always) large problems

have answers that are much more sensitive to perturbations of the data

than small problems are.

iii) The speed of computer processing permits

tions to be carried out for a reasonable price than

the pre-computer era. As a result, the instability

is conspicuously revealed.

many more opera-

were possible in

of many processes

iv) Normally the intermediate results of a computer computation

are hidden in the store of the machine, and never known to the pro-

grammer. Consequently the programmer must be able to detect errors in

his process without seeing the warning signals of possible error that

occur in desk computation, where all intermediate results are in front

of the problem solver. Or, conversely, he must be able to prove that

his process cannot fail in any way.

3

3- Floating-point number system

The badly named real number system is one of the triumphs of the

human mind. It underlies the calculus and higher analysis to such a

degree that we may forget how impossible it is to deal with real numbers

in the real world of finite computers. But, however much the real

number system simplifies analysis , practical computing must do without

it.

Of' all the possible ways of simulating real numbers on computers,

one is most widely used today -- the floating-point number systems. Here

a number base f3 is selected, usually 2, 8, 10, or 16. A certain

integer s is selected as the number of significant digits (to base B >

in a computer number. An integer exponent e is associated with each

nonzero computer number, and e must lie in a fixed range, say

m<e<M.- -

Finally, there is a sign + or - for each nonzero floating-point number,

Let F = F(@, s, m, M) be the floating-point number system. Each

nonzero x E F has the structure

x = + . d d1 g...ds l P

e
$

where the integers
dl'

l *., d s have the bounds

c

0 < di< B-1

m<e<M .- -

Finally, the number 0 belongs to F , and is represented by

+.OO...o*pm .

Actual,computer number systems may differ in detail from the ideal

one discussed here, but the differences are only offsecondary relevance

for the fundamental problems of round off.

i-

Typical floating-point systems in use correspond to the following

values of the parameters:
- 93s to-71

p 2 , s=48 rn=-.l-ozr , M=JQ&= (Control Data 6600)

B 2,= s = 27 , m = -128 , M = 127 (IBM 7090)

B =lO , s = 8 , m= -50 , M= 49 (IBM 650)

f3 8, s=l3,m--51,= M= 77 (Burroughs 5500)

B =16, s= 6, m = - 6 4 , M= 63 (IBM System/36O)

~=16, s=l4 , m=-64 , M= 63 (IBM System/36O)

Any one computer may be able to store numbers in more than one system.

For example, the IBM System/360 uses the last two base-16 floating-point

systems for scientific work, and also a certain base-10 system for account-

ing purposes.

F is not a continuum, nor even an infinite set. It has exactly

2(S-l)SS-+M - m + l)+l nurribers in it. These are not equally spaced

throughout their range, but only between successive powers of p and

their negatives. The accompanying figure, taken from [3], shows the

33-point set F for the small illustrative system S = 2 , s = 3 ,

m = - 1 , M=2.

Because F is a finite set, there is no possibility of representing

the continuum of real numbers in any detail. Indeed, real numbers in

absolute value larger than the maximum member of F cannot be said to be

represented at all. And, for many purposes, the same is true of real

numbers smaller in magnitude than the smallest positive number in F .

Moreover, each number in F has to represent a whole interval of real

numbers. If x and y are two real numbers in the range of F , they

will usually be represented by the same number in F whenever

Ix-YI/IXl 2; KS ; _it is not important to be more precise here.

As a model of the real number system R , the set F has the

arithmetic operations defined on it, as carried out by the digital com-

puter. Suppose x and y are floating-point numbers. Then the true

S&l X+Y will frequently not be in F . (For example, take the

33-point system illustrated above, let x = 5/4 and y = 3/8 .) Thus

5

c

c

the operation of addition, for example, must itself be simulated on the

computer by an approximation called floating-point addition whose re-

sult will be denoted by fR(x f y) . Ideally, fP(x + y) should be

that member of F which is closest to the true x + y , (and either one,

in case of a tie). In most computers this ideal is almost, but not quite,

achieved. Thus in our toy 33-point set F we would expect that f1(5/4 + 3/8)

would be either 312 01' 714 . The difference between fl(x + y) and

X+Y is called the rounding error in addition.

The reason that 514 + 3/8 is not in the 33-point set F is re-

lated to the spacing of the members of F . On the other hand, a sum

like 7/2 + 7/2 is not in F because 7 is larger than the largest

member of F . The attempt to form such a sum on most machines will

cause a so-called overflow signal, and often the computation will be

curtly terminated, for it is considered impossible to provide a useful

approximation to numbers beyond the range of F .

While quite a number of the sums x+y (for x, Y in F) are

themselves in F , it is quite rare for the true product x.y to belong

to F, since it will always involve 2s or 2s-1 significant digits.

Moreover, overflow is much more probable in a product. Finally, the

phenomenon of underflow occurs in floating-point multiplication, when two

nonzero numbers x, y have a nonzero product that is smaller in magnitude

than the smallest nonzero number in F . (Underflow is also possible,

though unusual, in addition.) Thus the simulated multiplication operation,

fG.Y) 9 involves rounding even more often than floating addition.

The operations of floating addition and multiplication are commutative,

but not associative, and the distributive law fails for them also. Since

these algebraic laws are fundamental to mathematical analysis, working with

floating-point operations is very difficult for mathematicians. One of the

greatest mathematicians of the century, John von Neumann, was able to carry

out some large analyses with floating-point arithmetic (see [lo]), but they

were extremely ponderous. Even his genius failed to discover a method of

avoiding nonassociative analysis. Such a new method, called inverse error

analysis, owes its origins to Cornelius Lanczos and Wallace Givens, and has

been heavily exploited by J. H.Wilkinson. A detailed study of inverse error

analysis is part of the subject of numerical analysis. We will mention it

- again in Section 5.

7

4. Two examples of round-off problems

One of the commonest functions of analysis is the exponential function ex .

Since it is so much used, it is essential to be able to have the value of

/- e
x

readily available in a computer progran, for any floating-point number x .

There is nowhere near enough storage to file a table of all values of ex ,

so one must instead have an algorithm for recomputing eX whenever it is
needed. (By an algorithm we mean a j@ocess that is completely defined and

guaranteed to terminate by delivering the desired output .) There are, in
fact, a great many different methods such an algorithm could use, and most

scientific computing systems have one programmed into it. But let us assume
such an algorithm did not exist on your computer, and ask how you would

program it. This is a realistic model_ of the situation for a more obscure

transcendental function of analysis.

Recall that, for any real (or even complex) value of x , ex can be

represented as the sum of the universally convergent infinite series

X 2 3
e = l+x+$+rf*** .

