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1. Introduction

In [2] Wielandt and Hoffman proved a theorem on the eigenvalues of

normal matrices which is of considerable importance in the error analysis

of eigenvalue algorithms based on the use of unitary transformations

[4,5]. Their proof was very elegant and was based on the use of linear

programming techniques. In [5] Wilkinson gave an elementary proof in

the case when the matrices are Hermitian, which was based on an earlier

, proof due to Givens [l]. This proof did not extend easily to the general

case. Here we give an elementary proof for the general case which

applies immediately to a generalization of the Wielandt-Hoffman theorem

due to Kahan [3]. Not surprisingly the proof involves techniques which

are familiar in the area of linear programming but no direct appeal is

made to results from that field.

2. The Basic Theorem

The proof depends on a theorem which is not directly concerned with

normal matrices. Before stating this theorem we give two definitions.

DEFINITION 1. The set of n elements a1 i ,a2 i ,*..,an i of
'1 '2 'n

an nxn matrix A is called a diagonal of A if i ,i ,...,i
1 2

isn

a permutation of the integers 1,2,...,n . If i
j
= j (j = l,...,n)

then we have the principal  diagonal.

DEFINITION 2. A matrix X is called a doubly stochastic matrix if
n

X >O and
ij - c x =ij

- 1 (j = l,...,n) i.e., all row
i=l

and column runs are unity.
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THEOREM 1. If P is a real matrix such that the sum of the

elements on the principal diagonal is not greater than the sum

of the elements on any other diagonal, and X is any doubly

stochastic matrix, then S(X) G Expijxij is a minimum when

X=1.

Proof. The minimum is attained, possibly for many different X .

Let us choose X to be a minimizing doubly stochastic matrix having

' the maximum number of zero off-diagonal elements. We shall show that

all its off-diagonals must be zero. For suppose that this is not true.

Let x.
y i2

be a non-zero off-diagonal. Then x. . < 1 and hence
=9=2

there is a non-zero element x.12fi3 (say) in row i2 . If i3 # i2

then similarly there is a non-zero element x.
13) j-4

in row i3 .

Continue in this way until we reach an xi .
m - P m

for which im equals

some earlier ik . Let x be the smallest of the positive elements

x. .
ik'=k+l

,x. .
=k+l%+2

Y .‘.Y x. . .
im-l?k

Construct a matrix Y such that

'i ,i =x. . +x I
s s =s' =s

yi ,i =x. . -x Y
S s+l y-J 1s+l

=xY.. ij otherwise.
iJ

S = k,k+l, . . ..m-1

s = k,k+l,...,m-1

(24

(2.2)

(2*3)

Then Y is clearly a doubly stochastic matrix and
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cc PijYij - cc . (2-4)

i

-I- ‘Is+1S

The

the

expression in brackets cannot be positive since otherwise by replacing

elements p. .
1 91

in the principal diagonal by the elements
s s

pi
we could obtain a smaller diagonal sum. Hence

cc �ijyij  �CCpij⌧ij  l-

. But Y is clearly a doubly stochastic matrix and it has at least one

more off-diagonal zero than X , contradicting the hypothesis. Hence

all off-diagonal elements of X must be zero, i.e., x=1.

An exactly analogous theorem holds when the principal- diagonal

has the maximum sum.

3. The Wielandt-Hoffman Theorem

THEOREM 2. If A and B are normal matrices and C = A-B , and

if a
i

and b
i

are the eigenvalues of A and B arranged so
n 2

that Cl ai -bil is a minimum for all possible orderings, then
1

e 1 ai -bi12 5 l\�\\f�  l (II II� F = the Frobenius norm of C) (3.1)
1

Proof. Since A and B are normal there exist unitary Ql and Q2

such that

A = Ql diag(ai)QF ., B = Q2 di-ag(bi)QE  l (=I

L
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(Note then we are free to prescribe the ordering of the a. and b
1 i

and we choose the ordering which gives Cl ai-bi(2 a minimum value.

Hence .