. 3!

Since you learned mathematics because it is useful, you will surely expect

to use the series to compute ex . Suppose that your floating-point number

system F is characterized by @ = 10 and s = 5 . Let us use the

series for x = -5.5 , as proposed by Stegun and Abramowitz [13]. Here

are the numbers we get:

ew505 = 1.0000

-5.5000

+l'j.125

-27.730

+38.12q

-41.942

+38.446

-30.208

+20.768

-12.6q2

+6.q8o3

-3.4902

+1- 5997
..

+0.0026363
Q

The sum is terminated when the addition of further terms stops changing

it, and this turns out to be after 25 terms. Is this a satisfactory

algorithm? It may seem so: but in fact e -5*5 = 0.00408677 , so that

the above series gets an answer correct to only about 36 percent! This

is awful.

What is wrong? Observe that there has been a lot of cancellation in

forming the sum of this alternating series. Indeed, the four leading

(i.e., most significant) digits of the eight terms that exceed 10 in

modulus have all been lost. Professor D. H. Lehmer calls this phenomenon

catastrophic cancellation, and it is fairly common in badly conceived

computations. However, as Professor William Kahan has observed, this

great cancellation is not the cause of the error in the answer -- it merely

reveals the error. The error had already been made in that the terms

like 38.129 , being limited to 5 decimal digits, can have only one digit

that contributes to the precision of the final answer. It would be

necessary for the term 4(-5.5) /4! to be carried to 8 decimals (i.e.,

10 leading digits) for it to include all 6 leading digits of the answer.

Moreover, an eleventh leading digit would be needed to make it likely that

the sixth significant digit would be correct in the sum. The same is true

of all terms over 10 in magnitude.

While it is usually possible to carry extra digits in a computation,

it is always costly in time and space. For this particular problem there

is a much better cure, namely, compute the sum for x = 5.5 , and then

take the reciprocal of the answer:

,-5-5 =’ l/e505

= l/(1+ 5.5 + 15.125 + . ..)

=: 0.0040865 , with our 5-decimal arithmetic.

(The symbol r L ' means. 'equals approximately'.) With this computation,

the error is reduced to 0.007 percent.

L-

i

Note how much worse the problem would be if we wanted to compute eA

for x = -100 .

Actual computer algorithms for calcul&ting ex often use a rational

function of x , for x on a fairly short interval like w. 6," x + (

If x is outside this interval, say

a+1
ea<x<e .

then well known properties of the exponential function are used to obtain

the answer from the rational approximation to ey , where y/&&?5y~- q

The creation of such algorithms for special functions is a branch of I‘e rp.‘LkJ L, 1

numerical analysis in which the general mathematician can hardly be an
j ,,A+'

expert. On the other hand, it is part of the author% contention that

mathematics books ought to mention the fact that a Taylor's series is

often a very poor way to compute a function.

I will briefly state a second example. Recall from the calculus that

bdx
b

s
xl-P 1 1m = -

= l-p (b1-Pl-p
- a1Op

2
> (P f 1) .

a a

Now using a floating-point system with @ = 10 and s = 6 , let us

evaluate the above formula for a = 1 , b = 2 , and p = 1.0001 .

We have

(2)
i

2
I = s

dx = 1 - 2-*0°01
x1.ooo1 0.0001

.
1

If we use G-place logarithms to evaluate 2-.OOOl , we have
c

loglo 2 + 0.301030 ,

log10
2-.ooo1 2

. -0.0000301030 = -1 + 0.999969

whence, using our logarithm table again,

/

i

L

2-.ooo1
+ 0.99993 .

10

,

Thus, from (2), we get I + 0.7 , an answer correct to only one digit.

The precise meaning of the restriction to p = SO , s = 6 is not

so clear in the evaluation of 2-.OOOl as it would have been in the

previous example. However, the example does illustrate the fact that

fkmula (l), which is precisely meaningful for real numbers as long as

P[l, is difficult to use with finite-precision arithmetic for p

close to 1 . Thus practical computation cannot admit the precise

distinction between equality and inequality basic to pure mathematics.

There are degrees of uncertainty caused by approximate equality.

11

5. Solving quadratic equations

The two examples of Section 4 were taken from the calculus. But

we don't have to learn college mathematics to find algorithms. In ninth

grade there is a famous algorithm for solving a quadratic equation,

implicit in the following mathematical theorem:

Theorem. If a , b , c are real and a f 0 , then the equation
2

a x +bx+c=O is satisfied by exactly two values of x , namely

(3) x1 =
-b+jz

2a

and

(4) x2 =
-b-j/z

2a .

Let us see how these formulas work when used in a straightforward

manner to induce an algorithm for computing x1 and x2 . This time we

shall use a floating-point system with @ = 10 , s=8, m = -50 ,

M = 50 ; this has more precision than many widely used computing systems.

Case 1: a = 1 , b = -lot5 , c =l.

The true roots of the corresponding quadratic equation, correctly

rounded to 11 significant decimals, are:

Xl = 99999-999990 (true)

x2 = 0.000010000000001 (true) .

If we use the expressions of the theorem, we compute

x1
= 100000.00 (very good)

(The reader is advised to be sure he sees how x2 becomes 0 in this

floating-point computation.)

-

12

Once again, in computing x2 we have been a victim of catastrophic

cancellation, which, as before, merely reveals the error we made in having

chosen this way of computing x2 . There are various alternate ways of

computing the roots of a quadratic equation that do not force such

cancellation. One of them follows from the easily proved formulas,

true if cj.bc # 0 :

(5)

(6)

x1 =
-b - i/k '

2c -
x2 =

-b + d4ac l

Now, if b < 0 , there is cancellation in (4) and (5) but not in (3)

and (6). And, if b >0, there is cancellation in (3) and (6), but not

in (4) and (5). Special attention must be paid to cases where b or c

is 0.

At this point I would like to propose the following criterion of

performance of a computer algorithm for solving a quadratic equation.

This is stated rather loosely here, but a careful statement will be found

in [2].

We define a complex number z to be well within the range of F if

either z=O or

Pm+2 5 Re(z) .L eMm2
i 1

m+2and B

This means that the real and imaginary parts of z are safely within the

magnitudes of numbers that can be closely approximated by a member of F .

Th_e arbitrary factor S2 is included to yield a certain margin of safety.

Suppose a , b : c are all numbers in F that are -well within the

range of F . Then they must be acceptable as input data to the quadratic

equation algorithm. I f a = b = c = O , the algorithm should terminate

13

with a message signifying that all complex numbers satisfy the equation
2

ax + b x + c = O . If a=b =0 and cf0, then the algorithm should

terminate with an error message that no complex number satisfies the

equation.

Otherwise, let z1 and z2 be the exact roots of the equation, so

numbered that lzll < Iz21 . (If a = 0 , set z2 = (r, .) Whenever z1

is well within the range of F , the algorithm should determine an

approximation that is close to
z1 ' in the sense of differing by not

more than, say, p+l units in the least significant digit of the root.

The same should be done for z2 .

If either or both of the roots zi are not well within the range of F ,
,

then an appropriate message should be -given, and the root (if any) that is

well within the range of F should be determined to within a close

approximation.

That concludes the loose specification of the desired performance of

a quadratic equation solving algorithm. Let us return to a consideration

of some typical equations, to see how the quadratic formulas work with

them.

Case 2: a=6, b=5, c=-4.

There is no difficulty in computing x1 = 0.50000000 and

x2 = -1.3333333 , or nearly these values, by whatever formula is used.

Case 3: a = 6 x 10~' , b = 5 x 1030 , c = -4 x 103' .

Since the coefficients in Case 3 are those of Case 2, all multiplied

bY 10
30

> the roots are unchanged. However, application of any of the

formulas (3)-(h) causes overflow to occur very soon, since b2 > 105' ,

out of the range of F . Probably this uniform large size of Ial , lb1 ,

I Ic could be detected before entering the algorithm, and all three

numbers could be divided through by some scale factor like 1030 to

reduce the problem to Case 2.

14

algorithm must determine z1 very closely, even though z2 is out of

the range of F . Obviously any attempt to bring the coefficients to

approximate equality in magnitude by simply dividing them all by the same

number is doomed to failure, and might itself cause an overflow or

underflow. This equation is, in fact, a severe test for a quadratic

equation solver and even for the computing system in which the solver

is run.

The reader may think that a quadratic equation with one root out of the

range of F and one root within the range of F is a contrived example

of no practical use. If so, he is mistaken. In many iteration algorithms

which solve a quadratic equation as a subroutine, the quadratics do have

a singular behavior in which a-+0 as convergence occurs. One such example

is Muller's method [q] for finding zeros of general smooth functions of z .

Case 5: a = 1.0000000 , b = -4.0000000 ,
c = 3.9999999 l

Here the two roots are z1 = 1.99968~72 , z2 = 2.000316228 .

But applying the quadratic formulas (3), (4) gives

= z
z1 2

= 2.0000000 ,

with only the first four digits correct. These roots fail badly to meet

my criteria, but the difficulty here is different from that in the other

examples. The equation corresponding to Case 5 is the first of our equations

in which a small relative change in a coefficient a , b , c induces a

much larger relative change in the roots z1 , z2 . This is a form of

instability in the equation itself, and not in the method of solving it.

To see how unstable the problem is, the reader should show that the computed

roots 2.0000000 are the exact roots of the equation

o-999999992x2 - 3-999999968x + 3.999999968 = 0 J

in which the three coefficients differ, respectively, from the true

a J b 9 c of Case 5 by less than one unit in the last significant digit.

In this sense one can say that 2 , 2 are pretty good roots for Case 5.

-

15

.

This last way of looking at rounding errors is called the inverse

error approach and has been much exploited by J. H. Wilkinson. In general,

it is characterized by asking how little change in the .data of a problem

would be necessary to cause the computed answers to be the exact solution

of the changed problem. The more classical way of looking at round off,

asks how wrong the answers are as

given data. While both methods are

the direct error approach, simply

solutions of the problem with its

useful, the important feature of inverse error analysis is that in many

large matrix or polynomial problems, it can permit us easily to continue

to use associative operations, and this is often very difficult with direct

error analysis.

Despite the elementary character of the quadratic equation, it is

probably still safe to say that not more than five computer algorithms

exist anywhere that meet the author's criteria for such an algorithm.

Creating such an algorithm is not a very deep problem, but it does

require attention to the goal and to the details of attaining the goal.

It illustrates the sort of place that an undergraduate mathematics or

computer science major can make a substantial contribution to computer

libraries.

I wish to acknowledge that the present section owes a great deal to

lectures by Professor William Kahan of the University of California,

Berkeley, given at Stanford in the Spring of 1966.

16

.-

L.

6. Solving linear systems of equations

As the high school student moves from ninth grade on to tenth or

eleventh, he will encounter the solution of systems of linear algebraic

equations by Gauss* method of eliminating unknowns. With a little

systematization, it becomes another algorithm for general use. I would
like to examine it in the simple case of two equations in two unknowns,

carried out on a computer with B = 10 , s = 3 .

Let the equation system be one treated by Forsythe and Moler [3]:

{

0.000100x + l.OOy = 1.00

(7)
1.00x + l.OOy = 2.00 .

The true solution, rounded correctly to the number of decimals shown, is

x = 1.00010 J Y = o-99990 (truly rounded).

The Gauss elimination algorithm uses the first equation (if possible)

to eliminate the first variable, x , from the second equation. This is

done by multiplying the first equation by 10000 , and subtracting it

from the second equation. When we work to three significant digits, the

resulting system takes the form

0.000100x + l.OOy = 1.00 (the old first equation)

- 10000 y = -10000 .

For just two equations, this completes the elimination of unknowns.

Now commences the back solution. One solves the new second equation for y ,

finding that y = 1.00 . This value is substituted into the first equation,

which is then solved for x . One then finds x = 0.00 . In summary, we

have found

L y = 1.00

L
x = 0.00 .

17

Of course, this is awful! What went wrong? There was certainPJ no long

accumulation of round-off errors, such as might be feared in a large pro.blem.

Nor was the original problem unstable of itself, as It would be if the lines

represented by the two equations (7) were nearly parallel.

There is one case in which it is impossi.ble to eliminate x from

the second equation -- when the coefficient of x in the first equation

is exactly 0 . Were such an exact 0 to occur, the algorithm is preceded

by interchanging the equations. Now, once again, if an exact zero makes a

mathematical algorithm impossible, we should expect that a near zero wilL

give a floating-point al;ioorithm some kind of difficulty. That is a zort

of phiLosophica principle behind what went wrong. And, in fact, the

division by the nearly zero number 0.0901 introduced somc nurnb?rr (1003I)

that simply swamped the much smaller, but essential data of the second

equation. That is what wr-nt wrong.