A-B = Ql diag(ai)Qt - Q2 diag(bi)Qi  = C

giving

diag(ai)Q: Q2 - QfJ Q2 diag(bi) = QyCQ2 l (3J+)

Writing Q = Qy Q2 , a unitary matrix, we have

2
/ldiag(ai)&  - Q diag(bi)ll~ = Jjc/JF

.

since the Frobenius norm is unitarily invariant. Hence

Ccl aimbj12 19ij12  = Ilcl\~  l

(3.3)

(3.5)

(34

Now the matrix P with p.. = (ai-bj(
2

=J
is real and from the ordering

of the a and b
i i

its principal diagonal is minimal. Further, since

is unitary, the matrix Z with zii = Iqiil
2

Q is a doubly stochastic

‘ matrix. Hence by Theorem 1 and

i
n

C l a iwbi12 ,< CC
1

I
ai-bj12 lqij12 = II’ll:

and the result is proved.

&J Ad

equation (3.6)

(3.7)

When A and B are Hermitian, the ai and bi are real, and it

is easy to prove that the orderings a1 2 a2 2 . . . 2 an , blzb2 > . . . >bn

give the minimal value. In fact, returning to Theorem 1 in the case when

i
L
L

p.. = (ai-bj)' with ai and bi real and monotonically ordered, the
=J

proof is much simpler. For if X has a non-zero off diagonal element

-
L
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in row 1 or column 1 it must have at least one such in both. Suppose

Xlr
and x are non-zero and xsr is the smaller. If we increase

x11
and xsr by x and diminish xlr and xsl by x the sum is

changed by

xr (“1 -bl)2+ (as -br)2 - (al-br)2- (as -b,)12 = x(al-as)(br -bl> ,< 0 (3.8)

Hence continuing in this way the minimizing X has no non-zero off-diagonal

. elements in row 1 or column 1, and continuing again the minimizing X

is I . (Notice we do not even have to show that for this P , the

principal diagonal is minimal; this emerges from the proof.)

4. Generalization of the Wielandt-Hoffman Theorem

A generalization of the Wielandt-Hoffman Theorem which is of

practical importance is the following.

THEOREM 3. If X is an nxr matrix with orthonormal columns,

A is an nxn normal matrix, B is an rxr normal matrix

and R an nxr matrix is defined by

Ax -X-J ‘= R ,- (44

if the eigenvalues a. (i = l,...,n) of A and b1 i (i = l,...,r)
r

of B are ordered so that CI a is a minimum, then
i=l

i-bi12

r

CI a. -1 bil2 I llRll~ ’ v+*a
i=l

-

A weaker result with \I RI\: replaced by $I2 II IIR 2F was given by

Wilkinson in [5] and the result itself by Kahan [3].
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Notice we are interested only in the selection and ordering of the

relevant r of the ai to be associated with the bi . Writing

A = Ql diag(ai)QF , B = Q2 diag(bi)QF

with the prescribed ordering of the a
i and b

i'
we have

/jdiag(ai)Q - Q diag(bi) 11: = I\Qy R 9211: = \I R 11:

where Q is an nxr matrix with ortho-normal columns. Hence

Let Y = [Q 1 Z] be an nxn unitary matrix given by the completion

of Q ; then if

2
p ij = ai - bjlI (j ,< r> Y Pij = O (j > 4 .

f fp. slya -I2 = f
i=l j=l ‘J ‘J f I&i - bj121qij12

j=l i=l

P+*3)

P+J+)

(4.5)

(44

(4.7)

and from the definition of the 'ordering of the a. and b1 i'
the diagonal

of P is minimal. Hence by Theorem 1 and Equation (4.5)

n

c P . .
i=l IL1

=
r

CI a. -i=l ’ bil2 5
r

c
j=l

n

Cl
i=l

ai-bjl  19ij12  = llRll~  l P+*8)

This theorem is of practical value when r orthonormal approximate

eigenvectors Xy.'YXr are known corresponding to alleged eigenvalues

I-Ll' ��p,  l I f
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Axi - pixi = ri ( i =l"*"d

Then

AX- X diag(bi) = R

(4.9)

(4.10)

with an obvious notation, and diag(vi) is the matrix B of Theorem 3.

This then states that there exist r eigenvalues al, . . .' a of A
r

such that

r

CCa. -
i=l IL

PiI = 11 R 11: (4.11)

Notice that the vi can include multiple or pathologically chic

eigenvalues. The result is well known when r = 1 and the

Wielandt-Hoffman theorem corresponds to the case r = n. We observe

that by using less than r of the alleged eigenvectors we can obtain

results of the type (4.11) corresponding to any s (< r) of the

approximate eigenvalues.
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