How could this be avoided? The answer is simple, in this case. If it

is essential to interchange equations when a divisor is actually zero, on.2

may suspect that it would be important, or at least safer, to interchange

them when the coefficient of x in the first equation is much smaller in

magnitude than the coefficient of x in the second equation. A careful

round-off ana,lysis given by J. H. Wilkinson [lb] proves this to be the

case, and good linear equation solvers will make the interchange whenever

necessary to insure that the largest coefficient of x (in magnitude) is

used as the divisor. Thus the elimination yields the system

(l.OOz + LX&- = 2.00

i-. 1.my = 1.00 .

After the back soluti.on we find

a very fine result.

i8

\

This algorithm, with its interchanges, can be extended to n equations

in n unknowns, and is a basic algorithm found in all good computing

centers.

The following example shows that there remains a bit more to the

construction of a good linear equation solver. Consider the system

f
10.0 x + 100000 y = 100000

(8) 1 1.00x f l.OOy = 2.00 .

If we follow the above elimination procedure, we see that

interchanging the equations is not called for, since 10.0 > 1.00 .

Thus one multiplies the first equation by 0.100 and subtracts it from

the second. One finds afterwards, still working with p = 10 , s=3,

that

i

10.0x + 100000y = 100000

- 1oooOy = -10000 .

Back solving, one finds

{

y = 1.00

x = 0.00 !

This is just as bad as before, for system (8) has the same solution

as (7). Indeed, system (8) is easily seen to be identical with (7), except

that the first equation has been multiplied through by 100000 .

So, the advice to divide by the largest element in the column of

coefficients of x is not satisfactory for an arbitrary system of equations.

What seems to be wrong with the system (8) is that the first equation has

coefficients that are too large for the problem. Before entering the

.

Gaussian elimination algorithm with interchanges, it is necessary to scale

the equations so that the coefficients are roughly of the same size in all

equations. This concept of scaling is not completely understood as yet,

although in most practical problems we are able to do it well enough.

L

19

If you were faced with having to solve a nonsingular system of

linear algebraic equations of order 26, for example, you might wonder

how to proceed. Some mathematics books express the solution by Cramer's

rule, in which each of the 26 components is the quotient of a different

numerator determinant by a common denominator determinant. If you looked

elsewhere, you might find that a determinant of order 26 is the sum of

26! terms, each of which is the product of 26 factors. If you decide to

proceed in this manner, you are going to have to perform about 25 x 26!

multiplications, not to mention a similar number of additions. On a fast

contemporary machine, because of the time required to do preparatory

computations, you would hardly perform more than 100,000 multiplications

per second. And so the multiplications alone would require about 1017

years, if all went well. The round-off error would usually be astronomical.

In fact, the solution can be found otherwise in about (l/3) x 2G3 t

5859 multiplications and a like number of additions, and should be

entirely finished in under half a second, with very little round-off

error. So it can pay to know how to solve a problem.

I wish to leave you with the feeling that there is more to solving

linear equations than you may have thought.

20

78 When do we have a good solution?

Another example of a linear algebraic system has been furnished by

Moler [8]:

0.780~ + 0.563~ - 0.217 = o

(9)
0.913x + 0.659~ - 0.254 = 0 .

Some one proposes two different solutions to (9), namely

(Xl’ Y1> = (0.999, -l.OOl>

and

(x2, y,) = (0.341, -0.087) .

Which one is better? The usual check would be to substitute them both

into (9). We obtain

and

0.780~~ + 0.563~~ - 0.217 = -0.001243

0.913x1 + 0.659~~ - 0.254 = -0.001572 .

0.780x2 + 0.563~~ - 0.217 = -O.OOOOO~

Om913x2 + 0.659~~ - 0.254 = 0 .

It seems clear that (x2, y,) is a better solution than (x
1' yl > '

since it makes the residuals far smaller.

However, in fact the true solution is 0, -1) , as the reader can
verify easily. Hence (xl> Y$ is far closer to the true solution than

(x27 Y2 > t
l

A persistent person may ask again: which solution is really better?
Clearly the answer must depend on one's criterion of goodness: a small
residual, closeness to the true solution, or perhaps something else. Surely
one will want different criteria for different problems. The pitfall to be
avoided here is the belief that all such criteria are necessarily satisfied,

if one of them is.

21

8. Sensitivity of certain problems

We now show that certain computational problems are surprisingly

sensitive to the data. This aspect of numerical analysis is independent

of the floating-point number system.

We first consider the zeros of polynomials in their dependence on

the coefficients.

the polynomial x2

In Case 5 of Section 4 above, we noted that, while

- 4x -+ 4 has the double zero 2 , 2 , the rounded

roots of the polynomial equation

(10) X2 - 4x + 3*9999999 = 0

are 1.999683772 and 2.000316228 . Thus the change of just one

coefficient from 4 to 3.9999999 causes both roots to move a distance

of .000316228 . The displacement in the root is 3162 times as great

as the displacement in the coefficient.

The instability just described is a common one, and results from

the fact that the square root of E is far larger than E . For the

roots of (10) are the roots of

!

:I
i

i

x -(2)2 = E , E = .0000001 ,

and these are clearly 2 + JE . For equations of higher degree, a still

more staang instability would have been possible.

However, it is not only for polynomials with nearly multiple zeros

that instability can be observed. The following example is due to

Wilkinson [14]. Let

p(x) = (x+ 1)(x + 2)-.(x+ 19)(x* 20)

20=x + 210x19 +

The zeros.of p(x) are +l, +2, tl9, +20 , and are well separated.

This example evolved at a place where the floating-point number system

had @ = 2 , s=30. To enter a typical coefficient into the computer,

it is necessary to round it to 30 significant base-2 digits. Suppose

22

that a change in the 30-th most significant base-2 digit is made in

only one of the twenty coefficients.

of XT

In fact, suppose that the coefficient

is changed from "210 to-210 + 2(
-231 . How much effect does this

small change have on the zeros of the polynomial?

To answer this, Wilkinson carefully computed (B = 2 , s = 90)

the roots of the equation p(x)+ 2 -23xl9 = 0 . These are now listed,

correctly rounded to the number of digits shown.

1.00000 0000 10.09526 6145 + 0.64350 OgO4i

2.00000 0000 11.79363 3881 t 1.65232 9728i

3.00000 0000 13.99235 81~7 + 2.51883 007Oi

4.00000 0000 16.73073 7466 i 2.81262 4894i

4.99999 9928 lg.50243 9400 + 1.94033 03k7i

6.00000 6944

6.99969 7234

8.00726 7603

8.91725 0249

20.84690 8101

Note that the small change in the coefficient 210 has caused ten

of the zeros to become complex,' and that two have moved more than 2.81

units off the real axis! Of course, to enter p(x) completely into the

computer would require many more roundings, and actually computing the

zeros could not fail to cause still more errors. The above table of

zeros was produced by a very accurate computation, and does not suffer

appreciably from round-off errors. The reason these zeros moved so far

is not a round-off problem -- it is a matter of sensitivity. Clearly

zeros of polynomials of degree 20 with well separated zeros can be much

more sensitive to changes in the coefficients'than you might have thought.

To motivate a second example, let me quote a standard theorem of

algebra: In the ring of square matrices of fixed order n , if AX = I ,

where I is the identity matrix of order n , then XA = I .

It follows from this theorem and continuity considerations that, if

A is a fixed matrix and X a variable one, and if AX - I + 8 , the

zero matrix, then also XA - I 3 8 . Hence, if AX - I is small in some

23

I -

i

i

i-

L

sense, then XA -' I is also small. However, as with polynomials, one's

intuition may not be very good at guessing how small these smallnesses

are. Here is an example: Fix

9999 9998
A = L I10000 9999 .

Let

r 9999.9999 -9997*00011
x=

I -10001L 9998 J
Then a computation without round-off shows that

[

.OOl .OOOl
Ax - I=

0 0

.

.

From the last equality the reader may conclude that X is close, though

not equal, to the unique inverse A-1 . However, another calculation

_ without round off shows that

r 19997.0001 19995.0003 8XA -I= 1 .
L -19999 -19995 J

Thus the quantities AX - I and XA - I , which must vanish together,

can be of enormously differing magnitudes in a sensitive situation, even

for matrices of order 2 .

The true inverse matrix is given by

and-this is hardly close to X .

24

I

L

i

i

l-
i

?* A least-squares problem of Hilbert

The following least-squares problem was discussed by the great

mathematician David Hilbert [6J, and leads to some interesting matrices.

Fix n > 1 . Let f(t) be given and continuous for 0 <t < 1 l We

wish to approximate
- -

2
f(t) as well as we can by a polynomial

xO f xlt + x2t + . . . + x t-ln-l of degree n - 1
we wish to determine

. To be more precise,
x0, x1, xn-1 so that

Q(x) = f t - x(>
0

- x t - . . . - x
0 1 tn-'12 dtn-l

is as small as possible. It is not difficult to show that the minimizing

, vector of coefficients x exists, is unique,
solving the system of n simultaneous

and can be determined by

equations

(11) $$ =
i

If you carry

the system of n

0 (i = 0, 1, n-l) .

out the algebra, you find that (11) is equivalent to

linear algebraic equations

(12) Ax=b ,

where

(13)

and

?-
a.
lJ z.s

+ltj-l
dt = 1

i+j-l (i, j = 1, 2, n)

bi = j-- ti‘lf(t)dt
0

(i = 1, 2, . . .,
4 l

The matrix A of coefficients in (12) is now called the Hilbert

matrix (of order n), and is denoted by Hn :

25

The equations (12) with matrix A = HI1 are called the normal equations

for the problem. It appears that all one has to do is to find and use

a quadrature rule for approximating the b.
1

in (lb), and then solve

the system (12). This is certainly the standard advice in books on

practical statistics.

However, what is observed is that for n bigger than 8 or 9 (the

threshold depends on the system used), linear equations solvers in ordinary

floating-point precision will simply refuse to solve (12). Moreover, for

problems that can be solved (say n = 6), there are enormous differences

in the solution vectors x for apparently identical problems on slightly

different machines. Why all this trouble?

Let me try to explain the sensitivity of the problem first. Let

Tn = "," . Then it can be proved that

T6 =

36 -630 3360 -7560 7560 -2772

-630 14700 -88200 211680 -220500 83160

3360 -88200 564480 -141x200 1512000 -58212~

-7560 211680 -1411200 3628800 -3969000 1552320

7550 -2205ob 1512000 -3969000 4410000 -1746360

-2772 8 3160 -582120 1552320 -1746360 69851~4

This means that a change of 10
-6

in just the one element
b5

will produce

f 1 7
1

1 1
2 3 l ** ;

1 1
t l �*

1
F -5. i⌧

Hn = .
. . . .

. . . .

1 1 1 1
n zi n+2 l �* 2n-1

,,

changes in the solution vector x of

(.00756, -.2205, 1.512, -3.969, 4.41, -1.74636)T .

26

L

c

Such changes are unavoidable in a system with @ = 10 and s = 7 .

This means that some of the coefficients of the best fitting polynomial

of degree 5 will have unavoidable uncertainties of the order of 4 units.

This may give some explanation of the instability in the answers. More

details are in Section 19 of [3].

Here are approximate values of tn , the maximum elements in Tn ,

for n < 10 :

n

7

8

9

10

tn

1.20 x lo1

1.92 x lo2

6.48 x lo3

1.79 x lo5

4.41x 10
6

1.33 X 10
8

4.25 x lo9

1.22 x lo=

3.48 x 10~~

c

C

L

It cannot be demonstrated here, but if tn >> Bs , you just cannot

solve the system Hnx = b with s-digit arithmetic to base p .

The conclusion of this example is that one should not follow a

Statistics book blindly here. It is much better to arrange things so

that matrices-of Hilbert type do not arise, even approximately. And

when they do, one must be sure to use enough precision so that tn << ps .
There are other ways of attacking least-squares problems which are less

sensitive'to the data.

27

10. Instability in solving ordinary differential equations

T'he standard initial-value problem for a single ordinary differential

equation dy/dx = f(x, y) is to determine y(x) as accurately as possible

for ,x > 0 , given y(0) . In one very common class of methods (the

multistep methods) of solving this problem approximately, one picks a

fixed interval h > 0 , and determines yn to approximate y(nh) for

n = 1, 2, One highly recommended multistep method in desk-computing

days was the Milne-Simpson method. Here one let y. = y(0) , the given

initial value, and determined yl by some method not mentioned here.

Let yt
= fw-b Yn> l

yn. (nn=l, 2,

The idea was to determine Yn+l from Yn 1 and
. ..) by the integral

(n+l)h L

(15) Yn+l = 'n-1 + ☺ fb,Y(X))~ l

(n-1)h

Since the integral in (15) can not usually be evaluated exactly, Milne's

idea was to approximate it by Simpson's formula, and so let

- (16) 'n+l
+h

= yn-l 3 (YA-1 + 4y' + y') .n n+l

At the time we seek to find yn+l from (16) we know yn 1 and yn , and

hence y; 1 and y: ; but yt
n+l

is not known. For general f ,

Milne [7] determined the solution of (16) by an iterative process that

is irrelevant to the present discussion. Let us merely assume that yn+l

has been found so that (16) holds, where YA+~ = f((n+l)h, Y~+~) , and

that this has been done for n = 1, 2, . . . , as far as we wish to go.

This method was highly recommended by Milne for solution of ordinary

differential equations at a desk calculator, and it seemed to work very

well indeed. Most problems were probably solved within 30 steps or less.

As soon as automatic digital computers arrived on the scene, users
,

of the Milne-Simpson method started to find extraordinary behavior in

certain problems. To illustrate what happened, let us take the very

simple test problem

28

dY/& = fb, Y> = -Y > with y(0) = 1 .

The true solution, of course, is y = e
-x

.

Take h = 0.1 , and carry out the Milne-Simpson process wi.th y-o = 1

and Yl = 0.90483742 , an 8-decimal correctly rounded value Gf
.-0.1

. Thi is not something you can do in your head, and so I will. give

you the results, as computed on a system with /y=lO, x=3.

X yco?putedI?
-x

e

.2 .8187 3069 3187 3075

. . 3 .74081817 . 74081822
.

8.0 .00033519912 .00033546263

8.1 .00030380960 l 00030353914
.

13.2 .00000036689301 .0000018506012

13.3 .0G00032084360 .0000016744932

13.4 -.000000070769248 .0000015151441
. l .

. . .

. . .

We see that by x = 8.0 a noticeable oscillation has set in,

whereby successive values of yn alternate in being too low and too high.

By x = 13.4 this oscillation has grown so violent that it has (for the

first time) actually thrown the sign of yn negative, which is unforgiveable

in anything s$m>zAating a real exponential function!

The Milne-Simpson method is very accurate, in that the Simpson formula

is an accurate approximation to the above integral. What can be the matter?

Since f(X,Y) = -Y 7 we can explicitly write down the formula (16)

in-the form

i-1 f
'n+l = Yn-l - 3 �Yngl + �Yn + Yn+l) l

29

i

Thus the computed (yi] satisfy the 34erm recurrence relation

(17) (1 -th
-j
>Y

4h
n+l + 3 yn - (1

h
- 5

>Y
n-1 = O . l

We know that the general solution of (17) takes the form

OS)
'n = Alh: + A2L; 9

where h
1' h2 are the roots of

(1 = 0 .

Some algebra and elementary analysis show that

hl = 1 - h + O(h2)

h2 = - (1 + s, + O(h2)

9 as h+O ,

) as hd0 .

Putting the values of hl, h2 into (18), and using the relation nh = x ,

-we find that, for small h ,

'n + Al(l - h)n + (-l)n A2(1 + 5,"

1
- X

3 x

= Al(l - h)h
- l -

+ (-l)n A2(1 + $)h 3

{ Ale-: + (01)~ A2exl3

The first term is the desired solution, and the second is an unwelcome

extra solution of the difference equation (17) of the Milne-Simpson method.

Now the initial conditions might have been chosen exactly so that Al = 1

cind A
2 = o . (They were roughly of this nature.) Had they been so

chosen, and if the solution could have proceeded without round-off error,

the unwantedtemfl in A2 would never have appeared. But, in fact, a
small amount of this solution was admitted by the initial condition, and

30

some more of it crept in as the result of round-off. Then, after enough

steps, the size of e43 caused the unwanted term to dominate the

solution, with its oscillating sign.

This disaster never occurred in desk computation, so far as we know,

because at a desk one just doesn't carry out enough steps. However,

Professor Milne tells me that he did occasionally observe harmless

oscillations in the low-order digits.

The moral of this example is that not only are math books not

enough, but even old numerical analysis books are not enough to keep you

out of some pitfalls!

31

11. Instability in solving a partial differential equation

The following is a simple problem for the heat equation. Suppose a

homogeneous insulated rod of length 1 is kept at temp~erature 0 at one
end, and at temperature 1 at the other end. If the entire rod is
initially at temperature 0 , how does it warm up?

Let u = u(x, t) denote the temperature at time t at that part of

the rod that is x units from the cold end. Then, if the units were

chosen to make the conductivity 1 , the temperature u satisfies the
differential equation

with end and initial conditions

(21) c u(0, t) = 0 (t ’ 0) Y
u(1, t) = 1 (t > 0) ,

u(x, 0) = 0 (0 <x <l) .

This problem can perhaps best be solved by separation of variables

and trigonometric series. But let us apply the method of finite differences,

which might in any case be needed for a more difficult problem. To do
this, we divide the length of the rod into equal intervals, each of length h .

And we divide the time interval [0, a) into equal intervals of length k .

Instead of trying to determine u(x, t) for all x and t , we will limit

ourselves to computing u(x, t) on the discrete net of points of type

W--h nk) , for integers m, n . The heat equation (20) can then be

simulated by a number of finite-difference equations, of which we pick one:

(22) u(x-h, t) - 32(x, t) + u(x+h, t) = u(x, t+k) - u(x, t)
A m

hZ k

Equation (22) can be used to determine u(x, t) for all net points

in the infinite strip of the problem, as follows: Solve (22) for

32

--

u(x, t+k) in terms of u(x-h, t) , u(x, t) , u(x+h, t) . Thus compute

U(XY k) for x = h, 2h, (n-1)h in terms of the given initial

conditions on the line t =o. The given end conditions give ~(0, k)

and ~(1, k) . With this set of values of u at all points of the net

with t = k , we can continue and compute all values on the net for t = 2k .

Etc. The computation is very attractive, because each new value of

u(x, t+k) is determined explicitly from (22) -- there is no need to solve

a large number of simultaneous equations.

How does the solution behave? To try a case, we pick h = 0.1 and

IL = 0.01 . Thus the rod is represented by 9 interior points and two

endpoints, and we get a solution at time steps 0.01 apart. Just to show

the behavior of the solution of (22), we give the value of the temperature

~(0.5, t) at th e midpoint of the rod, computed with p = 10 , s=8,

for selected times:

t ~(0.5, t) computed from k = 0.01

0 0

.

0.05 1

0.06 -4

0.07 16

.

0.15 132276

.

0.20 -28157050 -

.
0.99 +1.0196022 x 10 44

1.00 -2.9590007 x 10 44

The values in the table are ridiculous, of course. It is a classical

example of instability. Common sense and mathematics both tell us that

33

1

i

I

L

I
L

i

i.

f
i

the real temperature can never get outside the range 0 < u(x, t) < 1 .-
Our difference-equation problem is a disastrous model of the continuous

problem, even though both difference expressions in (22) are reasonable

models of the derivatives in (20).

This terrible pitfall has been known for at least 20 years, and

yet new problem solvers keep on rediscovering it.

It is interesting to note that if one selects a time step only

half as long, the computation proceeds very nicely. Here is the

corresponding table of values of ~(0.5, t) for a computation (p = 10 Y
S = 8) with h = 0.1 , k = 0.005 :

t ~(0.5, t) computed for k = 0.005

0

. . .

0.05

0.06

0.07

. . .

0.15

. . .

0.20

. . .

A 1.00

0

. . .

.10937500

-14599609

-17956543

. . .

.3567261

. . .

.41304382

. . .

049997173

The values of the midpoint temperature are converging to 0.5 , as

they obviously should in the physical problem.

What is the reason for the great difference in behavior between

k = 0.005 and k = 0.01 ? The matter can be analyzed in many ways, and

approach. Let A = k/h2 . Then, from (22),here is one simple

(23-j u(x, t+k) = hu(x-h, t) + (l-2h)u(x, t) + hu(x+h, t) l

Hence, if O<h< 1
7 , the formula (23) represents u(k, t+k) as a- L

weighted average with non-negative weights of u(x-h, t) , u(x, t) ,

i -
34

and u(x+h, t) . Hence u(x, t+k) will always be between the maximum

and minimum values of u(x, t) . But, if h >$, the weights alternate

in sign and ,thus permit a solution in which

[u(x, t+k)I = 7+(x-h, t)l + (27+1)14x, t)l + +(x+h, t)l .

Here the sum of the weights is 47~.1 > 1 . This permits an exponential

growth of a solution with an alternating sign pattern.

Thus the condition j 0 <A = k/h2 ,< $ is essential to keep the

solution bounded. A deeper discussion found, for example, in Forsythe

and Wasow [&I proves that the solution of (22) converges to the solution

of (20) uniformly for all (x, t) with 0 < x < 1 , O<t<T<m,

as hd0, k 4 0 in such a way that
2

k/h < 112 .

The proof of convergence and an analysis of the stability of (22) can

be carried out by means of Fourier analysis. The stability can be examined

in more detail by studying the eigenvalues and eigenvectors of the linear

transformation (23) that maps each line of solutions onto the next line.

Note that in our two tables we had h = 1 and X = l/2 , respectively.

35

12. Round-off errors in polynomial deflation

Our final example, due to Wilkinson [lb], shows a more subtle

effect of round-off error that arises in the course of finding polynomial

zeros. The quartic polynomial

P,(x) = x4 - 6.7980x3 + 2.9948x2 - o. 043686x. + o. 000089248

has zeros that, correctly rounded, are as follows:

0.0024532 , 0~12576’ , 0.45732 , 6;32565 .

I. Suppose first that we compute the zero 0.0024532 , and then

deflate P4 to a cubic by dividing P4(x) by x-0.0024532 , using

e=lO, s=5. If we do, the resulting cubic has zeros

0.012576 , 0.457315 , 6.32561 ,

so that the main error introduced by this deflation is a change of the

largest zero by 4 units in its last place.

II. Suppose, on the other hand, that we first compute the zero

6.3256 , 'and then deflate P4 to a cubic by dividing P,(x) by
azrx - 0."~256 , again using 5-place decimal arithmetic. If so, the resulting

cubic has the zeros

0.0026261 + 0.064339 i ,

0.467148 .

We have perturbed two of the remaining zeros beyond recognition, and

have changed the second significant digit of the third.

Thus it appears to matter a great deal which zero of P4 we locate

first. For the present case we can get a feeling for what is happening

by examining the process of division of P (x)4 by the linear factors.

We use detached coefficients:

36

First, the division by x-0.0024532 :

l- 6.7980 + 2.9948 - 0.043686 + 0.00008y248

- 0.0024532 + 0.166707206 - 0.00730587492 + o.oooo8y247415

l- 6.7955 + 2.9781 - 0.036380

Thus the cubic that results from the first deflation is

"P,(X) = x3 - 6.7955~~ + 2.9781~ - 0.036380 . Moreover, a careful

examination of the division shows that P,(x) is exactly (i.e., without

round off) equal to the quotient of

4
F,(x) = x - 6.7979532~~ + 2.@+7707206x2 - 0.04368587492~ + o.oooo8y247416

by x-0.0024532 . Hence the zeros of "P3 are exactly the zeros of "P4

except for 0.0024532 . Note that all the coefficients of F4 and P4

are quite close, so it is reasonable to expect that the zeros of p4 and

"p4 should be close (as they are).

Now we show the deflation by x - 6.3256 :

l- 6.7980 + 2.9948. - 0.043686 + 0.00008y248

- 6.3256 + 2.y8821&4 - 0.04174896 + 0.0122526872

l- 0.4724 + 0.0066 - 0.001397

Thus the result of this deflation is a cubic i',(x) = x3 - 0.4724~~

+ 0.0066x - 0.001397 *, Again, s3(x) is
3

exactly the quotient of

$4(x,
4

=x 0 6.7980~~ + 2. 99481-$+4x2

by x - 6.3256 . Note that P4 and P4

constant terms. Hence the product of the

different fram that for P4 . This is an

shift of the zeros of g3 .

- 0.04368596x + 0.0122526872

differ very much in their

roots of 5, must be very

explanation for the great

Further analysis shows that the shift in zeros during this kind of

deflation is generally small when deflation is made with zeros of small

modulus, and is generally large when deflation is based on zeros of large

modulus. Thus it is better to get zeros of small modulus first in using a

polynomial solver with deflation in the above manner.

Of course, any zero of a deflated polynomial can be refined by use

of the original polynomial, and that is normally done. But, zeros that

change as much as those above are difficult to refine, since the refinement

process may converge to thewrong zero.

38

13. Conclusions

Around ten-years ago, when I last read a number of them, most

mathematics books that dealt with numerical methods at all were from ten

to fifty years out of date. In the past ten years, many excellent new

methods have been devised for most of the el&entary problems -- methods

that are well adapted to automatic cmputers, and work well. Let me cite

a few examples of important algorithms hardly known ten years ago:

1. For getting eigenvalues of stored square matrices, there is an

excellent method that starts with the transformation of Householder (1958),

and follows it with the &R-algorithm of Francis (1361-62) and

Kublanovskaja (1961). It is the method of choice for most problems.

For references, see WiUrinson [153.

2. For solving ordinary differential equations, special methods

have been developed by Gear [5], Osborne [ll], and others which can deal

with so-called stiff equations. (Roughly speaking, a stiff equation is

one whose solutions contain very rapidly decaying transients which

contribute nothing to the long-term solution, but which interfere

drastically with most numericalmethods of solving the equation.) \

3. For evaluating the definite integral of a smooth function of

one real variable, the method of Romberg (see Vol. 2 of Ralston and Wilf [12])

has proved to be very useful.

4. For minimizing a smooth real-valued function of n real

variables, a variant by Fletcher and Powell [l] of a method of Davidon

is far superior to anything used in the 1950%. And there are still more

recent methods.

Many other examples could be given. Indeed, the 1960~ have proved

almost explosive in the number of newly invented algorithms that have

supplanted those known earlier. Of the methods known years ago for conTon

numerical problems, only Gauss' systematic elimination method for solving

linear algebraic equation systems with dense, stored matrices remains

39

supreme today, and even it must be augmented with scaling and.piv0tin.g

decisions, as we noted in Section 6 above. Newton's method for solving

a nonlinear system of equations is still much used today, though it has

strong competition from newer methods.

Because of my knowledge of mathematics texts ten years ago, and my

knowledge of the explosive increase in numerical methods in the 1960%~

I am confident that today's mathematics courses cannot be trusted to

include important knowledge about computer methods. As we noted in

Section 10 above, you can't trust early numerical analysis textbooks

either.

On the other hand, there are experts in numerical analysis. They

have societies in which methods are presented and discussed. The

Society for Industrial and Applied Mathematics (SIAM) and the Special,

Interest Group on Numerical Mathematics (SIGNUM) of the Association for

Computing Machinery (ACM) are the most active in this country. There are

a number of journals with important information. For a start, you might

consult the keyword-in-context index of Computing Reviews, the review

journal published by ACM, as well as the algorithms in the Communications

of ACM and in Numerische Mathematik. Modern monographs and textbooks in

numerical analysis are slowly appearing, and the beginner might

profitably consult Ralston and Wilf [12].

It might be noted as a digression that, just as mathematics departments

mainly ignore modern numerical analysis, so also the newly created computer

science departments often give the subject little attention, since they

are so busy with a variety of important nonnumerical fields. Thus numerical

analysts remain a sm&. corps of specialists whose greatest appreciation

probably comes from the users of mathematical programs.

Students of mathematics are well equipped to read about numerical

methods. Why should they repeat the classical blunders of generations

past? Why aren't they informed of the existence of good numerical

methods, and roughly where to find them?

Remembering that most students take mathematics in order to apply it

on computers, I ask why mathematics courses shouldn't reflect a true

40

awareness of how computing is done? Why shouldn't students demand in

their mathematics courses a greater awareness of the points of contact

of pure mathematics and its practice on a computer?

Of course, a mathematics instructor can shrug his shoulders and

say that actual computing problems don't interest him, and suggest that

his students contact a numerical analyst sometime. If the instructor

actually says this out loud, it at least has the virtue that the students

may realize immediately that the mathematics is not applicable directly,

instead of having to discover it for themselves. It still sounds

irresponsible to me. After all, 'Society has been supporting mathematicians

pretty well for the past 25 years -- not because mgthematics is a beautiful

art forAm, which it is -- but because mathematics is useful, which it also

is. But this would seem to imply that a mathematician should convey some

awareness of the main ways in which his subject is used.

On the other hand, a mathematics course cannot really include very

much numerical analysis. Wilkinson's treatise [15] on computing

eigenvalues is 700 pages long, and can hardly be summarized in every

course on linear algebra! As a practical matter, then, the mathematics

instructorTs main responsibility is to be aware of the main features of

practical computing in the areas of his mathematics courses, and mention

occasional points of contact, while giving his students important

references to important algorithmic materials in other books.

If one just ignores the relations between mathematics and its

important applications, I fear that an instructor is running the risk

of being exposed by some technological chapter of the Students for

Democratic Society for not being relevant, and that is a very nasty

accusation nowadays. Why risk it?

References

I
L [l] R. Flet hc er and M. J. D. Powell, "A rapidly convergent descent method

for minimization", Computer J. 6 (1963), pp. 163468.

[2] George E. Forsythe, "What is a satisfactory quadratic equation solver",

pp. 53-61 of B. Dejon and P. Henrici (Editors), Constructive Aspects

of the Fundamental Theorem of Algebra, Wiley-Interscience, 1969.

[3] George E. Forsythe and Cleve B. Moler, Computer Solution of Linear

Algebraic Systems, Prentice-Hall, 1967.

[4] George E. Forsythe and Wolfgang R. Wasow, Finite-Difference Methods

i - for Partial Differential Equations, Wiley, 1960.

L
[5] C. W. Gear, "The automatic integration of stiff ordinary differential

equations", pp. A81485 of Anonymous, Proceedings IFIP Congress 68,

North Holland Publishing Co., 1968.

c- [6] D. Hilbert, "Ein Betrag zur Theorie des Legendre'schen Polynoms",

Acta Math. 18 (18~4)~ pp. 155-160.

'L
[7] William Edmund Milne, Numerical Solution of Differential Equations,

Wiley, 1953.
L

!

L

[8] Cleve B. Moler, "Numerical solution of matrix problems", pp. 15-26

of Anonymous, The Digest Record of the 1969 Joint Conference on

Mathematical and Computer Aids-to Design, I.E.E.E. Catalogue NO. 69

c 63-c, 1969.

[9] David E. Muller, "A method for solving algebraic equations using an

automatic computer'l, Math. Tables and Other Aids to Computation 10

(1956), pi. 208-215. -

[lo] John von Neumann and H. H. Goldstine, "Numerical inverting of matrices

of high order", Bull. Amer. Math. Sot. 53 (1947), pp. 1021-1099, and

- Proc. Amer. Math. Sot. g (1951), pp. 188-202.

[u] Michael R. Osborne, "A new method for the integration of stiff systems

of ordinary differential equations", pp. A86-AgO of Anonymous,

Proceedings IFIP Congress 68, North Holland Publishing Co., 1968.

/ -
i 42

1
,
1

.I. ,

[12] Anthony Ralston and Herbert S. Wilf, Mathematical Methods for

Digital Computers, Wiley, Vol. 1, 1960, and Vol. 2, 1967.

[13] Irene A. Begun and Milton Abramowitz, "Pitfalls in computation",

J. SOC. Indust. Appl. Math. 2 (1956), pp. 207-219.

[IL] J. H. Wilkinson, Rounding Errors in Algebraic Processes,

Prentice-Hall, 1963.

[15] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford,

Clarendon Press, 1965.

k

-..*I

43

